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A short survey of Stein’s method

Sourav Chatterjee

Abstract. Stein’s method is a powerful technique for proving central limit theorems in probability
theory when more straightforward approaches cannot be implemented easily. This article begins with
a survey of the historical development of Stein’s method and some recent advances. This is followed
by a description of a “general purpose” variant of Stein’s method that may be called the generalized
perturbative approach, and an application of this method to minimal spanning trees. The article con-
cludes with the descriptions of some well known open problems that may possibly be solved by the
perturbative approach or some other variant of Stein’s method.

Mathematics Subject Classification (2010). Primary 60F05; Secondary 60B10.

Keywords. Stein’s method, normal approximation, central limit theorem.

1. Introduction

A sequence of real-valued random variables Zn is said to converge in distribution to a limit-
ing random variable Z if

lim
n→∞P(Zn ≤ t) = P(Z ≤ t)

at all t where the map t �→ P(Z ≤ t) is continuous. It is equivalent to saying that for all
bounded continuous functions g from R into R (or into C),

lim
n→∞Eg(Zn) = Eg(Z) . (1.1)

Often, it is not necessary to consider all bounded continuous g, but only g belonging to a
smaller class. For example, it suffices to consider all g of the form g(x) = eitx, where
i =

√−1 and t ∈ R is arbitrary, leading to the method of characteristic functions (that is,
Fourier transforms) for proving convergence in distribution.

The case where Z is a normal (alternatively, Gaussian) random variable is of particular
interest to probabilists and statisticians, because of the frequency of its appearance as a limit
in numerous problems. The normal distribution with mean μ and variance σ is the probability
distribution on R that has probability density

1

σ
√
2π

e−(x−μ)2/2σ2

with respect to Lebesgue measure. The case μ = 0 and σ = 1 is called “standard normal”
or “standard Gaussian”. To show that a sequence of random variables Zn converges in
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2 Sourav Chatterjee

distribution to this Z, one simply has to show that for each t,

lim
n→R

E(eitZn) = E(eitZ) = eitμ−σ2t2/2 .

Indeed, this is the most well known approach to proving the classical central limit theorem
for sums of independent random variables.

Besides characteristic functions, there are two other classical approaches to proving cen-
tral limit theorems. First, there is the method of moments, which involves showing that
limn→∞ E(Zk

n) = E(Zk) for every positive integer k. Second, there is an old technique of
Lindeberg [54], which has recently regained prominence. I will explain Lindeberg’s method
in Section 5.

In 1972, Charles Stein [79] proposed a radically different approach to proving conver-
gence to normality. Stein’s observation was that the standard normal distribution is the only
probability distribution that satisfies the equation

E(Zf(Z)) = Ef ′(Z) (1.2)

for all absolutely continuous f with a.e. derivative f ′ such that E|f ′(Z)| < ∞. From this,
one might expect that ifW is a random variable that satisfies the above equation in an approx-
imate sense, then the distribution of W should be close to the standard normal distribution.
Stein’s approach to making this idea precise was as follows.

Take any bounded measurable function g : R → R. Let f be a bounded solution of the
differential equation

f ′(x)− xf(x) = g(x)− Eg(Z) , (1.3)

where Z is a standard normal random variable. Stein [79] showed that a bounded solution
always exists, and therefore for any random variable W ,

Eg(W )− Eg(Z) = E(f ′(W )−Wf(W )) .

If the right-hand side is close to zero, so is the left. If we want to consider the supremum of
the left-hand side over a class of functions g, then it suffices to do the same on the right for
all f obtained from such g. For example, one can prove the following simple proposition:

Proposition 1.1. LetD be the set of all f : R→ R that are twice continuously differentiable,
and |f(x)| ≤ 1, |f ′(x)| ≤ 1 and |f ′′(x)| ≤ 1 for all x ∈ R. Let Z be a standard normal
random variable and W be any random variable. Then

sup
t∈R

|P(W ≤ t)− P(Z ≤ t)| ≤ 2
(
sup
f∈D

|E(f ′(W )−Wf(W ))|
)1/2

.

Proof. Fix ε > 0. Let g(x) = 1 if x ≤ t and 0 if x ≥ t + ε, with linear interpolation
in the interval [t, t + ε]. Let f be a solution of the differential equation (1.3). By standard
estimates [36, Lemma 2.4], |f(x)| ≤ 2/ε, |f ′(x)| ≤ √

2/π/ε and |f ′′(x)| ≤ 2/ε for all
x. Consequently, (ε/2)f ∈ D. Since the probability density function of Z is bounded by
1/
√
2π everywhere, it follows that

P(W ≤ t) ≤ Eg(W )

= Eg(Z) + E(f ′(W )−Wf(W ))
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≤ P(Z ≤ t) +
ε√
2π

+ E(f ′(W )−Wf(W ))

≤ P(Z ≤ t) +
ε√
2π

+
2

ε
sup
h∈D

E(h′(W )−Wh(W )) .

Similarly, taking g(x) = 1 if x ≤ t − ε, g(x) = 0 if x ≥ t and linear interpolation in the
interval [t− ε, t], we get

P(W ≤ t) ≥ P(Z ≤ t)− ε√
2π
− 2

ε
sup
h∈D

|E(h′(W )−Wh(W ))| .

The proof of the proposition is now easily completed by optimizing over ε.

The convenience of dealing with the right-hand side in Proposition 1.1 is that it involves
only one random variable, W , instead of the two variables W and Z that occur on the left.
This simple yet profound idea gave birth to the field of Stein’s method, that has survived the
test of time and is still alive as an active field of research within probability theory after forty
years of its inception.

2. A brief history of Stein’s method

Stein introduced his method of normal approximation in the seminal paper [79] in 1972. The
key to Stein’s implementation of his idea was the method of exchangeable pairs, devised by
Stein in [79]. The key idea is as follows. A pair of random variables or vectors (W,W ′) is
called an exchangeable pair if (W,W ′) has the same distribution as (W ′,W ). Stein’s basic
idea was that if (W,W ′) is an exchangeable pair such that for some small number λ,

E(W ′ −W |W ) = −λW + o(λ) ,

E((W ′ −W )2 |W ) = 2λ+ o(λ) , and

E|W ′ −W |3 = o(λ) ,

where o(λ) denotes random or nonrandom quantities that have typical magnitude much
smaller than λ, then X is approximately standard normal. Without going into the precise
details, Stein’s reasoning goes like this: Given any f ∈ D whereD is the function class from
Proposition 1.1, it follows by exchangeability that

E((W ′ −W )(f(W ′) + f(W ))) = 0 ,

because the left-hand side is unchanged ifW andW ′ are exchanged, but it also becomes the
negation of itself. But note that by the given conditions,

1

2λ
E((W ′ −W )(f(W ′) + f(W ))) =

1

2λ
E((W ′ −W )(f(W ′)− f(W )))

+
1

λ
E((W ′ −W )f(W ))

=
1

2λ
E((W ′ −W )2f ′(W ))− E(Wf(W )) + o(1)

= E(f ′(W ))− E(Wf(W )) + o(1) ,
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where o(1) denotes a small quantity.
For example, if W = n−1/2(X1 + · · · + Xn) for i.i.d. random variables X1, . . . , Xn

with mean zero, variance one and E|X1|3 <∞, then taking

W ′ = W − XI√
n
+

X ′
I√
n
,

where I is uniformly chosen from {1, . . . , n} and for each i, X ′
i is an independent random

variable having the same distribution as Xi, we get an exchangeable pair that satisfies the
three criteria listed above with λ = 1/n (easy to check).

The monograph [80] also contains the following abstract generalization of the above
idea. Suppose that we have two random variables W and Z, and suppose that T0 is an
operator on the space of bounded measurable functions such that ET0f(Z) = 0 for all f .
Let α be any map that takes a bounded measurable function f on R to an antisymmetric
bounded measurable function αf on R2 (meaning that αf(x, y) = −αf(y, x) for all x, y).

In the above setting, note that if W ′ is a random variable such that (W,W ′) is an ex-
changeable pair, then Eαf(W,W ′) = 0 for any f . For a function h of two variables, let

Th(x) := E(h(W,W ′) |W = x) ,

so that ETαf(W ) = Eαf(W,W ′) = 0 for any f . Consequently, given g, if f is a solution
of the functional equation

T0f(x) = g(x)− Eg(Z) ,

then
Eg(W )− Eg(Z) = ET0f(W ) = E(T0f(W )− Tαf(W )) . (2.1)

Thus, if T0 ≈ Tα, then Z and W have approximately the same distributions. For example,
for normal approximation, we can take

T0f(x) = f ′(x)− xf(x) andαf(x, y) = (2λ)−1(x− y)(f(x) + f(y))

, where λ is as above. If the three conditions listed by Stein hold for an exchangeable pair
(W,W ′), then indeed T0 ≈ Tα, as we have shown above.

The identity (2.1) is the content of a famous commutative diagram of Stein [80]. It
has been used in contexts other than normal approximation — for example, for Poisson
approximation in [26] and for the analysis of Markov chains in [39].

A notable success story of Stein’s method was authored by Bolthausen [13] in 1984,
when he used a sophisticated version of the method of exchangeable pairs to obtain an error
bound in a famous combinatorial central limit theorem of Hoeffding. The problem here is to
prove a central limit theorem for an object likeW =

∑n
i=1 aiπ(i), where aij is a given array

of real numbers, and π is a uniform random permutation of {1, . . . , n}. Bolthausen defined

W ′ = W − aIπ(I) − aJπ(J) + aIπ(J) + aJπ(I) ,

and proved that (W,W ′) is an exchangeable pair satisfying the three required conditions.
The difficult part in Bolthausen’s work was to derive a sharp error bound, since the error rate
given by a result like Proposition 1.1 is usually not optimal.

Incidentally, it has been proved recently by Röllin [74] that to apply exchangeable pairs
for normal approximation, it is actually not necessary thatW andW ′ are exchangeable; one
can make an argument go through if W andW ′ have the same distribution.
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Stein’s 1986 monograph [80] was the first book-length treatment of Stein’s method. After
the publication of [80], the field was given a boost by the popularization of the method of
dependency graphs by Baldi and Rinott [6], a striking application to the number of local
maxima of random functions by Baldi, Rinott and Stein [7], and central limit theorems for
random graphs by Barbour, Karoński and Ruciński [11], all in 1989.

The method of dependency graphs, as a version of Stein’s method, was introduced in
Louis Chen’s 1971 Ph.D. thesis on Poisson approximation and the subsequent publication
[32]. It was developed further by Chen [33] before being brought to wider attention by Baldi
and Rinott [6]. Briefly, the method may be described as follows. Suppose that (Xi)i∈V
is a collection of random variables indexed by some finite set V . A dependency graph is
an undirected graph on the vertex set V such that if A and B are two subsets of V such
that there are no edges with one endpoint in A and the other in B, then the collections
(Xi)i∈A and (Xi)i∈B are independent. Fix a dependency graph, and for each i, let Ni be
the neighborhood of i in this graph, including the vertex i. Let W =

∑
i∈V Xi and assume

that E(Xi) = 0 for each i. Define

Wi :=
∑
j �∈Ni

Xj ,

so that Wi is independent of Xi. Then note that for any smooth f ,

E(Wf(W )) =
∑
i∈V

E(Xif(W ))

=
∑
i∈V

E(Xi(f(W )− f(Wi)))

≈
∑
i∈V

E(Xi(W −Wi)f
′(W )) = E

((∑
i∈V

Xi(W −Wi)

)
f ′(W )

)
,

where the approximation holds under the condition that W ≈ Wi for each i. Define T :=∑
i∈V Xi(W −Wi). Let σ2 := ET . The above approximation, when valid, implies that

VarW = EW 2 ≈ σ2. Therefore if T has a small variance, then E(Wf(W )) ≈ σ2
Ef ′(W ).

By a slight variant of Proposition 1.1, this shows thatW is approximately normal with mean
zero and variance σ2.

To gain a hands-on understanding of the dependency graph method, the reader can check
that this technique works when Y1, . . . , Yn are independent random variables with mean
zero, and Xi = n−1/2YiYi+1 for i = 1, . . . , n − 1. Here V = {1, . . . , n − 1}, and a
dependency graph may be defined by putting an edge between i and j whenever |i− j| = 1.

The new surge of activity that began in the late eighties continued through the nineties,
with important contributions coming from Barbour [8] in 1990, who introduced the diffusion
approach to Stein’s method; Avram and Bertsimas [5] in 1993, who applied Stein’s method
to solve an array of important problems in geometric probability; Goldstein and Rinott [50]
in 1996, who developed the method of size-biased couplings for Stein’s method, improving
on earlier insights of Baldi, Rinott and Stein [7]; Goldstein and Reinert [49] in 1997, who
introduced the method of zero-bias couplings; and Rinott and Rotar [72] in 1997, who solved
a well known open problem related to the antivoter model using Stein’s method. Sometime
later, in 2004, Chen and Shao [38] did an in-depth study of the dependency graph approach,
producing optimal Berry-Esséen type error bounds in a wide range of problems. The 2003
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monograph of Penrose [66] gave extensive applications of the dependency graph approach
to problems in geometric probability.

I will now try to outline the basic concepts behind some of the methods cited in the
preceding paragraph.

The central idea behind Barbour’s diffusion approach [8] is that if a probability measure μ
on some abstract space is the unique invariant measure for a diffusion process with generator
L, then under mild conditions μ is the only probability measure satisfying

∫ Lfdμ = 0
for all f in the domain of L; therefore, if a probability measure ν has the property that∫ Lfdν ≈ 0 in some suitable sense for a large class of f ’s, then one may expect that ν is
close to μ is some appropriate metric. Generalizing Stein’s original approach, Barbour then
proposed the following route to make this idea precise. Given a function g on this abstract
space, one can try to solve for

Lf(x) = g(x)−
∫

gdμ ,

and use ∫
gdν −

∫
gdμ =

∫
Lfdν ≈ 0 .

To see how Stein’s method of normal approximation fits into this picture, one needs to re-
call that the standard normal distribution on R is the unique invariant measure for a dif-
fusion process known as the Ornstein-Uhlenbeck process, whose generator is Lf(x) =
f ′′(x) − xf ′(x). This looks different than the original Stein operator f ′(x) − xf(x), but
it is essentially the same: one has to simply replace f by f ′ and f ′ by f ′′.

In [8], Barbour used this variant of Stein’s method to solve some problems about dif-
fusion approximation. However, the most significant contribution of Barbour’s paper was a
clarification of the mysterious nature of the method of exchangeable pairs. A one dimen-
sional diffusion process (Xt)t≥0 with drift coefficient a(x) and diffusion coefficient b(x) is a
continuous time stochastic process adapted to some filtration {Ft}t≥0 satisfying, as h→ 0,

E(Xt+h −Xt | Ft) = a(Xt)h+ o(h) ,

E((Xt+h −Xt)
2 | Ft) = b(Xt)

2h+ o(h) , and

E|Xt+h −Xt|3 = o(h) .

An exchangeable pair (W,W ′) naturally defines a stationary, reversible Markov chain W0,
W1,W2, . . ., where W0 = W , W1 = W ′, and for each i, the conditional distribution of
Wi+1 given Wi is the same as that of W1 given W0. If the pair (W,W ′) satisfies the three
conditions listed by Stein for some small λ, then in a scaling limit as λ → 0, the Markov
chain defined above converges to a diffusion process with drift function a(x) = −x and
diffusion coefficient

√
2. This is precisely the standard Ornstein-Uhlenbeck process whose

stationary distribution is the standard normal. Therefore one can expect that W is approx-
imately normally distributed. Note that this argument is quite general, and not restricted to
normal approximation. In a later paragraph, I will briefly point out some generalizations of
Stein’s method using Barbour’s approach.

The method of size-biased couplings in Stein’s method was introduced in the paper of
Baldi, Rinott and Stein [7], and was fully developed by Goldstein and Rinott [50]. The size-
biased transform of a non-negative random variable W with mean λ is a random variable,
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usually denoted byW ∗, such that for all g,

E(Wg(W )) = λEg(W ∗) .

Size biasing is actually a map on probability measures, which takes a probability measure μ
on the non-negative reals to a probability measure ν defined as dν(x) = λ−1xdμ(x), where
λ is the mean of μ. Size biasing is an old concept, predating Stein’s method, probably origi-
nating in the survey sampling literature. (Actually, the name “size-biasing” comes from the
survey sampling procedure where a sample point is chosen with probability proportional to
some notion of size.) As a consequence of its classical origins and usefulness in a variety
of domains, there are many standard procedures to construct size-biased versions of com-
plicated random variables starting from simpler ones. For example, if X1, . . . , Xn are i.i.d.
non-negative random variables, and W = X1 + · · · +Xn, and X∗

1 is a size-biased version
ofX1, thenW ∗ = X∗

1 +X2 + · · ·+Xn is a size-biased version ofW . To see this, just note
that for any g,

E(Wg(W )) = nE(X1g(X1 + · · ·Xn))

= nE(X1)Eg(X
∗
1 +X2 + · · ·+Xn)

= E(W )Eg(W ∗) .

For more complicated examples, see [50].
In Stein’s method, size biasing is used in the following manner: Suppose that W is a

non-negative random variable with mean λ and variance σ2. Suppose that we are able to
construct a size-biased versionW ∗ ofW on the same probability space, such that

E(W ∗ −W |W ) =
σ2

λ
(1 + o(1)) , and

E(W ∗ −W )2 = o

(
σ3

λ

)
.

Then the standardized random variableX := (W −λ)/σ is approximately standard normal.
To understand why this works, let Y := (W ∗−λ)/σ and note that under the two conditions
displayed above,

E(Xf(X)) =
1

σ
E(Wf(X))− λ

σ
Ef(X)

=
λ

σ
E(f(Y )− f(X))

=
λ

σ
E((Y −X)f ′(X)) +

λ

σ
O(E(Y −X)2)

=
λ

σ2
E(E(W ∗ −W |W )f ′(X)) +

λ

σ3
O(E(W ∗ −W )2)

= Ef ′(X) + o(1) .

For a mathematically precise version of the above argument, see [50, Theorem 1.1].
The method of size biased couplings is quite a powerful tool for proving central limit the-

orems for non-negative random variables, especially those that arise as sums of mildly depen-
dent variables. The only hurdle is that one has to be able to construct a suitable size-biased



8 Sourav Chatterjee

coupling. There is also the other limitation that W has to be non-negative. To overcome
these limitations, Goldstein and Reinert [49] introduced the method of zero-bias couplings.
Given a random variable W with mean zero and variance σ2, the zero-biased transform W ′

ofW is a random variable satisfying

E(Wf(W )) = σ2
Ef ′(W ′)

for all differentiable f whenever the left-hand side is well-defined. It is clear from Propo-
sition 1.1 that if one can define a zero-bias transform W ′ on the same probability space as
W such that W ′ ≈ W with high probability, then W is approximately normal with mean 0
and variance σ2. The construction of zero-bias transforms can be quite tricky. The method
has been systematically developed and used to solve a variety of problems by a number of
authors, starting with Goldstein and Reinert [49].

A feature of Stein’s method of normal approximation that has limited its applicability
throughout the history of the subject is that it works only for problems where “something
nice” happens. This is true of all classical versions of the method, such as the method of
exchangeable pairs, the dependency graph approach, size-biased couplings and zero-bias
couplings. For exchangeable pairs, we need that the three conditions listed by Stein are
valid. For dependency graphs, we need the presence of a dependency graph of relatively
small degree. For the coupling techniques, we need to be able to construct the couplings.
Given a general problem with no special structure, it is often difficult to make these methods
work. Intending to come up with a more general approach, I introduced a new method in
2008 in the paper [21] for discrete systems, and a corresponding continuous version in [22]
in 2009. This new approach (which I am calling the generalized perturbative approach in
this article) was used to solve a number of questions in geometric probability in [21], random
matrix central limit theorems in [22], number theoretic central limit theorems in [31], and an
error bound in a central limit theorem for minimal spanning trees in [29]. The generalized
perturbative method is described in detail in Section 3.

The paper [22] also introduced the notion of second order Poincaré inequalities. The
simplest second order Poincaré inequality, derived in [22], states that if X = (X1, . . . , Xn)
is a vector of i.i.d. standard normal random variables, f : Rn → R is a twice continuously
differentiable function with gradient ∇f and Hessian matrix Hessf , and W := f(X) has
mean zero and variance 1, then

sup
A∈B(R)

|P(W ∈ A)− P(Z ∈ A)| ≤ 2
√
5(E‖∇f(X)‖4)1/4(E‖Hessf(X)‖4op)1/4 ,

where ‖∇f(X)‖ is the Euclidean norm of ∇f(X), ‖Hessf(X)‖op is the operator norm of
Hessf(X), and B(R) is the set of Borel subsets of R. In [22], this inequality was used
to prove new central limit theorems for linear statistics of eigenvalues of random matrices.
The name “second order Poincaré inequality” is inspired from the analogy with the usual
Poincaré inequality for the normal distribution, which states that Varf(X) ≤ E‖∇f(X)‖2
for any absolutely continuous f . Although this does not look like anything related to Stein’s
method, a close inspection of the proof in [22] makes it clear that it is in fact an offshoot of
Stein’s method.

Incidentally, the usual Poincaré inequality has also been used to prove central limi the-
orems, for example by Chen [34], using a characterization of the normal distribution by
Borovkov and Utev [15].
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Second order Poincaré inequalities have been useful in several subsequent works, e.g. in
Nourdin, Peccati and Reinert [62], Nolen [59], etc. Indeed, it may be said that the whole
thriving area of Stein’s method in Malliavin calculus, pioneered by Nourdin and Peccati
[60], is an “abstractification” of the ideas contained in [21] and [22]. The new method was
later unified with other branches of Stein’s method through the concept of Stein couplings
introduced by Chen and Röllin [37].

Normal approximation is not the only area covered by Stein’s method. In 1975, Louis
Chen [32] devised a version of Stein’s method for Poisson approximation, expanding on his
1971 Ph.D. thesis under Stein. The Chen-Stein method of Poisson approximation is a very
useful tool in its own right, finding applications in many areas of the applied sciences. The
main idea is that a Poisson random variable X with mean λ is the only kind of random
variable satisfying

E(Xf(X)) = λEf(X + 1)

for every f , and then proceed from there as usual by developing a suitable version of Proposi-
tion 1.1. The subject of Poisson approximation by Stein’s method took off with the papers of
Arratia, Goldstein and Gordon [3, 4] and the classic text of Barbour, Holst and Janson [10],
all appearing in the period between 1989 and 1992. A relatively recent survey of Poisson
approximation by Stein’s method is given in my paper [26] with Diaconis and Meckes.

Besides normal and Poisson, Stein’s method has been used sometimes for other kinds of
distributional approximations. One basic idea was already available in Stein’s 1986 mono-
graph [80], and a different one in Barbour’s paper [8] on the diffusion approach to Stein’s
method. These ideas were implemented in various forms by Mann [57] in 1994 for chi-
square approximation, Luk [55] in 1997 for gamma approximation, Holmes [52] in 2004
for birth-and-death chains, and Reinert [68] in 2005 for approximation of general densities.
In 2005, Fulman [46] extended the method of exchangeable pairs to study Plancherel mea-
sures on symmetric groups. Stein’s method for a mixture of two normal distributions, with
an application to spin glasses, appeared in my 2010 paper [23], while another non-normal
distribution arising at the critical temperature of the Curie-Weiss model of ferromagnets was
tackled in my joint paper with Shao [30] in 2011 and in a paper of Eichelsbacher and Löwe
[41] in 2010. Several papers on Stein’s method for geometric and exponential approxima-
tions have appeared in the literature, including an early paper of Peköz [63] from 1996, a
paper of myself with Fulman and Röllin [27] that appeared in 2011, and papers of Peköz and
Röllin [64] and Peköz, Röllin and Ross [65] that appeared in 2011 and 2013 respectively.

Another area of active research is Stein’s method for multivariate normal approximation.
Successful implementations were carried out by Götze [51] in 1991, Bolthausen and Götze
[14] in 1993, and Rinott and Rotar [71] in 1996. The complexities of Götze’s method were
clarified by Bhattacharya and Holmes [12] in 2010. In a joint paper [28] with Meckes in
2008, we found a way to implement the method of exchangeable pairs in the multivariate
setting. The main idea here is to generalize Barbour’s diffusion approach to the multidimen-
sional setting, by considering the multivariate Ornstein-Uhlenbeck process and the related
semigroup. This naturally suggests a multivariate generalization of the three exchangeable
pair conditions listed by Stein. The relevant generalization of the Stein equation (1.3), there-
fore, is

Δf(x)− x · ∇f(x) = g(x)− Eg(Z) ,

where Δf is the Laplacian of f , ∇f is the gradient of f , x · ∇f(x) is the inner product of
the vector x and the gradient vector ∇f(x), and Z is a multidimensional standard normal
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random vector. The method was greatly advanced, with many applications, by Reinert and
Röllin [69, 70] in 2009 and 2010. Further advances were made in the recent manuscript of
Röllin [75].

Incidentally, there is a rich classical area of multivariate normal approximation, and a lot
of energy spent on what class of sets the approximation holds for. This remains to be worked
out for Stein’s method.

Besides distributional approximations, Stein’s method has also been used to prove con-
centration inequalities. Preliminary attempts towards deviation inequalities were made by
Stein in his 1986 monograph [80], which were somewhat taken forward by Raič in 2007. The
first widely applicable set of concentration inequalities using Stein’s method of exchange-
able pairs appeared in my Ph.D. thesis [18] in 2005, some of which were collected together
in the 2007 paper [20]. A more complex set of examples was worked out in a later paper with
Dey [25] in 2010. One of the main results of [18, 20] is that if (W,W ′) is an exchangeable
pair of random variables and F (W,W ′) is an antisymmetric function of (W,W ′) (meaning
that F (W,W ′) = −F (W ′,W )), then for all t ≥ 0,

P(|f(W )| ≥ t) ≤ 2e−t2/2C ,

where f(W ) = E(F (W,W ′)|W ) and C is a number such that

|(f(W )− f(W ′))F (W,W ′)| ≤ C with probability one.

Surprisingly, this abstract machinery has found quite a bit of use in real applications. In
2012, Mackey and coauthors [56] extended the method to the domain of matrix concentration
inequalities, thereby solving some problems in theoretical machine learning. In 2011, Ghosh
and Goldstein [47, 48] figured out a way to use size-biased couplings for concentration
inequalities.

There are a number of nonstandard applications of Stein’s method that have not yet
gathered a lot of follow up action, for example, Edgeworth expansions (Rinott and Rotar
[73]), rates of convergence of Markov chains (Diaconis [39]), strong approximation in the
style of the KMT embedding theorem (my paper [24]), moderate deviations (Chen et al. [35])
and even in the analysis of simulations (Stein et al. [81]). A great deal of hard work has gone
into proving sharp Berry-Esséen bounds using Stein’s method. Some of this literature is
surveyed in Chen and Shao [38].

A number of well written monographs dedicated to various aspects of Stein’s method
are in existence. The book of Barbour, Holst and Janson [10] is a classic text on Poisson
approximation by Stein’s method. The recent monograph by Chen, Goldstein and Shao [36]
is a very readable and comprehensive account of normal approximation by Stein’s method.
The survey of Ross [76], covering many aspects of Stein’s method, is already attaining the
status of a must-read in this area. The monograph [61] of Nourdin and Peccati describes the
applications of Stein’s method in Malliavin calculus. The edited volumes [9] and [40] are
also worth a look.

Lastly, I should clarify that the above review was an attempt to cover only the theoretical
advances in Stein’s method. The method has found many applications in statistics, engi-
neering, machine learning, and other areas of applications of mathematics. I have made no
attempt to survey these applications.

This concludes my very rapid survey of existing techniques and ideas in Stein’s method.
I apologize to anyone whose work I may have inadvertently left out. In the rest of this
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manuscript, I will attempt to briefly explain the generalized perturbative method introduced
in the papers [21] and [22], and then conclude by stating some open problems.

3. The generalized perturbative approach

Let X be a measure space and suppose X = (X1, . . . , Xn) is a vector of independent
X -valued random variables. Let f : Xn → R be a measurable function and let W :=
f(X). Suppose that EW = 0 and EW 2 = 1. I will now outline a general technique for
getting an upper bound on the distance of W from the standard normal distribution using
information about how f changes when one coordinate of X is perturbed. Such techniques
have long been commonplace in the field of concentration inequalities. Suitable versions
were introduced for the first time in the context of normal approximation in the papers [21,
22]. I am now calling this the generalized perturbative approach to Stein’s method. The
word “generalized” is added to the name because the method of exchangeable pairs is also a
perturbative approach, but this is more general.

Let X ′ = (X ′
1, . . . , X

′
n) be an independent copy of X . Let [n] = {1, . . . , n}, and for

each A ⊆ [n], define the random vector XA as

XA
i =

{
X ′

i if i ∈ A,

Xi if i ∈ A.

When A is singleton set like {i}, writeXi instead ofX{i}. Similarly, write A ∪ i instead of
A ∪ {i}. Define a randomized derivative of f along the ith coordinate as

Δif := f(X)− f(Xi) ,

and for each A ⊆ [n] and i ∈ A, let

Δif
A := f(XA)− f(XA∪i) .

For each proper subset A of [n] define

ν(A) :=
1

n
(
n−1
|A|

) .
Note that when restricted to the set of all subsets of [n]\{i} for some given i, ν is a proba-
bility measure. Define

T :=
1

2

n∑
i=1

∑
A⊆[n]\{i}

ν(A)ΔifΔif
A .

The generalized perturbative approach is based on the following completely general upper
bound on the distance of W from normality using the properties of the discrete derivatives
Δif and Δif

A.

Theorem 3.1 (Variant of Theorem 2.2 in [21]). Let W be as above and Z be a standard
normal random variable. Then

sup
t∈R

|P(W ≤ t)− P(Z ≤ t)| ≤ 2

(√
Var(E(T |W )) +

1

4

n∑
i=1

E|Δif |3
)1/2

.



12 Sourav Chatterjee

In practice, the variance of E(T |W ) may be upper bounded by the variance of E(T |X)
or the variance of T , which are easier to handle mathematically.

The following simple corollary may often be useful for problems with local dependence.
We will see an application of this to minimal spanning trees in Section 4.

Corollary 3.2. Consider the setting of Theorem 3.1. For each i, j, let cij be a constant such
that for all A ⊆ [n]\{i} and B ⊆ [n]\{j},

Cov(ΔifΔif
A, ΔjfΔjf

B) ≤ cij .

Then

sup
t∈R

|P(W ≤ t)− P(Z ≤ t)| ≤
√
2

( n∑
i,j=1

cij

)1/4

+

( n∑
i=1

E|Δif |3
)1/2

.

Intuitively, the above corollary says that if most pairs of discrete derivatives are approx-
imately independent, then W is approximately normal. This condition may be called the
approximate independence of small perturbations.

For example, if X1, . . . , Xn are real-valued with mean zero and variance one, and W =
n−1/2

∑
Xi, then we may take cij = 0 when i = j and cii = C/n2 for some constant

C depending on the distribution of the Xi’s. Moreover note that |Δif | is of order n−1/2.
Therefore, Corollary 3.2 gives a proof of the ordinary central limit theorem for sums of
i.i.d. random variables with an n−1/4 rate of convergence. This rate is suboptimal, but this
suboptimality is a general feature Stein’s method, requiring quite a bit of effort to overcome.

Theorem 3.1 was used to solve several questions in geometric probability (related to
nearest neighbor distances and applications in statistics) in [21], prove a number theoretic
central limit theorem in [31] and obtain a rate of convergence in a central limit theorem for
minimal spanning trees in [29]. When X1, . . . , Xn are i.i.d. normal random variables, a
“continuous” version of this theorem, where the perturbations are done in a continuous man-
ner instead of replacing by independent copies, was proved in [22]. This continuous version
of Theorem 3.1 was then used to derive the so-called second order Poincaré inequality for
the Gaussian distribution.

The remainder of this section is devoted to the proofs of Theorem 3.1 and Corollary 3.2.
Applications are worked out in the subsequent sections.

Proof of Theorem 3.1. Consider the sum
n∑

i=1

∑
A⊆[n]\{i}

ν(A)Δif
A .

Clearly, this is a linear combination of {f(XA), A ⊆ [n]}. It is a matter of simple verifi-
cation that the positive and negative coefficients of f(XA) in this linear combination cancel
out except when A = [n] or A = ∅. In fact, the above expression is identically equal to
f(X)− f(X ′).

Let g : X → R be another measurable function. Fix A and i ∈ A, and let U =
g(X)Δif

A. Then U is a function of the random vectorsX andX ′. The joint distribution of
(X,X ′) remains unchanged if we interchange Xi and X ′

i . Under this operation, U changes
to U ′ := −g(Xi)Δif

A. Thus,

E(U) = E(U ′) =
1

2
E(U + U ′) =

1

2
E
(
ΔigΔif

A
)
.
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As a consequence of the above steps and the assumption that EW = 0, we arrive at the
identity

E(g(X)W ) = E
(
g(X)(f(X)− f(X ′))

)
= E

( n∑
i=1

∑
A⊆[n]\{i}

ν(A)g(X)Δif

)

=
1

2
E

( n∑
i=1

∑
A⊆[n]\{i}

ν(A)ΔigΔif
A

)
.

In particular, taking g = f gives ET = EW 2 = 1. Next, take any ϕ : R → R that belongs
to the class D defined in Proposition 1.1. Let g := ϕ ◦ f . By the above identity,

E(ϕ(W )W ) =
1

2

n∑
i=1

∑
A⊆[n]\{i}

ν(A)E(ΔigΔif
A).

By the mean value theorem and the fact that |ϕ′′(x)| ≤ 1 for all x,

E|ΔigΔif
A − ϕ′(W )ΔifΔif

A| ≤ 1

2
E|(Δif)

2Δif
A| ≤ 1

2
E|Δif |3 ,

where the last step follows by Hölder’s inequality. Combining the last two displays gives

|E(ϕ(W )W )− E(ϕ′(W )T )| ≤ 1

4

n∑
i=1

∑
A⊆[n]\{i}

ν(A)E|Δif |3 =
1

4

n∑
i=1

E|Δif |3 .

Next, note that since ET = 1 and |ϕ′(x)| ≤ 1 for all x,

|E(ϕ′(W )T )− Eϕ′(W )| = |E(ϕ′(W )(E(T |W )− 1))|
≤ E|E(T |W )− 1| ≤

√
Var(E(T |W )) .

By the last two displays,

|E(ϕ(W )W − ϕ′(W ))| ≤
√
Var(E(T |W )) +

1

4

n∑
i=1

E|Δif |3 .

Since this is true for any ϕ ∈ D, Proposition 1.1 completes the proof of Theorem 3.1.

Proof of Corollary 3.2. Observe that

VarT ≤ 1

4

n∑
i,j=1

∑
A⊆[n]\{i}
B⊆[n]\{j}

ν(A)ν(B) Cov(ΔifΔif
A, ΔjfΔjf

B)

≤ 1

4

n∑
i,j=1

∑
A⊆[n]\{i}
B⊆[n]\{j}

ν(A)ν(B) cij =
1

4

n∑
i,j=1

cij .

To complete the proof, apply Theorem 3.1 and the inequality (x + y)1/2 ≤ x1/2 + y1/2 to
separate out the two terms in the error bound.
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4. Application to minimal spanning trees

In this section, I will describe an application of the generalized perturbative method to prove
a central limit theorem for minimal spanning trees on lattices with random edge weights.
This is a small subset of a joint work with Sen [29]. The major objective of [29] was to
obtain a rate of convergence, using the generalized perturbative approach, in a central limit
theorem for the Euclidean minimal spanning tree due to Kesten and Lee [53]. Kesten and
Lee used the martingale central limit theorem to solve this problem (without an error bound),
which was a long-standing open question at the time of its solution (except for the two-
dimensional case, which was solved by Alexander [2]). My interest in this area stemmed
from a quest to understand normal approximation in random combinatorial optimization.
Many such problems are still wide open. I will talk about some of them in the next section.

Let E be the set of edges of the integer lattice Z
d. Let (ωe)e∈E be a set of i.i.d. edge

weights, drawn from a continuous probability distribution on the positive real numbers with
bounded support. For each n, let Vn be the set [−n, n]d∩Zd, and letEn be the set of edges of
Vn. The minimal spanning tree on the graph Gn = (Vn, En) with edge weights (ωe)e∈En

is
the spanning tree that minimizes the sum of edge weights. Since the edge-weight distribution
is continuous, this tree is unique.

Let Mn be the sum of edge weights of the minimal spanning tree on Gn. We will now
see how to use Corollary 3.2 to give a simple proof of the following central limit theorem for
Mn.

Theorem 4.1 (Corollary of Theorem 2.4 in [29]). Let μn := EMn, σ2
n := VarMn, and

fn = fn((ωe)e∈En) :=
Mn − μn

σn
,

so that fn is a standardized version of Mn, with mean zero and variance one. Then fn
converges in law to the standard normal distribution as n goes to infinity.

Note that the above theorem does not have a rate of convergence. Theorem 2.4 in [29]
has an explicit rate of convergence, but the derivation of that rate will take us too far afield;
moreover that will be an unnecessary digression from the main purpose of this section, which
is to demonstrate a nontrivial application of the generalized perturbative approach. In the
remainder of this section, I will present a short proof of Theorem 4.1 using the version of the
generalized perturbative approach given in Corollary 3.2.

To apply Corollary 3.2, we first have to understand how Mn changes when one edge
weight is replaced by an independent copy. This is a purely combinatorial issue. Follow-
ing the notation of the previous section, I will denote the difference by ΔeMn. The goal,
eventually, is to show that ΔeMn is approximately equal to a quantity that depends only on
some kind of a local neighborhood of e. This will allow us to conclude that the covariances
in Corollary 3.2 are small. The following lemma gives a useful formula for the discrete
derivative ΔeMn, which is a first step towards this eventual goal.

Lemma 4.2. For each edge e ∈ E and each n such that e ∈ En, let αe,n denote the smallest
real number α such that there is a path from one endpoint of e to the other, lying entirely
in Vn but not containing the edge e, such that all edges on this path have weight ≤ α. If
the edge weight ωe is replaced by an independent copy ω′e, and ΔeMn denotes the resulting
change in Mn, then ΔeMn = (αe,n − ω′e)

+ − (αe,n − ωe)
+ where x+ denotes the positive

part of x.
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To prove this lemma, we first need to prove a well known characterization of the min-
imal spanning tree on a graph with distinct edge weights. Since we have assumed that the
edge weight distribution is continuous, the weights of all edges and paths are automatically
distinct with probability one.

Lemma 4.3. An edge e ∈ En belongs to the minimal spanning tree on Gn if and only if
ωe < αe,n. Moreover, if h is the unique edge with weight αe,n, then the lighter of the two
edges e and h belongs to the tree and the other one does not.

Proof. Let T denote the minimal spanning tree. First suppose that e ∈ T . Let T1 and T2

denote the two connected components of T\{e}. There is a path in Gn connecting the two
endpoints of e, which does not contain e and whose edge weights are all ≤ αe,n. At least
one edge r in this path is a bridge from T1 to T2. If ωe > αe,n, then we can delete the edge
e from T and add the edge r to get a tree that has total weight < Mn, which is impossible.
Therefore ωe < αe,n. Next, suppose that ωe < αe,n. Let P be the unique path in T that
connects the two endpoints of e. If P does not contain e, then P must contain an edge that
has weight ≥ αe,n > ωe. Deleting this edge from T and adding the edge e gives a tree with
weight < Mn, which is impossible. Hence T must contain e.

To prove the second assertion of the lemma, first observe that if ωh > ωe, then e ∈ T
and h ∈ T by the first part. On the other hand if ωh < ωe, then e ∈ T by the first part; and if
αh,n < ωh, then there exists a path connecting the two endpoints of e whose edge weights
are all < αe,n, which is impossible. Therefore again by the first part, h ∈ T .

We are now ready to prove Lemma 4.2.

Proof of Lemma 4.2. Let T and T ′ denote the minimal spanning trees before and after re-
placing ωe by ω′e. Note that since T and T ′ are both spanning trees, we have (I): T and T ′

must necessarily have the same number of edges.
By symmetry, it suffices to work under the assumption that ω′e < ωe. Clearly, this implies

that α′h,n ≤ αh,n for all h ∈ En and equality holds for h = e. Thus, by Lemma 4.3, we
make the observation (II): every edge in T ′ other than e must also belong to T .

Let h be the unique edge that has weight αe,n. There are three possible scenarios: (a) If
ωh < ω′e < ωe, then by Lemma 4.3, e ∈ T and e ∈ T ′. Therefore by the observations (I)
and (II), T = T ′. (b) If ω′e < ωh < ωe, then by Lemma 4.3, e ∈ T ′, h ∈ T ′, e ∈ T and
h ∈ T . By (I) and (II), this means that T ′ is obtained from T by deleting h and adding e.
(c) If ω′e < ωe < ωh, then e ∈ T and e ∈ T ′, and therefore by (I) and (II), T = T ′. In all
three cases, it is easy to see that the formula forΔeMn is valid. This completes the proof of
Lemma 4.2.

Lemma 4.2 gives an expression forΔeMn, but it does not make it obvious why this dis-
crete difference is approximately equal to a local quantity. The secret lies in a monotonicity
argument, similar in spirit to an idea from [53].

Lemma 4.4. For any e ∈ E, the sequence αe,n is a non-increasing sequence, converging
everywhere to a limiting random variable αe,∞ as n → ∞. The convergence holds in Lp

for every p > 0.

Proof. The monotonicity is clear from the definition of αe,n. Since the sequence is non-
negative, the limit exists. The Lp convergence holds because the random variables are
bounded by a constant (since the edge weights are bounded by a constant).
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Now let c denote a specific edge of E, let’s say the edge joining the origin to the point
(1, 0, . . . , 0). For any edge e, let e + Vn denote the set x + [−n, n]d ∩ Vn, where x is the
lexicographically smaller endpoint of e. In other words, e+Vn is simply a translate of Vn so
that 0maps to x. Let e+En be the set of edges of e+Vn. For each e, let βe,n be the smallest
β such that there is a path from one endpoint of e to the other, lying entirely in e + Vn but
not containing the edge e, such that all edges on this path have weight ≤ β. Clearly, βe,n

has the same distribution as αc,n. The following lemma says that for a fixed edge e, if n and
k and both large, and n is greater than k, then αe,n may be closely approximated by βe,k.

Lemma 4.5. There is a sequence δk tending to zero as k →∞, such that for any 1 ≤ k < n
and e ∈ En−k, E|βe,k − αe,n| ≤ δk.

Proof. Since e + Vk ⊆ Vn, βe,k ≥ αe,n. Thus, E|βe,k − αe,n| = E(βe,k) − E(αe,n). But
again, Vn ⊆ e+ V2n, and so αe,n ≥ βe,2n. Thus,

E|βe,k − αe,n| ≤ E(βe,k)− E(βe,2n) = E(αc,k)− E(αc,2n) .

By Lemma 4.4, E(αc,k) is a Cauchy sequence. This completes the proof.

Combining Lemma 4.5 and Lemma 4.2, we get the following corollary that gives the
desired “local approximation” for the discrete derivatives of Mn.

Corollary 4.6. For any k ≥ 1 and e ∈ E, let γe,k := (βe,k − ω′e)
+ − (βe,k − ωe)

+. Then
for any n > k and e ∈ En−k,

E|ΔeMn − γe,k| ≤ 2δk ,

where δk is a sequence tending to zero as k →∞.

Armed with the above corollary and Corollary 3.2, we are now ready to prove Theorem
4.1.

Proof of Theorem 4.1. Throughout this proof, C will denote any constant whose value de-
pends only on the edge weight distribution and the dimension d. The value of C may change
from line to line.

Fix an arbitrary positive integer k. Take any n > k. Take any edge e ∈ En−k, and a set
of edges A ⊆ En\{e}. Let (ω′h)h∈En

be an independent copy of (ωh)h∈En
, and just like in

Theorem 3.1, let ωA
h = ωh if h ∈ A, and ωA

h = ω′h if h ∈ A. Let ΔeM
A
n and γA

e,k be the
values of ΔeMn and γe,k in the environment ωA.

Let h be any other edge in En−k such that the lattice distance between e and h is bigger
than 2k. Let B be any subset of En\{h}. Then by Corollary 4.6 and the boundedness of the
discrete derivatives of Mn and the γ’s, we get

|Cov(ΔeMnΔeM
A
n , ΔhMnΔhM

B
n )− Cov(γe,kγ

A
e,k, γh,kγ

B
h,k)| ≤ Cδk .

But since (e+ Vk)∩ (h+ Vk) = ∅, the random variables γe,kγA
e,k and γh,kγB

h,k are indepen-
dent. In particular, their covariance is zero. Therefore,

|Cov(ΔeMnΔeM
A
n , ΔhMnΔhM

B
n )| ≤ Cδk .
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Note that here we are only considering e and h in En−k that are at least 2k apart in lattice
distance. Therefore among all pairs of edges e, h ∈ En, we are excluding ≤ Cn2d−1k pairs
from the above bound. Those that are left out, are bounded by a constant.

All we now need is a lower bound on the variance σ2
n. One can show that σ2

n ≥ Cnd.
This requires some work, which is not necessary to present in this article. For a proof, see
[29, Section 6.5]. Inputting this lower bound and the covariance bounds obtained in the
above paragraph into Corollary 3.2, we get

sup
t∈R

|P(fn ≤ t)− P(Z ≤ t)| ≤ C(δk + k/n)1/4 + Cn−d/4 .

The proof is finished by taking n→∞ and then taking k →∞.

5. Some open problems

Probability theory has come a long way in figuring out how to prove central limit theorems.
Still, there are problems where we do not know how to proceed. Many of these problems
come from random combinatorial optimization. One example of a solved problem from this
domain is the central limit theorem for minimal spanning trees, discussed in Section 4. But
there are many others that are quite intractable.

For example, consider the Euclidean traveling salesman problem on a set of random
points. Let X1, . . . , Xn be a set of points chosen independently and uniformly at random
from the unit square in R

2. Let P be a path that visits all points, ending up where it started
from, which minimizes the total distance traveled among all such paths. It is widely believed
that the length of P should obey a central limit theorem under appropriate centering and
scaling, but there is no proof.

Again, in the same setting, we may consider the problem of minimum matching. Sup-
pose that n is even, and we pair the points into n/2 pairs such that the sum total of the
pairwise distances is minimized. It is believed that this minimum matching length should be
approximately normally distributed, but we do not know how to prove that.

One may also consider lattice versions of the above problems, where instead of points in
Euclidean space we have random weights on the edges of a lattice. One can still talk about
the minimum weight path that visits all points on a finite segment of the lattice, and the
minimum weight matching of pairs of points. Central limit theorems should hold for both of
these quantities.

For basic results about such models, a classic reference is the monograph of Steele [78].
The reason why one may speculate that normal approximation should hold is that the solu-
tions of these problems are supposed to be “local” in nature. For example, the optimal path
in the traveling salesman problem is thought to be of “locally determined”; one way to make
this a little more precise is by claiming that a small perturbation at a particular location is
unlikely to affect the path in some faraway neighborhood. This is the same as what we earlier
called “the approximate independence of small perturbations”. If this is proven to be indeed
the case, then the generalized perturbative version of Stein’s method should be an adequate
tool for proving a central limit theorem.

Mean field versions of these problems, which look at complete graphs instead of lattices
or Euclidean points, have been analyzed in great depth in a remarkable set of papers by
Wästlund [85, 86]. In the case of minimum matching, this generalizes the famous work of
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Aldous [1] on the random assignment problem. These papers, however, do not prove central
limit theorems. It is an interesting question whether the insights gained from Wästlund’s
works can be applied to prove normal approximation in the mean field setting by rigorously
proving the independence of small perturbations.

Another class of problems that may be attacked by high dimensional versions of Stein’s
method are problems of universality in physical models. There are various notions of uni-
versality; the one that is closest to standard probability theory is the following. Suppose
that Z = (Z1, . . . , Zn) is a vector of i.i.d. standard normal random variables, and X =
(X1, . . . , Xn) is a vector of i.i.d. random variables from some other distribution, with mean
zero and variance one. Let f : Rn → R be some given function. When is it true that f(X)
and f(Z) have approximately the same probability distribution? In other words, when is it
true that for all g belonging to a large class of functions, Eg(f(X)) ≈ Eg(f(Z))? The clas-
sical central limit theorem says that this is true if f(x) = n−1/2(x1 + · · ·+ xn). Lindeberg
[54] gave an ingenious proof of the classical CLT in 1922 using the idea of replacing oneXi

by one Zi at a time, by an argument that I am going to describe below.
The idea was generalized by Rotar [77] to encompass low degree polynomials. The

polynomial version was applied, in combination with hypercontractive estimates, to solve
several open questions in theoretical computer science by Mossel et al. [58].

I think I may have been the first one to realize in [17, 19] that the Lindeberg method
applies to general functions (and not just sums and polynomials), with a potentially wide
range of interesting applications. The basic idea is the following: Let h = g ◦ f . For each i,
let U i = (X1, . . . , Xi, Zi+1, . . . , Zn) and V i = (X1, . . . , Xi−1, 0, Zi+1, . . . , Zn). Then by
Taylor expansion in the ith coordinate,

Eh(U i)− Eh(U i−1) = E

(
h(V i) +Xi∂ih(V

i) +
1

2
X2

i ∂
2
i h(V

i)

)

− E

(
h(V i) + Zi∂ih(V

i) +
1

2
Z2
i ∂

2
i h(V

i)

)
+O(‖∂3

i h‖∞) .

By the independence of theXi’s and Zi’s, and the assumptions that EXi = 0 and EX2
i = 1,

it follows that the two expectations on the right-hand side are equal. Therefore, summing
over i, we get

Eh(X)− Eh(Z) = O

( n∑
i=1

‖∂3
i h‖∞

)
. (5.1)

If the right-hand side is small, then we get our desired conclusion.
In [17, 19] I used this idea to give a new proof of the universality of Wigner’s semicircle

law, and a proof of the universality of the free energy of the Sherrington-Kirkpatrick model
of spin glasses. The random matrix problems were tackled by choosing h to be the Stieltjes
transform of the empirical spectral distribution of the random matrix at a point z ∈ C\R. By
taking z close toR and overcoming some major technical difficulties that arise in the process,
the method was later used with great effect in a series of papers by Tao and Vu [82–84] to
prove universality of local eigenvalue statistics of several kinds of random matrices.

The connection with Stein’s method comes through the following variant of the Linde-
berg idea. Suppose, instead of the above, we consider a solution w of the Stein equation

Δw(x)− x · ∇w(x) = h(x)− Eh(Z) .
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Let W i := (X1, . . . , Xi−1, 0, Xi+1, . . . , Xn). Then by the independence of the Xi’s and
the facts that EXi = 0 and EX2

i = 1, Taylor expansion gives

E(Xi∂iw(X)) = E(Xi∂iw(W
i) +X2

i ∂
2
i w(W

i)) +O(‖∂3
i w‖∞)

= E∂2
i w(W

i) +O(‖∂3
i w‖∞) = E∂2

i w(X) +O(‖∂3
i w‖∞) .

Summing over i, this gives

Eh(X)− Eh(Z) = E(Δw(X)−X · ∇w(X)) = O

( n∑
i=1

‖∂3
i w‖∞

)
,

which is basically the same as (5.1), except that we have third derivatives of w instead of h.
Undoubtedly, this is nothing but Stein’s method in action. A version of this argument was
used by Carmona and Hu [16] to prove the universality of the free energy in the Sherrington-
Kirkpatrick model, at around the same time that I proved it in [17]. Sophisticated forms of
this idea have been used by Erdős, Yau and coauthors in their remarkable series of papers
[42–45] proving universality of random matrix eigenvalue distributions, running parallel to
the papers of Tao and Vu, who used the Lindeberg approach. This demonstrates the potential
for high dimensional versions of Stein’s method to prove universality. There are still many
problems where we do not know how to establish universal behavior (for example, last- and
first-passage percolation, various polymer models, gradient Gibbs measures, etc.). It would
be interesting to see Stein’s method being used to attack such problems.

Acknowledgments. The author was partially supported by NSF grant DMS-1309618 dur-
ing the preparation of this article. I thank Susan Holmes and Persi Diaconis for many useful
comments on the first draft of this manuscript.
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Criticality, universality, and isoradiality

Geoffrey R. Grimmett

Abstract. Critical points and singularities are encountered in the study of critical phenomena in proba-
bility and physics. We present recent results concerning the values of such critical points and the nature
of the singularities for two prominent probabilistic models, namely percolation and the more general
random-cluster model. The main topic is the statement and proof of the criticality and universality of
the canonical measure of bond percolation on isoradial graphs (due to the author and Ioan Manolescu).
The key technique used in this work is the star–triangle transformation, known also as the Yang–Baxter
equation. The second topic reported here is the identification of the critical point of the random-cluster
model on the square lattice (due to Beffara and Duminil-Copin), and of the criticality of the canonical
measure of the random-cluster model with q ≥ 4 on periodic isoradial graphs (by the same authors
with Smirnov). The proof of universality for percolation is expected to extend to the random-cluster
model on isoradial graphs.
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Keywords. Percolation, random-cluster model, Ising/Potts models, critical point, universality, isora-
dial graph, critical exponent, star–triangle transformation, Yang–Baxter equation.

1. Introduction

One of the most provocative and elusive problems in the mathematics of critical phenomena
is the issue of universality. Disordered physical systems manifest phase transitions, the
nature of which is believed to be independent of the local structure of space. Very little
about universality is known rigorously for systems below their upper critical dimension. It
is frequently said that “renormalization” is the key to universality, but rigorous applications
of renormalization in the context of universality are rare.

There has been serious recent progress in the “exactly solvable” setting of the two-
dimensional Ising model, and a handful of special cases for other models. Our principal
purpose here is to outline recent progress concerning the identification of critical surfaces
and the issue of universality for bond percolation and the random-cluster model on isoradial
graphs, with emphasis on the general method, the current limitations, and the open problems.

For bond percolation on an extensive family of isoradial graphs, the canonical process,
in which the star–triangle transformation is in harmony with the geometry, is shown to be
critical. Furthermore, universality has been proved for this class of systems, at least for the
critical exponents at the critical surface. These results, found in recent papers by the author
and Manolescu, [27–29], vastly extend earlier calculations of critical values for the square
lattice etc, with the added ingredient of universality. Note that, to date, we are able to prove
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only conditional universality: if a certain exponent exists for at least one isoradial graph,
then a family of exponents exist for an extensive collection of isoradial graphs, and they are
universal across this collection.

The picture for the general random-cluster model is more restrained, but significant
progress has been achieved on the identification of critical points. The longstanding conjec-
ture for the critical value of the square lattice has been proved by Beffara and Duminil-Copin
[4], using a development of classical tools. Jointly with Smirnov [5], the same authors have
used Smirnov’s parafermionic observable in the first-order setting of q ≥ 4 to identify the
critical surface of a periodic isoradial graph. It is conjectured that the methods of [29] may
be extended to obtain universality for the random-cluster model on isoradial graphs.

The results reported in this survey are closely related to certain famous ‘exact results’ in
the physics literature. Prominent in the latter regard is the book of Baxter [3], from whose
preface we quote selectively as follows:

“. . . the phrase ‘exactly solved’ has been chosen with care. It is not necessarily
the same as ‘rigorously solved’. . . . There is of course still much to be done.”

Percolation is summarized in Section 2, and isoradial graphs in Section 3. Progress with
criticality and universality for percolation are described in Section 4. Section 6 is devoted
to recent progress with critical surfaces of random-cluster models on isoradial graphs, and
open problems for percolation and the random-cluster model may be found in Sections 5 and
7.

2. Percolation

2.1. Background. Percolation is the fundamental stochastic model for spatial disorder.
Since its introduction by Broadbent and Hammersley in 1957, it has emerged as a key topic
in probability theory, with connections and impact across all areas of applied science in
which disorder meets geometry. It is in addition a source of beautiful and apparently dif-
ficult mathematical problems, the solutions to which often require the development of new
tools with broader applications.

Here is the percolation process in its basic form. Let G = (V,E) be an infinite, con-
nected graph, typically a crystalline lattice such as the d-dimensional hypercubic lattice. We
are provided with a coin that shows heads with some fixed probability p. For each edge e of
G, we flip the coin, and we designate e open if heads shows, and closed otherwise. The open
edges are considered open to the passage of material such as liquid, disease, or rumour.1

Liquid is supplied at a source vertex s, and it flows along the open edges and is blocked
by the closed edges. The basic problem is to determine the geometrical properties (such as
size, shape, and so on) of the region Cs that is wetted by the liquid. More generally, one is
interested in the geometry of the connected subgraphs ofG induced by the set of open edges.
The components of this graph are called the open clusters.

Broadbent and Hammersley proved in [10, 30, 31] that there exists a critical probability
pc = pc(G) such that: every open cluster is bounded if p < pc, and some open cluster is
unbounded if p > pc. There are two phases: the subcritical phase when p < pc and the

1This is the process known as bond percolation. Later we shall refer to site percolation, in which the vertices
(rather than the edges) receive random states.
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supercritical phase when p > pc. The singularity that occurs when p is near or equal to pc
has attracted a great deal of attention from mathematicians and physicists, and many of the
principal problems remain unsolved even after several decades of study. See [22, 25] for
general accounts of the theory of percolation.

Percolation is one of a large family of models of classical and quantum statistical physics
that manifest phase transitions, and its theory is near the heart of the extensive scientific
project to understand phase transitions and critical phenomena. Key aspects of its special
position in the general theory include: (i) its deceptively simple formulation as a probabilistic
model, (ii) its use as a comparator for more complicated systems, and (iii) its role in the
development of new methodology.

One concrete connection between percolation and models for ferromagnetism is its mem-
bership of the one-parameter family of so-called random-cluster models. That is, percolation
is the q = 1 random-cluster model. The q = 2 random-cluster model corresponds to the
Ising model, and the q = 3, 4, . . . random-cluster models to the q-state Potts models. The
q ↓ 0 limit is connected to electrical networks, uniform spanning trees, and uniform con-
nected subgraphs. The geometry of the random-cluster model corresponds to the correlation
structure of the Ising/Potts models, and thus its critical point pc may be expressed in terms
of the critical temperature of the latter systems. See [23, 64] for a general account of the
random-cluster model.

The theory of percolation is extensive and influential. Not only is percolation a bench-
mark model for studying random spatial processes in general, but also it has been, and
continues to be, a source of intriguing and beautiful open problems. Percolation in two
dimensions has been especially prominent in the last decade by virtue of its connections to
conformal invariance and conformal field theory. Interested readers are referred to the papers
[14, 26, 54, 56, 57, 61, 63] and the books [6, 22, 25].

2.2. Formalities. For x, y ∈ V , we write x ↔ y if there exists an open path joining x and
y. The open cluster at the vertex x is the set Cx = {y : x ↔ y} of all vertices reached along
open paths from x, and we write C = C0 where 0 is a fixed vertex called the origin. Write
Pp for the relevant product probability measure, and Ep for expectation with respect to Pp.

The percolation probability is the function θ(p) given by

θ(p) = Pp(|C| = ∞),

and the critical probability is defined by

pc = pc(G) = sup{p : θ(p) = 0}. (2.1)

It is elementary that θ is a non-decreasing function, and therefore,

θ(p)

{
= 0 if p < pc,

> 0 if p > pc.

It is not hard to see, by the Harris–FKG inequality, that the value pc(G) does not depend on
the choice of origin.

Let d ≥ 2, and letL be a d-dimensional lattice. It is a fundamental fact that 0 < pc(L) < 1,
but it is unproven in general that no infinite open cluster exists when p = pc

Conjecture 2.1. For any lattice L in d ≥ 2 dimensions, we have that θ(pc) = 0.
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The claim of the conjecture is known to be valid for certain lattices when d = 2 and
for large d, currently d ≥ 15. This conjecture has been the ‘next open problem’ since the
intensive study of the late 1980s.

Whereas the above process is defined in terms of a single parameter p, we are concerned
here with the richer multi-parameter setting in which an edge e is designated open with some
probability pe. In such a case, the critical probability pc is replaced by a so-called ‘critical
surface’.

2.3. Critical exponents and universality. A great deal of effort has been directed towards
understanding the nature of the percolation phase transition. The picture is now fairly clear
for one specific model in two dimensions (site percolation on the triangular lattice), owing
to the very significant progress in recent years linking critical percolation to the Schramm–
Löwner curve SLE6. There remain however substantial difficulties to be overcome even
when d = 2, associated largely with the extension of such results to general two-dimensional
systems. The case of large d (currently, d ≥ 15) is also well understood, through work based
on the so-called ‘lace expansion’ (see [1]). Many problems remain open in the prominent
case d = 3.

Let L be a d-dimensional lattice. The nature of the percolation singularity on L is ex-
pected to share general features with phase transitions of other models of statistical me-
chanics. These features are sometimes referred to as ‘scaling theory’ and they relate to the
‘critical exponents’ occurring in the power-law singularities (see [22, Chap. 9]). There are
two sets of critical exponents, arising firstly in the limit as p → pc, and secondly in the limit
over increasing spatial scales when p = pc. The definitions of the critical exponents are
found in Table 2.1 (taken from [22]).

The notation of Table 2.1 is as follows. We write f(x) ≈ g(x) as x → x0 ∈ [0,∞] if
log f(x)/ log g(x) → 1. The radius of the open cluster C at the origin x is defined by

rad(C) = sup{‖y‖ : x ↔ y},
where

‖y‖ = sup
i

|yi|, y = (y1, y2, . . . , yd) ∈ R
d,

is the supremum (L∞) norm on R
d. The limit as p → pc should be interpreted in a manner

appropriate for the function in question (for example, as p ↓ pc for θ(p), but as p → pc for
κ(p)). The indicator function of an event A is denoted 1A.

Eight critical exponents are listed in Table 2.1, denoted α, β, γ, δ, ν, η, ρ,Δ, but there is
no general proof of the existence of any of these exponents for arbitrary d ≥ 2. Such critical
exponents may be defined for phase transitions in a large family of physical systems. The
exponents are not believed to be independent variables, but rather to satisfy the so-called
scaling relations

2− α = γ + 2β = β(δ + 1),

Δ = δβ, γ = ν(2− η),

and, when d is not too large, the hyperscaling relations

dρ = δ + 1, 2− α = dν.

More generally, a ‘scaling relation’ is any equation involving critical exponents which is
believed to be ‘universally’ valid. The upper critical dimension is the largest value dc such
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Function Behaviour Exp.

percolation θ(p) = Pp(|C| =∞) θ(p) ≈ (p− pc)
β β

probability

truncated χf(p) = Ep(|C|1|C|<∞) χf(p) ≈ |p− pc|−γ γ
mean cluster-size

number of κ(p) = Ep(|C|−1) κ′′′(p) ≈ |p− pc|−1−α α
clusters per vertex

cluster moments χf
k(p) = Ep(|C|k1|C|<∞)

χf
k+1(p)

χf
k(p)

≈ |p− pc|−Δ Δ

correlation length ξ(p) ξ(p) ≈ |p− pc|−ν ν

cluster volume Ppc(|C| = n) ≈ n−1−1/δ δ

cluster radius Ppc

(
rad(C) = n

) ≈ n−1−1/ρ ρ

connectivity function Ppc(0↔ x) ≈ ‖x‖2−d−η η

Table 2.1. Eight functions and their critical exponents. The first five exponents arise in the limit as
p → pc, and the remaining three as n → ∞ with p = pc. See [22, p. 127] for a definition of the
correlation length ξ(p).

that the hyperscaling relations hold for d ≤ dc and not otherwise. It is believed that dc = 6
for percolation. There is no general proof of the validity of the scaling and hyperscaling
relations for percolation, although quite a lot is known when either d = 2 or d is large. The
case of large d is studied via the lace expansion, and this is expected to be valid for d > 6.

We note some further points in the context of percolation.

(a) Universality. The numerical values of critical exponents are believed to depend only
on the value of d, and to be independent of the choice of lattice, and of the type of
percolation under study.

(b) Two dimensions. When d = 2, it is believed that

α = − 2
3 , β = 5

36 , γ = 43
18 , δ = 91

5 , . . . .

These values (other than α) have been proved (essentially only) in the special case of
site percolation on the triangular lattice, see [45, 60].

(c) Large dimensions. When d is sufficiently large (in fact, d ≥ dc) it is believed that
the critical exponents are the same as those for percolation on a tree (the ‘mean-field
model’), namely δ = 2, γ = 1, ν = 1

2 , ρ = 1
2 , and so on. Using the first hyperscaling
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relation, this is consistent with the contention that dc = 6. Several such statements are
known to hold for d ≥ 15, see [20, 32, 33, 41].

Open challenges include the following:

1. prove the existence of critical exponents for general lattices,

2. prove some version of universality,

3. prove the scaling and hyperscaling relations in general dimensions,

4. calculate the critical exponents for general models in two dimensions,

5. prove the mean-field values of critical exponents when d ≥ 6.

Progress towards these goals has been substantial but patchy. As noted above, for suffi-
ciently large d, the lace expansion has enabled proofs of exact values for many exponents,
for a restricted class of lattices. There has been remarkable progress in recent years when
d = 2, inspired largely by work of Cardy [14] and Schramm [53], enacted by Smirnov [56],
and confirmed by the programme pursued by Lawler, Schramm, Werner, Camia, Newman,
Sheffield and others to understand SLE curves and conformal ensembles.

In this paper, we concentrate on recent progress concerning isoradial embeddings of
planar graphs, and particularly the identification of their critical surfaces and the issue of
universality.

3. Isoradial graphs

Let G be an infinite, planar graph embedded in R2 in such a way that edges intersect only at
vertices. For simplicity, we assume that the embedding has only bounded faces. The graph
G is called isoradial if (i) every face has a circumcircle which passes through every vertex
of the face, (ii) the centre of each circumcircle lies in the interior of the corresponding face,
and (iii) all such circumcircles have the same radius. We may assume by re-scaling that the
common radius is 1.

The family of isoradial graphs is in two-to-one correspondence with the family of tilings
of the plane with rhombi of side-length 1, in the following sense. Consider a rhombic tiling
of the plane, as in Figure 3.1. The tiling, when viewed as a graph, is bipartite with vertex-
sets coloured red and white, say. Fix a colour and join any two vertices of that colour
whenever they are the opposite vertices of a rhombus. The resulting graph G is isoradial. If
the other colour is chosen, the resulting graph is the (isoradial) dual of G. This is illustrated
in Figures 3.1 and 3.2. Conversely, given an isoradial graph G, the corresponding rhombic
tiling is obtained by augmenting its vertex-set by the circumcentres of the faces, and each
circumcentre is joined to the vertices of the enclosing face.

Isoradial graphs were introduced by Duffin [17], and are related to the so-called Z-
invariant graphs of Baxter [2]. They were named thus by Kenyon, whose expository pa-
per [36] proposes the connection between percolation and isoradiality (and much more).
Isoradial graphs have two important properties, the first of which is their connection to pre-
holomorphic functions. This was discovered by Duffin, and is summarized by Smirnov [59]
and developed further in the context of probability by Chelkak and Smirnov [15]. This prop-
erty is key to the work on the random-cluster model on isoradial graphs reviewed in Section



Criticality, universality, and isoradiality 31

Figure 3.1. On the left is part of a rhombic tiling of the plane. Since all cycles have even length, this is
a bipartite graph, with vertex-sets coloured red and white. The graph on the right is obtained by joining
pairs of red vertices across faces. Each red face of the latter graph contains a unique white vertex, and
this is the centre of the circumcircle of that face. Joining the white vertices, instead, yields another
isoradial graph that is dual to the first.

Figure 3.2. An illustration of the isoradiality of the red graph of Figure 3.1.

6. A recent review of connections between isoradiality and aspects of statistical mechanics
may be found in [8].

The second property of isoradial graphs is of special relevance in the current work,
namely that they provide the ‘right’ setting for the star–triangle transformation. This is
explained next.

Consider an inhomogeneous bond percolation process on the isoradial graph G, whose
edge-probabilities pe are given as follows in terms of the graph-embedding. Each edge e
of G is the diagonal of a unique rhombus in the corresponding rhombic tiling of the plane,
and its parameter pe is given in terms of the geometry of this rhombus. With θe the opposite
angle of the rhombus, as illustrated in Figure 3.3, let pe ∈ (0, 1) satisfy

pe
1− pe

=
sin( 13 [π − θe])

sin( 13θe)
. (3.1)

We consider inhomogeneous bond percolation on G in which each edge e is designated open
with probability pe, and we refer to this as the canonical percolation process on G, with
associated probability measure PG. The special property of the vector p = (pe : e ∈ E) is
explained in Section 4.2.
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θe
e

Figure 3.3. The edge e is the diagonal of some rhombus, with opposite angle θe as illustrated.

Figure 3.4. An illustration of the track system of the rhombic tiling of Figure 3.1.

In a beautiful series of papers [11–13], de Bruijn introduced the geometrical construct
of ‘ribbons’ or ‘train tracks’ via which he was able to build a theory of rhombic tilings.
Consider a tiling T of the plane in which each tile is convex with four sides. We pursue a
walk on the faces of T according to the following rules. The walk starts in some given tile,
and crosses some edge to a neighbouring tile. It next traverses the opposite edge of this tile,
and so on. The walk may be extended backwards according to the same rule, and a doubly-
infinite walk ensues. Such a walk is called a ribbon or track. De Bruijn pointed out that, if T
is a rhombic tiling, then no walk intersects itself, and two walks may intersect once but not
twice. This property turns out to be both necessary and sufficient for a track system to be
homeomorphic to that of a rhombic tiling (see [37]).

We impose two restrictions on the isoradial graphs under study. Firstly, we say that an
isoradial graphG = (V,E) satisfies the bounded-angles property (BAP) if there exists ε > 0
such that

ε < θe < π − ε for all e ∈ E,

where θe is as in Figure 3.3. This amounts to the condition that the rhombi in the cor-
responding tiling are not ‘too flat’. We say that G has the square-grid property (SGP)
if its track system, viewed as a graph, contains a square grid such that those tracks not
in the grid have boundedly many intersections with the grid within any bounded region
(see [29, Sect. 4.2] for a more careful statement of this property).
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Figure 3.5. On the left, an isoradial graph obtained from part of the Penrose rhombic tiling. On the
right, the associated track system comprises a pentagrid: five sets of non-intersecting doubly-infinite
lines.

An isoradial graph may be viewed as both a graph and a planar embedding of a graph. Of
the many examples of isoradial graphs, we mention first the conventional embeddings of the
square, triangular, and hexagonal lattices. These are symmetric embeddings, and the edges
have the same p-value. There are also non-symmetric isoradial embeddings of the same
lattices, and indeed embeddings with no non-trivial symmetry, for which the corresponding
percolation measures are ‘highly inhomogeneous’.

The isoradial family is much richer than the above examples might indicate, and includes
graphs obtained from aperiodic tilings including the classic Penrose tiling [49, 50], illustrated
in Figure 3.5. All isoradial graphs mentioned above satisfy the SGP, and also the BAP so
long as the associated tiling comprises rhombi with flatness uniformly bounded from 0.

4. Criticality and universality for percolation

4.1. Two main theorems. The first main theorem of [29] is the identification of the criti-
cality of the canonical percolation measure PG on an isoradial graph G. The second is the
universality of PG across an extensive family of isoradial graphs G.

In order to state the criticality theorem, we introduce notation that is appropriate for
a perturbation of the canonical measure PG, and we borrow that of [5]. For e ∈ E and
β ∈ (0,∞), let pe(β) satisfy

pe(β)

1− pe(β)
= β

sin( 13 [π − θe])

sin( 13θe)
, (4.1)
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and write PG,β for the corresponding product measure on G. Thus PG,1 = PG.

Theorem 4.1 (Criticality [29]). Let G = (V,E) be an isoradial graph with the bounded-
angles property and the square-grid property. The canonical percolation measure PG is
critical in that

(a) there exist a, b, c, d > 0 such that

ak−b ≤ PG

(
rad(Cv) ≥ k

) ≤ ck−d, k ≥ 1, v ∈ V,

(b) there exists, PG-a.s., no infinite open cluster,

(c) for β < 1, there exist f, g > 0 such that

PG,β(|Cv| ≥ k) ≤ fe−gk, k ≥ 0, v ∈ V,

(d) for β > 1, there exists, PG,β-a.s., a unique infinite open cluster.

This theorem includes as special cases a number of known results for homogeneous and
inhomogenous percolation on the square, triangular, and hexagonal lattices beginning with
Kesten’s theorem that pc = 1

2 for the square lattice, see [38, 39, 65].
We turn now to the universality of critical exponents. Recall the exponents ρ, η, and

δ of Table 2.1. The exponent ρ2j is the so-called 2j alternating-arm critical exponent, see
[26, 29]. An exponent is said to be G-invariant if its value is constant across the family G.
Theorem 4.2 (Universality [29]). Let G be the class of isoradial graphs with the bounded-
angles property and the square-grid property.

(a) Let π ∈ {ρ} ∪ {ρ2j : j ≥ 1}. If π exists for some G ∈ G, then it is G-invariant.

(b) If either ρ or η exists for some G ∈ G, then ρ, η, δ are G-invariant and satisfy the
scaling relations ηρ = 2 and 2ρ = δ + 1.

The theorem establishes universality for bond percolation on isoradial graphs, but re-
stricted to the exponents ρ, η, δ at the critical point. The method of proof does not seem to
extend to the near-critical exponents β, γ, etc (see Problem E of Section 5).

It is in fact ‘known’ that, for reasonable two-dimensional lattices,

ρ = 48
5 , η = 5

24 , δ = 91
5 , (4.2)

although these values (and more), long predicted in the physics literature, have been proved
rigorously only for (essentially) site percolation on the triangular lattice. See Lawler,
Schramm, Werner [45] and Smirnov and Werner [60]. Note that site percolation on the
triangular lattice does not lie within the ambit of Theorems 4.1 and 4.2.

To summarize, there is currently no known proof of the existence of critical exponents
for any graph belonging to G. However, if certain exponents exist for any such graph, then
they exist for all G and are G-invariant. If one could establish a result such as in (4.2) for
any such graph, then this result would be valid across the entire family G.

The main ideas of the proofs of Theorems 4.1 and 4.2 are as follows. The first element is
the so-called box-crossing property. Loosely speaking, this is the property that the probabil-
ity of an open crossing of a box with given aspect-ratio is bounded away from 0, uniformly
in the position, orientation, and size of the box. The box-crossing property was proved by
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Russo [52] and Seymour/Welsh [55] for homogeneous percolation on the square lattice, us-
ing its properties of symmetry and self-duality. It may be shown using classical methods
that the box-crossing property is a certificate of a critical or supercritical percolation model.
It may be deduced that, if both the primal and dual models have the box-crossing property,
then they are both critical.

The star–triangle transformation of the next section provides a method for transforming
one isoradial graph into another. The key step in the proofs is to show that this transformation
preserves the box-crossing property. It follows that any isoradial graph that can be obtained
by a sequence of transformations from the square lattice has the box-crossing property, and
is therefore critical. It is proved in [29] that this includes any isoradial graph with both the
BAP and SGP.

4.2. Star–triangle transformation. The central fact that permits proofs of criticality and
universality is that the star–triangle transformation has a geometric representation that acts
locally on rhombic tilings. Consider three rhombi assembled to form a hexagon as in the
upper left of Figure 4.1. The interior of the hexagon may be tiled by (three) rhombi in either
of two ways, the other such tiling being drawn at the upper right of the figure. The switch
from the first to the second has two effects: (i) the track system is altered as indicated there,
with one track being moved over the intersection of the other two, and (ii) the triangle in
the isoradial graph of the upper left is transformed into a star. These observations are graph-
theoretic rather than model-specific. We next parametrize the system in such a way that the
parameters mutate in the canonical way under the above transformation. That is, for a given
probabilistic model, we seek a parametrization under which the geometrical switch induces
the appropriate parametric change.

Here is the star–triangle transformation for percolation. Consider the triangle T =
(V,E) and the star S = (V ′, E′) as drawn in Figure 4.2. Let p = (p0, p1, p2) ∈ [0, 1)3,
and suppose the edges in the figure are declared open with the stated probabilities. The two
ensuing configurations induce two connectivity relations on the set {A,B,C} within S and
T , respectively. It turns out that these two connectivity relations are equi-distributed so long
as κ(p) = 0, where

κ(p) = p0 + p1 + p2 − p1p2p3 − 1. (4.3)

The star–triangle transformation is used as follows. Suppose, in a graph G, one finds a
triangle whose edge-probabilities satisfy (4.3). Then this triangle may be replaced by a star
having the complementary probabilities of Figure 4.2 without altering the probabilities of
any long-range connections in G. Similarly, stars may be transformed into triangles. One
complicating feature of the transformation is the creation of a new vertex when passing from
a triangle to a star (and its destruction when passing in the reverse direction).

The star–triangle transformation was discovered first in the context of electrical networks
by Kennelly [35] in 1899, and it was adapted in 1944 by Onsager [48] to the Ising model
in conjunction with Kramers–Wannier duality. It is a key element in the work of Baxter
[2, 3] on exactly solvable models in statistical mechanics, where it has become known as
the Yang–Baxter equation (see [51] for a history of its importance in physics). Sykes and
Essam [62] used the star–triangle transformation to predict the critical surfaces of certain
inhomogeneous (but periodic) bond percolation processes on the triangular and hexagonal
lattices, and furthermore the star–triangle transformation is a tool in the study of the random-
cluster model [23, Sect. 6.6], and the dimer model [7].

Let us now explore the operation of the star–triangle transformation in the context of the
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A

C

B

C

A

B
O

Figure 4.1. There are two ways of tiling the hexagon in the upper figure, and switching between these
amounts to a star–triangle transformation for the isoradial graph. The effect on the track system is
illustrated in the lower figure.

p0

p1p2

A

B C

O

p0p

p1p p2p

A

B C

Figure 4.2. The star–triangle transformation for bond percolation.

rhombic switch of Figure 4.1. Let G be an isoradial graph containing the upper left hexagon
of the figure, and letG′ be the new graph after the rhombic switch. The definition (3.1) of the
edge-probabilities has been chosen in such a way that the values on the triangle satisfy (4.3)
and those on the star are as given in Figure 4.2. It follows that the connection probabilities on
G andG′ are equal. Graphs which have been thus parametrized but not embedded isoradially
were called Z-invariant by Baxter [2]. See [44] for a recent account of the application of the
above rhombic switch to Glauber dynamics of lozenge tilings of the triangular lattice.

One may couple the probability spaces on G and G′ in such a way that the star–triangle
transformation preserves open connections, rather than just their probabilities. Suppose that,
in a given configuration, there exists an open path in G between vertex-sets A and B. On
applying a sequence of star–triangle transformations, we obtain an open path in G′ from the
image of A to the image of B. Thus, star–triangle transformations transport open paths to
open paths, and it is thus that the box-crossing property is transported from G to G′.

In practice, infinitely many star–triangle transformations are required to achieve the nec-
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essary transitions between graphs. The difficulties of the proofs of Theorems 4.1–4.2 are
centred on the need to establish sufficient control on the drifts of paths and their endvertices
under these transformations.

5. Open problems for percolation

We discuss associated open problems in this section.

(A) Existence and equality of critical exponents. It is proved in Theorem 4.2 that, if
the three exponents ρ, η, δ exist for some member of the family G, then they exist
for all members of the family, and are constant across the family. Essentially the only
model for which existence has been proved is the site model on the triangular lattice,
but this does not belong to G. A proof of existence of exponents for the bond model
on the square lattice would imply their existence for the isoradial graphs studied here.
Similarly, if one can show any exact value for the latter bond model, then this value
holds across G.

(B) Cardy’s formula. Smirnov’s proof [56] of Cardy’s formula has resisted extension to
models beyond site percolation on the triangular lattice. It seems likely that Cardy’s
formula is valid for canonical percolation on any reasonable isoradial graph. There is
a strong sense in which the existence of interfaces is preserved under the star–triangle
transformations of the proofs. On the other hand, there is currently only limited control
of the geometrical perturbations of interfaces, and in addition Cardy’s formula is as
yet unproven for all isoradial bond percolation models.

(C) The bounded-angles property. It is normal in working with probability and isoradial
graphs to assume the BAP, see for example [15]. In the language of finite element
methods, [9], the BAP is an example of the Ženíšek–Zlámal condition.

The BAP is a type of uniform non-flatness assumption. It implies an equivalence of
metrics, and enables a uniform boundedness of certain probabilities. It may, however,
not be necessary for the box-crossing property, and hence for the main results above.

As a test case, consider the situation in which all rhombi have angles exactly ε and
π − ε. In the limit as ε ↓ 0, we obtain2 the critical space–time percolation process on
Z × R, see Figure 5.1 and, for example, [24]. Let Bn(α) be an n × n square of R2

inclined at angle α, and let Cn(α) be the event that the square is traversed by an open
path between two given opposite faces. It is elementary using duality that

P
(
Cn(

1
4π)
)→ 1

2 as n → ∞.

Numerical simulations (of A. Holroyd) suggest that the same limit holds when α = 0.
A proof of this would suggest that the limit does not depend on α, and this in turn
would support the possibility that the critical space–time percolation process satisfies
Cardy’s formula.

(D) The square-grid property. The SGP is a useful tool in the proof of Theorem 4.2, but
it may not be necessary. In [29] is presented an isoradial graph without the SGP, and
this example may be handled using an additional ad hoc argument.

2Joint work with Omer Angel.
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Figure 5.1. Space–time percolation. Each line is cut at rate 1, and nearest neighbours are joined at rate
1. One of the open clusters is highlighted. We ask for the probability that the box is traversed by an
open path from its lower left side to its upper right side.

(E) Near-critical exponents. Theorem 4.2 establishes the universality of exponents at
criticality. The method of proof does not appear to be extendable to the near-critical
exponents, and it is an open problem to prove these to be universal for isoradial graphs.
Kesten showed in [40] (see also [47]) that certain properties of a critical percolation
process imply properties of the near-critical process, so long as the underlying graph
has a sufficiently rich automorphism group. In particular, for such graphs, knowledge
of certain critical exponents at criticality implies knowledge of exponents away from
criticality. Only certain special isoradial graphs have sufficient homogeneity for such
arguments to hold without new ideas of substance, and it is an open problem to weaken
these assumptions of homogeneity. See the discussion around [28, Thm 1.2].

(F) Random-cluster models. How far may the proofs be extended to other models? It
may seem at first sight that only a star–triangle transformation is required, but, as usual
in such situations, boundary conditions play a significant role for dependent models
such as the random-cluster model. The control of boundary conditions presents a new
difficulty, so far unexplained. We return to this issue in Section 7.

6. Random-cluster model

6.1. Background. The random-cluster model was introduced by Fortuin and Kasteleyn
around 1970 as a unification of processes satisfying versions of the series and parallel laws.
In its base form, the random-cluster model has two parameters, an edge-parameter p and a
cluster-weighting factor q.

Let G = (V,E) be a finite graph, with associated configuration space Ω = {0, 1}E . For
ω ∈ Ω and e ∈ E, the edge e is designated open if ωe = 1. Let k(ω) be the number of open
clusters of a configuration ω. The random-cluster measure on Ω, with parameters p ∈ [0, 1],
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q ∈ (0,∞), is the probability measure satisfying

φp,q(ω) ∝ qk(ω)
Pp(ω), ω ∈ Ω, (6.1)

where Pp is the percolation product-measure with density p. In a more general setting, each
edge e ∈ E has an associated parameter pe.

Bond percolation is retrieved by setting q = 1, and electrical networks arise via the limit
p, q → 0 in such a way that q/p → 0. The relationship to Ising/Potts models is more compli-
cated and involves a transformation of measures. In brief, two-point connection probabilities
for the random-cluster measure with q ∈ {2, 3, . . . } correspond to two-point correlations for
ferromagnetic q-state Ising/Potts models, and this allows a geometrical interpretation of the
latter’s correlation structure. A fuller account of the random-cluster model and its history and
associations may be found in [23, 64], to which the reader is referred for the basic properties
of the model.

The special cases of percolation and the Ising model are very much better understood
than is the general random-cluster model. We restrict ourselves to two-dimensional systems
in this review, and we concentrate on the question of the identification of critical surfaces for
certain isoradial graphs.

Two pieces of significant recent progress are reported here. Firstly, Beffara and Duminil-
Copin [4] have developed the classical approach of percolation in order to identify the critical
point of the square lattice, thereby solving a longstanding conjecture. Secondly, together
with Smirnov [5], they have made use of the so-called parafermionic observable of [58] in a
study of the critical surfaces of periodic isoradial graphs with q ≥ 4.

6.2. Formalities. The random-cluster measure may not be defined directly on an infinite
graph G. There are two possible ways to proceed in the setting of an infinite graph, namely
via either boundary conditions or the DLR condition. The former approach works as follows.
Let (Gn : n ≥ 1) be an increasing family of finite subgraphs of G that exhaust G in the limit
n → ∞, and let ∂Gn be the boundary of Gn, that is, ∂Gn is the set of vertices of Gn that
are adjacent to a vertex of G not in Gn. A boundary condition is an equivalence relation bn
on ∂Gn; any two vertices u, v ∈ ∂Gn that are equivalent under bn are taken to be part of the
same cluster. The extremal boundary conditions are: the free boundary condition, denoted
bn = 0, for which each vertex is in a separate equivalence class; and the wired boundary
condition, denoted bn = 1, with a unique equivalence class. We now consider the set of
weak limits as n → ∞ of the random-cluster measures on Gn with boundary conditions bn.

Assume henceforth that q ≥ 1. Then the random-cluster measures have properties of
positive association and stochastic ordering, and one may deduce that the free and wired
boundary conditions bn = 0 and bn = 1 are extremal in the following sense: (i) there is a
unique weak limit of the free measures (respectively, the wired measures), and (ii) any other
weak limit lies, in the sense of stochastic ordering, between these two limits. We write φ0

p,q

and φ1
p,q for the free and wired weak limits. It is an important question to determine when

φ0
p,q = φ1

p,q , and the answer so far is incomplete even when G has a periodic structure, see
[23, Sect. 5.3].

The percolation probabilities are defined by

θb(p, q) = φb
p,q(0 ↔ ∞), b = 0, 1, (6.2)

and the critical values by

pbc(q) = sup{p : θb(p, q) = 0}, b = 0, 1. (6.3)
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Suppose that G is embedded in R
d in a natural manner. When G is periodic (that is, its

embedding is invariant under a Z
d action), there is a general argument using convexity of

pressure (see [21]) that implies that p0c (q) = p1c (q), and in this case we write pc(q) for the
common value.

One of the principal problems is to determine for which q the percolation probability
θ1(p, q) is discontinuous at the critical value pc. This amounts to asking when θ1(pc, q) > 0;
the phase transition is said to be of first order whenever the last inequality holds. The phase
transition is known to be of first order for sufficiently large q, and is believed to be so if and
only if q > Q(d) for some Q(d) depending on the dimension d. Furthermore, it is expected
that

Q(d) =

{
4 if d = 2,

2 if d ≥ 4.

We restrict our attention henceforth to the case d = 2, for which it is believed that the value
q = 4 separates the first and second order transitions. Recall Conjecture 2.1 and note the
recent proof thatQ(2) ≥ 4, for which the reader is referred to [18] and the references therein.

6.3. Critical point on the square lattice. The square lattice Z
2 is one of the main play-

grounds of physicists and probabilists. Although the critical points of percolation, the Ising
model and some Potts models on Z2 are long proved, the general answer for random-cluster
models (and hence all Potts models) has been proved only recently.

Theorem 6.1 (Criticality [4]). The random-cluster model on the square lattice with cluster-
weighting factor q ≥ 1 has critical value

pc(q) =

√
q

1 +
√

q
.

This exact value has been ‘known’ for a long time. When q = 1, the statement pc(1) = 1
2

is the Harris–Kesten theorem for bond percolation. When q = 2, it amounts to the well
known calculation of the critical temperature of the Ising model. For large q, the result (and
more) was proved in [42, 43] (q > 25.72 suffices, see [23, Sect. 6.4]). There is a ‘physics
proof’ in [34] for q ≥ 4.

The main contribution of [4] is a proof of a box-crossing property using a clever exten-
sion of the ‘RSW’ arguments of Russo and Seymour–Welsh in the context of the symmetry
illustrated in Figure 6.1, combined with careful control of boundary conditions. An alterna-
tive approach is developed in [19].

6.4. Isoradiality and the star–triangle transformation. The star–triangle transformation
for the random-cluster model is similar to that of percolation, and is illustrated in Figure 6.2.
The three edges of the triangle have parameters p0, p1, p2, and we set y = (y0, y1, y2) where

yi =
pi

1− pi
.

The corresponding edges of the star have parameters y′i where yiy
′
i = q. Finally, we require

that the yi satisfy ψ(y) = 0 where

ψ(y) = y1y2y3 + y1y2 + y2y3 + y3y1 − q. (6.4)
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L

Figure 6.1. The square lattice and its dual, rotated through π/4. Under reflection in the line L, the
primal is mapped to the dual.

y0

y1y2

A

B C

O

y0p

y1p y2p

A

B C

Figure 6.2. The star–triangle transformation for the random-cluster model.

Further details of the star–triangle transformation for the random-cluster model may be found
in [23, Sect. 6.6].

We now follow the discussion of Section 4.2 of the relationship between the star–triangle
transformation and the rhombus-switch of Figure 4.1. In so doing, we arrive (roughly as
in [36, p. 282]) at the ‘right’ parametrization for an isoradial graph G, namely with (3.1)
replaced by

if 1 ≤ q < 4: ye =
√

q
sin( 12σ(π − θe))

sin
(
1
2σθe
) , cos( 12σπ) = 1

2

√
q,

if q > 4: ye =
√

q
sinh( 12σ(π − θe))

sinh
(
1
2σθe
) , cosh( 12σπ) = 1

2

√
q,

(6.5)

where θe is given in Figure 3.3. The intermediate case q = 4 is the common limit of the two
expressions as q → 4, namely

ye = 2
π − θe

θe
.

Write φb
G,q for the corresponding random-cluster measure on an isoradial graph G with

boundary condition b = 0, 1. We refer to φ0
G,q as the ‘canonical random-cluster measure’ on

G.
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6.5. Criticality via the parafermion. Theorem 6.1 is proved in [4] by classical methods,
and it holds for all q ≥ 1. The proof is sensitive to the assumed symmetries of the lat-
tice, and does not currently extend even to the inhomogeneous random-cluster model on
Z
2 in which the vertical and horizontal edges have different parameter values. In contrast,

the parafermionic observable introduced by Smirnov [58] has been exploited by Beffara,
Duminil-Copin, and Smirnov [5] to study the critical point of fairly general isoradial graphs
subject to the condition q ≥ 4.

Let G = (V,E) be an isoradial graph. For β ∈ (0,∞), let ye(β) = βye where ye is
given in (6.5). Let

pe(β) =
ye(β)

1 + ye(β)

accordingly, and write φb
G,q,β for the corresponding random-cluster measure on G with

boundary condition b. The following result of [5] is proved by a consideration of the
parafermionic observable.

Theorem 6.2 ([5]). Let q ≥ 4, and let G be an isoradial graph satisfying the BAP. For
β < 1, there exists a > 0 such that

φ0
G,q,β(u ↔ v) ≤ e−a|u−v|, u, v ∈ V.

One deduces from Theorem 6.2 using duality that

(a) for β < 1, φ0
G,q,β-a.s., there is no infinite open cluster, and

(b) for β > 1, φ1
G,q,β-a.s., there exists a unique infinite open cluster.

This is only a partial verification of the criticality of the canonical measure, since parts (a)
and (b) deal with potentially different measures, namely the free and wired limit measures,
respectively. Further progress may be made for periodic graphs, as follows. Subject to the
assumption of periodicity, it may be proved as in [21] that φ0

G,q,β = φ1
G,q,β for almost every

β, and hence that part (b) holds with φ1
G,q,β replaced by φ0

G,q,β . Therefore, for periodic
embeddings, the canonical measure φ0

G,q = φ0
G,q,1 is critical.

Here is an application of the above remarks to the (periodic) inhomogeneous square
lattice.

Corollary 6.3 ([5]). Let q ≥ 4, and consider the random-cluster model on Z
2 with the

variation that horizontal edges have parameter p1 and vertical edges parameter p2. The
critical surface is given by y1y2 = q where yi = pi/(1− pi).

We close with the observation that a great deal more is known in the special case when
q = 2. The q = 2 random-cluster model corresponds to the Ising model, for which the
special arithmetic of the equation 1 + 1 = 2 permits a number of techniques which are
not available in greater generality. In particular, the Ising model and the q = 2 random-
cluster model on an isoradial graph lend themselves to a fairly complete theory using the
parafermionic observable. The interested reader is directed to the work of Smirnov [57, 58]
and Chelkak–Smirnov [16].

7. Open problems for the random-cluster model

(A) Inhomogeneous models. Extend Corollary 6.3 to cover the case 1 ≤ q < 4.
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(B) Periodicity. Remove the assumption of periodicity in the proof of criticality of the
canonical random-cluster measure on isoradial graphs. It would suffice to prove that
φ0
G,q,β = φ1

G,q,β for almost every β, without the assumption of periodicity. More
generally, it would be useful to have a proof of the uniqueness of Gibbs states for
aperiodic interacting systems, along the lines of that of Lebowitz and Martin-Löf [46]
for a periodic Ising model.

(C) Bounded-angles property. Remove the assumption of the bounded-angles property
in Theorem 6.1.

(D) Criticality and universality for general q. Adapt the arguments of [29] (or other-
wise) to prove criticality and universality for the canonical random-cluster measure on
isoradial graphs either for general q ≥ 1 or subject to the restriction q ≥ 4.
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Singular stochastic PDEs

Martin Hairer

Abstract. We present a series of recent results on the well-posedness of very singular parabolic
stochastic partial differential equations. These equations are such that the question of what it even
means to be a solution is highly non-trivial. This problem can be addressed within the framework of
the recently developed theory of “regularity structures”, which allows to describe candidate solutions
locally by a “jet”, but where the usual Taylor polynomials are replaced by a sequence of custom-built
objects. In order to illustrate the theory, we focus on the particular example of the Kardar-Parisi-Zhang
equation, a popular model for interface propagation.
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Keywords. Regularity structures, renormalisation, stochastic PDEs.

1. Introduction

In this article, we report on a recently developed theory [23] allowing to give a robust mean-
ing to a large class of stochastic partial differential equations (SPDEs) that have traditionally
been considered to be ill-posed. The general structure of these equations is

Lu = F (u) + G(u)ξ , (1.1)

where the dominant linear operator L is of parabolic (or possibly elliptic) type, F and G
are local nonlinearities depending on u and its derivatives of sufficiently low order, and ξ is
some driving noise. Problems arise when ξ (and therefore also u) is so singular that some of
the terms appearing in F and / or the product between G and ξ are ill-posed. For simplicity,
we will consider all of our equations in a bounded spatial region with periodic boundary
conditions.

One relatively simple example of an ill-posed equation of the type (1.1) is that of a system
of equations with a nonlinearity of Burgers type driven by space-time white noise:

∂tu = ∂2
xu + F (u) ∂xu + ξ . (1.2)

(See Section 2.2 below for a definition of the space-time white noise ξ.) Here, u(x, t) ∈ Rn

and F is a smooth matrix-valued function, so that one can in general not rewrite the non-
linearity as a total derivative. In this example, which was originally studied in [20] but then
further analysed in the series of articles [24, 25, 29], solutions at any fixed instant of time
have exactly the same regularity (in space) as Brownian motion. As a consequence, ∂xu
is expected to “look like” white noise. It is of course very well-known from the study of
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ordinary stochastic differential equations (SDEs) that in this case the product F (u) ∂xu is
“unstable”: one can get different answers depending on the type of limiting procedure used
to define it. This is the reason why one has different solution theories for SDEs: one obtains
different answers, depending on whether they are interpreted in the Itô or in the Stratonovich
sense [30, 43, 44].

Another example is given by the KPZ equation [32] which can formally be written as

∂th = ∂2
xh + (∂xh)

2 − C + ξ , (1.3)

and is a very popular model of one-dimensional interface propagation. As in the case of
(1.2), one expects solutions to this equation to “look like” Brownian motion (in space) for
any fixed instant of time. Now the situation is much worse however: the nonlinearity looks
like the square of white noise, which really shouldn’t make any sense! In this particular
case however, one can use a “trick”, the Cole-Hopf transform, to reduce the problem to
an equation that has an interpretation within the framework of classical SPDE theory [4].
Furthermore, this “Cole-Hopf solution” was shown in [4] to be the physically relevant solu-
tion since it describes the mesoscopic fluctuations of a certain microscopic interface growth
model, see also [17]. On the other hand, the problem of interpreting these solutions directly
at the level of (1.3) and to show their stability under suitable approximations had been open
for a long time, before being addressed in [21].

Both examples mentioned so far have only one space dimension. This particular feature
(together with some additional structure in the case of the KPZ equation, see Remark 5.17
below) allowed to treat them by borrowing estimates and techniques from the theory of (con-
trolled) rough paths [15, 18, 34]. This approach breaks down in higher spatial dimensions.
More recently, a general theory of “regularity structures” was developed in [23], which uni-
fies many previous approaches and allows in particular to treat higher dimensional problems.

Two nice examples of equations that can be treated with this new approach are given by

∂tΦ = ΔΦ+ CΦ− Φ3 + ξ , (1.4a)
∂tΨ = −Δ

(
ΔΨ+ CΨ−Ψ3

)
+ div ξ , (1.4b)

in space dimension d = 3. These equations can be interpreted as the natural “Glauber” and
“Kawasaki” dynamics associated to Euclidean Φ4 field theory in the context of stochastic
quantisation [40]. It is also expected to describe the dynamical mesoscale fluctuations for
phase coexistence models that are “almost mean-field”, see [5]. These equations cease to
have function-valued solutions in dimension d ≥ 2, so that the classical interpretation of the
cubic nonlinearity loses its meaning there. In two dimensions, a solution theory for these
equations was developed in [1], which was later improved in [10–12], see Section 3.1 below.
The case d = 3 (which is the physically relevant one in the interpretation as dynamical
fluctuations for phase coexistence models) had remained open and was eventually addressed
in [23].

A final example of the kind of equations that can be addressed by the theory exposed in
these notes (but this list is of course not exhaustive) is a continuous analogue to the classical
parabolic Anderson model [8]:

∂tu = Δu + u η + Cu , (1.5)

in dimensions d ∈ {2, 3}. In this equation, η denotes a noise term that is white in space, but
constant in time. This time, the problem is that in dimension d ≥ 2, the product u η ceases
to make sense classically, as a consequence of the lack of regularity of u.
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The following “meta-theorem” (formulated in a somewhat vague sense, precise formu-
lations differ slightly from problem to problem and can be found in the abovementioned
articles) shows in which sense one can give meaning to all of these equations.

Theorem 1.1. Consider the sequence of classical solutions to any of the equations (1.2)–
(1.5) with ξ (resp. η) replaced by a smooth regularised noise ξε and C = Cε depending on
ε. Then, there exists a choice Cε → ∞ such that this sequence of solutions converges to a
limit in probability, locally in time. Furthermore, this limit is universal, i.e. does not depend
on the details of the regularisation ξε.

Besides these convergence results, the important fact here is that the limit is independent
of the precise details of the regularisation mechanism. In addition, the theory of regularity
structures also yields rates of convergence, as well as an intrinsic description of these limits.
It also provides automatically a very detailed local description of these limits.

The aim of this article is to give an overview of the ingredients involved in the proof of
a result like Theorem 1.1. We structure this as follows. In Section 2, we recall a number
of properties and definitions of Hölder spaces of positive (and negative!) order that will be
useful for our argument. In Section 3, we then explain how, using only standard tools, it is
possible to provide a robust solution theory for not-so-singular SPDEs, like for example (1.4)
in dimension d = 2. Section 4 is devoted to a short overview of the main definitions and
concepts of the abstract theory of regularity structures which is a completely general way
of formalising the properties of objects that behave “like Taylor polynomials”. Section 5
then finally shows how one can apply this general theory to the specific context of the type
of parabolic SPDEs considered above, how renormalisation procedures can be built into the
theory, and how this affects the equations.

Throughout the whole article, our argumentation will remain mostly at the heuristic level,
but we will make the statements and definitions as precise as possible.

1.1. An alternative approach. A different approach to building solution theories for sin-
gular PDEs was developed simultaneously to the one presented here by Gubinelli & Al in
[19]. That approach is based on the properties of Bony’s paraproduct [2, 3, 7], in particular
on the paralinearisation formula. One advantage is that in the paraproduct-based approach
one generally deals with globally defined objects rather than the “jets” used in the theory
of regularity structures. This comes at the expense of achieving a less clean break between
the analytical and the algebraic aspects of a given problem and obtaining less detailed in-
formation about the solutions. Furthermore, its scope is not as wide as that of the theory of
regularity structures, see also Remark 5.17 below for more details.

2. Some properties of Hölder spaces

We recall in this section a few standard results from harmonic analysis that are very use-
ful to have in mind. Note first that the linear part of all of the equations described in the
introduction is invariant under some space-time scaling. In the case of the heat equation,
this is the parabolic scaling. In other words, if u is a solution to the heat equation, then
ũ(t, x) = u(λ−2t, λ−1x) is also a solution to the heat equation.

This suggests that we should look for solutions in function / distribution spaces respect-
ing this scaling. Given a smooth compactly supported test function ϕ and a space-time
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coordinate z = (t, x), we henceforth write ϕλ
z (s, y) = λ−d−2ϕ

(
λ−2(s − t), λ−1(y − x)

)
,

where d denotes the spatial dimension and the factor λ−d−2 is chosen so that the integral
of ϕλ

z is the same as that of ϕ. In the case of the stochastic Cahn-Hilliard equation (1.4b),
we would naturally use instead a temporal scaling of λ−4 and the prefactor would then be
λ−d−4.

With these notations at hand, we define spaces of distributions Cα for α < 0 in the
following way. Denoting by Bα the set of smooth test functions ϕ : Rd+1 → R that are
supported in the centred ball of radius 1 and such that their derivatives of order up to 1+ |α|
are uniformly bounded by 1, we set

Definition 2.1. Let η be a distribution on d + 1-dimensional space-time and let α < 0. We
say that η ∈ Cα if the bound

∣∣η(ϕλ
z )
∣∣ � λα holds uniformly over all λ ∈ (0, 1], all ϕ ∈ Bα,

and locally uniformly over z ∈ Rd+1.

For α ≥ 0, we say that a function f : Rd+1 → R belongs to Cα if, for every z ∈ Rd+1

there exists a polynomial Pz of (parabolic) degree at most α and such that the bound

|f(z′)− Pz(z
′)| � |z − z′|α ,

holds locally uniformly over z and uniformly over all z′ with |z′ − z| ≤ 1. Here, we say
that a polynomial P in z = (t, x) is of parabolic degree n if each monomial is of the form
zk with |k| = 2|k0|+

∑
i�=0 ki| ≤ n. In other words, the degree of the time variable “counts

double”. For z = (t, x), we furthermore write |z| = |t|1/2 + |x|. (When treating (1.4b),
powers of t count four times and one writes |z| = |t|1/4 + |x|.)

We now collect a few important properties of the spaces Cα.

2.1. Analytical properties. First, given a function and a distribution (or two distributions)
it is natural to ask under what regularity assumptions one can give an unambiguous meaning
to their product. It is well-known, at least in the Euclidean case but the extension to the
parabolic case is straightforward, that the following result yields a sharp criterion for when,
in the absence of any other structural knowledge, one can multiply a function and distribution
of prescribed regularity [2, Thm 2.52].

Theorem 2.2. Let α, β �= 0. Then, the map (f, g) �→ f · g defined on all pairs of continuous
functions extends to a continuous bilinear map from Cα×Cβ to the space of all distributions
if and only if α+β > 0. Furthermore, if α+β > 0, the image of the multiplication operator
is Cα∧β .

Another important property of these spaces is given by how they transform under con-
volution with singular kernels. Let K : Rd+1 → R be a function that is smooth away from
the origin and supported in the centred ball of radius 1. One should think of K as being a
truncation of the heat kernel G in the sense that G = K +R where R is a smooth space-time
function. We then say that K is of order β (in the case of a truncation of the heat kernel
one has β = 2) if one can write K =

∑
n≥0 Kn for kernels Kn which are supported in the

centred ball of radius 2−n and such that

sup
z

|DkKn(z)| � 2((d+2)+|k|−β)n , (2.1)

for any fixed multiindex k, uniformly in n. Multiplying the heat kernel with a suitable
partition of the identity, it is straightforward to verify that this bound is indeed satisfied.
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With these notations at hand, one has the following very general Schauder estimate, see
for example [41, 42] for special cases.

Theorem 2.3. Let β > 0, let K be a kernel of order β, and let α ∈ R be such that α+β �∈ N.
Then, the convolution operator η �→ K � η is continuous from Cα into Cα+β .

Remark 2.4. The condition α + β �∈ N seems somewhat artificial. It can actually be
dispensed with by slightly changing the definition of Cα.

2.2. Probabilistic properties. Let now η be a random distribution, which we define in
general as a continuous linear map ϕ �→ η(ϕ) from the space of compactly supported smooth
test functions into the space of square integrable random variables on some fixed probability
space (Ω,P). We say that it satisfies equivalence of moments if, for every p ≥ 1 there exists
a constant Cp such that the bound

E|η(ϕ)|2p ≤ Cp

(
E|η(ϕ)|2)p ,

holds for uniformly over all test functions ϕ. This is of course the case if the random vari-
ables η(ϕ) are Gaussian, but it also holds if they take values in an inhomogeneous Wiener
chaos of fixed order [39].

Given a stationary random distribution η and a (deterministic) distribution C, we say that
η has covariance C if Eη(ϕ)η(ψ) = 〈C � ϕ, ψ〉, where 〈·, ·〉 denotes the L2-scalar product.
With this notation at hand, space-time white noise ξ is the Gaussian random distribution
on Rd+1 with covariance given by the delta distribution. In other words, ξ(ϕ) is centred
Gaussian for every ϕ and Eξ(ϕ)ξ(ψ) = 〈ϕ, ψ〉L2 .

Similarly to the case of stochastic processes, a random distribution η̃ is said to be a
version of η if, for every fixed test function ϕ, η̃(ϕ) = η(ϕ) almost surely. One then has the
following Kolmogorov criterion, a proof of which can be found for example in [23].

Theorem 2.5. Let η be a stationary random distribution satisfying equivalence of moments
and such that, for some α < 0, the bound

E|η(ϕλ
z )|2 � λ2α ,

holds uniformly over λ ∈ (0, 1] and ϕ ∈ Bα. Then, for any κ > 0, there exists a Cα−κ-
valued random variable η̃ which is a version of η.

From now on, we will make the usual abuse of terminology and not distinguish between
different versions of a random distribution.

Remark 2.6. It follows immediately from the scaling properties of the L2 norm that one
can realise space-time white noise as a random variable in C− d

2−1−κ for every κ > 0. This
is sharp in the sense that it can not be realised as a random variable in C− d

2−1. This is akin
to the fact that Brownian motion has sample paths belonging to Cα for every α < 1

2 , but not
for α = 1

2 .

Let now K be a kernel of order β as before, let ξ be space-time white noise, and set
η = K � ξ. It then follows from either Theorem 2.5 directly, or from Theorem 2.3 combined
with Remark 2.6, that η belongs almost surely to Cα for every α < β − d

2 − 1. We now turn
to the question of how to define powers of η. If β ≤ d

2 + 1, η is not a random function, so
that its powers are in general undefined.
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Recall that if ξ is space-time white noise andL2(ξ) denotes the space of square-integrable
random variables that are measurable with respect to the σ-algebra generated by ξ, then
L2(ξ) can be decomposed into a direct sum L2(ξ) =

⊕
m≥0 Hm(ξ) so that H0 contains

constants, H1 contains random variables of the form ξ(ϕ) with ϕ ∈ L2, and Hm contains
suitable generalised Hermite polynomials of order m in the elements ofH1, see [37, 39] for
details. Elements of Hm have a representation by square-integrable kernels of m variables,
and this representation is unique if we impose that the kernel is symmetric under permuta-
tion of its arguments. In other words, one has a surjection I(m) : L2(Rd+1)⊗m → Hm and
I(m)(L) = I(m)(L′) if and only if the symmetrisations of L and L′ coincide.

In the particular case where K is non-singular, η is a random function and its nth power
ηn can be represented as

ηn(ϕ) =
∑

2m<n

Pm,nC
m I(n−2m)(K(n−2m)

ϕ ) , (2.2)

where
K(r)

ϕ (z1, . . . , zr) :=

∫
K(z − z1) · · ·K(z − zr)ϕ(z) dz ,

for some combinatorial factors Pm,n. Here we have set C =
∫

K2(z) dz. A simple calcula-
tion then shows that

Proposition 2.7. If K is compactly supported, then K
(n)
ϕ is square integrable if the function

(K � K̂)n, where K̂(z) = K(−z), is integrable.

We now define the nth Wick power η�n of η as the random distribution given by only
keeping the dominant term in (2.2):

η�n(ϕ) = I(n)(K(n)
ϕ ) .

By Proposition 2.8, this makes sense as soon as K � K̂ ∈ Ln(Rd+1). One then has the
following result, a version of which can be found for example in [14].

Proposition 2.8. Let K be a compactly supported kernel of order β ∈ (d+2
2 (1 − 1

n ),
d+2
2 )

and let η = K � ξ as above. Then, η�n is well-defined and belongs almost surely to Cα for
every α < (2β − d − 2)n2 .

Proof. A simple calculation shows that∣∣(K � K̂
)
(z)
∣∣n � |z|(2β−d−2)n ,

so that ‖K(n)

ϕλ
z
‖2L2 � λ(2β−d−2)n. The claim then follows from Theorem 2.5, noting that

random variables belonging to a Wiener-Itô chaos of finite order satisfy the equivalence of
moments.

It is important to note that this result is stable: replacing K by a smoothened kernel Kε

and letting ε → 0 yields convergence in probability of η�nε to η�n in Cα (with α as in the
statement of the proposition) for most “reasonable” choices of Kε. Furthermore, for fixed
ε > 0, one has an explicit formula relating η�nε to ηε:

η�nε (z) = Hn(ηε(z), Cε) , (2.3)

where the rescaled Hermite polynomials Hn(·, C) are related to the standard Hermite poly-
nomials by Hn(u,C) = Cn/2Hn(C

−1/2u) and we have set Cε =
∫

K2
ε (z) dz.
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3. General methodology

The general methodology for providing a robust meaning to equations of the type presented
in the introduction is as follows. We remark that the main reason why these equations seem
to be ill-posed is that there is no canonical way of multiplying arbitrary distributions. The
distributions appearing in our setting are however not arbitrary. For instance, one would
expect solutions to semilinear equations of this type to locally “look like” the solutions to the
corresponding linear problems. This is because, unlike hyperbolic or dispersive equations,
parabolic (or elliptic) equations to not transport singularities. This gives hope that if one
could somehow make sense of the nonlinearity, when applied to the solution to the linearised
equation (which is a Gaussian process and therefore amenable to explicit calculations), then
one could maybe give meaning to the equations themselves.

3.1. The Da Prato-Debussche trick. In some situations, one can apply this idea directly,
and this was originally exploited in the series of articles [10–12]. Let us focus on the example
of the dynamical Φ4 model in dimension 2, which is formally given by

∂tΦ = ΔΦ+ CΦ− Φ3 + ξ ,

where ξ is (spatially periodic) space-time white noise in space dimension 2.
Let now ξε denote a smoothened version of ξ given for example by ξε = ρε � ξ, where

ρε(t, x) = ε−4ρ(ε−2t, ε−1x), for some smooth compactly supported space-time mollifier ρ.
In this case, denoting again by K a cut-off version of the heat kernel and noting that K is of
order 2 (and therefore also of every order less than 2), it is immediate that η = K�ξ satisfies
the assumptions of Proposition 2.8 for every integer n.

In view of (2.3), this suggests that it might be possible to show that the solutions to

∂tΦε = ΔΦε + 3CεΦε − Φ3
ε + ξε

= ΔΦε − H3(Φε, Cε) + ξε ,
(3.1)

with Cε =
∫

K2
ε (z) dz as above, where Kε = ρε � K, converge to a distributional limit as

ε → 0. This is indeed the case, and the argument goes as follows. Writing ηε = Kε � ξ and
vε = Φε − ηε with Φε the solution to (3.1), we deduce that vε solves the equation

∂tvε = Δvε − H3(ηε + vε, Cε) + Rε ,

for some smooth function Rε that converges to a smooth limit R as ε → 0. We then use
elementary properties of Hermite polynomials to rewrite this as

∂tvε = Δvε −
(
H3(ηε, Cε) + 3vεH2(ηε, Cε) + 3v2ε ηε + v3ε

)
+ Rε

= Δvε −
(
η�3ε + 3vεη

�2
ε + 3v2ε ηε + v3ε

)
+ Rε .

By Proposition 2.8 (and the remarks that follow), we see that η�nε converges in probability
to a limit η�n in every space Cα for α < 0. We can then define a random distribution Φ by
Φ = η + v, where v is the solution to

∂tv = Δv − (η�3 + 3vη�2 + 3v2 η + v3
)
+ R . (3.2)

As a consequence of Theorem 2.3 (combined with additional estimates showing that the
Cγ-norm of K � (f1t>0) is small over short times provided that f ∈ Cα for α ∈ (−2, 0)
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and γ < α + β), it is relatively easy to show that (3.2) has local solutions, and that these
solutions are robust with respect to approximations of η�n in Cα for α sufficiently close to 0.
In particular, this shows that one has Φε → Φ in probability, at least locally in time for short
times.

Remark 3.1. The dynamical Φ4 model in dimension 2 was previously constructed in [1]
(see also the earlier work [31] where a related but different process was constructed), but
that construction relied heavily on a priori knowledge about its invariant measure and it was
not clear how robust the construction was with respect to perturbations.

3.2. Breakdown of the argument and a strategy to rescue it. While the argument out-
lined above works very well for a number of equations, it unfortunately breaks down for the
equations mentioned in the introduction. Indeed, consider again (1.4a), but this time in space
dimension d = 3. In this case, one has η ∈ C− 1

2−κ for every κ > 0 and, by Proposition 2.8,
one can still make sense of η�n for n < 5. One could therefore hope to define again a solu-
tion Φ by setting Φ = η + v with v the solution to (3.2). Unfortunately, this is doomed to
failure: since η�3 ∈ C− 3

2−κ (but no better), one can at best hope to have v ∈ C 1
2−κ. As a

consequence, both products v · η�2 and v2 · η fall outside of the scope of Theorem 2.2 and
we cannot make sense of (3.2).

One might hope at this stage that the Da Prato-Debussche trick could be iterated to im-
prove things: identify the “worst” term in the right hand side of (3.2), make sense of it “by
hand”, and try to obtain a well-posed equation for the remainder. While this strategy can
indeed be fruitful and allows us to deal with slightly more singular problems, it turns out to
fail in this situation. Indeed, no matter how many times we iterate this trick, the right hand
side of the equation for the remainder v will always contain a term proportional to v · η�2.
As a consequence, one can never hope to obtain a remainder of regularity better than C1−κ

which, since η�2 ∈ C−1−κ, shows that it is not possible to obtain a well-posed equation by
this method. See also Remark 5.17 below for a more systematic explanation of when this
trick fails.

In some cases, one does not even know how to get started: consider the class of “classi-
cal” one-dimensional stochastic PDEs given by

∂tu = ∂2
xu + f(u) + g(u)ξ , (3.3)

where ξ denotes space-time white noise, f and g are fixed smooth functions from R to R,
and the spatial variable x takes values on the circle. Then, we know in principle how to
use Itô calculus to make sense of (3.3) by rewriting it as an integral equation and interpret-
ing the integral against ξ as an Itô integral, see [13]. However, this notion of solution is
not very robust under approximations since space-time regularisations of the driving noise
ξ typically destroy the probabilistic structure required for Itô integration. This is in contrast
to the solution theory sketched in Section 3.1 which was very stable under approximations
of the driving noise, even though it required suitable adjustments to the equation itself. Un-
fortunately, the argument of Section 3.1 (try to find some function / distribution η so that
v = u − η has better regularity properties and then obtain a well-posed equation for v)
appears to break down completely.

The main idea now is that even though we may not be able to find a global object η so
that u−η has better regularity, it might be possible to find a local object that does the trick at
any one point. More precisely, setting η = K�ξ as above (this time η is a Hölder continuous
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function in C 1
2−κ for every κ > 0 by Theorems 2.3 and 2.5), one would expect solutions to

(3.3) to be well approximated by

u(z′) ≈ u(z) + g(u(z))
(
η(z′)− η(z)

)
. (3.4)

The intuition is that since K is regular everywhere except at the origin, convolution with K
is “almost” a local operator, modulo more regular parts. Since, near any fixed point z, we
would expect g(u)ξ to “look like” g(u(z))ξ this suggests that near that point z, the function
K � (g(u)ξ) should “look like” g(u(z))η, which is what (3.4) formalises.

Note that this looks very much like a first-order Taylor expansion, but with η(z′)− η(z)
playing the role of the linear part z′−z. If we assume that (3.4) yields a good approximation
to u, then one would also expect that

g(u(z′)) ≈ g(u(z)) + g′(u(z))g(u(z))
(
η(z′)− η(z)

)
,

so that g(u) has again a “first-order Taylor expansion” of the same type as the one for u. One
could then hope that if we know somehow how to multiply η with ξ, this knowledge could
be leveraged to define the product between g(u) and ξ in a robust way. It turns out that this is
not quite enough for the situation considered here. However, this general strategy turns out
to be very fruitful, provided that we also control higher-order local expansions of u, and this
is precisely what the theory of regularity structures formalises [23, 26]. In particular, besides
being applicable to (3.3), it also applies to all of the equations mentioned in the introduction.

4. Regularity structures

We now describe a very general framework in which one can formulate “Taylor expansions”
of the type (3.4). We would like to formalise the following features of Taylor expansions.
First, the coefficients of a Taylor expansion (i.e. the value and derivatives of a given function
in the classical case or the coefficients u(z) and g(u(z)) in the case (3.4)) correspond to terms
of different degree / homogeneity and should therefore naturally be thought of as elements
in some graded vector space. Second, an expansion around a given point can be reexpanded
around a different point at the expense of changing coefficients, like so:

a · 1 + b · x + c · x2 =
(
a + bh + ch2

) · 1 + (b + 2ch
) · (x − h) + c · (x − h)2 ,

u · 1 + g(u) · (η(z′)− η(z)
)
=
(
u + g(u)(η(z′′)− η(z))

) · 1 + g(u) · (η(z′)− η(z′′)
)
.

Lastly, we see from these expressions that if we order coefficients by increasing homogene-
ity, then the linear transformation performing the reexpansion has an upper triangular struc-
ture with the identity on the diagonal.

4.1. Basic definitions. The properties just discussed are reflected in the following algebraic
structure.

Definition 4.1. A regularity structure T = (A, T,G) consists of the following elements:
1. A discrete index set A ⊂ R such that 0 ∈ A and A is bounded from below.
2. A model space T =

⊕
α∈A Tα, with each Tα a Banach space; elements in Tα are said

to have homogeneity α. Furthermore T0 is one-dimensional and has a distinguished
basis vector 1. Given τ ∈ T , we write ‖τ‖α for the norm of its component in Tα.
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3. A structure group G of (continuous) linear operators acting on T such that, for every
Γ ∈ G, every α ∈ A, and every τα ∈ Tα, one has

Γτα − τα ∈ T<α :=
⊕
β<α

Tβ . (4.1)

Furthermore, Γ1 = 1 for every Γ ∈ G.

The prime example of a regularity structure one should keep in mind is the one associ-
ated to Taylor polynomials on space-time Rd+1. In this case, the space T is given by all
polynomials in d + 1 indeterminates X0, . . . , Xd, with X0 representing the “time” coordi-
nate. It comes with a canonical basis given by all monomials of the type Xk = Xk0

0 · · ·Xkd

d

with k an arbitrary multiindex. The basis vector 1 is the one corresponding to the zero mul-
tiindex. The space T has a natural grading by postulating that the homogeneity of Xk is
|k| = 2k0 +

∑
i �=0 ki and a natural norm by postulating that ‖Xk‖ = 1. In the case of the

polynomial regularity structure, the structure group G is simply given by Rd+1, endowed
with addition, and acting on monomials by

Γ̂hX
k = (X − h)k = (X0 − h0)

k0 · · · (Xd − hd)
kd . (4.2)

It is immediate that all axioms of a regularity structure are satisfied in this case.
In the case of polynomials, there is a natural “realisation” of the structure T at each

space-time point z, which is obtained by turning an abstract polynomial into the correspond-
ing concrete polynomial (viewed now as a real-valued function on Rd+1) based at z. In
other words, we naturally have a family of linear maps Πz : T → C∞(Rd) given by(

ΠzX
k
)
(z′) = (z′0 − z0)

k0 · · · (z′d − zd)
kd . (4.3)

It is immediate that the group G transforms these maps into each other in the sense that
ΠzΓ̂h = Πz+h. It is furthermore an immediate consequence of the scaling properties of
monomials that the maps Πz and the representation h �→ Γ̂h ofRd+1 are “compatible” with
our grading for the model space T . More precisely, one has

〈ϕλ
z ,ΠzX

k〉 = λ|k|〈ϕ,Π0X
k〉 , ‖Γ̂hX

k‖
 = Ck,
|h||k|−
 ,

for some constants Ck,
 and every � ≤ |k|. Here, 〈·, ·〉 denotes again the usual L2-scalar
product.

These observations suggest the following definition of a “model” for T , where we im-
pose properties similar to the ones we just found for the polynomial model. A model always
requires the specification of an ambient space, together with a possibly inhomogeneous scal-
ing. For definiteness, we will fix our ambient space to be Rd+1 endowed with the parabolic
scaling as above. We also denote by S ′ the space of all distributions (the letter D is reserved
for a different usage below). We also denote by L(E,F ) the set of all continuous linear
maps between the topological vector spaces E and F .

Definition 4.2. Given a regularity structure T , a model for T consists of maps

Rd+1 � z �→ Πz ∈ L(T,S ′) , Rd+1 ×Rd+1 � (z, z′) �→ Γzz′ ∈ G ,

satisfying the algebraic compatibility conditions

ΠzΓzz′ = Πz′ , Γzz′ ◦ Γz′z′′ = Γzz′′ , (4.4)
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as well as the analytical bounds

|〈Πzτ, ϕ
λ
z 〉| � λα‖τ‖ , ‖Γzz′τ‖β � |z − z′|α−β‖τ‖ . (4.5)

Here, the bounds are imposed uniformly over all τ ∈ Tα, all β < α ∈ A, and all test
functions ϕ ∈ Br with r = inf A, and locally uniformly in z and z′.

Remark 4.3. These definitions suggest a natural topology for the space M of all models for
a given regularity structure, generated by the following family of pseudo-metrics indexed by
compact sets K:

sup
z∈K

(
sup

ϕ,λ,α,τ
λ−α|〈Πzτ − Π̄zτ, ϕ

λ
z 〉|+ sup

|z−z′|≤1

sup
α,β,τ

|z−z′|β−α‖Γzz′τ − Γ̄zz′τ‖β
)

. (4.6)

Here the inner suprema run over the same sets as before, but with ‖τ‖ = 1.

4.2. Hölder classes. It is clear from the above discussion that if T is the polynomial struc-
ture, Π is defined as in (4.3), and Γzz′ = Γ̂z′−z with Γ̂h as in (4.2), then (Π,Γ) is a model
for T in the sense of Definition 4.2. Given an arbitrary regularity structure T and an arbi-
trary model (Π,Γ), it is now natural to define the corresponding “Hölder spaces” as spaces
of distributions that can locally (near any space-time point z) be approximated by Πzτ for
some τ ∈ T . This would be the analogue to the statement that a smooth function is one that
can locally be approximated by a polynomial.

There is however one major difference with the case of smooth functions. It is of course
the case that if f is smooth, then the coefficients of the Taylor expansion of f at any point are
uniquely determined by the behaviour of f in the vicinity of that point. This is in general not
the case anymore in the context of the framework we just described. To appreciate this fact,
consider the following example. Fix α ∈ (0, 1) and m ∈ N, and take for T the regularity
structure where A = {0, α}, T0

∼= R with basis vector 1, Tα
∼= Rm with basis vectors

(ei)i≤m, and structure group G ∼= Rm acting on T via Γ̂hei = ei − hi1. Let then W be an
Rm-valued α-Hölder continuous function defined on the ambient space and set

Πz1 = 1 ,
(
Πzei
)
(z′) = Wi(z

′)− Wi(z) , Γzz′ = Γ̂W (z)−W (z′) .

Again, it is straightforward to verify that this does indeed define a model for T . In fact,
setting m = 1 and W = η, this is precisely the structure one would use to formalise the
expansion (3.4).

Let now F : Rm → R be a smooth function and consider the function f on the ambient
space given by f(z) = F (W (z)). For any z, we furthermore set

T � f̂(z) = F (W (z))1+
m∑
i=1

(∂iF )(W (z)) ei .

It then follows immediately from the usual Taylor expansion of F and the definition of the
model (Π,Γ) that one has the bound∣∣f(z′)− (Πz f̂(z)

)
(z′)
∣∣ � |z − z′|2α , (4.7)

so that in this context and with respect to this specific model, the function f behaves as
if it were of class C2α with “Taylor series” given by f̂ . In the case where the underlying
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space is one-dimensional, this is precisely the insight exploited in the theory of rough paths
[16, 35, 36] in order to develop a pathwise approach to stochastic calculus. More specifically,
the perspective given here (i.e. controlling functions via analogues to Taylor expansion) is
that of the theory of controlled rough paths developed in [18].

It is now very natural to ask whether, just like in the case of smooth functions, a bound
of the type (4.7) is sufficient to uniquely specify f̂(z) for every point z. Unfortunately, the
answer to this question is that “it depends”. The reason is that while (4.5) imposes an upper
bound on the behaviour ofΠz in the vicinity of z, it does not impose any corresponding lower
bound. For example, W ≡ 0 is an α-Hölder continuous function that we could have used
to build our model. In that case, the value of the ei-component in f̂ is completely irrelevant
for (4.7), so that uniqueness of the “Taylor series” fails. Suppose on the other hand that the
underlying space is one-dimensional, that α ∈ ( 14 ,

1
2 ), and that W is a typical sample path

of a Brownian trajectory. In this case it was shown in [27, Thm 3.4] that a bound of the type
(4.7) is indeed sufficient to uniquely determine all the coefficients of f̂ (at least for almost
all Brownian trajectories).

Remark 4.4. The fact that f̂ is uniquely determined by f in the Brownian case can be inter-
preted as an analogue to the fact that the Doob-Meyer decomposition of a semimartingale is
unique. Since the statement given in [27] is quantitative, it can be interpreted as a determin-
istic analogue to Norris’s lemma, of which various incarnations can be found in [6, 33, 38].

Consider now a sequence W ε of smooth (random) functions so that W ε converges to
Brownian motion in Cα as ε → 0. For definiteness, take for Wε piecewise linear interpo-
lations on a grid of size ε. Then, if we know a priori that we have a bound of the type
(4.7) with a proportionality constant of order 1, this determines the coefficients of f̂ “almost
uniquely” up to an error of order about ε2α−

1
2 .

What this discussion suggests is that we should really reverse our point of view from
what we are used to: instead of fixing a function and asking whether it has a certain Hölder
regularity by checking whether it is possible to find a “Taylor expansion” at each point satis-
fying a bound of the type (4.7), we should take the candidate expansion as our fundamental
object and ask under which condition it does indeed approximate one single function / dis-
tribution around each point at the prescribed order. More precisely, fix some γ > 0 (the
order of our “Taylor expansion”) and consider a function f : Rd+1 → T<γ . Under which
assumptions can we find a distribution ζ such that ζ “looks like” the distribution Πzf(z)
(in a suitable sense) near every point z? We claim that the “right” answer is given by the
following definition.

Definition 4.5. Given a regularity structure T and a model (Π,Γ) as above, we define Dγ

as the space of functions f : Rd+1 → T<γ such that the bound

‖f(z)− Γzz′f(z′)‖α � |z − z′|γ−α . (4.8)

holds for every α < γ, locally uniformly in z and z′.

Remark 4.6. This definition makes sense and is non-empty even for negative γ, as long as
γ > inf A.

Remark 4.7. The notationDγ is really an abuse of notation, since even for a given regularity
structure there isn’t one single spaceDγ , but a whole collection of them, one for each model
(Π,Γ) ∈ M . More formally, one should really consider the space M � Dγ consisting of
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pairs ((Π,Γ), f) such that f belongs to the space Dγ based on the model (Π,Γ). The space
M �Dγ also comes with a natural topology.

In the case whereT is the polynomial regularity structure and (Π,Γ) are the usual Taylor
polynomials as above, one can see that this definition coincides with the usual definition of
Cγ (except at integer values where D1 describes Lipschitz continuous functions, etc). In
this case, the component f0(z) = 〈1, f(z)〉 of f(z) in T0 (here we write 〈1, ·〉 for the basis
element of T ∗ dual to 1) is the only reasonable candidate for the function represented by f .
Furthermore, 〈1,Γzz′f(z′)〉 is nothing but the candidate Taylor expansion of f around z′,
evaluated at z. The bound (4.8) with α = 0 is then just a statement of the fact that f0 is
of class Cγ and that f(z) is its Taylor series of order γ at z. The corresponding bounds for
α > 0 then follow immediately, since they merely state that the αth derivative of f0 is of
class Cγ−α.

4.3. The reconstruction operator. The situation is much less straightforward when the
model space T contains components of negative homogeneity. In this case, the bounds
(4.5) allow the model Πz to consist of genuine distributions and we do not anymore have an
obvious candidate for the distribution represented by f . The following result shows that such
a distribution nevertheless always exists and is unique as soon as γ > 0. This also provides
an a posteriori justification for our definition of the spaces Dγ .

Theorem 4.8. Consider a regularity structure T = (A, T,G) and fix γ > r = inf A.
Then, there exists a continuous map R : M �Dγ → S ′ (the “reconstruction map”) with the
property that ∣∣(R(Π,Γ, f)−Πzf(z)

)
(ϕλ

z )
∣∣ � λγ , (4.9)

uniformly over λ ∈ (0, 1] and ϕ ∈ Br, and locally uniformly over z ∈ Rd+1. Furthermore,
for any given model (Π,Γ), the map f �→ R(Π,Γ, f) is linear. If γ > 0, the map R is
uniquely specified by the requirement (4.9).

Remark 4.9. In the sequel, we will always consider (Π,Γ) as fixed and view R as a linear
map, writingRf instead ofR(Π,Γ, f). The above notation does however make it plain that
the full map R is not a linear map.

Remark 4.10. An important special case is given by situations where Πzτ happens to be
a continuous function for every τ ∈ T and every z. Then, it turns out that Rf is also a
continuous function and one simply has(Rf

)
(z) =

(
Πzf(z)

)
(z) . (4.10)

In the general case, this formula makes of course no sense since Πzf(z) is a distribution and
cannot be evaluated at z.

Remark 4.11. We made a slight abuse of notation here since there is really a family of
operators Rγ , one for each regularity. However, this abuse is justified by the following
consistency relation. Given f ∈ Dγ and γ̃ < γ, one can always construct f̃ by projecting
f(z) onto T<γ̃ for every z. It turns out that one then necessarily has f̃ ∈ Dγ̃ andRf̃ = Rf ,
provided that γ̃ > 0. This is also consistent with (4.10) since, ifΠzτ is a continuous function
and the homogeneity of τ is strictly positive, then

(
Πzτ
)
(z) = 0.
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We refer to [23, Thm 3.10] for a full proof of Theorem 4.8 and to [22] for a simplified
proof that only gives continuity in each “fiber” Dγ . The main idea is to use a basis of com-
pactly supported wavelets to construct approximationsRn in such a way that our definitions
can be exploited in a natural way to compare Rn+1 with Rn and show that the sequence of
approximations is Cauchy in a suitable space of distributions Cα. In the most important case
when γ > 0, it turns out that while the existence of a map R with the required properties is
highly non-trivial, its uniqueness is actually quite easy to see. If γ ≤ 0 on the other hand, it
is clear thatR cannot be uniquely determined by (4.9), since this bound remains unchanged
if we add to R any distribution in Cγ . The existence of R in the case γ < 0 is however still
a non-trivial result since in general one hasRf �∈ Cγ!

5. Regularity structures for SPDEs

We now return to the problem of providing a robust well-posedness theory for stochastic
PDEs of the type (1.2), (1.4), (1.3), or even just (3.3). Our aim is to build a suitable regularity
structure for which we can reformulate our SPDE as a fixed point problem in Dγ for a
suitable value of γ.

Remark 5.1. Actually, it turns out that since we are interested in Cauchy problems, there
will always be some singularity at t = 0. This introduces additional technical complications
which we do not wish to dwell upon.

5.1. General construction of the model space. Our first task is to construct the model
space T . Since we certainly want to be able to represent arbitrary smooth functions (for
example in order to be able to take into account the contribution of the initial condition),
we want T to contain the space T̄ of abstract polynomials in d + 1 indeterminates endowed
with the parabolic grading described in Section 4.1. Since the noise ξ cannot be adequately
represented by polynomials, we furthermore add a basis vector Ξ to T , which we postulate
to have some homogeneity α < 0 such that ξ ∈ Cα. In the case of space-time white noise,
we would choose α = −d

2 − 1− κ for some (typically very small) exponent κ > 0.
At this stage, the discussion following (3.4) suggests that if our structure T contains a

basis vector τ of homogeneity β representing some distribution η involved in the description
of the right hand side of our equation, then it should also contain a basis vector of homo-
geneity β + 2 (the “2” here comes from the fact that convolution with the heat kernel yields
a gain of 2 in regularity) representing the distribution K � η involved in the description of
the solution to the equation. Let us denote this new basis vector by I(τ), where I stands for
“integration”. In the special case where τ ∈ T̄ , so that it represents an actual polynomial, we
do not need any new symbol sinceK convolved with a polynomial yields a smooth function.
One way of formalising this is to simply postulate that I(Xk) = 0 for every multiindex k.

Remark 5.2. For consistency, we will also always assume that
∫

K(z)Q(z) dz = 0 for
all polynomials Q of some fixed, but sufficiently high, degree. Since K is an essentially
arbitrary truncation of the heat kernel, we can do this without loss of generality.

If the right hand side of our equation involves the spatial derivatives of the solution,
then, for each basis vector τ of homogeneity β representing some distribution η appearing
in the description of the solution, we should also have a basis vector Diτ of homogeneity
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β − 1 representing ∂iη and appearing in the description of the derivative of the solution in
the direction xi.

Finally, if the right hand side of our equation involves a product between two terms F and
F̄ , and if basis vectors τ and τ̄ respectively are involved in their description, then we should
also have a basis vector τ τ̄ which would be involved in the description of the product. If τ
and τ̄ represent the distributions η and η̄ respectively, then this new basis vector represents
the distribution ηη̄, whatever this actually means. Regarding its homogeneity, by analogy
with the case of polynomials, it is natural to impose that the homogeneity of τ τ̄ is the sum
of the homogeneities of its two factors.

This suggests that we should build T by taking as its basis vectors some formal expres-
sions built from the symbols X and Ξ, together with the operations I(·), Di, and multiplica-
tion. Furthermore, the natural way of computing the homogeneity of a formal expression in
view of the above is to associate homogeneity 2 to X0, 1 to Xi for i �= 0, α to Ξ, 2 to I(·),
and −1 to Di, and to simply add the homogeneities of all symbols appearing in any given
expression. Denote by F the collection of all formal expressions that can be constructed in
this way and denote by |τ | the homogeneity of τ ∈ F , so we have for example∣∣XiΞ

∣∣ = α + 1 ,
∣∣I(Ξ)2I(XiDjI(Ξ))

∣∣ = 3α + 8 , etc.

We note however that if we simply took for T the space of linear combinations of all elements
in F then, since α < 0, there would be basis vectors of arbitrarily negative homogeneity,
which would go against Definition 4.1. What saves us is that most formal expressions are
not needed in order to formulate our equations as fixed point problems. For example, the
expression Ξ2 is useless since we would never try to square the driving noise. Similarly, if
we consider (1.4a), then I(Ξ) is needed for the description of the solution, which implies
that I(Ξ)2 and I(Ξ)3 are needed to describe the right hand side, but we do not need I(Ξ)4
for example.

5.2. Specific model spaces. This suggests that we should take T as the linear combinations
of only those formal expressions τ ∈ F that are actually expected to appear in the description
of the solution to our equation or its right hand side. Instead of trying to formulate a general
construction (see [23, Sec. 8.1] for such an attempt), let us illustrate this by a few examples.
We first focus on the case of the KPZ equation (1.3) and we construct subsets U and V of
F that are used in the description of the solution and the right hand side of the equation
respectively. These are defined as the smallest subsets of F with the following properties:

T ⊂ U ∩ V , {I(τ) : τ ∈ V \ T } ⊂ U , {Ξ} ∪ {Dτ1 · Dτ2 : τi ∈ U} ⊂ V . (5.1)

where we used the notation T = {Xk}with k running over all multiindices, so that the space
of Taylor polynomials T̄ is the linear span of T . We then define T as the space of all linear
combinations of elements of U ∪ V . We also denote by TU the subspace of T spanned by U .
This construction is such that if we have any function H : Rd+1 → TU , then we can define
in a natural way a function Ξ − (DH)2 : Rd+1 → T by the last property. Furthermore, by
the second property, one has again I(Ξ − (DH)2) : Rd+1 → TU , which suggests that T is
indeed sufficiently rich to formulate a fixed point problem mimicking the mild formulation
of (1.3). Furthermore, one has

Lemma 5.3. If U and V are the smallest subsets of F satisfying (5.1) and one has |Ξ| > −2
then, for every γ > 0, the set {τ ∈ U ∪ V : |τ | < γ} is finite.
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The condition α > −2 corresponds to the restriction d < 2, which makes sense since
2 is the critical dimension for the KPZ equation [32]. The other example we would like to
consider is the class of SPDEs (3.3). In this case, the right hand side is not polynomial.
However, we can apply the same methodology as above as if the nonlinear functions f and g
were simply polynomials of arbitrary degree. We thus impose T ⊂ U ∩ V and {I(τ) : τ ∈
V \ T } as before, and then further impose that

{
Ξ

m∏
i=1

τi : m ≥ 1 & τi ∈ U
}
∪
{ m∏

i=1

τi : m ≥ 1 & τi ∈ U
}
⊂ V .

Again, we have U ⊂ V and we define T as before. Furthermore, it is straightforward to
verify that the analogue to Lemma 5.3 holds, provided that |Ξ| > −2.

5.3. Construction of the structure group. Now that we have some idea on how to con-
struct T for the problems that are of interest to us (with a slightly different construction for
each class of models but a clear common thread), we would like to build a corresponding
structure group G. In order to give a motivation for the definition of G, it is very instructive
to simultaneously think about the structure of the corresponding models. Let us first consider
some smooth driving noise, which we call ξε to distinguish it from the limiting noise ξ. At
this stage however, this should be thought of as simply a fixed smooth function. In view
of the discussion of Section 5.1, for each of the model spaces built in Section 5.2, we can
associate to ξε a linear mapΠ : T → C∞(Rd+1) in the following way. We set(

ΠXi

)
(z) = zi ,

(
ΠΞ
)
(z) = ξε(z) , (5.2a)

and we then defineΠ recursively by

ΠI(τ) = K � Πτ , ΠDiτ = ∂iΠτ , Π(τ τ̄) =
(
Πτ
) · (Πτ̄

)
, (5.2b)

where · simply denotes the pointwise product between smooth functions. At this stage, it
is however not clear how one would build an actual model in the sense of Definition 4.2
associated to ξε. It is natural that one would set(

ΠzXi

)
(z′) = z′i − zi ,

(
ΠzΞ
)
(z′) = ξε(z

′) , (5.3a)

and then
ΠzDiτ = ∂iΠzτ , Πz(τ τ̄) =

(
Πzτ
) · (Πz τ̄

)
. (5.3b)

It is less clear a priori how to defineΠzI(τ). The problem is that if we simply setΠzI(τ) =
K �Πzτ , then the bound (4.5) would typically no longer be compatible with the requirement
that |I(τ)| = |τ | + 2. One way to circumvent this problem is to simply subtract the Taylor
expansion of K � Πzτ around z up to the required order. We therefore set

(
ΠzI(τ)

)
(z′) =

(
K � Πzτ

)
(z′)−

∑
|k|<|τ |+2

(z′ − z)k

k!

(
D(k)K � Πzτ

)
(z) . (5.3c)

It can easily be verified (simply proceed recursively) that if we define Πz in this way and
Π as in (5.2) then, for every z, one can find a linear map Fz : T → T such that Πz =
ΠFz . In particular, one has Πz′ = ΠzF

−1
z Fz′ . Furthermore, Fz is “upper triangular”
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with the identity on the diagonal in the sense of (4.1). It is also easily seen by induction
that the matrix elements of Fz are all given by some polynomials in z and in the quantities(
D(k)K � Πzτ

)
(z).

This suggests that we should take for G the set of all linear maps that can appear in this
fashion. It is however not clear in principle how to describe G more explicitly and it is also
not clear that it even forms a group. In order to describe G, it is natural to introduce a space
T+ which is given by all possible polynomials in d+1 commuting variables {Zi}di=0 as well
as countably many additional commuting variables {Jk(τ) : τ ∈ (U ∪ V) \ T & |k| <
|τ | + 2}. One should think of Zi as representing zi and Jk(τ) as representing

(
D(k)K �

Πzτ
)
(z), so that the matrix elements of Fz are represented by elements of T+. There are

no relations between these coefficients, which suggests that elements of G are described by
an arbitrary morphism f : T+ → R, i.e. an arbitrary linear map which furthermore satisfies
f(σσ̄) = f(σ) f(σ̄), so that it is uniquely determined by f(Zi) and f(Jk(τ)).

Given any linear mapΔ: T → T ⊗ T+ and a morphism f as above, one can then define
a linear map Γ̂f : T → T by

Γ̂fτ =
(
I ⊗ f

)
Δτ .

(Here we identify T with T ⊗ R in the obvious way.) The discussion given above then
suggests that it is possible to construct Δ in such a way that if we define fz by

fz(Zi) = zi , fz(Jk(τ)) =
(
D(k)K � Πzτ

)
(z) , (5.4)

then one has Γ̂fz = Fz . The precise definition of Δ is irrelevant for our discussion, but a
recursive description of it can easily be recovered simply by comparing (5.3) to (5.2). In
particular, it is possible to show that Δτ is of the form

Δτ = τ ⊗ 1+
∑
i

cτi τi ⊗ σi , (5.5)

for some expressions τi ∈ T with |τi| < |τ | and for some non-empty monomials σi ∈ T+

such that |σi| + |τ |i = |τ |. Here, we associate a homogeneity to elements in T+ by setting
|Z0| = 2, |Zi| = 1 for i �= 0, and |Jk(τ)| = |τ |+ 2− |k|.

In particular, we see that if we let e : T+ → R be the trivial morphism for which e(Zi) =
e(Jk(τ)) = 0, so that one only has e(1) = 1 where 1 is the empty product, then Γ̂eτ = τ .
The important fact for our purpose is the following, a proof of which can be found in [23,
Sec. 8]. Here, we denote byM : T+⊗T+ → T+ the multiplication operatorM(σ⊗σ̄) = σσ̄
and by I the identity.

Theorem 5.4. There exists a map Δ+ : T+ → T+ ⊗ T+ such that the following identities
hold:

Δ+(σσ̄) =
(
Δ+σ
) · (Δ+σ̄

)
, (Δ⊗ I)Δ = (I ⊗Δ+)Δ ,

(e ⊗ I)Δ+ = (I ⊗ e)Δ+ = I , (Δ+ ⊗ I)Δ+ = (I ⊗Δ+)Δ+ .
(5.6)

Furthermore, there exists a map A : T+ → T+ which is multiplicative in the sense that
A(σσ̄) = (Aσ) · (Aσ̄), and which is such that M(I ⊗ A)Δ+ = M(A ⊗ I)Δ+ = e, with
e : T+ → R as above.

Remark 5.5. In technical lingo, this lemma states that (T+, ·,Δ+) is a Hopf algebra with
antipode A, and that T is a comodule over T+.
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The importance of this result is that it shows that G is indeed a group. For any two
morphisms f and g, we can define a linear map f◦g : T+ → R by

(
f◦g)(σ) = (f⊗g

)
Δ+σ.

As a consequence of the first identity in (5.6), f ◦ g is again a morphism on T+. As a
consequence of the second identity, one has Γ̂f◦g = Γf Γg . The last identity shows that
(f1◦f2)◦f3 = f1◦(f2◦f3), while the properties ofA ensure that if we set f−1(σ) = f(Aσ),
then f ◦ f−1 = f−1 ◦ f = e. Finally, the third identity in (5.6) shows that e is indeed the
identity element, thus turning the set of all morphisms of T+ into a group under ◦, acting on
T via Γ̂.

Let us now turn back to our models. Given a smooth function ξε, we defineΠz as in (5.3)
and fz by (5.4). We then also define linear maps Γzz′ by Γzz′ = Γ̂γzz′ with γzz′ = f−1

z ◦fz′ .
We then have

Lemma 5.6. For every smooth function ξε, the pair (Π,Γ) defined above is a model.

Proof. The algebraic constraints (4.4) are satisfied essentially by definition. The first bound
of (4.5) can easily be verified recursively by (5.3). The only non-trivial fact is that the matrix
elements of Γzz′ satisfy the right bound. If one can show that |γzz′(σ)| � |z − z′||σ|, this in
turn follows from (5.5). This bound is non-trivial and was obtained in [23, Prop. 8.27].

5.4. Admissible models. Thanks to Lemma 5.6, we now have a large class of models for
the regularity structures built in the previous two subsections. However, we do not want to
restrict ourselves to this class (or even its closure). The reason is that if we define products
in the “naïve” way given by the second identity in (5.3b), then there will typically be some
situations where the result diverges as we let ε → 0 in ξε. Therefore, we do not impose this
relation in general but rather view it as the definition of the product, i.e. we interpret it as(

Πzτ
) · (Πz τ̄

)
:= Πz(τ τ̄) .

However, the remainder of the structure described in (5.3) is required for Xi, Di and I to
have the correct interpretation. This motivates the following definition.

Definition 5.7. Given a regularity structure T constructed as in Sections 5.2 and 5.3, we
say that a model (Π,Γ) is admissible if it satisfies

(
ΠzXi

)
(z′) = z′i − zi, ΠzDiτ = ∂iΠzτ ,

as well as (5.3c) and if furthermore Γzz′ = Γ̂−1
fz

Γ̂fz′ with fz given by (5.4). We will denote
the space of all admissible models by M0 ⊂ M .

Remark 5.8. In the particular case of admissible models for a regularity structure of the
type considered here, the data of the single linear mapΠ as above is sufficient to reconstruct
the full model (Π,Γ).

Note that at this stage, it is not clear whether this concept is even well-defined: in general,
D(k)K � Πzτ will be a distribution and cannot be evaluated at fixed points, so (5.4) might
be meaningless for a general model. It turns out that the definition actually always makes
sense, provided that the second identity in (5.4) is interpreted as

fz(Jk(τ)) =
∑
n≥0

(
D(k)Kn � Πzτ

)
(z) ,

whereK =
∑

n≥0 Kn as in (2.1). This is because the bound (2.1), combined with the bound
(4.5) and the fact that Kn is supported in the ball of radius 2−n imply that∣∣(D(k)Kn � Πzτ

)
(z)
∣∣ � 2(|k|−|τ |−2)n .
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The condition |k| < |τ |+2 appearing in (5.3c) is then precisely what is required to guarantee
that this is always summable.

5.5. Abstract fixed point problem. We now show how to reformulate a stochastic PDE
as a fixed point problem in some space Dγ based on an admissible model for the regularity
structure associated to the SPDE by the construction of Section 5.2. For definiteness, we
focus on the example of the KPZ equation (1.3), but all other examples mentioned in the
introduction can be treated in virtually the same way. Writing P for the heat kernel, the mild
formulation of (1.3) is given by

h = P � 1t>0

(
(∂xh)

2 + ξ
)
+ Ph0 , (5.7)

where we write Ph0 for the harmonic extension of h0. (This is just the solution to the heat
equation with initial condition h0.) In order to formulate this as a fixed point problem in Dγ

for a suitable value of γ > 0, we will make use of the following far-reaching extension of
Schauder’s theorem.

Theorem 5.9. Fix one of the regularity structures built in the previous section and fix an
admissible model. Then, for all but a discrete set of values of γ > 0, there exists a continuous
operator P : Dγ → Dγ+2 such that the identity

RPf = P � Rf , (5.8)

holds for every f ∈ Dγ . Furthermore, one has
(Pf
)
(z)− If(z) ∈ T̄ .

Remark 5.10. Recall that T̄ ⊂ T denotes the linear span of the Xk, which represent the
usual Taylor polynomials. Again, while P is a linear map when we consider the underlying
model as fixed, it can (and should) also be viewed as a continuous nonlinear map from
M0 � Dγ into M0 � Dγ+2. The reason why some values of γ need to be excluded is
essentially the same as for the usual Schauder theorem.

For a proof of Theorem 5.9 and a precise description of the operator P , see [23, Sec. 5].
With the help of the operator P , it is then possible to reformulate (5.7) as the following fixed
point problem in Dγ , provided that we have an admissible model at our disposal:

H = P1t>0

(
(DH)2 + Ξ

)
+ Ph0 . (5.9)

Here, the smooth function Ph0 is interpreted as an element in Dγ with values in T̄ via its
Taylor expansion of order γ. Note that in the context of the regularity structure associated to
the KPZ equation in Section 5.2, the right hand side of this equation makes sense for every
H ∈ Dγ , provided that H takes values in TU . This is an immediate consequence of the
property (5.1).

Remark 5.11. As already mentioned earlier, we cheat here in the sense thatDγ should really
be replaced by a space Dγ,η allowing for a suitable singular behaviour on the hyperplane
t = 0.

It is also possible to show (see [23, Thm 4.7]) that if we set |Ξ| = − 3
2 − κ for some

sufficiently small κ > 0, then one has (DH)2 ∈ Dγ− 3
2−κ for H ∈ Dγ . As a consequence,

we expect to be able to find local solutions to the fixed point problem (5.9), provided that we
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formulate it in Dγ for γ > 3
2 + κ. This is indeed the case, and a more general instance of

this fact can be found in [23, Thm 7.8]. Furthermore, the local solution is locally Lipschitz
continuous as a function of both the initial condition h0 and the underlying admissible model
(Π,Γ) ∈ M0.

Now that we have a local solution H ∈ Dγ for (5.9), we would like to know how this
solution relates to the original problem (1.3). This is given by the following simple fact:

Proposition 5.12. If the underlying model (Π,Γ) is built from a smooth function ξε as in
(5.3) and if H solves (5.9), then RH solves (5.7).

Proof. As a consequence of (5.8), we see thatRH solves

RH = P � 1t>0

(R((DH)2
)
+ ξε
)
+ Ph0 .

Combining (5.3b) with (4.10), it is not difficult to see that in this particular case, one has
R((DH)2

)
= (∂xRH)2, so that the claim follows.

The results of the previous subsection yield a robust solution theory for (5.9) which
projects down (via R) to the usual solution theory for (1.3) for smooth driving noise ξε. If
it were the case that the sequence of models (Π(ε),Γ(ε)) associated to the regularised noise
ξε via (5.3) converges to a limit in M0, then this would essentially conclude our analysis of
(1.3).

Unfortunately, this is not the case. Indeed, in all of the examples mentioned in the
introduction except for (1.2), the sequence of models (Π(ε),Γ(ε)) does not converge as ε →
0. In order to remedy to this situation, the idea is to look for a sequence of “renormalised”
models (Π̂(ε), Γ̂(ε)) which are also admissible and also satisfy Π̂

(ε)
z Ξ = ξε, but do converge

to a limit as ε → 0. The last section of this article shows how these renormalised models can
be constructed.

5.6. Renormalisation. In order to renormalise our model, we will build a very natural
group of continuous transformations of M0 that build a new admissible model from an old
one. The renormalised model will then be the image of the “canonical” model (Π(ε),Γ(ε))
under a (diverging) sequence of such transformations. Since we want the new model to also
be admissible, the only defining property that we are allowed to modify in (5.3) is the def-
inition of the product. In order to describe the renormalised model, it turns out to be more

convenient to consider again its representation by a single linear map Π̂
(ε)

: T → S ′ as in
(5.3), which is something we can do by Remark 5.8.

At this stage, we do not appear to have much choice: the only “reasonable” way of

building Π̂
(ε)

from Π(ε) is to compose it to the right with some fixed linear map Mε : T →
T :

Π̂
(ε)

= Π(ε)Mε . (5.10)

If we do this for an arbitrary map Mε, we will of course immediately lose the algebraic
and analytical properties that allow to associate an admissible model (Π̂(ε), Γ̂(ε)) to the map

Π̂
(ε)

. As a matter of fact, it is completely unclear a priori whether there exists any non-
trivial map Mε that preserves these properties. Fortunately, these maps do exists and a
somewhat indirect characterisation of them can be found in [23, Sec. 8]. Even better, there
are sufficiently many of them so that the divergencies of Π(ε) can be compensated by a
judicious choice of Mε.
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Let us just illustrate how this plays out in the case of the KPZ equation already studied
in the last subsection. In order to simplify notations, we now use the following shorthand
graphical notation for elements of U ∪ V . For Ξ, we draw a small circle. The integration
map I is then represented by a downfacing wavy line and DI is represented by a downfac-
ing plain line. The multiplication of symbols is obtained by joining them at the root. For
example, we have

(DI(Ξ))2 = , (DI(DI(Ξ)2))2 = , I(DI(Ξ)2) = .

In the case of the KPZ equation, it turns out that one can exhibit an explicit four-parameter
group of matricesM which preserve admissible models when used in (5.10). These matrices
are of the form M = exp(−∑3

i=0 CiLi), where the generators Li are determined by the
following contraction rules:

L0 : �→ 1 , L1 : �→ 1 , L2 : �→ 1 L3 : �→ 1 . (5.11)

This should be understood in the sense that if τ is an arbitrary formal expression, then L0τ
is the sum of all formal expressions obtained from τ by performing a substitution of the type

�→ 1. For example, one has L0 = 2 , L0 = 2 + , etc. The extension of the
other operators Li to all of T is given by Liτ = 0 for i �= 0 and every τ for which Li wasn’t
already defined in (5.11). We then have the following result, which is a consequence of [23,
Sec. 8] and [28] and was implicit in [21]:

Theorem 5.13. Let Mε be given as above, let Π(ε) be constructed from ξε as in (5.2), and

let Π̂
(ε)

= Π(ε)Mε. Then, there exists a unique admissible model (Π̂(ε), Γ̂(ε)) such that

Π̂
(ε)
z = Π̂

(ε)
F̂

(ε)
z , where F̂

(ε)
z relates to Π̂

(ε)
z as in (5.4). Furthermore, one has the identity(

Π̂(ε)
z τ
)
(z) =

(
Π(ε)

z Mετ
)
(z) . (5.12)

Finally, there is a choice of Mε such that (Π̂(ε), Γ̂(ε)) converges to a limit (Π̂, Γ̂) which is
universal in that it does not depend on the details of the regularisation procedure.

Remark 5.14. Despite (5.12), it is not true in general that Π̂(ε)
z = Π

(ε)
z Mε. The point is that

(5.12) only holds at the point z and not at z′ �= z.

In order to complete our survey of Theorem 1.1, it remains to identify the solution to
(5.9) with respect to the renormalised model (Π̂(ε), Γ̂(ε)) with the classical solution to some
modified partial differential equation. The continuity of the abstract solution map then im-
mediately implies that the solutions to the modified PDE converge to a limit. The fact that
the limiting model (Π̂, Γ̂) is universal also implies that this limit is universal.

Theorem 5.15. Let Mε = exp(−∑3
i=0 C

(ε)
i Li) be as above and let (Π̂(ε), Γ̂(ε)) be the

corresponding renormalised model. Let furthermore H be the solution to (5.9) with respect
to this model. Then, the function h(t, x) =

(RH
)
(t, x) solves the equation

∂th = ∂2
xh + (∂xh)

2 − 4C
(ε)
0 ∂xh + ξε − (C

(ε)
1 + C

(ε)
2 + 4C

(ε)
3 ) . (5.13)

Remark 5.16. In order to obtain a limit (Π̂, Γ̂), the renormalisation constants C
(ε)
i should

be chosen in the following way:

C
(ε)
0 = 0 , C

(ε)
1 =

c1
ε

, C
(ε)
2 = 4c2 log ε + c3 , C

(ε)
3 = −c2 log ε + c4 .
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Here, the ci are constants of order 1 that depend on the details of the regularisation procedure
for ξε. The fact that C

(ε)
0 = 0 explains why the corresponding term does not appear in

(1.3). The fact that the diverging parts of C
(ε)
2 and C

(ε)
3 cancel in (5.13) explains why this

logarithmic sub-divergence was not observed in [4] for example.

Proof. We first note that, as a consequence of Theorem 5.9 and of (5.9), one can write for
t > 0

H = I((DH)2 + Ξ
)
+ (...) , (5.14)

where (...) denotes some terms belonging to T̄ ⊂ T .
By repeatedly using this identity, we conclude that any solution H ∈ Dγ to (5.9) for γ

greater than (but close enough to) 3/2 is necessarily of the form

H = h1+ + + h′X1 + 2 + 2h′ , (5.15)

for some real-valued functions h and h′. Note that h′ is treated as an independent function
here, we certainly do not mean to suggest that the function h is differentiable! Our notation
is only by analogy with the classical Taylor expansion. As an immediate consequence, DH
is given by

DH = + + h′ 1+ 2 + 2h′ , (5.16)

as an element of Dγ for γ close to 1/2. The right hand side of the equation is then given up
to order 0 by

(DH)2 + Ξ = Ξ + + 2 + 2h′ + + 4 + 2h′ + 4h′ + (h′)2 1 . (5.17)

Using the definition of Mε, we conclude that

MεDH = DH − 4C
(ε)
0 ,

so that, as an element of Dγ with very small (but positive) γ, one has the identity

(MεDH)2 = (DH)2 − 8C
(ε)
0 .

As a consequence, after neglecting again all terms of strictly positive homogeneity, one has
the identity

Mε

(
(DH)2 + Ξ

)
= (MεDH)2 + Ξ− 4C

(ε)
0 MεDH − (C

(ε)
1 + C

(ε)
2 + 4C

(ε)
3 ) .

Combining this with (5.12) and (4.10), we conclude that

R((DH)2 + Ξ
)
= (∂xRH)2 + ξε − 4C

(ε)
0 ∂xRH − (C

(ε)
1 + C

(ε)
2 + 4C

(ε)
3 ) ,

from which the claim then follows in the same way as for Proposition 5.12.

Remark 5.17. Ultimately, the reason why the theory mentioned in Section 1.1 (or indeed the
theory of controlled rough paths, as originally exploited in [21]) can also be applied in this
case is that in (5.15), only one basis vector besides those in T (i.e. besides 1 and X1) comes
with a non-constant coefficient, namely the basis vector . The methodology explained in
Section 3.1 on the other hand can be applied whenever no basis vector besides those in T
comes with a non-constant coefficient.
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Anomalous random walks and diffusions:
From fractals to random media

Takashi Kumagai

Abstract. We present results concerning the behavior of random walks and diffusions on disordered
media. Examples treated include fractals and various models of random graphs, such as percolation
clusters, trees generated by branching processes, Erdős-Rényi random graphs and uniform spanning
trees. As a consequence of the inhomogeneity of the underlying spaces, we observe anomalous be-
havior of the corresponding random walks and diffusions. In this regard, our main interests are in
estimating the long time behavior of the heat kernel and in obtaining a scaling limit of the random
walk. We will overview the research in these areas chronologically, and describe how the techniques
have developed from those introduced for exactly self-similar fractals to the more robust arguments
required for random graphs.

Mathematics Subject Classification (2010). Primary 60J45; Secondary 05C81, 60K37.

Keywords. Fractals, heat kernel estimates, percolation, random media, sub-diffusivity.

1. Introduction

Since the mid-sixties, mathematical physicists have investigated anomalous behavior of ran-
dom walks and diffusions on disordered media (see for example [17]). The random walk
on a percolation cluster – the so-called ‘ant in the labyrinth’ ([24]) – is one of the central
examples. Recall that the bond percolation model on the lattice Zd, d ≥ 2, is defined as fol-
lows: each nearest neighbor bond is open with probability p ∈ [0, 1] and closed otherwise,
independently of all the others. It is well-known that this model exhibits a phase transition,
whereby if θ(p) := Pp(|C(0)| = +∞), where C(0) is the open cluster containing 0, then
there exists pc = pc(Z

d) ∈ (0, 1) such that θ(p) = 0 if p < pc and θ(p) > 0 if p > pc. For
p > pc, there exists a unique open infinite cluster upon which the long time behavior of the
simple random walk is similar to that of the simple random walk on Zd (see Section 4.1). For
the simple random walk on the critical percolation cluster, however, in 1982 Alexander and
Orbach [1] made a striking conjecture about how there might be quite different behavior.
(To make the problem mathematically precise, one has to consider the critical percolation
cluster conditioned to be infinite, as we discuss in Section 4.2.) Let Y = {Y ω

n }n∈N be the
simple random walk on the cluster (i.e. Y ω

n is in one of the adjacent neighbors of Y ω
n−1 with

equal probabilities), and pωn(x, y) be its heat kernel (transition density); see (3.3) for precise
definition. Here and in the following, the suffix ω stands for the randomness of the media.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Define

ds := −2 lim
n→∞

log pω2n(x, x)

log n
(1.1)

as the spectral dimension of the cluster if the limit exists. (To be precise, the original defi-
nition of ds was the ‘density of states’, which gives the asymptotic growth of the eigenvalue
counting function.) One formulation of the Alexander-Orbach conjecture is that ds = 4/3
for all d ≥ 2. Clearly, this expresses anomalous behavior for the random walk, since ds = d
for simple random walk on Z

d. These works stimulated a lot of interest from mathematical
physicists in exact fractals as well (see for example [41]).

Mathematical progress on these problems started to be made in the late eighties. In 1986,
Kesten wrote two beautiful papers ([31, 32]) in which he constructed an ‘incipient infinite
cluster’ for critical percolation on Z

2 and showed that the random walk on this was anoma-
lous (in the latter work, he also considered random walks on critical models of trees); these
were the first significant mathematically rigorous works in this area. Kesten’s work and
mathematical physicists’ work mentioned above triggered intensive research on diffusions
on fractals, which are “ideal” disordered media. As part of this, Brownian motion was con-
structed on typical fractals, such as the Sierpinski gasket, and properties of these processes
were obtained (see Section 2). These included detailed heat kernel estimates of the so-called
sub-Gaussian form, meaning that the heat kernel is bounded from above and below by

c1t
−ds/2 exp

(
− c2

(d(x, y)dw

t

)1/(dw−1))
with different pairs of constants (c1, c2) for the upper and lower bounds. Here dw > 2 is a
constant and d(·, ·) is a geodesic distance on the fractal.

While diffusions on fractals had been extensively studied by 2000 and continue to be ac-
tively studied, the turn of the century saw increasing moves being made to analyze “fractal-
like spaces” instead of working only on ideal fractals. The key issue here is whether the
sub-Gaussian estimates mentioned above are stable under perturbations of spaces and op-
erators. (Note that when ds = d and dw = 2, the corresponding estimates are Gaussian
estimates, and such a perturbation theory was extensively developed in the nineties.) In
this direction, several functional inequalities have been shown to be equivalent to the sub-
Gaussian estimates, some of which are stable under perturbations, meaning that the stability
problem has been affirmatively resolved (see Section 3).

It turns out that such a stability theory is useful even for the analysis on random media,
including percolation clusters as Kesten considered. Indeed, some functional inequalities
have been modified and applied to random walks on various models of disordered media,
especially on percolation clusters (see Section 4). Specifically, the Alexander-Orbach con-
jecture has been affirmatively solved for high dimensions (Theorem 4.4). For some models,
scaling limits of random walks have also been established (see Section 4.1 and Section 5);
these include supercritical percolation clusters, critical branching processes conditioned to
be large, the Erdős-Rényi random graph in the critical window, and the 2-dimensional uni-
form spanning tree.

The aim of this paper is to give a overview of the stream of research introduced above. It
is a very restricted survey and the references are far from complete. Due to space restriction,
for papers which are very important but for which details are not discussed in this paper,
names of authors and years of publication are mentioned but without inclusion in the list of
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references. We apologize to the authors of relevant papers which are not cited here. Readers
can find more detailed information in the following books/surveys [5, 7, 17, 19, 23, 25, 27,
29, 33, 34, 36, 38, 39, 42, 44, 45].

Notation. Wewrite f � g if there exist constants c1, c2>0 such that c1g(x)≤f(x)≤c2g(x)
for all x, and f ∼ g if lim|x|→∞ f(x)/g(x) = 1.

2. Anomalous heat transfer on fractals

Let a = (0, 0), b = (1, 0), c = (1/2,
√
3/2), and set

F1(x) = (x − a)/2 + a, F2(x) = (x − b)/2 + b and F3(x) = (x − c)/2 + c.

Then, there exists unique non-void compact set such that K = ∪3
i=1Fi(K); we call K the 2-

dimensional Sierpinski gasket. Define the unbounded Sierpinski gasket as K̂ = ∪∞n=02
nK.

We first explain the construction of Brownian motion on K̂. Let

Figure 2.1. Sierpinski gasket graph V0 and Sierpinski gasket K̂

V0 =

∞⋃
m=0

2m
( 3⋃

i1,··· ,im=1

Fi1 ◦ · · · ◦ Fim({a, b, c})
)
, Vm = 2−mV0.

The closure of ∪m≥0Vm is K̂. Let {X(i)}i≥0 be the simple random walk on V0. That is, it
is a random walk such that X(i + 1) is in one of the adjacent neighbors of X(i) in V0 (i.e.
points in the same triangles with length 1 as those X(i) belongs to) with equal probabilities.
Let Xm(i) := 2−mX(i) be the simple random walk on Vm. Since Xm moves distance 2−m

per unit time, Xm(i) → 0 as m → ∞ for fixed i. So, we must speed up the random walks in
order to obtain a non-trivial limit. It is plausible to choose the time scale as the average time
for the random walk on Vm+1 starting from a point in Vm to reach one of the neighboring
points in Vm. By the self-similarity and symmetry of K̂, this average time is independent of
m and it is equal to the average time forX1 starting from a to arrive at either b or c. A simple
calculation deduces that the value is 5. Let Y (m)

t := Xm([5mt]). Then, it can be proved that
{Y (m)} converges to a non-trivial diffusion on K̂ as m → ∞, which is called Brownian
motion on K̂. (One can construct Brownian motion on K similarly.) Brownian motion
on the gasket was first constructed by Goldstein (1987) and Kusuoka (1987) independently.
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Characterization of Brownian motion is also known; any self-similar diffusion process on
K̂ whose law is invariant under local translations and reflections on each small triangle is a
constant time change of this diffusion ([16]).

The corresponding Laplacian Δ is defined as follows:

Δf(x) = lim
m→∞ 5m

( ∑
xi: x

m∼xi

f(xi)− 4f(x)
)
, x ∈ ∪m≥0Vm \ {0},

for f in a suitable function space, where x
m∼ y means that x and y are adjacent in Vm. Note

that the standard approximation for the Laplacian on R is Δf(x) = limm→∞ 22m(f(x +
2−m) + f(x − 2−m) − 2f(x)) for f ∈ C2(R). Set dw = log 5/ log 2 so that 5 = 2dw .
Naively, we can say that the Laplacian on the gasket is a “differential operator of order dw”.
(One way of stating this rigorously is that the domain of the corresponding Dirichlet form
on the gasket is a Besov space of order dw/2 (Jonsson (1996), Grigor’yan-Hu-Lau (2003)).)
Kigami (1989) was the first to construct the Laplacian on the gasket directly. It turns out
that the theory of Dirichlet forms ([23]) is well-applicable to this area, and diffusions (self-
adjoint operators) on fractals have been constructed through Dirichlet forms systematically.
Fukushima-Shima (1992) is one of the first who applied the Dirichlet form theory to fractals.

On R
d, we can define K̂ similarly from the family of (d + 1)-th contraction maps

with contraction rate 1/2. (For d = 1, K̂ = [0,∞).) The Hausdorff dimension of the
d-dimensional gasket is df = log(d + 1)/ log 2. The time scaling is d + 3 and dw =
log(d + 3)/ log 2.

In order to understand the asymptotic properties of the process, it is very important and
useful to obtain detailed heat kernel estimates. Let {B(t)}t≥0 be Brownian motion on the
gasket and define

Ptf(x) = Ex[f(B(t))] =

∫
K̂

pt(x, y)f(y)μ(dy),

where μ is the normalized Hausdorff measure on K̂. {Pt}t≥0 is the semigroup and pt(·, ·)
is the heat kernel (transition density) for Brownian motion on K̂. pt(·, ·) is a fundamental
solution of the heat equation for the Laplacian. For the case of Brownian motion on R

d,
pt(x, y) is the Gauss-kernel 1

(2πt)d/2
exp(−|x − y|2/(2t)).

Let d(x, y) be the shortest distance between x and y in K̂. The following sub-Gaussian
heat kernel estimates are obtained by Barlow-Perkins [16].

Theorem 2.1. pt(x, y) obeys the following estimates for t > 0, x, y ∈ K̂:

c1t
−df/dw exp

(
− c2

(d(x, y)dw

t

)1/(dw−1))
≤ pt(x, y)

≤ c3t
−df/dw exp

(
− c4

(d(x, y)dw

t

)1/(dw−1))
. (2.1)

The simple random walk on V0 also obeys (2.1) for d(x, y) ≤ t ∈ N (Jones (1996)).
From the probabilistic viewpoint, dw is the order of the diffusion speed of particles

and it is called the walk dimension. Indeed, by integrating (2.1), we have c5t
1/dw ≤

Ex[d(x,B(t))] ≤ c6t
1/dw . As dw > 2, the behavior of the process is anomalous (for a

long time, it diffuses slower than Brownian motion on R
d, so the behavior is sub-diffusive).



Anomalous random walks and diffusions: From fractals to random media 79

This diffusion does not have finite quadratic variation, so it is not a semi-martingale ([16]).
Its martingale dimension is 1 (Kusuoka (1989), Hino (2008)). Set ds/2 = df/dw. This ds,
which is the same exponent as in (1.1), gives the asymptotic growth of the eigenvalue count-
ing function for the Laplacian on K, and it is called the spectral dimension. Spectral prop-
erties of the Laplacian have been extensively studied (Fukushima-Shima (1992), Kigami-
Lapidus (1993), Barlow-Kigami (1997), Teplyaev (1998), etc.). Unlike the Euclidean case,
Brownian motion and the Laplacian on the gasket exhibit oscillations in their asymptotics;
in the asymptotics of the eigenvalue counting function (Barlow-Kigami (1997)), in the on-
diagonal heat kernel asymptotics (Grabner-Woess (1997), Kajino (2013)), and in Schilder’s
large-deviation principle (Ben Arous-Kumagai (2000)).

(2.1) is a very useful estimate. Various properties of Brownian motion such as laws
of the iterated logarithm can be deduced from this estimate. It also implies nice regularity
properties of caloric functions u(t, x) (i.e. solutions of the heat equation ∂u

∂t = Δu). For
S,R ∈ (0,∞), x0 ∈ K̂, set

Q− = (S + Rdw , S + 2Rdw)× B(x0, R), Q+ = (S + 3Rdw , S + 4Rdw)× B(x0, R).

The parabolic Harnack inequalities compare the values of caloric functions on Q− and Q+

uniformly. They imply uniform Hölder continuity of the caloric functions.

Theorem 2.2 (Generalized parabolic Harnack inequalities and Hölder continuity). There
exist c1, c2, θ > 0 such that, for any S,R ∈ (0,∞), x0 ∈ K̂, if u is a non-negative caloric
function on (S, S + 4Rdw)× B(x0, 2R), then the following hold:

sup
(t,x)∈Q−

u(t, x) ≤ c1 inf
(t,x)∈Q+

u(t, x), (PHI(dw))

|u(s, x)− u(s′, x′)| ≤ c2

( |s − s′|1/dw + d(x, x′)
R

)θ

‖u‖∞, (2.2)

for any (s, x), (s′, x′) ∈ (S + Rdw , S + 4Rdw)× B(x0, R).

In fact, (2.1) and (PHI(dw)) are equivalent under a suitable volume growth condition as
we will see in the next section. (PHI(dw)) implies various regularity properties of harmonic
functions such as the elliptic Harnack inequalities and the Liouville property (i.e. if u is a
non-negative harmonic function on K̂, then u is a constant function).

For more general fractals such as nested fractals introduced by Lindstrøm (1990) and
Sierpinski carpets (see Figure 2.2, the left figure is an example of nested fractals), Brown-
ian motion is constructed and it is known that the heat kernels obey the sub-Gaussian esti-
mates (2.1) (Barlow-Bass (1989, 1999), Lindstrøm (1990), Kumagai (1993), Fitzsimmons-
Hambly-Kumagai (1994)). Characterization of Brownian motion on the fractals are also
known (Metz (1996), Sabot (1997), Barlow-Bass-Kumagai-Teplyaev (2010)).

Open problem I. The existing construction of Brownian motion on the carpet requires de-
tailed uniform control of harmonic functions (such as uniform Harnack inequalities) for the
approximating processes; see for example [7]. Construct Brownian motion on the carpet
without such detailed information.

We refer to [5, 7, 33, 34, 38, 44] for details on diffusions/analysis on fractals.
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Figure 2.2. Penta-kun and Sierpinski carpet

3. Stability of parabolic Harnack inequalities and sub-Gaussian heat kernel
estimates

Since fractals are “ideal” objects in that they have exact self-similarity, it is natural to ask if
the inequalities (2.1) and (PHI(dw)) are stable under perturbations of the state space and the
operator.

Let us first briefly overview the history for the case of dw = 2. For any divergence op-
erator L =

∑d
i,j=1

∂
∂xi

(aij(x)
∂

∂xj
) on R

d satisfying a uniform elliptic condition, Aronson
(1967) proved (2.1) with df = d and dw = 2. Later in the last century, there are outstand-
ing results from the field of global analysis on manifolds. Let Δ be the Laplace-Beltrami
operator on a complete Riemannian manifold M with the Riemannian metric d(·, ·) and
with the Riemannian measure μ. Li-Yau (1986) proved the remarkable fact that if M has
non-negative Ricci curvature, then the heat kernel pt(x, y) satisfies

c1Φ(x, c2d(x, y), t) ≤ pt(x, y) ≤ c3Φ(x, c4d(x, y), t), (3.1)

where Φ(x, r, t) = μ(B(x, t1/2))−1 exp(−r2/t). A few years later, Grigor’yan (1991) and
Saloff-Coste (1992) refined the result and proved, in conjunction with the results by Fabes-
Stroock (1986) and Kusuoka-Stroock (1987), that (3.1) is equivalent to a volume doubling
condition (VD) plus Poincaré inequalities (PI(2)) –see Definition 3.1 and 3.3 for definitions
in the graph setting. Their results were later extended to the framework of Dirichlet forms
by Sturm (1996) and graphs by Delmotte (1999). Detailed heat kernel estimates are strongly
related to the control of harmonic functions. The origin of ideas and techniques used in this
field goes back to De Giorgi (1957), Nash (1958), Moser (1961,1964) and there are many
other significant works in this area. See for example [25, 42] and the references therein.
Summarizing, the following equivalence holds:

(3.1) ⇔ (VD) + (PI(2)) ⇔ (PHI(2)). (3.2)

Since (VD) and (PI(2)) are stable under some perturbations, we see that (3.1) and (PHI(2))
are also stable under the perturbations.

We will discuss the extension of (3.2) to the dw > 2 case. Though such a generalization
has also been established under a metric measure space with a local regular Dirichlet form,
for simplicity, we will restrict our attention to the graph setting. We first set up notation and
definitions.
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3.1. Setting. Let G be a countably infinite set, and E a subset of {{x, y} ∈ G × G :
x �= y}. We write x ∼ y if {x, y} ∈ E. A graph is a pair (G,E) and the graph distance
d(x, y) for x, y ∈ G is the length of the shortest path from x to y (we set d(x, x) = 0).
We assume the graph is connected (i.e. d(x, y) < ∞ for all x, y ∈ G) and locally finite
(i.e. |{y ∈ G : {x, y} ∈ E}| < ∞ for all x ∈ G). For x ∈ G and r ≥ 0, denote
B(x, r) = {y ∈ G : d(x, y) ≤ r}.

Now assume that the graph G is endowed with a weight (conductance) μxy , which is a
symmetric nonnegative function on G × G such that μxy > 0 if and only if x ∼ y. We call
the pair (G,μ) a weighted graph. We can regard it as an electrical network. We define a
quadratic form on (G,μ) as follows. Set

E(f, g) = 1

2

∑
x,y∈G
x∼y

(f(x)− f(y))(g(x)− g(y))μxy for all f, g ∈ R
G.

For each x ∈ G, let μx =
∑

y∈G μxy and for each A ⊂ G, set μ(A) =
∑

x∈A μx.
μ is a measure on G. Let {Yn}n≥0 be the discrete time Markov chain whose transition
probabilities are given by

P (Yn+1 = y|Yn = x) =
μxy

μx
=: P (x, y) for all x, y ∈ G.

Y is is called a simple random walk when μxy = 1 whenever x ∼ y. The heat kernel of
{Yn}n≥0 can be written as

pn(x, y) := P x(Yn = y)/μy for all x, y ∈ G, (3.3)

where we set P x(·) := P (·|Y0 = x). Clearly, pn(x, y) = pn(y, x). We sometimes consider
a continuous time Markov chain {Yt}t≥0 with respect to μ which is defined as follows: each
particle stays at a point, say x for (independent) exponential time with parameter 1, and then
jumps to another point, say y with probability P (x, y). The heat kernel for the continuous
time Markov chain can be expressed as follows.

pt(x, y) = P x(Yt = y)/μy =

∞∑
n=0

e−t t
n

n!
pn(x, y) for all x, y ∈ G.

The discrete Laplacian corresponding to {Yt}t≥0 is

Lf(x) =
∑
y∈G
y∼x

P (x, y)f(y)− f(x) =
1

μx

∑
y∈G
y∼x

(
f(y)− f(x)

)
μxy.

In this section, we assume the following condition on the weighted graph.

Definition 3.1. Let (G,μ) be a weighted graph.

(i) We say (G,μ) has controlled weights if there exists p0 > 0 such that

P (x, y) = μxy/μx ≥ p0 for all x ∼ y ∈ G.

(ii) We say (G,μ) satisfies a volume doubling condition (VD) if there exists c1 > 1 such
that

μ(B(x, 2R)) ≤ c1μ(B(x,R)) for all x ∈ G,R ≥ 1. (3.4)
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3.2. Stability. We first introduce two types of perturbations.

Definition 3.2. Let (G1, μ1), (G2, μ2) be weighted graphs with controlled weights.

(i) We say (G2, μ2) is a bounded perturbation of (G1, μ1) if G1 = G2 and there exist
c1, c2 > 0 such that c1(μ1)xy ≤ (μ2)xy ≤ c2(μ1)xy for all x ∼ y.

(ii) A map T : G1 → G2 is called a rough isometry if there exist positive constants
c1, · · · , c4 > 0 such that the following holds for all x, y ∈ G1 and y′ ∈ G2.

c−1
1 d1(x, y)− c2 ≤ d2(T (x), T (y)) ≤ c1d1(x, y) + c2

d2(T (G1), y
′) ≤ c3, c−1

4 (μ1)x ≤ (μ2)T (x) ≤ c4(μ1)x.

where di(·, ·) is the the graph distance of (Gi, μi), for i = 1, 2. (G1, μ1), (G2, μ2) are
said to be rough isometric if there is a rough isometry between them.

The notion of rough isometry was first introduced by Kanai (1985). Note that rough
isometry corresponds to (coarse) quasi-isometry in the field of geometric group theory, which
was introduced by Gromov (1981).

We now define some (functional) inequalities.

Definition 3.3. Let (G,μ) be a weighted graph with controlled weights and let β > 1.

(i) We say (G,μ) satisfies sub-Gaussian heat kernel estimates (HK(β)) if there exist
c1, · · · , c4 > 0 such that for x, y ∈ G,n ≥ d(x, y) ∨ 1, the following holds:

pn(x, y) ≤ c1
μ(B(x, n1/β))

exp
(
− c2

(d(x, y)β
n

)1/(β−1))
,

pn(x, y) + pn+1(x, y) ≥ c3
μ(B(x, n1/β))

exp
(
− c4

(d(x, y)β
n

)1/(β−1))
.

(ii) We say (G,μ) satisfies (PI(β)), a scaled Poincaré inequality with exponent β, if there
exists a constant c1 > 0 such that for any ball BR := B(x0, R) ⊂ G with x0 ∈ G,
R ≥ 1 and f : BR → R,∑

x∈BR

(f(x)− f̄BR
)2μx ≤ c1R

β
∑

x∈BR

Γ(f, f)(x).

Here f̄BR
:= μ(BR)

−1
∑

y∈BR
f(y)μy , and Γ(f, f)(x) :=

∑
y∼x(f(x)−f(y))2μxy .

(iii) We say (G,μ) satisfies (CSA(β)), a cut-off Sobolev inequality in annuli with exponent
β, if there exist a constant c1 > 0 such that for every x0 ∈ G,R, r ≥ 1, there exists a
cut-off function ϕ satisfying the following properties:

(a) ϕ(x) = 1 if x ∈ BR, ϕ(x) = 0 if x ∈ Bc
R+r.

(b) Let U = BR+r \ BR. For any f : U → R,

∑
x∈U

f(x)2Γ(ϕ,ϕ)(x) ≤ c1

(∑
x∈U

ϕ(x)2Γ(f, f)(x) + r−β
∑
x∈U

f(x)2μx

)
.
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Theorem 3.4 ([2, 8, 9]). Let (G,μ) be a weighted graph with controlled weights. Then,

(VD) + (PI(β)) + (CSA(β)) ⇔ (PHI(β)) ⇔ (HK(β)). (3.5)

Here and in the following, (PHI(β)) means the discrete version of (PHI(dw)) in Theorem
2.2 with dw = β.

Remark 3.5.
(i) There are various other equivalent conditions to (3.5); see [26, 45] and references

therein.

(ii) When one of (thus all) the above conditions holds, then it turns out that β ≥ 2.

(iii) (CSA(2)) always holds in the graph context. (Take ϕ(x) = 1∧r−1d(x,Bc
R+r).) Thus

Theorem 3.4 is an extension of (3.2) to the cases of β > 2 for graphs.

(iv) The main theorem in [2] is the equivalence of the upper bound of (HK(β)) and (CSA(β))
plus the Faber-Krahn inequality with exponent β. The results are stated on metric
measure spaces.

For the β = 2 case, there is a well-known method called Moser’s iteration to deduce
the Harnack inequality in (3.2). In order for the method to work, it is necessary that the
correct order can be deduced using linear cut-off functions. If we adopt similar arguments
using the Lipschitz cut-off functions for the β > 2 case, then the estimates obtained are not
sharp enough to establish the Harnack inequality. Roughly speaking, (CSA(β)) guarantees
the existence of nice cut-off functions ϕ that satisfy E(ϕ,ϕ) ≤ c1R

−βμ(BR). (Note that the
order of the energy for the Lipschitz continuous cut-off function is R−2μ(BR).) The idea of
the proof of the Harnack inequality when β > 2 is to apply Moser’s iteration for weighted
measures νx := μx +RβΓ(ϕ,ϕ)(x) using (CSA(β)).

Clearly, (VD), (PI(β)) and (CSA(β)) are stable under bounded perturbations. Further, it
can be proved that they are stable under rough isometry (Hambly-Kumagai (2004)). We thus
obtain the stability of (PHI(β)) and (HK(β)).

Figure 3.1. Fractal-like manifold

As mentioned above, Theorem 3.4 holds in the framework of metric measure spaces with
local regular Dirichlet forms (especially Riemannian manifolds). It also holds when the walk
dimension β is different for short times and long times. Figure 3.1 is a 2-dimensional Rie-
mannian manifold whose global structure is like that of the gasket. This can be constructed
from the left of Figure 2.1 by changing each bond to a cylinder and putting projections and
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dents locally. The diffusion corresponding to the Dirichlet form moves on the surfaces of
the cylinders. Using the generalization of Theorem 3.4, one can show that any divergence
operator L =

∑2
i,j=1

∂
∂xi

(aij(x)
∂

∂xj
) on the manifold which satisfies the uniform elliptic

condition obeys (PHI(2)) for R ≤ 1 and (PHI(log 5/ log 2)) for R ≥ 1.

3.3. Strongly recurrent case. The problem with Theorem 3.4 is that it is in general very
difficult to check (CSA(β)). Under a stronger volume growth condition, a simpler equivalent
condition is known.

For each x �= y ∈ G, define the effective resistance between them by

Reff(x, y)
−1 = inf

{
E(f, f) : f(x) = 1, f(y) = 0, f ∈ R

G
}
. (3.6)

We define Reff(x, x) = 0 for x ∈ G.

Definition 3.6.

(i) We say (G,μ) satisfies the volume growth condition (VG(β−)) if there exist K > 1,
c1 > 0 with log c1/ logK < β such that

μ(B(x,KR)) ≤ c1μ(B(x,R)) for all x ∈ G,R ≥ 1.

(ii) We say (G,μ) satisfies (RE(β)), the effective resistance bounds with exponent β, if
there exist c1, c2 > 0 such that

c1d(x, y)
β

μ(B(x, d(x, y)))
≤ Reff(x, y) ≤ c2d(x, y)

β

μ(B(x, d(x, y)))
for all x, y ∈ G.

Theorem 3.7. ([10]) Let (G,μ) be a weighted graph with controlled weights and assume
(VG(β−)). Then,

(RE(β)) ⇔ (PHI(β)) ⇔ (HK(β)).

Under the above conditions, the Markov chain is strongly recurrent in the sense that there
exists p1 > 0 such that P x(σ{y} < σB(x,2r)c) ≥ p1 for all x ∈ G, r ≥ 1 and y ∈ B(x, r),
where σA = min{n ≥ 0 : Yn ∈ A}. Theorem 3.7 is also generalized to the framework of
metric measure spaces (Kigami ([34]), Kumagai (2004)).

One can refine the proof of this theorem to a statement which is applicable for random
media as we discuss in the next section.

Open problem II. Provide a simpler equivalent condition to (HK(β)) that is applicable to a
general graph.

4. Random walk on percolation clusters

From now on, we will discuss random walk on random media. We will consider a random
weighted graph (G(ω), μ(ω)) for ω ∈ Ω. (Ω,F ,P) is a probability space that governs ran-
domness of the weighted graph. Note that we no longer have controlled weights and we
cannot expect (VD) in general, so the arguments given in previous sections are not appli-
cable directly. We are interested in the long time behavior of the corresponding Markov
chain {Y ω

t }t≥0 at the quenched level (i.e. P-a.s. level); we are especially interested in the
following two questions:
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(Q1) Long time heat kernel estimates for pωt (·, ·).
(Q2) Scaling limit of {Y ω

t }t≥0.

(Recall that the suffix ω stands for the randomness of the media.) The prototypical example
is random walk on percolation clusters on Zd, d ≥ 2.

4.1. Supercritical case. We first consider the supercritical case. In this case, {μe : e ∈ Ed}
are Bernoulli random variables; P(μe = 1) = p,P(μe = 0) = 1−p where p > pc(Z

d) – see
Section 1 for the definition of pc(Zd). We know that there exists a unique infinite connected
component of edges with conductance 1, which we denote by G(ω). We will condition on
the event {0 ∈ G(ω)} and define P0(·) := P(·|0 ∈ G).

As for (Q1), the following heat kernel estimates are proved in [6].

Theorem 4.1. There exist constants η, c1, · · · , c6 > 0 and a family of random variables
{Ux}x∈Zd with P(Ux ≥ n) ≤ c1 exp(−c2n

η) such that the following holds P0-a.s. for
t ≥ Ux ∨ |x − y|:

c3t
−d/2 exp(−c4|x − y|2/t) ≤ pωt (x, y) ≤ c5t

−d/2 exp(−c6|x − y|2/t). (4.1)

The proof uses (3.2) in spirit. A ball B(x, r) is said to be “good” if the volume is
comparable to rd and (PI(2)) holds for the ball. It is proved that a ball is good with high
probability and the Borel-Cantelli lemma is used to establish some quenched estimates. Part
of the proof of (3.2) is used to establish some heat kernel estimates on good balls.

As for (Q2), it turns out that the quenched invariance principle holds, namely εY ω
t/ε2

converges as ε → 0 to Brownian motion on R
d (with covariance σ2I , σ > 0) P0-a.e. ω.

This was first proved in [43] for d ≥ 4 and later extended to all d ≥ 2 in [18, 40]. The proof
for d ≥ 3 uses Theorem 4.1.

Theorem 4.2. P0-a.s., εYt/ε2 converges (under P 0
ω) in law to Brownian motion on R

d with
covariance σ2I where σ > 0 is a non-random constant.

Furthermore, the quenched local limit theorem holds for this model ([12]).
Let us emphasize that percolation provides one of the natural degenerate models in the

sense that uniform ellipticity does not hold, and it is a highly non-trivial fact that the scaling
limit is Brownian motion with probability one. For the random conductance model discussed
below, whenEμe < ∞, a weak form of convergence was already proved in the 1980s that the
convergence holds in law under P0 ×P 0

ω ; a milestone by Kipnis-Varadhan (1986). (See also
De Masi-Ferrari-Goldstein-Wick (1989) and Kozlov (1985).) This is sometimes referred to
as the annealed (or averaged) invariance principle. It took about two decades to improve the
annealed invariance principle to the quenched one.

Remark 4.3. More generally, (Q1) and (Q2) have been extensively studied on the random
conductance model. Let {μe : e ∈ Ed} be stationary ergodic that takes non-negative val-
ues, and assume P(μe > 0) > pc(Z

d). Then there exists a unique infinite connected
component of edges with positive conductance, which we denote by G(ω). The random
weighted graph (G, μ) is the random conductance model. For the i.i.d. case, although
there are examples where the heat kernel behaves anomalously (Berger-Biskup-Hoffman-
Kozma (2008)), it is proved that quenched invariance principle as in Theorem 4.2 holds;
further, σ > 0 is non-random if Eμe < ∞ and σ = 0 (i.e. the limiting process does not
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move) if Eμe = ∞ (Biskup-Prescott (2007), Mathieu-Piatnitski (2007), Barlow-Deuschel
(2010), Andres-Barlow-Deuschel-Hambly (2013)). When P(μe ≥ u) ∼ u−αas u → ∞ for
α ∈ (0, 1), a special case of Eμe = ∞, a suitably rescaled Markov chain converges to an
anomalous process. It converges to the Fractional-Kinetics (FK) process when d ≥ 2, where
the corresponding heat kernel obeys a fractional time heat equation, and to the Fontes-Isopi-
Newman (FIN) diffusion when d = 1 (Barlow-Černý (2011), Černý (2011)). See [19, 36]
for details. For general ergodic media with P(0 < μe < ∞) = 1, Andres-Deuschel-Slowik
([3]) has proved the quenched invariance principle under some integrability condition of
the media. They use Moser’s iteration instead of the heat kernel estimates. See Procaccia-
Rosenthal-Sapozhnikov (2013) for the quenched invariance principle on a class of degenerate
ergodic media such as random interlacements.

4.2. Critical case. We next consider random walk on percolation clusters at criticality. If
d = 2 or d ≥ 19 (or d > 6 for spread-out models mentioned below) it is known that
θ(pc) = 0, i.e. there is no infinite open cluster P-a.s.; see for example [27]. (Fitzner-van
der Hofstad (2014) extends d ≥ 19 to d ≥ 15.) It is conjectured that this holds for d ≥ 2.
However, when p = pc, in any box of side n there exist with high probability open clusters
of diameter of order n. In order to study mesoscopic properties of these large finite clusters,
we will regard them as subsets of an infinite cluster G, called the incipient infinite cluster
(IIC for short) and analyze the IIC. This IIC G = G(ω) is our random graph.

The IIC was constructed when d = 2 in [31], by taking the limit as N → ∞ of the
cluster C(0) conditioned to intersect the boundary of a box of side N centered at the origin.
For large d, a construction of the IIC in Z

d is given in van der Hofstad-Járai (2004), using
the lace expansion. (The results are believed to hold for any d > 6.) They also prove the
existence and some properties of the IIC for all d > 6 for spread-out models: these include
the case when there is a bond between x and y with probability pL−d whenever y is in a
cube side L with center x, and the parameter L is large enough. The IIC measure can be
written as follows:

PIIC(F ) = lim
d(0,x)→∞

Ppc(F |0 ↔ x) for all F : cylindrical event, (4.2)

where {0 ↔ x} is the event that 0 and x are in the same open cluster. In the following, we
will write G = Gd(ω) for the IIC in Z

d. It is believed that the global properties of G are
the same for all d > dc, both for nearest neighbor and spread-out models, where dc is the
critical dimension which is 6 for the percolation model.

Let Y = {Y ω
n }n∈N be simple random walk on G, and pωn(x, y) be its heat kernel. The

Alexander-Orbach conjecture mentioned in the introduction can be stated as follows: for any
d ≥ 2, ds(G) = 4/3, PIIC-a.e., where ds was defined in (1.1).

The Alexander-Orbach conjecture turns out to be true on a high dimensional percolation
cluster ([35]) as we state in the following.

Theorem 4.4. There exists α > 0 such that the following holds when d > 6 for the spread-
out model (d ≥ 19 for the nearest neighbor model): For PIIC-a.e. ω ∈ Ω and x ∈ G(ω),
there exist Nx(ω), Rx(ω) ∈ N such that

(log n)−αn−
2
3 ≤ pω2n(x, x) ≤ (log n)αn−

2
3 for all n ≥ Nx(ω), (4.3)

(logR)−αR3 ≤ Ex
ωτB(0,R) ≤ (logR)αR3 for all R ≥ Rx(ω), (4.4)

where τA := min{n ≥ 0 : Yn /∈ A}.
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In the next subsection, we will briefly discuss how this was proved.

4.2.1. Heat kernel estimates on random media. As we mentioned in the end of the last
section, Theorem 3.7 (especially its proof) turns out to be useful even for random walk on
random media. Below we give a general theorem.

Let (G(ω), ω ∈ Ω) be a random graph on (Ω,F ,P); for P-a.e.ω, we assume that G(ω)
is a connected locally finite graph that contains a distinguished point 0 ∈ G(ω). For each
ω, we put conductance 1 for each bond and let {Y ω

n } be the simple random walk on G. Let
B(0, R) be the ball of radius R centered at 0 with respect to the graph distance d(·, ·). For
D,λ ≥ 1, we say B(0, R) in G is λ-good if

RD

λ
≤ μ(B(0, R)) ≤ λRD,

R

λ
≤ Reff(0, B(0, R)c). (4.5)

Here Reff(·, ·) is the effective resistance defined in (3.6). The following are the general
estimates in [13, 37].

Theorem 4.5. If there exist R0, λ0 ≥ 1 and q0 > 0 such that

P({ω : B(0, R) is λ-good }) ≥ 1− λ−q0 for all R ≥ R0, λ ≥ λ0, (4.6)

then there exists c > 0 such that the following holds:
For P-a.e. ω ∈ Ω and x ∈ G(ω), there exist Nx(ω), Rx(ω) ∈ N such that

(log n)−cn−
D

D+1 ≤ pω2n(x, x) ≤ (log n)cn−
D

D+1 for all n ≥ Nx(ω), (4.7)

(logR)−cRD+1 ≤ Ex
ωτB(0,R) ≤ (logR)cRD+1 for all R ≥ Rx(ω). (4.8)

In particular, ds(G(ω)) = 2D
D+1 , P–a.s. ω, and the random walk is recurrent.

Furthermore, if (4.6) holds with exp(−c1λ
q0) instead of λ−q0 , then (4.7) and (4.8) hold

with (log log ·)±c instead of (log ·)±c.

In the above statement, the volume growth is of order RD and the resistance growth is
linear. In [37], a general version is given where both growths are controlled by increasing
functions with c1(R/r)β1 ≤ f(R)/f(r) ≤ c2(R/r)β2 for 0 < r < R, where 0 < β1 ≤ β2

are constants. For this general version, we need to add an extra condition Reff(0, z) ≤
λf(d(0, z)) for all z ∈ B(0, R) in (4.5). Note that this extra condition is always true for the
linear case.

Open problem III. Provide a simpler sufficient condition for the heat kernel and exit time
estimates for ds ≥ 2.

4.2.2. Applying Theorem 4.5 to concrete models. In [35], the condition (4.6) is proved
using the control of the two-point function that can be obtained using the lace expansion.
Write x ↔ y if x and y are connected by open edges.

Proposition 4.6. For the critical bond percolation, assume that the following holds:

c1|x|2−d ≤ Ppc(0 ↔ x) ≤ c2|x|2−d for all x ∈ G(ω). (4.9)

Then (4.6) in Theorem 4.5 holds for PIIC with D = 2.
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When d is high enough, (4.9) is proved using the lace expansion (Hara-van der Hofstad-
Slade (2003) for d > 6 for the spread-out model, Hara (2008) for d ≥ 19 for the nearest
neighbor model), which implies Theorem 4.4.

There are other models where anomalous behavior of random walk has been proved by
verifying (4.6) in Theorem 4.5. We list up some of them. For (i)-(iii), D = 2 and ds = 4/3.
For (i), (4.6) holds with exp(−c1λ

q0) instead of λ−q0 .

(i) IIC for critical percolation on regular trees ([14]).

(ii) IIC for spread out oriented percolation for d ≥ 6 ([13]).

(iii) Invasion percolation on a regular tree ([4]).

(iv) IIC forα-stable Galton-Watson trees conditioned to survive forever (Croydon-Kumagai
(2008)): D = α/(α − 1) and ds = 2α/(2α − 1).

(v) 2-dimensional uniform spanning trees ([15]): D = 8/5 and ds = 16/13 – See Section
5.2 for details.

[28] partly generalized the results in [35], and proved the Alexander-Orbach conjecture for
the IIC in high dimensions, both for long-range and finite-range percolation.

For the model (i), we have much more detailed estimates ([14]).

Theorem 4.7. The heat kernel of simple random walk on the IIC for critical percolation on
the regular tree obeys the following estimates.

(i) (4.3) and (4.4) hold with (log log ·)±α instead of (log ·)±α.

(ii) It holds that for PIIC-a.e. ω

lim inf
n→∞ (log log n)1/6n2/3pω2n(0, 0) ≤ 2.

(iii) The annealed heat kernel EIIC[p
·
2n(x, y)|x, y ∈ G] obeys the sub-Gaussian estimates

(2.1) with df = 2, dw = 3 for n ≥ d(x, y) ∨ 1.

As we have seen above, the quenched estimates have oscillation of log log order whereas
the annealed estimates do not. Detailed off-diagonal heat kernel estimates (which hold with
high probability) are also obtained in [14, Theorem 4.9, 4.10].

4.2.3. Below critical dimensions. For low dimensions, there are only a few rigorous re-
sults. One of the most attractive models is the IIC for 2-dimensional critical percolation.
In [32], Kesten proves sub-diffusive behavior of simple random walk on the IIC for 2-
dimensional critical percolation cluster (also shows the existence of the IIC in [31]). Namely,
let {Y ω

n }n≥0 be a simple random walk on the IIC, then there exists ε > 0 such that the PIIC-
distribution of n−

1
2+εd(0, Yn) is tight. A quenched version of Kesten’s result is established

both for the IIC and the invasion percolation cluster (Damron-Hanson-Sosoe (2013)). For
bond percolation on Z

d, the critical dimension is 6. The Alexander-Orbach conjecture is
considered to be false for d ≤ 5 and some numerical simulations (cf. [17], [29, Section 7.4])
support this. It is a challenging problem to prove this rigorously, especially for d = 2.

It is proved in [30] that the effective resistance between the origin and generation n of the
incipient infinite oriented branching random walk in d < 6 is O(n1−γ) for some γ > 0. It
is interesting to see that, while the critical dimension of the model is 4, asymptotic behavior



Anomalous random walks and diffusions: From fractals to random media 89

of the random walk changes already at d = 5. The precise resistance exponent (even its
existence) is not known.

Other low dimensional random media for which heat kernel/exit time estimates have
been studied include the uniform infinite planar triangulation (Benjamini-Curien (2013); see
also Gurel-Gurevich and Nachmias (2013)), the critical percolation cluster for the diamond
lattice (Hambly-Kumagai (2010)), and the non-intersecting two-sided random walk trace on
Z
2 and Z3 (Shiraishi (2014+)). See [36, Section 7.4] for details.

Open problem IV. (i) Prove the existence of ds and dw for lower dimensional models.
Disprove (or prove) the Alexander-Orbach conjecture for the models.
(ii) Compute resistance for random media when the resistance growth is not linear.

Remark 4.8. Heat kernel estimates and scaling limits have been considered for random
walks on the long-range percolation model and its variants. See [20, 21] and references
therein.

5. Scaling limits of random walks on random media

In this section, we discuss (Q2) (i.e. question about scaling limits of random walks) for
random media. It is proved by Croydon (2008) that the distribution of the rescaled simple
random walk on critical finite variance Galton-Watson tree converges to Brownian motion
on the Aldous tree (see Croydon (2010) for the infinite variance case). Below, we give two
more examples.

5.1. Erdős-Rényi random graph in critical window. Let VN := {1, 2, · · · , N}. The
Erdős-Rényi random graph is a percolation on the complete graph with vertices in VN ,
namely each bond {i, j}, i, j ∈ VN is open with probability p ∈ [0, 1] and closed other-
wise, independently of all the others. Denote its largest connected component by CN . It is
known that this model exhibits a phase transition around p ∼ c/N in that the following holds
with high probability (Erdős-Rényi (1960)):

c < 1 ⇒ |CN | = O(logN), c > 1 ⇒ |CN | � N, c = 1 ⇒ |CN | � N2/3.

We will consider finer scaling (the so-called critical window), namely we will take p =
1/N + λN−4/3 for fixed λ ∈ R. In this window, the size of the i-th largest connected
component is of order N2/3 for each i ∈ N. The following results hold for each i-th largest
connected component; for simplicity, we state them for the CN .

There exists a random compact metric space M = Mλ such that the following holds in
the Gromov-Hausdorff sense

N−1/3CN d−→ M,

where CN is considered as a rooted metric space (Addario-Berry, Broutin and Goldschmidt
(2012); see also Aldous (1997)). The concrete construction of M is also known. Let
{Y CN

m }m≥0 be the simple random walk on CN . Then the following holds.



90 Takashi Kumagai

Theorem 5.1 ([22]).

(i) There exist Brownian motion {BM
t }t≥0 on M such that

{N−1/3Y CN

[Nt]}t≥0
d−→ {BM

t }t≥0, P− a.s.

(ii) There exist a jointly continuous heat kernel pMt (·, ·) of Brownian motion and θ, T0, c1,
· · · , c4 > 0 such that for P-a.e. ω ∈ Ω,

pMt (x, y) ≤ c1t
− df

dw �(t−1)θ exp

{
−c2

(
d(x, y)dw

t

) 1
dw−1

�

(
d(x, y)

t

)−θ
}

(5.1)

pMt (x, y) ≥ c3t
− df

dw �(t−1)−θ exp

{
−c4

(
d(x, y)dw

t

) 1
dw−1

�

(
d(x, y)

t

)θ
}

(5.2)

for all x, y ∈ M, t ≤ T0 with �(x) := 1 ∨ log x and df = 2, dw = 3.

It is known that the Lp-mixing time of the simple random walk on CN converges in P-
distribution to that of Brownian motion on M (Croydon-Hambly-Kumagai (2012); see also
Nachmias-Peres (2008)).

5.2. 2-dimensional uniform spanning tree. Let Λn := [−n, n]2 ∩ Z
2, which we consider

as a graph with edges between lattice neighbors. A spanning tree of Λn is a subgraph that
connects all the vertices of Λn and contains no cycles. Let U (n) be a spanning tree of
Λn selected uniformly at random from all possibilities. Pemantle (1991) showed that one
could then define a uniform spanning tree (UST) of Z2, which we denote by U , as the local
limit of U (n) as n → ∞. He also showed that the distribution of U is independent of the
boundary conditions (such as wired, free) on Λn. An alternative and very useful construction
of U involves Wilson’s algorithm (1996), which can be described as follows. Enumerate Z2

arbitrarily as x0, x1, · · · and let U(0) = {x0}. For k ≥ 1, given U(k − 1), run the loop-
erased random walk (LERW) from xk to U(k − 1) and define U(k) to be the union of
the path and U(k − 1). (Here, LERW is a process introduced by Lawler (1980) which is
obtained by chronologically erasing loops from the simple random walk.) We then obtain
U = ∪k≥0U(k) – see [39] for more details about the UST.

Now, let Mn be the number of steps of the loop-erasure of a simple random walk on Z
2

from 0 to the circle of radius n. It follows from Lawler (2013) that E0Mn � n5/4 (note
that limn→∞ logE0Mn/ log n = 5/4 was shown by Kenyon (2000)). Applying this in
conjunction with Wilson’s algorithm, it has been established that |BU (0, R)| � R2/(5/4) =
R8/5 with high probability where BU (x,R) is the ball with respect to the graph distance. In
particular, in [15], the condition of Theorem 4.5 is proved with D = 8/5, as mentioned in
Section 4.2.2.

In the seminal paper by Schramm (2000), the topological properties of any possible
scaling limit of the 2-dimensional UST U were investigated. (The uniqueness of the scaling
limit for a UST in a 2-dimensional domain was established in Lawler-Schramm-Werner
(2004).) In [11], the convergence of U is discussed in terms of the generalized Gromov-
Hausdorff-Prohorov topology. It is proved that the law of the UST is tight under rescaling in
a space of measured, rooted real trees embedded into Euclidean space. Let T be the limiting
real tree when the lattice spacing is rescaled using the subsequence {δi}i≥1, ρT be its root,
φT be the random embedding of T into R2, and XT be Brownian motion on T started from
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ρT . Then the following holds, where we write XU for the simple random walk on U started
from 0.

Theorem 5.2 ([11]). The annealed law of {(δiXU
δ
−13/4
i t

: t ≥ 0)}i≥1 converges to the an-

nealed law of φT (XT ). Furthermore, there exists a jointly continuous heat kernel pTt (·, ·)
of XT such that, for each R > 0 and P-a.e. ω ∈ Ω, one can find T0 > 0 such that
(5.1) and (5.2) hold for all x, y ∈ BT (ρT , R), t ≤ T0 with �(x) := 1 ∨ log x and
df = 8/5, dw = df + 1 = 13/5.

Note that the exponent 13/4 = (5/4) · dw above is the walk dimension with respect to the
Euclidean distance.

6. Conclusions

We have provided an overview of the stream of research on anomalous random walks and
diffusions. Through the detailed study of diffusions on exactly self-similar fractals, it be-
came apparent that Brownian motion on fractals typically obeys sub-Gaussian heat kernel
estimates. This motivated the development of stability theory for such anomalous diffu-
sions/random walks which is a generalization of the classical perturbation theory of Gaus-
sian bounds. Then, some of the results in this direction turned out to be useful in analyzing
random walks in random media. Although not discussed in this paper, such a stability theory
also gives new insights to analysis on metric measure spaces.

There are many interesting randommedia whose dynamical properties are not yet known.
Necessity is the Mother of Invention. We believe that further developments will continue to
lead to important interactions between probability, analysis and mathematical physics.
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The proximal distance algorithm

Kenneth Lange and Kevin L. Keys

Abstract. The MM principle is a device for creating optimization algorithms satisfying the ascent
or descent property. The current survey emphasizes the role of the MM principle in nonlinear pro-
gramming. For smooth functions, one can construct an adaptive interior point method based on scaled
Bregmann barriers. This algorithm does not follow the central path. For convex programming sub-
ject to nonsmooth constraints, one can combine an exact penalty method with distance majorization
to create versatile algorithms that are effective even in discrete optimization. These proximal distance
algorithms are highly modular and reduce to set projections and proximal mappings, both very well-
understood techniques in optimization. We illustrate the possibilities in linear programming, binary
piecewise-linear programming, nonnegative quadratic programming, �0 regression, matrix completion,
and inverse sparse covariance estimation.

Mathematics Subject Classification (2010). Primary 90C59; Secondary 65C60.

Keywords. Majorization, convexity, exact penalty method, computational statistics.

1. Introduction

The MM principle is a device for constructing optimization algorithms [4, 25, 28–30]. In
essence, it replaces the objective function f(x) by a simpler surrogate function g(x | xn)
anchored at the current iterate xn and majorizing or minorizing f(x). As a byproduct of
optimizing g(x | xn) with respect to x, the objective function f(x) is sent downhill or
uphill, depending on whether the purpose is minimization or maximization. The next iterate
xn+1 is chosen to optimize the surrogate g(x | xn) subject to any relevant constraints.
Majorization combines two conditions: the tangency condition g(xn | xn) = f(xn) and the
domination condition g(x | xn) ≥ f(x) for all x. In minimization these conditions and the
definition of xn+1 lead to the descent property

f(xn+1) ≤ g(xn+1 | xn) ≤ g(xn | xn) = f(xn).

Minorization reverses the domination inequality and produces an ascent algorithm. Under
appropriate regularity conditions, an MM algorithm is guaranteed to converge to a station-
ary point of the objective function [30]. From the perspective of dynamical systems, the
objective function serves as a Liapunov function for the algorithm map.

The MM principle simplifies optimization by: (a) separating the variables of a problem,
(b) avoiding large matrix inversions, (c) linearizing a problem, (d) restoring symmetry, (e)
dealing with equality and inequality constraints gracefully, and (f) turning a nondifferentiable
problem into a smooth problem. Choosing a tractable surrogate function g(x | xn) that

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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hugs the objective function f(x) as tightly as possible requires experience and skill with
inequalities. The majorization relation between functions is closed under the formation of
sums, nonnegative products, limits, and composition with an increasing function. Hence, it
is possible to work piecemeal in majorizing complicated objective functions.

It is impossible to do justice to the complex history of the MM principle in a paragraph.
The celebrated EM (expectation-maximization) principle of computational statistics is a spe-
cial case of the MM principle [33]. Specific MM and EM algorithms appeared years before
the principle was well understood [22, 32, 38, 40, 41]. The widely applied projected gra-
dient and proximal gradient algorithms can be motivated from the MM perspective, but the
early emphasis on operators and fixed points obscured this distinction. Although Dempster,
Laird, and Rubin [15] formally named the EM algorithm, many of their contributions were
anticipated by Baum [1] and Sundberg [39]. The MM principle was clearly stated by Ortega
and Rheinboldt [36]. de Leeuw [13] is generally credited with recognizing the importance of
the principle in practice. The EM algorithm had an immediate and large impact in computa-
tional statistics. The more general MM principle was much slower to take hold. The papers
[14, 23, 26] by the Dutch school of psychometricians solidified its position. (In this early
literature the MM principle is called iterative majorization.) The related Dinklebach [17]
maneuver in fractional linear programming also highlighted the importance of the descent
property in algorithm construction.

Before moving on, let us record some notational conventions. All vectors and matrices
appear in boldface. The ∗ superscript indicates a vector or matrix transpose. The Euclidean
norm of a vector x is denoted by ‖x‖ and the Frobenius norm of a matrix M by ‖M‖F .
For a smooth real-valued function f(x), we write its gradient (column vector of partial
derivatives) as ∇f(x), its first differential (row vector of derivatives) as df(x) = ∇f(x)∗,
and its second differential (Hessian matrix) as d2f(x).

2. An adaptive barrier method

In convex programming it simplifies matters notationally to replace a convex inequality con-
straint hj(x) ≤ 0 by the concave constraint vj(x) = −hj(x) ≥ 0. Barrier methods operate
on the relative interior of the feasible region where all vj(x) > 0. Adding an appropriate
barrier term to the objective function f(x) keeps an initially inactive constraint vj(x) in-
active throughout an optimization search. If the barrier function is well designed, it should
adapt and permit convergence to a feasible point y with one or more inequality constraints
active.

We now briefly summarize an adaptive barrier method that does not follow the central
path [27]. Because the logarithm of a concave function is concave, the Bregman majorization
[7]

− ln vj(x) + ln vj(xn) +
1

vj(xn)
dvj(xn)(x− xn) ≥ 0

acts as a convex barrier for a smooth constraint vj(x) ≥ 0. To make the barrier adaptive, we
scale it by the current value vj(xn) of the constraint. These considerations suggest an MM
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algorithm based on the surrogate function

g(x | xn) = f(x)− ρ
s∑

j=1

vj(xn) ln vj(x) + ρ
s∑

j=1

dvj(xn)(x− xn)

for s inequality constraints. Minimizing the surrogate subject to relevant linear equality
constraints Ax = b produces the next iterate xn+1. The constant ρ determines the tradeoff
between keeping the constraints inactive and minimizing f(x). One can show that the MM
algorithm with exact minimization converges to the constrained minimum of f(x) [30].

In practice one step of Newton’s method is usually adequate to decrease f(x). The first
step of Newton’s method minimizes the second-order Taylor expansion of g(x | xn) around
xn subject to the equality constraints. Given smooth functions, the two differentials

dg(xn | xn) =df(xn)

d2g(xn | xn) =d2f(xn)− ρ

s∑
j=1

d2vj(xn) (2.1)

+ ρ

s∑
j=1

1

vj(xn)
∇vj(xn)dvj(xn)

are the core ingredients in the quadratic approximation of g(x | xn). Unfortunately, one step
of Newton’s method is neither guaranteed to decrease f(x) nor to respect the nonnegativity
constraints.

Example 2.1 (Adaptive Barrier Method for Linear Programming). For instance, the standard
form of linear programming requires minimizing a linear function f(x) = c∗x subject to
Ax = b and x ≥ 0. The quadratic approximation to the surrogate g(x | xn) amounts to

c∗xn + c∗(x− xn) +
ρ

2

p∑
j=1

1

xnj
(xj − xnj)

2.

The minimum of this quadratic subject to the linear equality constraints occurs at the point

xn+1 = xn −D−1
n c+D−1

n A∗(AD−1
n A∗)−1(b−Axn +AD−1

n c).

HereDn is the diagonal matrix with ith diagonal entry ρx−1
ni , and the increment xn+1 −xn

satisfies the linear equality constraintA(xn+1 − xn) = b−Axn.

One can overcome the objections to Newton updates by taking a controlled step along
the Newton direction un = xn+1 − xn. The key is to exploit the theory of self-concordant
functions [5, 35]. A thrice differentiable convex function h(t) is said to be self-concordant
if it satisfies the inequality

|h′′′(t)| ≤ 2ch′′(t)3/2

for some constant c ≥ 0 and all t in the essential domain of h(t). All convex quadratic
functions qualify as self-concordant with c = 0. The function h(t) = − ln(at + b) is self-
concordant with constant 1. The class of self-concordant functions is closed under sums and
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composition with linear functions. A convex function k(x) with domain Rp is said to be
self-concordant if every slice h(t) = k(x+ tu) is self-concordant.

Rather than conduct an expensive one-dimensional search along the Newton direction
xn + tun, one can majorize the surrogate function h(t) = g(xn + tun | xn) along the
half-line t ≥ 0. The clever majorization

h(t) ≤ h(0) + h′(0)t − 1

c
h′′(0)1/2t − 1

c2
ln[1− cth′′(0)1/2] (2.2)

serves the dual purpose of guaranteeing a decrease in f(x) and preventing a violation of
the inequality constraints [35]. Here c is the self-concordance constant associated with the
surrogate. The optimal choice of t reduces to the damped Newton update

t =
h′(0)

h′′(0)− ch′(0)h′′(0)1/2
. (2.3)

The first two derivatives of h(t) are clearly

h′(0) =df(xn)un

h′′(0) =u∗nd
2f(xn)un − ρ

s∑
j=1

u∗nd
2vj(xn)un

+ ρ
s∑

j=1

1

vj(xn)
[dvj(xn)un]

2.

The first of these derivatives is nonpositive because un is a descent direction for f(x). The
second is generally positive because all of the contributing terms are nonnegative.

No Safeguard Self-concordant Safeguard

Iteration n c∗xn ‖Δn‖ c∗xn ‖Δn‖ tn
1 -1.20000 0.25820 -1.11270 0.14550 0.56351
2 -1.33333 0.17213 -1.20437 0.11835 0.55578
3 -1.41176 0.10125 -1.27682 0.09353 0.55026
4 -1.45455 0.05523 -1.33288 0.07238 0.54630
5 -1.47692 0.02889 -1.37561 0.05517 0.54345
10 -1.49927 0.00094 -1.47289 0.01264 0.53746
15 -1.49998 0.00003 -1.49426 0.00271 0.53622
20 -1.50000 0.00000 -1.49879 0.00057 0.53597
25 -1.50000 0.00000 -1.49975 0.00012 0.53591
30 -1.50000 0.00000 -1.49995 0.00003 0.53590
35 -1.50000 0.00000 -1.49999 0.00001 0.53590
40 -1.50000 0.00000 -1.50000 0.00000 0.53590

Table 2.1. Performance of the adaptive barrier method in linear programming.

When f(x) is quadratic and the inequality constraints are affine, detailed calculations
show that the surrogate function g(x | xn) is self-concordant with constant

c =
1√

ρmin{v1(xn), . . . , vs(xn)}
.
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Taking the damped Newton’s step with step length (2.3) keeps xn + tnun in the relative
interior of the feasible region while decreasing the surrogate and hence the objective function
f(x). When f(x) is not quadratic but can be majorized by a quadratic q(x | xn), one can
replace f(x) by q(x | xn) in calculating the adaptive-barrier update. The next iterate xn+1

retains the descent property.
As a toy example consider the linear programming problem of minimizing c∗x subject

toAx = b and x ≥ 0. Applying the adaptive barrier method to the choices

A =

⎛
⎝2 0 0 1 0 0
0 2 0 0 1 0
0 0 2 0 0 1

⎞
⎠ , b =

⎛
⎝11
1

⎞
⎠ , c =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
−1
−1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

and to the feasible initial point x0 = 1
31 produces the results displayed in Table 2.1. Not

shown is the minimum point ( 12 ,
1
2 ,

1
2 , 0, 0, 0)

∗. Columns two and three of the table record
the progress of the unadorned adaptive barrier method. The quantity ‖Δn‖ equals the Eu-
clidean norm of the difference vector Δn = xn − xn−1. Columns four and five repeat
this information for the algorithm modified by the self-concordant majorization (2.2). The
quantity tn in column six represents the optimal step length (2.3) in going from xn−1 to
xn along the Newton direction un−1. Clearly, there is a price to be paid in implementing a
safeguarded Newton step. In practice, this price is well worth paying.

3. Distance majorization

On a Euclidean space, the distance to a closed set S is a Lipschitz function dist(x, S) with
Lipschitz constant 1. If S is also convex, then dist(x, S) is a convex function. Projection
onto S is intimately tied to dist(x, S). Unless S is convex, the projection operator PS(x) is
multi-valued for at least one argument x. Fortunately, it is possible to majorize dist(x, S) at
xn by ‖x−PS(xn)‖. This simple observation is the key to the proximal distance algorithm
to be discussed later. In the meantime, let us show how to derive two feasibility algorithms
by distance majorization [9]. Let S1, . . . , Sm be closed sets. The method of averaged pro-
jections attempts to find a point in their intersection S = ∩m

j=1Sj . To derive the algorithm,
consider the convex combination

f(x) =
m∑
j=1

αj dist(x, Sj)
2

of squared distance functions. Obviously, f(x) vanishes precisely on S when all αj > 0.
The majorization

g(x | xn) =
m∑
j=1

αj‖x− PSj (xn)‖2
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of f(x) is easily minimized. The minimum point of g(x | xn),

xn+1 =

m∑
j=1

αjPSj (xn),

defines the averaged operator. The MM principle guarantees that xn+1 decreases the objec-
tive function.

Von Neumann’s method of alternating projections can also be derived from this perspec-
tive. For two sets S1 and S2, consider the problem of minimizing the objective function
f(x) = dist(x, S2)

2 subject to the constraint x ∈ S1. The function

g(x | xn) = ‖x− PS2(xn)‖2

majorizes f(x). Indeed, the domination condition g(x | xn) ≥ f(x) holds because
PS2(xn) belongs to S2; the tangency condition g(xn | xn) = f(xn) holds because PS2(xn)
is the closest point in S2 to xn. The surrogate function g(x | xn) is minimized subject to
the constraint by taking xn+1 = PS1 ◦ PS2(xn). The MM principle again ensures that
xn+1 decreases the objective function. When the two sets intersect, the least distance of 0
is achieved at any point in the intersection. One can extend this derivation to three sets by
minimizing the objective function f(x) = dist(x, S2)

2 + dist(x, S3)
2 subject to x ∈ S1.

The surrogate

g(x | xn) = ‖x− PS2(xn)‖2 + ‖x− PS3(xn)‖2

= 2
∥∥∥x− 1

2
[PS2(xn) + PS3(xn)]

∥∥∥2 + cn

relies on an irrelevant constant cn. The closest point in S1 is

xn+1 = PS1

{
1

2
[PS2(xn) + PS3(xn)]

}
.

This construction clearly generalizes to more than three sets.

4. The proximal distance method

We now turn to an exact penalty method that applies to nonsmooth functions. Clarke’s exact
penalty method [10] turns the constrained problem of minimizing a function f(y) over a
closed set S into the unconstrained problem of minimizing the function f(y) + ρ dist(y, S)
for ρ sufficiently large. Here is a precise statement of a generalization of Clarke’s result
[6, 10, 11].

Proposition 4.1. Suppose f(y) achieves a local minimum on S at the point x. Let φS(y)
denote a function that vanishes on S and satisfies φS(y) ≥ c dist(y, S) for all x and some
positive constant c. If f(y) is locally Lipschitz around x with constant L, then for every
ρ ≥ c−1L, Fρ(y) = f(y) + ρφS(y) achieves a local unconstrained minimum at x.

Classically the choice φS(x) = dist(x, S) was preferred. For affine equality constraints
gi(x) = 0 and affine inequality constraints hj(x) ≤ 0, Hoffman’s bound

dist(y, S) ≤ τρ

∥∥∥∥ G(y)
H(y)+

∥∥∥∥
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applies, where τ is some positive constant, S is the feasible set where G(y) = 0, and
H(y)+ ≤ 0 [24]. The vector H(y)+ has components hj(x)+ = max{hj(y), 0}. When S
is the intersection of several closed sets S1, . . . , Sm, the alternative

φS(y) =

√√√√ m∑
i=1

dist(y, Ci)2 (4.1)

is attractive. The next proposition gives sufficient conditions under which the crucial bound
φS(y) ≥ c dist(y, S) is valid for the function (4.1).

Proposition 4.2. Suppose S1, . . . , Sm are closed convex sets in Rp with the first j sets poly-
hedral. Assume further that the intersection

S = (∩j
i=1Si) ∩ (∩m

i=j+1 ri Si)

is nonempty and bounded. Then there exists a constant τ > 0 such that

dist(x, S) ≤ τ
m∑
i=1

dist(x, Si) ≤ τ
√

m

√√√√ m∑
i=1

dist(x, Si)2

for all x. The sets S1, . . . , Sm are said to be linearly regular.

Proof. See the references [2, 16] for all details. A polyhedral set is the nonempty intersection
of a finite number of half-spaces. The operator ri K forms the relative interior of the convex
set K, namely, the interior of K relative to the affine hull of K. When K is nonempty, its
relative interior is nonempty and generates the same affine hull as K itself.

In general, we will require f(x) and φS(x) to be continuous functions and the sum
Fρ(y) = f(y)+ ρφS(y) to be coercive for some value ρ = ρ0. It then follows that Fρ(y) is
coercive and attains its minimum for all ρ ≥ ρ0. One can prove a partial converse to Clarke’s
theorem [11, 12]. This requires the enlarged set Sε = {x : φS(x) < ε} of points lying close
to S as measured by φS(x).

Proposition 4.3. Suppose that f(y) is Lipschitz on Sε for some ε > 0. Then under the stated
assumptions on f(x) and φS(x), a global minimizer of Fρ(y) is a constrained minimizer of
f(y) for all sufficiently large ρ.

When the constraint set S is compact and f(y) has a continuously varying local Lips-
chitz constant, the hypotheses of Proposition 4.3 are fulfilled. This is the case, for instance,
when f(y) is continuously differentiable. With this background on the exact penalty method
in mind, we now sketch an approximate MM algorithm for convex programming that is
motivated by distance majorization. This algorithm is designed to exploit set projections
and proximal maps. The proximal map proxh(y) associated with a convex function h(x)
satisfies

proxh(y) = argminx

[
h(x) +

1

2
‖y − x‖2

]
.

A huge literature and software base exist for computing projections and proximal maps [3].
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Since the function dist(x, S) is merely continuous, we advocate approximating it by the
differentiable function

distε(x, S) =
√

dist(x, S)2 + ε

for ε > 0 small. The composite function distε(x, S) is convex when S is convex because
the function

√
t2 + ε is increasing and convex on [0,∞). Instead of minimizing f(x) +

ρ dist(x, S), we suggest minimizing the differentiable convex function f(x)+ρ distε(x, S)
by an MM algorithm. Regardless of whether S is convex, the majorization

distε(x, S) ≤
√
‖x− PS(xn)‖2 + ε (4.2)

holds. If S is nonconvex, there may be a multiplicity of closest points, and one must choose
a representative of the set PS(xn). In any event one can invoke the univariate majorization

√
t ≥ √

tn +
t − tn
2
√

tn
(4.3)

of the concave function
√

t on the interval t > 0 and majorize the majorization (4.2) by

√
‖x− PS(xn)‖2 + ε ≤ 1

2
√‖xn − PS(xn)‖2 + ε

‖x− PS(xn)‖2 + cn

for some irrelevant constant cn. The second step of our proposed MM algorithm consists of
minimizing the surrogate function

g(x | xn) = f(x) +
wn

2
‖x− PS(xn)‖2

wn =
ρ√‖xn − PS(xn)‖2 + ε

.

The corresponding proximal map drives f(x) + ρ distε(x, S) downhill. Under the more
general exact penalty (4.1), the surrogate function depends on a sum of spherical quadratics
rather than a single spherical quadratic.

It is possible to project onto a variety of closed nonconvex sets. For example, if S is
the set of integers, then projection amounts to rounding. An ambiguous point n + 1

2 can be
projected to either n or n+ 1. Projection onto a finite set simply tests each point separately.
Projection onto a Cartesian product is achieved via the Cartesian product of the projections.
One can also project onto many continuous sets of interest. For example, to project onto
the closed set of points having at most k nonzero coordinates, one zeros out all but the k
largest coordinates in absolute value. Projection onto the sphere of center z and radius r
takes y �= z into the point z + r

‖y−z‖ (y − z). All points of the sphere are equidistant from
its center.

By definition the update xn+1 = proxw−1
n f [PS(xn)] minimizes g(x | xn). We will

refer to this MM algorithm as the proximal distance algorithm. It enjoys several virtues.
First, it allows one to exploit the extensive body of results on proximal maps and projections.
Second, it does not demand that the constraint set S be convex. Third, it does not require the
objective function f(x) to be convex or smooth. Finally, the minimum values and minimum
points of the functions f(x) + ρ dist(x, S) and f(x) + ρ distε(x, S) are close when ε > 0
is small.
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In implementing the proximal distance algorithm, the constants L and ε must specified.
For many norms the Lipschitz constant L is known. For a differentiable function f(x),
the mean value inequality suggests taking L equal to the maximal value of ‖∇f(x)‖ in a
neighborhood of the optimal point. In specific problems a priori bounds can be derived. If
no such prior bound is known, then one has to guess an appropriate ρ and see if it leads
to a constrained minimum. If not, ρ should be systematically increased until a constrained
minimum is reached. Even with a justifiable bound, it is prudent to start ρ well below its
intended upper bound to emphasize minimization of the loss function in early iterations.
Experience shows that gradually decreasing ε is also a good tactic; otherwise, one again
runs the risk of putting too much early stress on satisfying the constraints. In practice the
sequences ρn = min{αnρ0, ρmax} and εn = max{β−nε0, εmin} work well for α and β
slightly larger than 1, say 1.2, and ρ0 = ε0 = 1. On many problems more aggressive choices
of α and β are possible. The values of ρmax and εmin are problem specific, but taking ρmax

substantially greater than a known Lipschitz constant slows convergence. Taking εmin too
large leads to a poor approximate solution.

5. Sample problems

We now explore some typical applications of the proximal distance algorithm. In all cases
we are able to establish local Lipschitz constants. Comparisons with standard optimization
software serve as performance benchmarks.

Example 5.1 (Projection onto an Intersection of Closed Convex Sets). Let S1, . . . , Sk be
closed convex sets, and assume that projection onto each Sj is straightforward. Dykstra’s
algorithm [16, 18] is designed to find the projection of an external point y onto S = ∩k

j=1Sj .
The proximal distance algorithm provides an alternative based on the convex function

f(x) =
√

‖x− y‖2 + δ

for δ positive, say δ = 1. The choice f(x) is preferable to the obvious choice ‖x − y‖2
because f(x) is Lipschitz with Lipschitz constant 1. In the proximal distance algorithm, we
take

φS(x) =

√√√√ k∑
j=1

dist(x, Sj)2

and minimize the surrogate function

g(x | xn) = f(x) +
wn

2

k∑
j=1

‖x− pnj‖2 = f(x) +
kwn

2
‖x− p̄n‖2 + cn,

where pnj is the projection of xn onto Sj , p̄n is the average of the projections pnj , cn is an
irrelevant constant, and

wn =
ρ√∑k

j=1 ‖xn − pnj‖2 + ε
.
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After rearrangement, the stationarity condition for optimality reads

x = (1− α)y + αp̄n, α =
kwn

1√
‖x−y‖2+δ

+ kwn

.

In other words, xn+1 is a convex combination of y and p̄n.

Dykstra Proximal Distance

Iteration n xn1 xn2 xn1 xn2

0 -1.00000 2.00000 -1.00000 2.00000
1 -0.44721 0.89443 -0.44024 1.60145
2 0.00000 0.89443 -0.25794 1.38652
3 -0.26640 0.96386 -0.16711 1.25271
4 0.00000 0.96386 -0.11345 1.16647
5 -0.14175 0.98990 -0.07891 1.11036
10 0.00000 0.99934 -0.01410 1.01576
15 -0.00454 0.99999 -0.00250 1.00257
20 0.00000 1.00000 -0.00044 1.00044
25 -0.00014 1.00000 -0.00008 1.00008
30 0.00000 1.00000 -0.00001 1.00001
35 0.00000 1.00000 0.00000 1.00000

Table 5.1. Dykstra’s algorithm versus the proximal distance algorithm.

To calculate the optimal coefficient α, we minimize the convex surrogate

h(α) = g[(1− α)y + αp̄n | xn] =
√

α2d2 + δ +
kwn

2
(1− α)2d2 + cn

for d = ‖y − p̄n‖. Its derivative

h′(α) =
αd2√

α2d2 + δ
− kwn(1− α)d2

satisfies h′(0) < 0 and h′(1) > 0 and possesses a unique root on the open interval (0, 1).
This root can be easily computed by bisection or Newton’s method.

Table 5.1 compares Dykstra’s algorithm and the proximal distance algorithm on a simple
planar example. Here S1 is the closed unit ball in R2, and S2 is the closed halfspace with
x1 ≥ 0. The intersection S reduces to the right half ball centered at the origin. The table
records the iterates of the two algorithms from the starting point x0 = (−1, 2)∗ until their
eventual convergence to the geometrically obvious solution (0, 1)∗. In the proximal distance
method we set ρn = 2 and aggressively εn = 4−n. The two algorithms exhibit similar
performance but take rather different trajectories.

Example 5.2 (Linear Programming). The standard version of linear programming mini-
mizes f(x) = c∗x subject to Ax = b and x ≥ 0. The norm ‖c‖ serves as a Lipschitz
constant for f(x). Projection onto the affine space S = {x : Ax = b} is achieved via

PS(y) = y −A∗(AA∗)−1(Ay − b).



The proximal distance algorithm 105

Variables Constraints MM CVX MATLAB YALMIP
2 4 0.010 0.100 0.005 0.088
4 8 0.007 0.070 0.005 0.117
8 4 0.012 0.080 0.004 0.141

16 8 0.008 0.080 0.005 0.213
32 64 0.012 0.090 0.005 0.161
64 128 0.016 0.110 0.010 0.132
128 256 0.026 0.160 0.033 0.193
256 512 0.055 0.370 0.187 0.320
512 256 0.214 1.210 1.358 1.656
1024 2048 1.302 11.920 10.883 12.129
2048 4016 8.721 85.330 78.114 79.630
4096 8192 59.044 881.970 562.648 593.823

Table 5.2. Computation times in seconds for various linear programs.

Computing the pseudoinverse A∗(AA∗)−1 once and storing it improves performance. Pro-
jection onto Rd

+ = {x ≥ 0} is trivial. The proximal distance algorithm minimizes the
criterion

g(x | xn) = c∗x+
wn

2

(
‖x− PS(xn)‖2 + ‖x− PRd

+
(xn)‖2

)
.

for the weight

wn =
ρ√

‖xn − PS(xn)‖2 + ‖xn − PRd
+
(xn)‖2 + ε

.

The update

xn+1 = − 1

2wn
c+

1

2
PS(xn) +

1

2
PRd

+
(xn)

is straightforward to derive and simple to implement.
For obscure reasons the MM proximal algorithm exhibits better performance on overde-

termined problems than on underdetermined ones. We handle an underdetermined problem
by solving its overdetermined dual problem regardless of whether the dual requires more
variables. Because the dual linear program minimizes b∗y subject to A∗y = c and y ≥ 0,
the Lipschitz bound for the dual is ‖b‖. We compared a MATLAB implementation of the
MM algorithm to CVX [21] with the SeDuMi solver, YALMIP [31] with the MOSEK solver,
and MATLAB’s linprog routine. For overdetermined problems, we asked the MM algo-
rithm, MATLAB, and YALMIP to solve the primal problem. For underdetermined problems,
we reversed this strategy. CVX always solved the primal problem. Our test problems involve
d variables and 2d constraints or vice versa. We filled A with standard normal deviates and
two vectors u and v with standard uniform deviates and set b = Av and c = A∗u, ensuring
both primal and dual feasibility. Our gentle tuning constant schedules ρn = min{1.2n, 2L}
and εn = max{1.2n, 10−15} required either the Lipschitz bound L = ‖c‖ or L = ‖b‖ as
just noted. For each problem summarized in Table 5.2, the four converged solutions agree
to at least five digits. The table demonstrates the substantial speed advantage of the MM
algorithm on moderately large problems.
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Example 5.3 (Binary Piecewise-Linear Functions). The problem of minimizing the binary
piecewise-linear function

f(x) =
∑
i<j

wij |xi − xj |+ b∗x

subject to x ∈ {0, 1}d and nonnegative weights wij is a typical discrete optimization prob-
lem with applications in graph cuts. If we invoke the majorization

|xi − xj | ≤
∣∣∣xi − xni + xnj

2

∣∣∣+ ∣∣∣xj − xni + xnj

2

∣∣∣
prior to applying the proximal operator, then the proximal distance algorithm separates the
parameters. Parameter separation promotes parallelization and benefits from a fast algorithm
for computing proximal maps in one dimension. The one-dimensional algorithm is similar
to but faster than bisection [37]. Finally, the objective function is Lipschitz with the explicit
constant

L =
∑
i

√∑
j �=i

w2
ij + ‖b‖. (5.1)

This assertion follows from the simple bound

|f(x)− f(y)| ≤
∑
i

∑
j �=i

wij |xj − yj |+ |b∗(x− y)|

≤
∑
i

√∑
j �=i

w2
ij · ‖x− y‖+ ‖b‖ · ‖x− y‖

under the symmetry convention wij = wji.
Table 5.3 displays the numerical results for a few typical examples. For each dimension

d we filled b with standard normal deviates and the upper triangle of the weight matrix W
with the absolute values of such deviates. The lower triangle of W was determined by
symmetry. Small values of b often lead to degenerate solutions x with all entries 0 or 1.
To avoid this possibility, we multiplied each entry of b by d. In the graph cut context, a
degenerate solution corresponds to no cuts at all or a completely cut graph. These examples
depend on the schedules ρn = min{1.2n, L} and εn = max{1.2−n, 10−15} for the two
tuning constants and the local Lipschitz constant (5.1).

Although the MM proximal distance algorithm makes good progress towards the mini-
mum in the first 100 iterations, it sometimes hovers around its limit without fully converging.
This translates into fickle compute times, and for this reason we capped the number of MM
iterations at 200. For small dimensions MM can be much slower than CVX. Fortunately, the
performance of the MM algorithm improves markedly as d increases. In all runs the two al-
gorithms reach the same solution after rounding components to the nearest integer. MM also
requires much less storage than CVX. Asterisks appear in the table where CVX demanded
more memory than our laptop computer could deliver.

Example 5.4 (Nonnegative Quadratic Programming). The proximal distance algorithm is
applicable in minimizing a convex quadratic f(x) = 1

2x
∗Ax+b∗x subject to the constraint
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CPU times

Dimension MM CVX Iterations
2 0.038 0.080 9
4 0.052 0.060 18
8 2.007 0.050 200

16 2.416 0.100 200
32 2.251 0.130 200
64 4.134 0.400 200

128 0.212 2.980 32
256 0.868 62.63 200
512 68.27 1534 200

1024 526.6 * 200
2048 127.2 * 200
4096 547.4 * 200

Table 5.3. CPU times in seconds and MM iterations until convergence for binary piecewise linear
functions. Asterisks denote computer runs exceeding computer memory limits. Iterations were capped
at 200.

x ≥ 0. In this nonnegative quadratic programming program, let yn be the projection of the
current iterate xn onto S = Rd

+. If we define the weight

wn =
ρ√‖xn − yn‖2 + ε

,

then the next iterate can be expressed as

xn+1 = (A+ wnI)
−1(wnyn − b).

The multiple matrix inversions implied by the update can be avoided by extracting and
caching the spectral decomposition U∗DU of A at the start of the algorithm. The inverse
(A+ wnI)

−1 then reduces to U∗(D + wnI)
−1U . The diagonal matrixD + wnI is obvi-

ously trivial to invert. The remaining operations in computing xn+1 collapse to matrix times
vector multiplications. Nonnegative least squares is a special case of nonnegative quadratic
programming.

One can estimate an approximate Lipschitz constant for this problem. Note that f(0) = 0
and that

f(x) ≥ 1

2
λmin‖x‖2 − ‖b‖ · ‖x‖,

where λmin is the smallest eigenvalue ofA. It follows that any point x with ‖x‖ > 2
λmin

‖b‖
cannot minimize f(x) subject to the nonnegativity constraint. On the other hand, the gradi-
ent of f(x) satisfies

‖∇f(x)‖ ≤ ‖A‖‖x‖+ ‖b‖ ≤ λmax‖x‖+ ‖b‖.
In view of the mean-value inequality, these bounds suggest that

L =

(
2λmax

λmin
+ 1

)
‖b‖ = [2 cond2(A) + 1] ‖b‖
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CPU times Optima

d MM CV MA YA MM CV MA YA
8 0.97 0.23 0.01 0.13 -0.0172 -0.0172 -0.0172 -0.0172
16 0.50 0.24 0.01 0.11 -1.1295 -1.1295 -1.1295 -1.1295
32 0.50 0.24 0.01 0.14 -1.3811 -1.3811 -1.3811 -1.3811
64 0.57 0.28 0.01 0.13 -0.5641 -0.5641 -0.5641 -0.5641
128 0.79 0.36 0.02 0.14 -0.7018 -0.7018 -0.7018 -0.7018
256 1.66 0.65 0.06 0.22 -0.6890 -0.6890 -0.6890 -0.6890
512 5.61 2.95 0.26 0.73 -0.5971 -0.5968 -0.5970 -0.5970

1024 32.69 21.90 1.32 2.91 -0.4944 -0.4940 -0.4944 -0.4944
2048 156.7 178.8 8.96 15.89 -0.4514 -0.4505 -0.4512 -0.4512
4096 695.1 1551 57.73 91.54 -0.4690 -0.4678 -0.4686 -0.4686

Table 5.4. CPU times in seconds and optima for the nonnegative quadratic program. Abbreviations:
d stands for problem dimension, MM for the proximal distance algorithm, CV for CVX, MA for
MATLAB’s quadprog, and YA for YALMIP.

provides an approximate Lipschitz constant for f(x) on the region harboring the minimum
point. This bound on ρ is usually too large. One remedy is to multiply the bound by a defla-
tion factor such as 0.1. Another remedy is to replace the covarianceA by the corresponding
correlation matrix. Thus, one solves the problem for the preconditioned matrixD−1AD−1,
where D is the diagonal matrix whose entries are the square roots of the corresponding di-
agonal entries of A. The transformed parameters y = Dx obey the same nonnegativity
constraints as x.

For testing purposes we filled a d × d matrix M with independent standard normal
deviates and set A = M∗M + I . Addition of the identity matrix avoids ill conditioning.
We also filled the vector b with independent standard normal deviates. Our gentle tuning
constant schedule εn = max{1.005−n, 10−15} and ρn = min{1.005n, 0.1 × L} adjusts ρ
and ε so slowly that their limits are not actually met in practice. In any event L is the a priori
bound for the correlation matrix derived fromA. Table 5.4 compares the performance of the
MM proximal distance algorithm to MATLAB’s quadprog, CVX with the SDPT3 solver,
and YALMIP with the MOSEK solver. MATLAB’s quadprog is clearly the fastest of the
four tested methods on these problems. The relative speed of the MM algorithm improves
as the problem dimension d increases.

Example 5.5 (Linear Regression under an �0 Constraint). In this example the objective
function is the sum of squares 1

2‖y − Xβ‖2, where y is the response vector, X is the
design matrix, and β is the vector of regression coefficients. The constraint set Sd

k consists
of those β with at most k nonzero entries. Projection onto the closed but nonconvex set
Sd
k is achieved by zeroing out all but the k largest coordinates in absolute value. These

coordinates will be unique except in the rare circumstances of ties. The proximal distance
algorithm for this problem coincides with that of the previous problem if we substituteX∗X
for A, −X∗y for b, β for x, and the projection operator PSd

k
for PRd

+
. Better accuracy

can be maintained if the MM update exploits the singular value decomposition of X in
forming the spectral decomposition of X∗X . Although the proximal distance algorithm
carries no absolute guarantee of finding the optimal set of k regression coefficients, it is far
more efficient than sifting through all

(
d
k

)
sets of size k. The alternative of lasso-guided
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m n df tp1 tp2 λ L1 L1/L2 T1 T1/T2

256 128 10 5.97 3.32 0.143 248.763 0.868 0.603 8.098
128 256 10 3.83 1.91 0.214 106.234 0.744 0.999 10.254
512 256 10 6.51 2.88 0.119 506.570 0.900 0.907 6.262
256 512 10 4.50 1.82 0.172 241.678 0.835 1.743 8.687
1024 512 10 7.80 5.25 0.101 1029.333 0.921 2.597 5.057
512 1024 10 5.54 2.58 0.138 507.451 0.881 8.235 13.532
2048 1024 10 8.98 8.49 0.080 2047.098 0.945 15.460 8.858
1024 2048 10 6.80 2.93 0.110 1044.640 0.916 34.997 18.433
4096 2048 10 9.75 9.90 0.060 4086.886 0.966 89.684 10.956
2048 4096 10 8.36 6.60 0.086 2045.645 0.942 166.386 25.821

Table 5.5. Numerical experiments comparing MM to MATLAB’s lasso. Each row presents averages
over 100 independent simulations. Abbreviations: m the number of cases, n the number of predictors,
df the number of actual predictors in the generating model, tp1 the number of true predictors selected
by MM, tp2 the number of true predictors selected by the lasso, λ the regularization parameter at the
lasso optimal loss, L1 the optimal loss from MM, L1/L2 the ratio of L1 to the optimal lasso loss, T1

the total computation time in seconds for MM, and T1/T2 the ratio of T1 to the total computation time
of the lasso.

model selection must contend with strong shrinkage and a surplus of false positives.
Table 5.5 compares the MM proximal distance algorithm to MATLAB’s lasso function.

In simulating data, we filled X with standard normal deviates, set all components of β to
0 except for βi = 1/i for 1 ≤ i ≤ 10, and added a vector of standard normal deviates to
Xβ to determine y. For a given choice of m and n we ran each experiment 100 times and
averaged the results. The table demonstrates the superior speed of the lasso and the superior
accuracy of the MM algorithm as measured by optimal loss and model selection.

Example 5.6 (Matrix Completion). Let Y = (yij) denote a partially observed p× q matrix
and Δ the set of index pairs (i, j) with yij observed. Matrix completion [8] imputes the
missing entries by approximating Y with a low rank matrix X . Imputation relies on the
singular value decomposition

X =
r∑

i=1

σiuiv
t
i, (5.2)

where r is the rank of X , the nonnegative singular values σi are presented in decreasing
order, the left singular vectors ui are orthonormal, and the right singular vectors vi are also
orthonormal [20]. The set Rk of p × q matrices of rank k or less is closed. Projection onto
Rk is accomplished by truncating the sum (5.2) to

PRk
(X) =

min{r,k}∑
i=1

σiuiv
t
i.

When r > k and σk+1 = σk, the projection operator is multi-valued.
The MM principle allows one to restore the symmetry lost in the missing entries [34].

Suppose Xn is the current approximation to X . One simply replaces a missing entry yij of
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Y for (i, j) �∈ Δ by the corresponding entry xnij of Xn and adds the term 1
2 (xnij − xij)

2

to the least squares criterion

f(X) =
1

2

∑
(i,j)∈Δ

(yij − xij)
2.

Since the added terms majorize 0, they create a legitimate surrogate function. One can
rephrase the surrogate by defining the orthogonal complement operator P⊥

Δ (Y ) via the equa-
tion P⊥

Δ (Y ) + PΔ(Y ) = Y . The matrix Zn = PΔ(Y ) + P⊥
Δ (Xn) temporarily completes

Y and yields the surrogate function 1
2‖Zn − X‖2F . In implementing a slightly modified

version of the proximal distance algorithm, one must solve for the minimum of the Moreau
function

1

2
‖Zn −X‖2F +

wn

2
‖X − PRk

(Xn)‖2F .

The stationarity condition

0 = X −Zn + wn[X − PRk
(Xn)]

yields the trivial solution

Xn+1 =
1

1 + wn
Zn +

wn

1 + wn
PRk

(Xn).

Again this is guaranteed to decrease the objective function

Fρ(X) =
1

2

∑
(i,j)∈Δ

(yij − xij)
2 +

ρ

2
distε(X, Rk)

for the choice wn = ρ/ distε(Xn, Rk).

p q α rank L1 L1/L2 T1 T1/T2

200 250 0.05 20 1598 0.251 4.66 7
800 1000 0.20 80 571949 0.253 131.02 18.1
1000 1250 0.25 100 1112604 0.24 222.2 15.1
1200 1500 0.15 40 793126 0.361 161.51 3.6
1200 1500 0.30 120 1569105 0.235 367.78 12.3
1400 1750 0.35 140 1642661 0.236 561.76 9
1800 2250 0.45 180 2955533 0.171 1176.22 10.1
2000 2500 0.10 20 822673 0.50 307.89 1.9
2000 2500 0.50 200 1087404 0.192 2342.32 2
5000 5000 0.05 30 7647707 0.664 1827.16 2

Table 5.6. Comparison of the MM proximal distance algorithm to SoftImpute. Abbreviations: p is the
number of rows, q is the number of columns, α is the sparsity level, L1 is the optimal loss under MM,
L2 is the optimal loss under SoftImpute, T1 is the total computation time (in seconds) for MM, and T2

is the total computation time for SoftImpute.
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In the spirit of Example 5.4, let us derive a local Lipschitz constant based on the value
f(0) = 1

2

∑
(i,j)∈Δ y2ij . The inequality

1

2

∑
(i,j)∈Δ

y2ij <
1

2

∑
(i,j)∈Δ

(yij − xij)
2 =

1

2

∑
(i,j)∈Δ

(y2ij − 2yijxij + x2
ij)

is equivalent to the inequality

2
∑

(i,j)∈Δ
yijxij <

∑
(i,j)∈Δ

x2
ij .

In view of the Cauchy-Schwarz inequality

∑
(i,j)∈Δ

yijxij ≤
√ ∑

(i,j)∈Δ
y2ij

√ ∑
(i,j)∈Δ

x2
ij ,

no solution x of the constrained problem can satisfy√ ∑
(i,j)∈Δ

x2
ij > 2

√ ∑
(i,j)∈Δ

y2ij .

When the opposite inequality holds,

‖∇f(x)‖F =

√ ∑
(i,j)∈Δ

(xij − yij)2 ≤
√ ∑

(i,j)∈Δ
x2
ij +

√ ∑
(i,j)∈Δ

y2ij ≤ 3

√ ∑
(i,j)∈Δ

y2ij .

Again this tends to be a conservative estimate of the required local bound on ρ. Table 5.6
compares the performance of the MM proximal distance algorithm and a MATLAB im-
plementation of SoftImpute [34]. Although the proximal distance algorithm is noticeably
slower, it substantially lowers the optimal loss and improves in relative speed as problem
dimensions grow.

Example 5.7 (Sparse Inverse Covariance Estimation). The graphical lasso has applications
in estimating sparse inverse covariance matrices [19]. In this context, one minimizes the
convex criterion

− ln detΘ+ tr(SΘ) + ρ‖Θ‖1,

whereΘ−1 is a p× p theoretical covariance matrix, S is a corresponding sample covariance
matrix, and the graphical lasso penalty ‖Θ‖1 equals the sum of the absolute values of the
off-diagonal entries of Θ. The solution exhibits both sparsity and shrinkage. One can avoid
shrinkage by minimizing

f(Θ) = − ln detΘ+ tr(SΘ)

subject toΘ having at most 2k nonzero off-diagonal entries. Let T p
k be the closed set of p×p

symmetric matrices possessing this property. Projection of a symmetric matrix M onto T p
k

can be achieved by arranging the above-diagonal entries of M in decreasing absolute value
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and replacing all but the first k of these entries by 0. The below-diagonal entries are treated
similarly.

The proximal distance algorithm for minimizing f(Θ) subject to the set constraints op-
erates through the convex surrogate

g(Θ | Θn) = f(Θ) +
wn

2
‖Θ− PTp

k
(Θn)‖2F

wn =
ρ√

‖Θn − PTp
k
(Θn)‖2F + ε

.

A stationary point minimizes the surrogate and satisfies

0 = −Θ−1 + wnΘ+ S − wnPTp
k
(Θn). (5.3)

If the constant matrix S − wnPTp
k
(Θn) has spectral decomposition UnDnU

∗
n, then multi-

plying equation (5.3) on the left by U∗
n and on the right by Un gives

0 = −U∗
nΘ

−1Un + wnU
∗
nΘUn +Dn.

This suggests that we take E = U∗
nΘUn to be diagonal and require its diagonal entries ei

to satisfy

0 = − 1

ei
+ wnei + dni.

Multiplying this identity by ei and solving for the positive root of the resulting quadratic
yields

ei =
−dni +

√
d2ni + 4wn

2wn
.

Given the solution matrix En+1, we reconstruct Θn+1 as UnEn+1U
∗
n.

Finding a local Lipschitz constant is more challenging in this example. Because the
identity matrix is feasible, the minimum cannot exceed

− ln det I + tr(SI) = tr(S) =

p∑
i=1

ωi,

where S is assumed positive definite with eigenvalues ωi ordered from largest to smallest.
If the candidate matrix Θ is positive definite with ordered eigenvalues λi, then the von
Neumann-Fan inequality [6] implies

f(Θ) ≥ −
p∑

i=1

lnλi +

p∑
i=1

λiωp−i+1. (5.4)

To show that f(Θ) > f(I) whenever any λi falls outside a designated interval, note that the
contribution − lnλj + λjωp−j+1 to the right side of inequality (5.4) is bounded below by
lnωp−j+1 + 1 when λj = ω−1

p−j+1. Hence, f(Θ) > f(I) whenever

− lnλi + λiωp−i+1 >

p∑
i=1

ωi −
∑
j �=i

(lnωp−j+1 + 1). (5.5)
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Given the strict convexity of the function − lnλi + λiωp−i+1, equality holds in inequality
(5.5) at exactly two points λimin > 0 and λimax > λimin. These roots can be readily
extracted by bisection or Newton’s method. The strict inequality f(Θ) > f(I) holds when
any λi falls to the left of λimin or to the right of λimax. Within the intersection of the
intervals [λimax, λimin], the gradient of f(Θ) satisfies

‖∇f(Θ)‖F ≤ ‖Θ−1‖F + ‖S‖F ≤
√√√√ p∑

i=1

λ−2
i + ‖S‖F ≤

√√√√ p∑
i=1

λ−2
imin + ‖S‖F .

This bound serves as a local Lipschitz constant near the optimal point.

p kt k1 k2 ρ L1 L2 − L1 T1 T1/T2

8 18 14.0 14.0 0.00186 −12.35 0.01 0.022 43.458
16 42 30.5 28.7 0.00305 −25.17 0.08 0.026 43.732
32 90 53.5 49.9 0.00330 −50.75 0.17 0.054 31.639
64 186 97.8 89.3 0.00445 −98.72 0.53 0.234 28.542
128 378 191.6 169.9 0.00507 −196.09 1.14 1.060 18.693
256 762 345.0 304.2 0.00662 −369.62 2.55 4.253 9.559
512 1530 636.4 566.8 0.00983 −641.89 6.72 19.324 5.679

Table 5.7. Numerical results for precision matrix estimation. Abbreviations: p for matrix dimension,
kt for the number of nonzero entries in the true model, k1 for the number of true nonzero entries
recovered by the MM algorithm, k2 for the number of true nonzero entries recovered by glasso, ρ
the average tuning constant for glasso for a given kt, L1 the average loss from the MM algorithm,
L1 − L2 the difference between L1 and the average loss from glasso, T1 the average compute time
in seconds for the MM algorithm, and T1/T2 the ratio of T1 to the average compute time for glasso.

Table 5.7 compares the performance of the MM algorithm to that of the R glasso pack-
age [19]. The sample precision matrix S−1 = LL∗ + δMM∗ was generated by filling the
diagonal and first three subdiagonals of the banded lower triangular matrix L with standard
normal deviates. Filling M with standard normal deviates and choosing δ = 0.01 imposed
a small amount of noise obscuring the band nature of LL∗. All table statistics represent
averages over 10 runs started at Θ = S−1 with k equal to the true number of nonzero en-
tries in LL∗. The MM algorithm performs better in minimizing average loss and recovering
nonzero entries.

6. Discussion

The MM principle offers a unique and potent perspective on high-dimensional optimization.
The current survey emphasizes proximal distance algorithms and their applications in non-
linear programming. Our construction of this new class of algorithms relies on the exact
penalty method of Clarke [10] and majorization of a smooth approximation to the Euclidean
distance to the constraint set. Well-studied proximal maps and Euclidean projections consti-
tute the key ingredients of seven realistic examples. These examples illustrate the versatility
of the method in handling nonconvex constraints, its improvement as problem dimension
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increases, and the pitfalls in sending the tuning constants ρ and ε too quickly to their limits.
Despite the latter concern, we are sufficiently encouraged to pursue this research further,
particularly in statistical applications where model fitting and selection are compromised by
aggressive penalization.

Acknowledgments. Kenneth Lange was supported by NIH grants from the National Hu-
man Genome Research Institute (HG006139) and the National Institute of General Medical
Sciences (GM053275). Kevin L. Keys was supported by a National Science Foundation
Graduate Research Fellowship under Grant Number DGE-0707424.

References

[1] Baum LE, An inequality and associated maximization technique in statistical estima-
tion for probabilistic functions of Markov processes, Inequalities 3 (1972), 1–8.

[2] Bauschke HH, Borwein JM, and Li W, Strong conical hull intersection property,
bounded linear regularity, Jameson’s property (G), and error bounds in convex op-
timization, Math Programming, Series A 86 (1999), 135–160.

[3] Bauschke HH and Combettes PL, Convex Analysis and Monotone Operator Theory in
Hilbert Spaces, Springer, New York, 2011.

[4] Borg I and Groenen PJF, Modern Multidimensional Scaling: Theory and Applications,
Springer, New York, 2007.

[5] Boyd S and Vandenberghe L, Convex Optimization, Cambridge University Press, Cam-
bridge, 2004.

[6] Borwein JM and Lewis AS, Convex Analysis and Nonlinear Optimization: Theory and
Examples, Springer, New York, 2000.

[7] Bregman LM, The relaxation method of finding the common points of convex sets and
its application to the solution of problems in convex programming, USSR Computa-
tional Math and Mathematical Physics 7 (1967), 200–217.

[8] Candès EJ and Recht B, Exact matrix completion via convex optimization, Foundations
Computational Math. 9 (2009), 717–772.

[9] Chi E, Zhou H, and Lange K, Distance majorization and its applications, Math. Pro-
gramming Series A (2013) (in press).

[10] Clarke FH, Optimization and Nonsmooth Analysis, Wiley-Interscience, 1983.

[11] Demyanov VF, Nonsmooth optimization, in Nonlinear Optimization (editors Di Pillo
G, Schoen F), Springer, New York, 2010.

[12] Demyanov VF, Di Pillo G, and Facchinei F, Exact penalization via Dini and Hadamard
conditional derivatives, Optimization Methods and Software 9 (1998), 19–36.



The proximal distance algorithm 115

[13] de Leeuw J, Applications of convex analysis to multidimensional scaling, Recent De-
velopments in Statistics, edited by Barra JR, Brodeau F, Romier G, van Cutsem B,
North Holland Publishing Company, 1977, pp. 133–146.

[14] , Multivariate analysis with optimal scaling (1990), Progress in Multivariate
Analysis, edited by Das Gupta S, Sethuraman J, Indian Statistical Institute.

[15] Dempster AP, Laird NM, and Rubin DB, Maximum likelihood from incomplete data
via the EM algorithm (with discussion), J Roy Stat Soc B 39 (1977), 1–38.

[16] Deutsch F, Best Approximation in Inner Product Spaces, Springer, New York, 2001.

[17] DinkelbachW, On nonlinear fractional programming, Management Science 13 (1967),
492–498.

[18] Dykstra RL, An algorithm for restricted least squares estimation, JASA 78 (1983),
837–842.

[19] Friedman J, Hastie T, and Tibshirani R, Sparse inverse covariance estimation with the
graphical lasso, Biostatistics 9 (2008), 432–441.

[20] Golub GH and Van Loan CF, Matrix Computations, 3rd ed. Johns Hopkins University
Press, Baltimore, MD, 1996.

[21] Grant MC and Boyd S, CVX: Matlab software for disciplined convex programming,
version 2.0 beta, 2013.

[22] Hartley HO, Maximum likelihood estimation from incomplete data, Biometrics 14
(1958), 174–194.

[23] HeiserWJ, Convergent computing by iterative majorization: theory and applications in
multidimensional data analysis, Recent Advances in Descriptive Multivariate Analysis,
edited by Krzanowski WJ, Oxford University Press, 1995, pp. 157–189.

[24] Hoffman AJ, On approximate solutions of systems of linear inequalities, J Res Nat Bur
Stand 49 (1952), 263–265.

[25] Hunter DR, Lange K, A tutorial on MM algorithms, Amer Statistician 58 (2004), 30–
37.

[26] Kiers H, Majorization as a tool for optimizing a class of matrix functions, Psychome-
trika 55 (1990), 417–428.

[27] Lange K, An adaptive barrier method for convex programming, Methods Applications
Analysis 1 (1994), 392–402.

[28] Lange K, Hunter D, and Yang I, Optimization transfer using surrogate objective func-
tions (with discussion), J Computational Graphical Stat. 9 (2000), 1–59.

[29] Lange K, Numerical Analysis for Statisticians, 2nd ed., Springer, 2010.

[30] , Optimization, 2nd ed., Springer, 2013.



116 Kenneth Lange and Kevin L. Keys

[31] Löfberg J, YALMIP : A Toolbox for Modeling and Optimization in MATLAB, Proceed-
ings of the 2004 CACSD Conference, Taipei, Taiwan, 2004.

[32] McKendrick AG, Applications of mathematics to medical problems, Proc. Edinburgh
Math. Soc. 44 (1926), 1–34.

[33] McLachlan GJ and Krishnan T, The EM Algorithm and Extensions, 2nd ed., Wiley,
Hoboken, NJ, 2008.

[34] Mazumder R, Hastie T, and Tibshirani R, Spectral regularization algorithms for learn-
ing large incomplete matrices, J Machine Learning Res. 11 (2010), 2287–2322.

[35] Nesterov Y and Nemirovski A, Interior-Point Polynomial Algorithms in Convex Pro-
gramming, SIAM, Philadelphia, 1994.

[36] Ortega JM and Rheinboldt WC, Iterative Solution of Nonlinear Equations in Several
Variables, Academic, 1970, pp. 253–255.

[37] Parikh N and Boyd S, Proximal algorithms, Foundations Trends Optimization 1 (2013),
123–231.

[38] Smith CAB, Counting methods in genetical statistics, Ann Hum Genet 21 (1957), 254–
276.

[39] Sundberg R, An iterative method for solution of the likelihood equations for incomplete
data from exponential families, Communications Stat B 5 (1976), 55–64.

[40] Weiszfeld, E, (1937) On the point for which the sum of the distances to n given points is
minimum, Ann Oper Research 167:7–41. Translated from the French original in Tohoku
Math J 43:335–386 (1937) and annotated by Frank Plastria.

[41] Yates F, The analysis of multiple classifications with unequal numbers in different
classes, J Amer Stat. Assoc. 29 (1934), 51–66.

University of California, Los Angeles
E-mail: klange@ucla.edu

University of California, Los Angeles
E-mail: klkeys@ucla.edu



Heat flows, geometric and functional inequalities

Michel Ledoux

Abstract. Heat flow and semigroup interpolations have developed over the years as a major tool for
proving geometric and functional inequalities. Main illustrations presented here range over logarithmic
Sobolev inequalities, heat kernel bounds, isoperimetric-type comparison theorems, Brascamp-Lieb in-
equalities and noise stability. Transportation cost inequalities from optimal mass transport are also part
of the picture as consequences of newHarnack-type inequalities. The geometric analysis involves Ricci
curvature lower bounds via, as a cornerstone, equivalent gradient bounds on the diffusion semigroups.
Most of the results presented here are joint with D. Bakry.

Mathematics Subject Classification (2010). Primary 35K05, 39B62, 47D07, 53C21; Secondary
60J60, 58J65.

Keywords. Heat flow, Markov diffusion semigroup, geometric and functional inequality, curvature
bound, gradient bound, optimal transport, noise stability.

1. Introduction

The last decades have seen important developments of heat flow methods towards a variety
of geometric and functional inequalities. Heat flow or semigroup interpolation is a classical
analytic tool, going back at least as far as the so-called Duhamel formula, which has been
widely used in a number of settings. The modern era, starting in the eighties, emphasized
dynamical proofs of Euclidean and Riemannian functional and geometric inequalities under
curvature bounds, as put forward in the early contribution [7] by D. Bakry andM. Émery (see
also [6]) in the context of hypercontractivity and logarithmic Sobolev inequalities for diffu-
sion operators. The picture encircles today inequalities relevant to heat kernel and gradient
bounds, geometric comparison theorems, Sobolev embeddings, convergence to equilibrium,
optimal transport, isoperimetry and measure concentration (as illustrated e.g. in [9]). This
text surveys some of these achievements with a particular focus on Sobolev-type, isoperi-
metric and multilinear inequalities, and noise stability.

Section 2 is a first illustration of the power of heat flowmonotonicity towards logarithmic
Sobolev inequalities, including in the same picture the classical parabolic Li-Yau inequality.
Section 3 presents more refined isoperimetric-type inequalities, leading to comparison of the
isoperimetric profile of (infinite-dimensional) curved models with the Gaussian profile. Har-
nack inequalities drawn from heat flow provide links with optimal mass transport and trans-
portation cost inequalities illustrated in Section 4. The classical Brascamp-Lieb inequalities
for multilinear integrals of products of functions form another important family of functional
and geometric inequalities. While classically analyzed as isoperimetric inequalities by rear-
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rangement methods, recent developments using semigroup interpolation shed new light on
their structure and extremizers. The last Section 6 presents some recent progress connecting
even further Brascamp-Lieb and isoperimetric inequalities via (Gaussian) noise stability.

One natural framework of investigation is Euclidean space Rn or a (weighted) Rieman-
nian manifold in which case (Ricci) curvature lower-bounds enter into the picture. Based
upon the early achievement [7] (see [6]), the more general setting ofMarkov Triples (E, μ,Γ)
allows us to develop semigroup interpolation in a wide context, concentrating on the basic al-
gebraic Γ-calculus underlying many of the heat flow arguments. The iterated carré du champ
operator Γ2 provides here the natural functional interpretation of the geometric Bochner for-
mula and of curvature-dimension conditions. The recent book [9] gives an overview of
semigroup methods in the context of Markov Triples and their applications to functional and
geometric inequalities. Most of the results emphasized here are developed in this monograph
[9] written jointly with D. Bakry and I. Gentil, to which we refer for further motivation and
illustrations.

2. Logarithmic Sobolev and parabolic Li-Yau inequalities

The celebrated logarithmic Sobolev inequality of L. Gross [47], comparing entropy and
Fisher information, is one prototypical example of functional inequality which may be inves-
tigated by heat flow methods. Let dγ(x) = (2π)−n/2e−|x|

2/2dx be the standard Gaussian
measure on the Borel sets of Rn.

Theorem 2.1 (Gross’ logarithmic Sobolev inequality). For any smooth positive function
f : Rn → R such that

∫
Rn fdγ = 1,∫

Rn

f log fdγ ≤ 1

2

∫
Rn

|∇f |2
f

dγ.

Logarithmic Sobolev inequalities are infinite-dimensional counterparts of the classical
Sobolev inequalities, and characterize smoothing properties in the form of hypercontractiv-
ity. They prove central in a variety of contexts, including entropic convergence to equilibrium
of solutions of evolutionary partial differential equations and of Markov chains and models
from statistical mechanics, infinite-dimensional Gaussian analysis and measure concentra-
tion (cf. e.g. [6, 9, 52, 76] and the references therein).

While there are numerous different proofs of Gross’ logarithmic Sobolev inequality, the
perhaps simplest one, put forward by D. Bakry and M. Émery [7] in the mid-eighties, uses
semigroup interpolation. Indeed, consider the basic (convolution) heat semigroup (Pt)t≥0

on Rn given on suitable functions f : Rn → R by

Ptf(x) =
1

(4πt)n/2

∫
Rn

f(y) e−|x−y|2/4tdy, t > 0, x ∈ R
n.

Given the initial condition f , u = u(t, x) = Ptf(x) solves the heat equation ∂tu = Δu with
thus u(0, x) = f(x).

Towards the logarithmic Sobolev inequality of Theorem 2.1, consider the entropy of a
positive smooth function f on R

n along the semigroup (Pt)t≥0 given by, at any t > 0 and
any point x (omitted below),

Pt(f log f)− Ptf logPtf.
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The heat flow interpolation then amounts to

Pt(f log f)− Ptf logPtf =

∫ t

0

d

ds
Ps(Pt−sf logPt−sf)ds.

By the heat equation and the chain rule formula, both in time and space, for s < t,

d

ds
Ps(Pt−sf logPt−sf) = Ps

( |∇Pt−sf |2
Pt−sf

)
= φ(s).

As gradient and semigroup commute ∇Puf = Pu(∇f), for every u > 0, by the Jensen and
Cauchy-Schwarz inequalities (along the Markov operator Pu),

|∇Puf |2 ≤ [Pu

(|∇f |)]2 ≤ Pu

( |∇f |2
f

)
Puf. (2.1)

With u = t − s, it follows that

φ(s) ≤ Ps Pt−s

( |∇f |2
f

)
= φ(t)

so that

Pt(f log f)− Ptf logPtf =

∫ t

0

φ(s)ds ≤ tφ(t) = t Pt

( |∇f |2
f

)
. (2.2)

When t = 1
2 , this heat kernel (that is, along the distribution of Pt) inequality is precisely, by

homogeneity, the Gross logarithmic Sobolev inequality of Theorem 2.1.
It is a significant observation that the preceding argument may be reversed. Indeed, with

u = s and f replaced by Pt−sf , it holds similarly that φ(s) ≥ φ(0) so that

Pt(f log f)− Ptf logPtf ≥ t φ(0) = t
|∇Ptf |2

Ptf
. (2.3)

This reverse inequality is a relevant property leading to gradient bounds (see below and [9]).
The preceding analysis actually shows that the map

s ∈ [0, t] �→ φ(s) = Ps

( |∇Pt−sf |2
Pt−sf

)
= Ps

(
Pt−sf |∇ logPt−sf |2

)
is increasing. Following [7], an alternative approach to this fact is of course to take derivative
(that is, the second derivative of entropy) yielding

φ′(s) = 2Ps

(
Pt−sf Γ2 (logPt−sf)

)
where the Γ2 operator is given, on any smooth function h on Rn, by

Γ2(h) =
1

2
Δ
(|∇h|2)−∇h · ∇(Δh) =

∣∣Hess(h)
∣∣2 ≥ 0.

Hence φ′(s) ≥ 0 and φ is increasing.
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The same formalism also works in an n-dimensional Riemannian manifold (M, g) along
the heat semigroup (Pt)t≥0 with Laplace-Beltrami operator Δ as infinitesimal generator. In
this case, by the classical Bochner identity, the Γ2 operator takes the form

Γ2(h) = Ricg(∇h,∇h) +
∣∣Hess(h)

∣∣2
where Ricg denotes the Ricci tensor of the metric g. Whenever (M, g) has non-negative
Ricci curvature, we have similarly that φ′ ≥ 0 yielding the preceding heat kernel inequalities
(2.2) and (2.3) in this more general context.

Actually, under Ricg ≥ 0, by the trace inequality,

Γ2(h) = Ricg(∇h,∇h) +
∣∣Hess(h)

∣∣2 ≥ ∣∣Hess(h)
∣∣2 ≥ 1

n
(Δh)2. (2.4)

Thus
φ′(s) ≥ 2

n
Ps

(
Pt−sf [Δ logPt−sf ]

2
)

retaining dimensional information. A somewhat more involved integration then yields a
strengthened dimensional logarithmic Sobolev inequality

Pt(f log f)− Ptf logPtf ≤ tΔPtf +
n

2
Ptf log

(
1− 2t

n

Pt(fΔ log f)

Ptf

)

(for f a positive smooth function on M ). Of more interest is actually the reverse form,
analogue of (2.3),

Pt(f log f)− Ptf logPtf ≥ tΔPtf − n

2
Ptf log

(
1 +

2t

n
Δ(logPtf)

)
.

The latter entails implicitly (and explicitly from the proof) that 1 + 2t
n Δ(logPtf) > 0, or

equivalently the famous Li-Yau parabolic inequality [55], initially established by the maxi-
mum principle and embedded here in a heat flow argument [11].

Theorem 2.2 (Li-Yau parabolic inequality). For any (smooth) positive function f on a Rie-
mannian manifold (M, g) with non-negative Ricci curvature,

|∇Ptf |2
(Ptf)2

− ΔPtf

Ptf
≤ n

2t
.

The Li-Yau parabolic inequality has numerous important applications (cf. [39, 55]), in
particular to Harnack inequalities of the type

Ptf(x) ≤ Pt+sf(y)
( t + s

t

)n/2
ed(x,y)

2/4s (2.5)

for f : M → R positive and t, s > 0, where d(x, y) is the Riemannian distance between
x, y ∈ M .

Parallelisms with the Li-Yau gradient estimates and the Perelman F and W entropy
functionals (see [65]) are mentioned in the recent contribution [36] of T. Colding where
further monotonicity formulas for Ricci curvature with accompanying rigidity theorems are
developed (see also [37]).
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The preceding heat flow monotonicity principle yielding both logarithmic Sobolev and
Li-Yau inequalities may be developed similarly in the extended setting of a weighted
n-dimensional Riemannian manifold (M, g) with a weighted measure dμ = e−V dx, where
V is a smooth potential on M , invariant and symmetric with respect to the operator

L = Δ−∇V · ∇

for which the Ricci tensor is extended into the so-called Bakry-Émery tensorRicg+Hess(V ).
On the basis of Bochner’s identity and (2.4), curvature-dimension CD(K,N) conditions

Γ2(h) =
[
Ricg +Hess(V )

]
(∇h,∇h) +

∣∣Hess(h)
∣∣2 ≥ K|∇h|2 + 1

N
(Lh)2 (2.6)

for every smooth h on (M, g), where K ∈ R and N ≥ n (not necessarily the topological
dimension), encode Ricci curvature lower bounds and dimension. The condition (2.6) is
inspired by Lichnerowicz’ eigenvalue lower bound [9, 45, 56]. Similar functional and heat
kernel inequalities are then achieved under CD(0, N) and also CD(K,N).

The results furthermore extend to the general setting of abstract Markov diffusion oper-
ators leading to the concept of Markov Triple [6, 9]. A Markov (diffusion) Triple (E, μ,Γ)
consists of a state space E equipped with a diffusion semigroup (Pt)t≥0 with infinitesimal
generator L, carré du champ operator Γ and invariant and reversible σ-finite measure μ. The
generator L and the carré du champ operator Γ are intrinsically related by the formula

Γ(f, g) =
1

2

[
L(fg)− f Lg − g Lf

]
for functions f, g belonging to a suitable algebra A of functions (corresponding to smooth
functions in a Riemannian setting). The state space E may be endowed with an intrinsic
distance d for which Lipschitz functions f are such that Γ(f) is bounded (μ-almost ev-
erywhere). In the (weighted) Riemannian context, L is the Laplace operator Δ with drift
−∇V · ∇ with respect to the weighted measure dμ = e−V dx, Γ(f, f) = |∇f |2 for smooth
functions, and d corresponds to the Riemannian metric.

In the Markov Triple setting, the abstract curvature condition

CD(K,N), K ∈ R, N ≥ 1,

mimicking (2.6), takes the form

Γ2(h) ≥ K Γ(h) +
1

N
(Lh)2, h ∈ A, (2.7)

(with the shorthand notation Γ(h) = Γ(h, h), Γ2(h) = Γ2(h, h)) where the Bakry-Émery
Γ2 operator, going back to [7] (see [6, 9]), is defined from Γ by

Γ2(f, g) =
1

2

[
L
(
Γ(f, g)

)− Γ(f,Lg)− Γ(g,Lf)
]
, (f, g) ∈ A×A.

As amajor property emphasized by D. Bakry [5, 6, 9], the curvature conditionCD(K,∞)
is translated equivalently into gradient bounds, allowing in particular, along (2.1), for the
preceding semigroup interpolation arguments and heat kernel inequalities.
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Theorem 2.3 (Gradient bound). The curvature condition CD(K,∞) holds true if and only
if for any t ≥ 0 and any f ∈ A,√

Γ(Ptf) ≤ e−KtPt

(√
Γ(f)

)
.

The curvature-dimension condition CD(K,N) leads on the other hand to dimensional
gradient bounds of the type [11, 79]

Γ(Ptf) ≤ e−2KtPt

(
Γ(f)
)− 1− e−2Kt

KN
(LPtf)

2 (2.8)

which are central in the comparison with alternative curvature-dimension conditions from
optimal transport (see Section 4).

3. Isoperimetric-type inequalities

More refined isoperimetric statements may be achieved by the preceding semigroup interpo-
lation arguments. One prototypical result in this direction is a comparison theorem between
the isoperimetric profile of a curved infinite-dimensional diffusion operator (in the preceding
sense) and the Gaussian profile.

Denote by I : [0, 1] → R+ the Gaussian isoperimetric function defined by I = ϕ ◦ Φ−1

where

Φ(x) =

∫ x

−∞
e−u2/2 du√

2π
, x ∈ R,

is the distribution function of a standard normal and ϕ = Φ′ its density. The following theo-
rem ([10]) is presented in the general context of a Markov Triple (E, μ,Γ) (with underlying
algebra of smooth functions A), covering in particular the setting of weighted Riemannian
manifolds.

Theorem 3.1 (Gaussian isoperimetry for heat kernel measure). Let (E, μ,Γ) be a Markov
Triple satisfying the curvature condition CD(K,∞) for some K ∈ R. For every function f
in A with values in [0, 1] and every t ≥ 0,

I(Ptf) ≤ Pt

(√
I2(f) + K(t) Γ(f)

)
where K(t) = 1

K (1− e−2Kt) (= 2t if K = 0).

For the example of the standard heat semigroup on R
n with t = 1

2 , Theorem 3.1 yields
that for any smooth function f : Rn → [0, 1],

I

(∫
Rn

fdγ

)
≤
∫
Rn

√
I2(f) + |∇f |2 dγ. (3.1)

This inequality applied to εf as ε → 0, together with the asymptotics I(v) ∼ v
√
2 log 1

v as
v → 0, strengthens the logarithmic Sobolev inequality of Theorem 2.1. A smooth approxi-
mation f of the characteristic function of a Borel set A in R

n ensures that

I
(
γ(A)
) ≤ γ+(A) = lim inf

ε→0

1

ε

[
γ(Aε)− γ(A)

]
(3.2)
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where the right-hand side defines the Minkowski content (surface measure) of A (where,
for ε > 0, Aε = {x ∈ E ; d(x,A) ≤ ε}). This inequality (3.2) exactly expresses the
isoperimetric problem for the Gaussian measure γ on Rn for which half-spaces

H = {x ∈ R
n ;x · u ≤ a},

where u is a unit vector and a ∈ R, achieve the minimal surface measure at fixed measure.
Indeed, if a is chosen such that γ(A) = Φ(a), then γ(A) = γ(H) and

γ+(H) = ϕ(a) = I
(
Φ(a)
) ≤ γ+(A).

The Gaussian isoperimetric inequality (3.2) goes back to V. Sudakov and B. Tsirel’son [73]
and C. Borell [23] relying on the isoperimetric inequality on spheres and a limiting argument.
The functional form (3.1) has been put forward by S. Bobkov [21] (see also earlier [42]
within Gaussian symmetrization [41]).

The content of Theorem 3.1 is therefore that the isoperimetric profile of the heat ker-
nel measures (of a positively curved diffusion semigroup) is bounded from below, up to a
constant, by the isoperimetric profile I of the standard Gaussian measure (in dimension one
actually). In particular, if dμ = e−V dx is a probability measure on R

n with smooth poten-
tial V such that Hess(V ) ≥ K Id for some K > 0 as symmetric matrices, the curvature
condition CD(K,∞) holds and one may let t tend to ∞ in Theorem 3.1 to see that the
isoperimetric profile of μ,

Iμ(v) = inf
{
μ+(A) ;μ(A) = v

}
, v ∈ (0, 1),

is bounded from below by
√

K I. In this sense, Theorem 3.1 is the infinite-dimensional
analogue of the Lévy-Gromov isoperimetric comparison theorem [59] bounding from below
the isoperimetric profile of the (normalized) Riemannian measure of an n-dimensional Rie-
mannian manifold with Ricci curvature bounded from below by n − 1, by the isoperimetric
profile of the standard n-sphere. A heat flow proof of this result is yet to be found. For
far-reaching geometric generalizations of the Lévy-Gromov theorem, see [58].

In the same spirit as (2.3), reverse forms of the isoperimetric heat kernel inequalities of
Theorem 3.1 are also available. Under the curvature condition CD(K,∞) for some K ∈ R,
for every function f in A with values in [0, 1] and every t > 0,

[
I(Ptf)

]2 − [Pt

(
I(f)
)]2 ≥ 1

K
(e2Kt − 1) Γ(Ptf).

These (sharp) gradient bounds may then be used to prove new isoperimetric-type Harnack
inequalities [8].

Theorem 3.2 (Isoperimetric Harnack inequality). Let (E, μ,Γ) be a Markov Triple satisfy-
ing the curvature condition CD(K,∞) for some K ∈ R. For every measurable set A in E,
every t ≥ 0 and every x, y ∈ E such that d(x, y) > 0,

Pt(�A)(x) ≤ Pt

(
�Adt

)
(y)

where dt = e−Ktd(x, y). In particular, when K = 0,

Pt(�A)(x) ≤ Pt

(
�Ad(x,y)

)
(y).



124 Michel Ledoux

Under the curvature condition CD(K,∞), it is not possible to expect standard (dimen-
sional) Harnack inequalities of the type (2.5). However, the set inequalities of Theorem 3.2
yield infinite-dimensional analogues first obtained by F.-Y. Wang in [77, 78]. For simplicity,
the CD(0,∞) version states the following.

Theorem 3.3 (Wang’s Harnack inequality). In the preceding context, under the curvature
condition CD(0,∞), for every positive (measurable) function f on E, every t > 0, every
α > 1, and every x, y ∈ E,(

Ptf(x)
)α ≤ Pt(f

α)(y) eαd(x,y)
2/4(α−1)t. (3.3)

In the limit as α → ∞, the latter turns into a log-Harnack inequality

Pt(log f)(x) ≤ logPtf(y) +
d(x, y)2

4t
(3.4)

for f positive.

4. Transportation cost inequalities

Heat flow methods have developed simultaneously in the context of transportation cost in-
equalities which are parts of the main recent achievements in optimal transport (cf. [76]). In
particular, they may be used to reach the famous HWI inequality of F. Otto and C. Villani
[67] connecting (Boltzmann H-) Entropy, Wasserstein distance (W) and Fisher Information
(I).

The HWI inequality covers at the same time logarithmic Sobolev and transportation cost
inequalities (in the form of the Talagrand quadratic transportation cost inequality [74]). For
simplicity, we deal here with a weighted Riemannian manifold (M, g) with weighted prob-
ability measure dμ = e−V dx, and restrict ourselves to the non-negative curvature condition
CD(0,∞). The (quadratic) Wasserstein distance W2(ν, μ) between two probability mea-
sures μ and ν on M is defined by

W2(ν, μ) =

(∫
M×M

d(x, y)2dπ(x, y)

)1/2

where the infimum is taken over all couplings π with respective marginals ν and μ (cf. [75,
76]).

Theorem 4.1 (Otto-Villani HWI inequality). Under the curvature condition CD(0,∞), for
any smooth positive function f : M → R with

∫
M

fdμ = 1,

∫
M

f log fdμ ≤ W2(ν, μ)

(∫
M

|∇f |2
f

dμ

)1/2

where dν = fdμ.

The starting point towards a semigroup proof (first emphasized in [22]) is the log-Harnack
inequality (3.4) which may be translated equivalently as

Pt(log f) ≤ Q2t(logPtf) (4.1)
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where (Qs)s>0 is the Hopf-Lax infimum-convolution semigroup

Qsϕ(x) = inf
y∈M

[
ϕ(y) +

d(x, y)2

2s

]
, s > 0, x ∈ M.

This convolution semigroup is closely related to the Wasserstein distance W2 via the Kan-
torovich dual description

1

2
W2(ν, μ)

2 = sup

[ ∫
M

Q1ϕdν −
∫
M

ϕdμ

]
(4.2)

where the supremum runs over all bounded continuous functions ϕ : M → R (cf. [75, 76]).
Given f > 0 a (smooth bounded) probability density with respect to μ and dν = fdμ,

simple symmetry and scaling properties on the basis of (4.1) and (4.2) yield that∫
M

Ptf logPtfdμ ≤ 1

4t
W2

2(ν, μ). (4.3)

The heat flow interpolation scheme illustrated in Section 2 expresses on the other hand that
for every t > 0, ∫

M

f log fdμ ≤
∫
M

Ptf logPtfdμ + t

∫
M

|∇f |2
f

dμ.

Together with (4.3), optimization in t > 0 yields the HWI inequality. Similar arguments may
be developed under CD(K,∞) for anyK ∈ R to yield the full formulation of Otto-Villani’s
HWI inequality (cf. [9, 22]).

The HWI inequality is one important illustration of the description by F. Otto [49, 66]
of the heat flow as the gradient flow of entropy, which led to the introduction of curva-
ture lower bounds in metric measure spaces as convexity of entropy along the geodesics of
optimal transport by J. Lott, C. Villani [57] and K.-T. Sturm [72] (cf. [76]). Recent ma-
jor achievements by L. Ambrosio, N. Gigli, G. Savaré [1–3] and M. Erbar, K. Kuwada,
K.-T. Sturm [44] establish the equivalence of the curvature and curvature-dimension lower
bounds in the sense of the Bakry-Émery Γ2 operator and of optimal transport in the class
of Riemannian Energy (metric) measure spaces with, in particular, the tools of the gradient
bounds of Theorem 2.3 and (2.8).

A further by-product of the isoperimetric Harnack Theorem 3.2 in this context is a com-
mutation property between the actions of the heat (Pt)t≥0 and Hopf-Lax (Qs)s>0 semi-
groups [8], first emphasized by K. Kuwada [50], at the root of the contraction property in
Wasserstein distance along the heat flow [33, 66, 68, 69] (see [75, 76, 78]). The following
statement is again restricted, for simplicity, to the non-negative curvature condition.

Theorem 4.2 (Contraction property of the Wasserstein distance). Under the curvature con-
dition CD(0,∞), for any t, s > 0

Pt(Qs) ≤ Qs(Pt).

As a consequence,
W2(μt, νt) ≤ W2(μ0, ν0)

where dμt = Ptfdμ and dνt = Ptgdμ, t ≥ 0, f, g probability densities with respect to μ.
Conversely, both properties are equivalent to CD(0,∞).
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5. Brascamp-Lieb inequalities

The Brascamp-Lieb inequalities for multilinear integrals of products of functions in sev-
eral dimensions were first investigated with rearrangement tools [27, 28]. A later approach,
including inverse forms, was developed by F. Barthe via mass transportation [13]. Investi-
gations of E. Carlen, E. Lieb, M. Loss [31] and J. Bennett, A. Carbery, M. Christ, T. Tao
[19] promoted heat flow monotonicity as a major tool towards these inequalities and full
geometric descriptions of their extremizers.

The basic principle, in a reduced simple instance, is best developed with respect to the
so-called Ornstein-Uhlenbeck semigroup (Pt)t≥0 on R

n with infinitesimal generator

L = Δf − x · ∇

(corresponding therefore to the quadratic potential V (x) = 1
2 |x|2), invariant and symmetric

with respect to the standard Gaussian measure γ, and given by the integral representation
along suitable functions f : Rn → R by

Ptf(x) =

∫
Rn

f
(
e−tx +

√
1− e−2t y

)
dγ(y), t ≥ 0, x ∈ R

n. (5.1)

Let J be a (smooth) real-valued function on some open rectangle R of Rm. A composi-
tion like J ◦ f is implicitly meant for functions f with values in R. Let f = (f1, . . . , fm)
be a vector of (smooth) functions on R

n and consider,

ψ(t) =

∫
Rn

J ◦ Ptf dγ, t ≥ 0

(where the Ornstein-Uhlenbeck semigroup (Pt)t≥0 is extended to functions with values in
R

m). By the heat equation ∂Ptf = LPtf and integration by parts with respect to the
generator L, it holds that

ψ′(t) = −
m∑

k,
=1

∫
Rn

∂k
J ◦ Ptf ∇Ptfk · ∇Ptf
 dγ.

Applied to functions fk = gk ◦ Ak, k = 1, . . . ,m, on R
rn, where gk : Rs → R and Ak

is a (constant) s × rn matrix such that Ak
tAk is the identity matrix (of Rs), the argument

expresses the following conclusion. For k, � = 1, . . . ,m, set Mk
 = A

tAk (which is an

s × s matrix).

Proposition 5.1. In the preceding notation, provided the Hessian of J is such that for all
vectors vk in R

s, k = 1, . . . ,m,

m∑
k,
=1

∂k
J Mk
 vk · v
 ≤ 0, (5.2)

then∫
Rrn

J(g1 ◦ A1, . . . , gm ◦ Am)dγ ≤ J

(∫
Rrn

g1 ◦ A1dγ, . . . ,

∫
Rrn

gm ◦ Amdγ

)
.
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When s = 1, the condition (5.2) amounts to the fact that the Hadamard (point-wise)
product Hess(J) ◦ M of the Hessian of J and of the matrix M = (Mk
)1≤k,
≤n is (semi-)
negative definite.

This general proposition encircles a number of illustrations of interest. As a first exam-
ple, take s = n and r = m = 2 and let A1 and A2 be the n × 2n matrices A1 = (Idn; 0n)

and A2 = (ρ Idn;
√

1− ρ2 Idn) where ρ ∈ (0, 1). In this case, the monotonicity condition
(5.2) is expressed by the non-positivity of the matrix(

∂11J ρ ∂12J
ρ ∂12J ∂22J

)
. (5.3)

For instance, if J(u, v) = uαvβ , (u, v) ∈ (0,∞)2, the condition is fulfilled with

ρ2αβ ≤ (α − 1)(β − 1).

For this choice of J , Proposition 5.1 indicates that∫
Rn

∫
Rn

gα1 (x)g
β
2

(
ρx +

√
1− ρ2 y)

)
dγ(x)dγ(y)

≤
(∫

Rn

g1dγ

)α(∫
Rn

g2dγ

)β

.

(5.4)

With ρ = e−t, by definition of Ptg2 and duality, the preceding amounts to the famous Nelson
hypercontractivity property [64] (for the Ornstein-Uhlenbeck semigroup), equivalent to the
logarithmic Sobolev inequality of Theorem 2.1 [9, 47].

Theorem 5.2 (Nelson’s hypercontractivity). Whenever 1 < p < q < ∞ and e2t ≥ q−1
p−1 , for

any measurable function f : Rn → R,

‖Ptf‖q ≤ ‖f‖p.
This example is actually embedded in the so-called geometric form of the Brascamp-

Lieb inequalities emphasized by K. Ball (cf. [12, 15, 19]). For simplicity, consider only the
one-dimensional versions r = s = 1. Let A1, . . . , Am be unit vectors which decompose the
identity in R

n in the sense that for 0 ≤ ck ≤ 1, k = 1, . . . ,m,
m∑

k=1

ckAk ⊗ Ak = Idn. (5.5)

Then, for J(u1, . . . , um) = uc1
1 · · ·ucm

m on (0,∞)m and fk(x) = gk(Ak · x), gk : R → R,
k = 1, . . . ,m, condition (5.2) of Proposition 5.1 amounts to

m∑
k,
=1

ckc
Ak · A
 vkv
 ≤
m∑

k=1

ckv
2
k (5.6)

for all v1, . . . , vm ∈ R, which is easily seen to follow from (5.5).

Corollary 5.3 (Geometric Brascamp-Lieb inequality). Under the decomposition (5.5), for
positive measurable functions gk on R, k = 1, . . . ,m,∫

Rn

m∏
k=1

gckk (Ak · x)dγ ≤
m∏

k=1

(∫
R

gkdγ

)ck

.
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These Brascamp-Lieb inequalities are more classically stated with respect to the Lebesgue
measure as ∫

Rn

m∏
k=1

f ck
k (Ak · x)dx ≤

m∏
k=1

(∫
R

fkdx

)ck

which is immediately obtained after the change fk(x) = gk(x)e
−x2/2 (using

∑m
k=1 ck = n).

It should be mentioned that inverse Brascamp-Lieb inequalities may also be established
along the heat equation as emphasized recently in [34]. C. Borell showed in [25] (see also
[14]) that the condition, for non-negative functions f, g, h on Rn and θ ∈ (0, 1),

h
(
θx + (1− θ)y

) ≥ f(x)θg(y)1−θ (5.7)

for all x, y ∈ R
n, is stable under the (standard) heat semigroup (Pt)t≥0 on R

n (acting on
f, g, h). In the limit as t → ∞, it yields the Prékopa-Leindler theorem indicating that under
(5.7), ∫

Rn

hdx ≥
(∫

Rn

fdx

)θ(∫
Rn

gdx

)1−θ

.

Specialized to the characteristic functions of sets, this theorem entails the geometric Brunn-
Minkowski inequality (in its multiplicative form), and hence the classical isoperimetric in-
equality in Euclidean space (cf. [46]). C. Borell also provides in [26] the analogous analysis
for the Gaussian Brunn-Minkowski and isoperimetric inequalities (as conjectured in [41]).

On the basis of the geometric form Brascamp-Lieb inequalities established by mono-
tonicity along the heat equation, the works [19, 20] of J. Bennett, A. Carbery, M. Christ,
T. Tao fully analyze finiteness of constants, structure and existence and uniqueness of cen-
tered Gaussian extremals of Euclidean Brascamp-Lieb inequalities (see also [17, 29] for
a survey). For applications to the Hausdorff-Young inequality, Euclidean convolution and
entropic inequalities, see [18, 34, 38].

One of the motivations of E. Carlen, E. Lieb and M. Loss in [31] was to investigate
Brascamp-Lieb and Young inequalities for coordinates on the sphere. Let Sn−1 be the stan-
dard n-sphere in Rn and denote by σ the uniform (normalized) measure on it.

Theorem 5.4 (Brascamp-Lieb inequality on the sphere). Assume that J on R
n, or some

open (convex) set in R
n, is separately concave in any two variables. If gk, k = 1, . . . , n,

are, say bounded measurable, functions on [−1,+1], then∫
Sn−1

J
(
g1(x1), . . . , gn(xn)

)
dσ ≤ J

(∫
Sn−1

g1(x1)dσ, . . . ,

∫
Sn−1

gn(xn)dσ

)
.

The proof proceeds as the one of Proposition 5.1 along now the heat flow of the Laplace
operator Δ = 1

2

∑n
k,
=1(xk∂
 − x
∂k)

2 on S
n−1. The monotonicity condition on J then

takes the form
n∑

k,
=1

∂k
J (δk
 − xkx
)vkv
 ≤ 0

which is easily seen to be satisfied under concavity of J in any two variables. The case
considered in [31] corresponds to J(u1, . . . , un) = (u1 · · ·un)

1/2 on Rn
+ leading to

∫
Sn−1

g1(x1) · · · gn(xn)dσ ≤
(∫

Sn−1

g21(x1)dσ

)1/2

· · ·
(∫

Sn−1

g2n(xn)dσ

)1/2

.



Heat flows, geometric and functional inequalities 129

More general forms under decompositions (5.5) of the identity in Riemannian Lie groups
have been studied in [15]. Discrete versions on the symmetric group and multivariate hyper-
geometric models have been considered analogously [15, 32].

As one further illustration of Proposition 5.1, consider X = (X1, . . . , Xm) a centered
Gaussian vector on R

m with covariance matrix M = A tA such that Mkk = 1 for every
k = 1, . . . ,m. The vector X has the distribution of Ax, x ∈ R

n, under the standard normal
distribution γ on R

n. Applying Proposition 5.1 to the unit vectors (1 × n matrices) Ak,
k = 1, . . . ,m, which are the lines of the matrix A and to fk(x) = gk(Ak · x), x ∈ R

n,
where gk : R → R, k = 1, . . . ,m, with respect to γ, yields that wheneverHess(J)◦M ≤ 0,

E

(
J
(
g1(X1), . . . , gm(Xm)

)) ≤ J
(
E
(
g1(X1)

)
, . . . ,E

(
gm(Xm)

))
(5.8)

(under suitable integrability properties on the gk’s). See [34] for the case of Brascamp-Lieb
functions J and multidimensional forms.

6. Gaussian noise stability

The study of noise stability (or sensitivity) in Boolean analysis is another field of interest in
which links with interpolation along the Ornstein-Uhlenbeck semigroup (for the ideal Gaus-
sian continuous model) were developed. Indeed, as recently demonstrated by E. Mossel and
J. Neeman [60, 61], for a suitable choice of the function J , the correlation inequality (5.8)
actually entails significant inequalities related to (Gaussian) noise stability and isoperimetry.

Set, for (u, v) ∈ [0, 1]2 and ρ ∈ (0, 1),

JB
ρ (u, v) = γ ⊗ γ

(
(x, y) ∈ R

2 ;x ≤ Φ−1(u), ρx +
√
1− ρ2 y ≤ Φ−1(v)

)
.

Equivalently, when ρ = e−t, t > 0,

JB
ρ (u, v) =

∫
Rn

�HPt(�K)dγ

where (Pt)t≥0 is the Ornstein-Uhlenbeck semigroup (5.1) and H and K are the (parallel)
half-spaces

H =
{
x ∈ R

n ;x1 ≤ Φ−1(u)
}
, K =

{
x ∈ R

n ;x1 ≤ Φ−1(v)
}
.

As a main feature, the function JB
ρ is ρ-concave in the sense that the matrix (5.3), which

is the Hadamard product of the Hessian of JB
ρ with the covariance matrix of the Gaussian

vector (x, ρx+
√
1− ρ2 y), is non-positive definite. Proposition 5.1 applied to this function

JB
ρ as towards hypercontractivity, or equivalently the multidimensional analogue of (5.8),

therefore yields∫
Rn

∫
Rn

JB
ρ

(
f(x), g

(
ρx +

√
1− ρ2 y

))
dγ(x)dγ(y) ≤ JB

ρ

(∫
Rn

f dγ,

∫
Rn

g dγ

)
(6.1)

for every measurable functions f, g : Rn → [0, 1]. Since JB
ρ (0, 0)=JB

ρ (1, 0)=JB
ρ (0, 1)=0

and JB
ρ (1, 1) = 1, the application of (6.1) to f = �A and g = �B for Borel sets A,B in
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R
n and the very definition of JB

ρ yield a semigroup proof of Borell’s noise stability theorem
[60, 61]. This result was initially established via symmetrization with respect to the Gaussian
measure introduced by A. Ehrhard [24, 41] (along the rearrangement ideas in Euclidean and
spherical spaces [4, 28, 70, 71], see also [16, 30, 54]).

Theorem 6.1 (Borell’s noise stability theorem). For Borel sets A,B ⊂ R
n, and for every

t ≥ 0, ∫
Rn

�APt(�B)dγ ≤
∫
Rn

�HPt(�K)dγ

where H = {x1 ≤ a}, K = {x1 ≤ b} are parallel half-spaces with respectively the same
Gaussian measures γ(H) = γ(A) and γ(K) = γ(B).

Theorem 6.1 thus expresses that half-spaces are the most noise stable in the sense that
they maximize

∫
Rn �APt(�A)dγ over all Borel sets A in R

n. The new semigroup proof by
E. Mossel and J. Neeman [60, 61] was motivated by the equality case and the study of the
deficit (see below). It is also connected to the discrete version on the cube {−1,+1}n and
the “Majority is Stablest” theorem of [62] in the context of hardness of approximation for
Max-Cut in Boolean analysis. While established first via an invariance principle on the basis
of Theorem 6.1, a recent purely discrete proof is emphasized in [40].

Classical arguments providing (small time) heat flow descriptions of surface measures
may be used to recover the standard Gaussian isoperimetric inequality from Theorem 6.1
[51]. Indeed, it holds true that

γ+(A) ≥ lim sup
t→0

√
π

t

[
γ(A)−

∫
Rn

�APt(�A)dγ

]

with equality on half-spaces, so that together with Theorem 6.1, γ+(A) ≥ γ+(H) if H is
a half-space with γ(A) = γ(H). Besides, a suitable limiting procedure, replacing (f, g)
by (εf, δg) as ε, δ → 0, shows that (6.1) contains the hypercontractivity inequality (5.4)
(cf. [53]).

Recent investigations study bounds on the deficit in the noise stability Theorem 6.1 and
the Gaussian isoperimetric inequality (3.2). While semigroup tools may be used to some
extent [60, 61], R. Eldan [43] achieved a complete picture with wider and more refined
stochastic calculus tools (improving in particular upon former mass transportation arguments
[35]). He showed that, up to a logarithmic factor, given t > 0 and a Borel set A, there exists
a half-space H with γ(H) = γ(A) such that∫

Rn

�HPt(�H)dγ −
∫
Rn

�APt(�A)dγ ≥ C
(
γ(A), t

)
γ(AΔH)2

(and similarly for the isoperimetric deficit), independently of the dimension.
Multidimensional extensions of Theorem 6.1 on the basis of (5.8) are discussed in [48,

63], with connections with the classical Slepian inequality (cf. [53]).

Theorem 6.2 (Multidimensional Borell theorem). Let X = (X1, . . . , Xm) be a centered
Gaussian vector in R

m with (non-degenerate) covariance matrix M such that Mk
 ≥ 0 for
all k, � = 1, . . . ,m. Then, for any Borel sets B1, . . . , Bm in R,

P(X1 ∈ B1, . . . , Xm ∈ Bm) ≤ P(X1 ≤ b1, . . . , Xm ≤ bm)

where P(Xk ∈ Bk) = Φ(bk/σk), σk =
√

Mkk, k = 1, . . . ,m.
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Determinantal probability
Basic properties and conjectures

Russell Lyons

Abstract. We describe the fundamental constructions and properties of determinantal probability mea-
sures and point processes, giving streamlined proofs. We illustrate these with some important exam-
ples. We pose several general questions and conjectures.

Mathematics Subject Classification (2010). Primary 60K99, 60G55; Secondary 42C30, 37A15,
37A35, 37A50, 68U99.

Keywords. Randommatrices, eigenvalues, orthogonal projections, positive contractions, exterior alge-
bra, stochastic domination, negative association, point processes, mixtures, spanning trees, orthogonal
polynomials, completeness, Bernoulli processes.

1. Introduction

Determinantal point processes were originally defined by Macchi [39] in physics. Starting
in the 1990s, determinantal probability began to flourish as examples appeared in numerous
parts of mathematics [51, 28, 8]. Recently, applications to machine learning have appeared
[32].

A discrete determinantal probability measure is one whose elementary cylinder proba-
bilities are given by determinants. More specifically, suppose that E is a finite or countable
set and that Q is an E × E matrix. For a subset A ⊆ E, let Q�A denote the submatrix of Q
whose rows and columns are indexed by A. If S is a random subset of E with the property
that for all finite A ⊆ E, we have

P[A ⊆ S] = det(Q�A) , (1.1)

then we call P a determinantal probability measure. The inclusion-exclusion principle in
combination with (1.1) yields the probability of each elementary cylinder event. Therefore,
for every Q, there is at most one probability measure, to be denoted PQ, on subsets of E
that satisfies (1.1). Conversely, it is known (see, e.g., [33]) that there is a determinantal
probability measure corresponding to Q if Q is the matrix of a positive contraction on �2(E)
(in the standard orthonormal basis).

Technicalities are required even to define the corresponding concept of determinantal
point process for E being Euclidean space or a more general space. We present a virtually
complete development of their basic properties in a way that minimizes such technicalities

Proceedings of International Congress of Mathematicians, 2014, Seoul
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by adapting the approach of [33] from the discrete case. In addition, we use an idea of
Goldman [21] to deduce properties of the general case from corresponding properties in the
discrete case.

Space limitations prevent mention of most of what is known in determinantal probability
theory, which pertains largely to the analysis of specific examples. We focus instead on some
of the basic properties that hold for all determinantal processes and on some intriguing open
questions.

2. Discrete basics

Let E be a denumerable set.
We identify a subset of E with an element of {0, 1}E = 2E in the usual way. There

are several approaches to prove the basic existence results and identities for determinantal
probability measures. We sketch the one used by [33]. This depends on understanding first
the case where Q is the matrix of an orthogonal projection. It also relies on exterior algebra
so that the existence becomes immediate.

Any unit vector v in a Hilbert space with orthonormal basisE gives a probability measure
Pv onE, namely,Pv

({e}) := |(v, e)|2 for e ∈ E. Applying this simple idea to multivectors
instead, we obtain the probability measuresPH associated to orthogonal projections PH . We
refer to [33] for details not given here.

2.1. Exterior algebra. Identify E with the standard orthonormal basis of the real or com-
plex Hilbert space �2(E). For k ≥ 1, letEk denote a collection of ordered k-element subsets
of E such that each k-element subset of E appears exactly once in Ek in some ordering. De-
fine

ΛkE :=
∧k

�2(E) := �2
({

e1 ∧ · · · ∧ ek ; 〈e1, . . . , ek〉 ∈ Ek

})
.

If k > |E|, then Ek = ∅ and ΛkE = {0}. We also define Λ0E to be the scalar field, R or
C. The elements of ΛkE are called multivectors of rank k, or k-vectors for short. We then
define the exterior (or wedge) product of multivectors in the usual alternating multilinear
way:

∧k
i=1 eσ(i) = (−1)σ

∧k
i=1 ei for any permutation σ ∈ Sym(k), and

k∧
i=1

∑
e∈E′

ai(e)e =
∑

e1,...,ek∈E′

k∏
j=1

aj(ej)

k∧
i=1

ei

for any scalars ai(e) (i ∈ [1, k], e ∈ E′) and any finite E′ ⊆ E. (Thus,
∧k

i=1 ei = 0 unless
all ei are distinct.) The inner product on ΛkE satisfies

(u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk) = det
[
(ui, vj)

]
i,j∈[1,k] (2.1)

when ui and vj are 1-vectors. (This also shows that the inner product on ΛkE does not
depend on the choice of orthonormal basis of �2(E).) We then define the exterior (or Grass-
mann) algebra Ext

(
�2(E)

)
:= Ext(E) :=

⊕
k≥0 Λ

kE, where the summands are declared
orthogonal, making it into a Hilbert space. Vectors u1, . . . , uk ∈ �2(E) are linearly inde-
pendent iff u1 ∧ · · · ∧uk �= 0. For a k-element subset A ⊆ E with ordering 〈ei〉 in Ek, write
θA :=

∧k
i=1 ei. We also write

∧
e∈A f(e) :=

∧k
i=1 f(ei) for any function f : E → �2(E).
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Although there is an isometric isomorphism

u1 ∧ · · · ∧ uk �→ 1√
k!

∑
σ∈Sym(k)

(−1)σuσ(1) ⊗ · · · ⊗ uσ(k) ∈ �2(Ek)

for ui ∈ �2(E), this does not simplify matters in the discrete case. It will be very useful in
the continuous case later, however.

If H is a closed linear subspace of �2(E), written H ≤ �2(E), then we identify Ext(H)

with its inclusion in Ext(E). That is,
∧k

H is the closure of the linear span of the k-vectors
{v1 ∧ · · · ∧ vk ; v1, . . . , vk ∈ H}. In particular, if dimH = r < ∞, then

∧r
H is a 1-

dimensional subspace of Ext(E); denote by ωH a unit multivector in this subspace. Note
that ωH is unique up to a scalar factor of modulus 1; which scalar is chosen will not affect the
definitions below. We denote by PH the orthogonal projection onto H for any H ≤ �2(E)
or, more generally, H ≤ Ext(E).

Lemma 2.1. For every closed subspace H ≤ �2(E), every k ≥ 1, and every u1, . . . , uk ∈
�2(E), we have PExt(H)(u1 ∧ · · · ∧ uk) = (PHu1) ∧ · · · ∧ (PHuk).

For v ∈ �2(E), write [v] for the subspace of scalar multiples of v in �2(E).

2.2. Orthogonal projections. Let H be a subspace of �2(E) of dimension r < ∞. Define
the probability measure PH on subsets B ⊆ E by

PH
({B}) := | (ωH , θB) |2 . (2.2)

Note that this is non-0 only for |B| = r. Also, by Lemma 2.1,

PH
({B}) = ‖PExt(H)θB‖2 = ‖

∧
e∈B

PHe‖2

for |B| = r, which is non-0 iff 〈PHe ; e ∈ B〉 are linearly independent. In other words,
PH
({B}) �= 0 iff the projections of the elements of B form a basis of H . Let 〈v1, . . . , vr〉

be any basis of H . If we use (2.1) and the fact that ωH = c
∧

i vi for some scalar c, then we
obtain another formula for PH :

PH
({e1, . . . , er}) = (det[(vi, ej)]i,j≤r)

2/ det[(vi, vj)]i,j≤r . (2.3)

We use B to denote a random subset of E arising from a probability measure PH . To
see that (1.1) holds for the matrix of PH , observe that for |B| = r,

PH [B = B] =
(
PExt(H)θB , θB

)
=
( ∧

e∈B
PHe,

∧
e∈B

e
)
= det[(PHe, f)]e,f∈B

by (2.1). This shows that (1.1) holds for |A| = r since |B| = r PH -a.s. The general case
is a consequence of multilinearity, which gives the following extension of (1.1). We use the
convention that θ∅ := 1 and u ∧ 1 := u for any multivector u.

Theorem 2.2. If A1 and A2 are (possibly empty) subsets of a finite set E, then

PH [A1 ⊆ B, A2 ∩B = ∅] = (PExt(H)θA1 ∧ PExt(H⊥)θA2 , θA1 ∧ θA2

)
. (2.4)

In particular, for every A ⊆ E, we have

PH [A ⊆ B] = ‖PExt(H)θA‖2 . (2.5)
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Corollary 2.3. If E is finite, then for every subspace H ≤ �2(E), we have

∀B ⊆ E PH⊥({E \ B}) = PH
({B}) . (2.6)

These extend to infinite E. In order to define PH when H is infinite dimensional, we
proceed by finite approximation.

Let E = {ei ; i ≥ 1} be infinite. Consider first a finite-dimensional subspace H of
�2(E). Define Hk as the image of the orthogonal projection of H onto the span of {ei ; 1 ≤
i ≤ k}. By considering a basis of H , we see that PHk

→ PH in the weak operator topology
(WOT), i.e., matrix-entrywise, as k → ∞. It is also easy to see that if r := dimH , then
dimHk = r for all large k and, in fact, ωHk

→ ωH in the usual norm topology. It follows
that (2.4) holds for this subspace H and for every finite A1, A2 ⊂ E.

Now let H be an infinite-dimensional closed subspace of �2(E). Choose finite-
dimensional subspaces Hk ↑ H . It is well known that PHk

→ PH (WOT). Then

for all finite sets A det(PHk
�A) → det(PH�A) , (2.7)

whence PHk has a weak∗ limit that we denote PH and that satisfies (2.4).
We also note that for any sequence of subspacesHk, if PHk

→ PH (WOT), thenPHk →
PH weak∗ because (2.7) then holds.

2.3. Positive contractions. We call Q a positive contraction if Q is a self-adjoint operator
on �2(E) such that for all u ∈ �2(E), we have 0 ≤ (Qu, u) ≤ (u, u). A projection dilation
of Q is an orthogonal projection PH onto a closed subspace H ≤ �2(E′) for some E′ ⊇ E
such that for all u ∈ �2(E), we have Qu = P
2(E)PHu, where we regard �2(E′) as the
orthogonal sum �2(E)⊕ �2(E′ \E). In this case, Q is also called the compression of PH to
�2(E). Choose such a dilation (see (2.16) or (3.9)) and definePQ as the law ofB∩E when
B has the law PH . Then (1.1) for Q is a special case of (1.1) for PH .

Of course, when Q is the orthogonal projection onto a subspace H , then PQ = PH .
Basic properties of PQ follow from those for orthogonal projections, such as:

Theorem 2.4. If Q is a positive contraction, then for all finite A1, A2 ⊆ E,

PQ [A1 ⊆ S, A2 ∩S = ∅] =
( ∧

e∈A1

Qe ∧
∧

e∈A2

(I − Q)e, θA1 ∧ θA2

)
. (2.8)

If (1.1) is given, then (2.8) can be deduced from (1.1) without using our general theory
and, in fact, without assuming that the matrix Q is self-adjoint. Indeed, suppose that X is
any diagonal matrix. Denote its (e, e)-entry by xe. Comparing coefficients of xe shows that
(1.1) implies, for finite A ⊆ E,

E
[ ∏
e∈A

(
1{e∈S} + xe

)]
= det

(
(Q + X)�A

)
. (2.9)

Replacing A by A1 ∪A2 and choosing xe := −1A2
(e) gives (2.8). On the other hand, if we

substitute xe := 1/(ze − 1), then we may rewrite (2.9) as

E
[ ∏
e∈A

(
1{e∈S}ze + 1{e/∈S}

)]
= det

(
(QZ + I − Q)�A

)
, (2.10)
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where Z is the diagonal matrix of the variables ze. Let E be finite. Write zA :=
∏

e∈A ze
for A ⊆ E. Then (2.10) is equivalent to∑

A⊆E

PQ[S = A]zA = det(I − Q + QZ) . (2.11)

This is the same as the Laplace transform of PQ after a trivial change of variables. When
‖Q‖ < 1, we can write det(I−Q+QZ) = det(I−Q) det(I+JZ)with J := Q(I−Q)−1.
Thus, for all A ⊆ E, we have

PQ[S = A] = det(I − Q) det(J�A) = det(I + J)−1 det(J�A) . (2.12)

A probability measure P on 2E is called strongly Rayleigh if its generating polynomial
f(z) :=

∑
A⊆E P[S = A]zA satisfies the inequality

∂f

∂ze
(x)

∂f

∂ze′
(x) ≥ ∂2f

∂ze∂ze′
(x)f(x) (2.13)

for all e �= e′ ∈ E and all real x ∈ R
E . This property is satisfied by every determinan-

tal probability measure, as was shown by [7], who demonstrated its usefulness in showing
other properties, such as negative associations and preservation under symmetric exclusion
processes.

For a set K ⊆ E, denote by F (K) the σ-field of events that are measurable with respect
to the events {e ∈ S} for e ∈ K. Define the tail σ-field to be the intersection of F (E \K)
over all finite K. We say that a measure P on 2E has trivial tail if every event in the tail
σ-field has measure either 0 or 1.

Theorem 2.5 ([33]). If Q is a positive contraction, then PQ has trivial tail.

For finite E and a positive contraction Q, define the entropy of PQ to be

Ent(Q) := −
∑
A⊆E

PQ({A}) logPQ({A}) .

Numerical calculation supports the following conjecture [33]:

Conjecture 2.6. For all positive contractions Q1 and Q2, we have

Ent
(
(Q1 + Q2)/2

) ≥ (Ent(Q1) + Ent(Q2)
)
/2 . (2.14)

2.4. Stochastic inequalities. Let E be denumerable. A function f : 2E → R is called
increasing if for all A ∈ 2E and all e ∈ E, we have f

(
A∪ {e}) ≥ f(A). An event is called

increasing or upwardly closed if its indicator is increasing.
Given two probability measuresP1, P2 on 2E , we say thatP2 stochastically dominates

P1 and write P1 � P2 if for all increasing events A, we have P1(A) ≤ P2(A). This is
equivalent to

∫
f dP1 ≤ ∫ f dP2 for all bounded increasing f .

A coupling of two probability measures P1, P2 on 2E is a probability measure μ on
2E × 2E whose coordinate projections are P1, P2; it is monotone if

μ
{
(A1,A2) ; A1 ⊆ A2

}
= 1 .

By Strassen’s theorem [53], stochastic domination P1 � P2 is equivalent to the existence
of a monotone coupling of P1 and P2.
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Theorem 2.7 ([33]). If H1 ≤ H2 ≤ �2(E), then PH1 � PH2 .

It would be very interesting to find a natural or explicit monotone coupling.
A coupling μ has union marginal P if for all events A ⊆ 2E , we have P(A) =

μ
{
(A1, A2) ; A1 ∪ A2 ∈ A}.

Question 2.8 ([33]). Given H = H1 ⊕H2, is there a coupling of PH1 and PH2 with union
marginal PH?

A positive answer is supported by some numerical calculation. It is easily seen to hold
when H = �2(E) by Corollary 2.3.

In the sequel, we write Q1 % Q2 if (Q1u, u) ≤ (Q2u, u) for all u ∈ �2(E).

Theorem 2.9 ([33, 7]). If 0 % Q1 % Q2 % I , then PQ1 � PQ2 .

Proof. By Theorem 2.7, it suffices that there exist orthogonal projections P1 and P2 that are
dilations of Q1 and Q2 such that P1 % P2. This follows from Naı̆mark’s dilation theorem
[43], which says that any measure whose values are positive operators, whose total mass is I ,
and which is countably additive in the weak operator topology dilates to a spectral measure.
The measure in our case is defined on a 3-point space, with massesQ1,Q2−Q1, and I−Q2,
respectively. If we denote the respective dilations by R1, R2, and R3, then we set P1 := R1

and P2 := R1 + R2.

A positive answer in general to Question 2.8 would give the following more general
result by compression: If Q1, Q2 and Q1+Q2 are positive contractions on �2(E), then there
is a coupling of PQ1 and PQ2 with union marginal PQ1+Q2 .

It would be very useful to have additional sufficient conditions for stochastic domination:
see the end of Subsection 3.8 and Conjecture 5.7. For examples where more is known, see
Theorem 5.2.

We shall say that the events in F (K) are measurable with respect to K and likewise
for functions that are measurable with respect to F (K). We say that P has negative asso-
ciations if for every pair f1, f2 of increasing functions that are measurable with respect to
complementary subsets of E,

E[f1f2] ≤ E[f1]E[f2] . (2.15)

Theorem 2.10 ([33]). If 0 % Q % I , then PQ has negative associations.

Proof. The details for finite E were given in [33]. For infinite E, let f1 and f2 be increasing
bounded functions measurable with respect to F (A) and F (E \ A), respectively. Choose
finite En ↑ E. The conditional expectations E[f1 | F (A ∩ En)] and E[f2 | F (En \ A)]
are increasing functions to which (2.15) applies (because restriction to En corresponds to a
compression of Q, which is a positive contraction) and which, being martingales, converge
to f1 and f2 in L2(PQ).

2.5. Mixtures. Write Bern(p) for the distribution of a Bernoulli random variable with ex-
pectation p. For pk ∈ [0, 1], let Bin(〈pk〉) be the distribution of a sum of independent
Bern(pk) random variables. Recall that [v] is the set of scalar multiples of v.

Theorem 2.11 ([1]; Lemma 3.4 of [48]; (2.38) of [49]; [26]). Let Q be a positive contraction
with spectral decomposition Q =

∑
k λkP[vk], where 〈vk ; k ≥ 1〉 are orthonormal. Let

Ik ∼ Bern(λk) be independent. Let H :=
⊕

k[Ikvk]; thus, Q = EPH. Then PQ = EPH.
Hence, if S ∼ PQ, then |S| ∼ Bin(〈λk〉).
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Proof. By Theorem 2.9, it suffices to prove it when only finitely many λk �= 0. Then by
Theorem 2.4, we have PQ [A ⊆ S] =

(∧
e∈A Qe, θA

)
for all A ⊆ E. Now

∧
e∈A

Qe =
∧
e∈A

∑
k

λkP[vk]e =
∑

j : A→N

∏
e∈A

λj(e)

∧
e∈A

P[vj(e)]e

=
∑

j : A�N

∏
e∈A

λj(e)

∧
e∈A

P[vj(e)]e

because v ∧ v = 0 and P[v]e is a multiple of v, so none of the terms where j is not injective
contribute. Thus,∧

e∈A
Qe =

∑
j : A�N

E
[ ∏
e∈A

Ij(e)

] ∧
e∈A

P[vj(e)]e = E
[ ∑
j : A�N

∏
e∈A

Ij(e)
∧
e∈A

P[vj(e)]e
]

= E
[ ∑
j : A→N

∏
e∈A

Ij(e)
∧
e∈A

P[vj(e)]e
]
= E

∧
e∈A

∑
k

IkP[vk]e = E
∧
e∈A

PHe .

We conclude that PQ [A ⊆ S] = E
(∧

e∈A PHe, θA
)
= E
[
PH [A ⊆ B]

]
by (2.8).

We sketch another proof: Let E′ be disjoint from E with the same cardinality. Choose
an orthonormal sequence 〈v′k〉 in �2(E′). Define

H :=
⊕
k

[√
λkvk +

√
1− λkv

′
k

] ≤ �2(E ∪ E′) . (2.16)

Then Q is the compression of PH to �2(E). Expanding ωH =
∧

k(
√

λkvk +
√
1− λkv

′
k) in

the obvious way into orthogonal pieces and restricting to E, we obtain the desired equation
from (2.2).

The first proof shows more generally the following: LetQ0 be a positive contraction. Let
〈vk ; k ≥ 1〉 be (not necessarily orthogonal) vectors such that Q0+

∑
k P[vk] % I . Let Ik be

independent Bernoulli random variables withE
∑

k Ik < ∞. WriteQ := Q0+
∑

k IkP[vk].
ThenPEQ = EPQ. This was observed by Ghosh and Krishnapur (personal communication,
2014).

Note that in the mixture of Theorem 2.11, the distribution of 〈Ik ; k ≥ 1〉 is deter-
minantal corresponding to the diagonal matrix with diagonal 〈λk ; k ≥ 1〉. Thus, it is
natural to wonder whether 〈Ik ; k ≥ 1〉 can be taken to be a general determinantal mea-
sure. If such a mixture is not necessarily determinantal, must it be strongly Rayleigh or
at least have negative correlations? Here, we say that a probability measure P on 2E

has negative correlations if for every pair A, B of finite disjoint subsets of E, we have
P[A ∪ B ⊆ S] ≤ P[A ⊆ S]P[B ⊆ S]. Note that negative associations is stronger than
negative correlations.

2.6. Example: Uniform spanning trees and forests. The most well-known example of a
(nontrivial discrete) determinantal probability measure is that whereS is a uniformly chosen
random spanning tree of a finite connected graph G = (V,E) with E := E. Here, we regard
a spanning tree as a set of edges. The fact that (1.1) holds for the uniform spanning tree is
due to [12] and is called the Transfer Current Theorem. The case with |A| = 1 was shown
much earlier by [30], while the case with |A| = 2 was first shown by [11]. Write USTG for
the uniform spanning tree measure on G.
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To see that USTG is indeed determinantal, consider the vertex-edge incidence matrix M
of G, where each edge is oriented (arbitrarily) and the (x, e)-entry of M equals 1 if x is the
head of e,−1 if x is the tail of e, and 0 otherwise. Identifying an edge with its corresponding
column of M , we find that a spanning tree is the same as a basis of the column space of
M . Given x ∈ V, define the star at x to be the x-row of M , regarded as a vector �x in
the row space, �(G) ≤ �2(E). It is easy that the row-rank of M is |V| − 1. Let x0 ∈ V
and let u be the wedge product (in some order) of the stars at all the vertices other than x0.
Thus, u = c ω�(G) for some c �= 0. Since spanning trees are bases of the column space of
M , we have

(
u, θA

) �= 0 iff A is a spanning tree. That is, the only non-zero coefficients
of u are those in which choosing one edge in each �x for x �= x0 yields a spanning tree;
moreover, each spanning tree occurs exactly once since there is exactly one way to choose
an edge incident to each x �= x0 to get a given spanning tree. This means that its coefficient
is ±1. Hence, P�(G) is indeed uniform on spanning trees. Simultaneously, this proves the
matrix tree theorem that the number of spanning trees equals det[(�x, �y)]x,y �=x0 , since this
determinant is ‖u‖2.

One can define analogues of USTG on infinite connected graphs [44, 22, 2] by weak lim-
its. For brevity, we simply define them here as determinantal probability measures. Again,
all edges of G are oriented arbitrarily. We define �(G) as the closure of the linear span of
the stars. An element of �2(E) that is finitely supported and orthogonal to �(G) is called a
cycle; the closed linear span of the cycles is ♦(G). The wired uniform spanning forest is
WSFG := P�(G), while the free uniform spanning forest is FSFG := P♦(G)⊥ .

3. Continuous basics

Our discussion of the “continuous” case includes the discrete case, but the discrete case has
the more elementary formulations given earlier.

Let E be a measurable space. As before, E will play the role of the underlying set on
which a point process forms a counting measure. While before we implicitly used counting
measure on E itself, now we shall have an arbitrary measure μ; it need not be a probability
measure. The case of Lebesgue measure on Euclidean space is a common one. The Hilbert
spaces of interest will be L2(E, μ).

3.1. Symmetrization and anti-symmetrization. There may be no natural order in E, so
to define, e.g., a probability measure on n points of E, it is natural to use a probability
measure onEn that is symmetric under coordinate changes and that vanishes on the diagonal
Δn(E) :=

{
(x1, . . . , xn) ∈ En ; ∃i �= j xi = xj

}
. Likewise, for exterior algebra, it is

more convenient to identify u1 ∧ · · · ∧ un with∑
σ∈Sym(n)

(−1)σuσ(1) ⊗ · · · ⊗ uσ(n)/
√

n! ∈ L2(En, μn)

for ui ∈ L2(E, μ). Thus, u1 ∧ · · · ∧ un is identified with the function

(x1, . . . , xn) �→ det[ui(xj)]i,j∈{1,...,n}/
√

n! .
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Note that

n!
( n∧

i=1

ui

)( n∧
i=1

vi

)
(x1, . . . , xn) = det[ui(xj)] det[vi(xj)] = det[ui(xj)] det[vi(xj)]

T

= det[ui(xj)][vi(xj)]
T = det[K(xi, xj)]i,j∈{1,...,n}

(3.1)

with K :=
∑n

i=1 ui ⊗ vi. Here, T denotes transpose.

3.2. Joint intensities. Suppose from now on that E is a locally compact Polish space
(equivalently, a locally compact second countable Hausdorff space). Let μ be a Radon mea-
sure on E, i.e., a Borel measure that is finite on compact sets. LetN (E) be the set of Radon
measures on E with values in N ∪ {∞}. We give N (E) the vague topology generated by
the maps ξ �→ ∫ f dξ for continuous f with compact support; then N (E) is Polish. The
corresponding Borel σ-field of N (E) is generated by the maps ξ �→ ξ(A) for Borel A ⊆ E.
Let X be a simple point process on E, i.e., a random variable with values in N (E) such
that X({x}) ∈ {0, 1} for all x ∈ E. The power Xk := X ⊗ · · · ⊗ X lies in N (Ek). Thus,
E[Xk] is a Borel measure on Ek; the part of it that is concentrated on Ek \Δk(E) is called
the k-point intensity measure of X. If the intensity measure is absolutely continuous with
respect to μk, then its Radon-Nikodym derivative ρk is called the k-point intensity function
or the k-point correlation function:

for all Borel A ⊆ Ek \Δk(E) E[Xk(A)] =

∫
A

ρk dμk . (3.2)

Since the intensity measure vanishes on the diagonalΔk(E), we take ρk to vanish onΔk(E).
We also take ρk to be symmetric under permutations of coordinates. Intensity functions are
the continuous analogue of the elementary probabilities (1.1).

Since the sets
∏k

i=1 Ai := A1×· · ·×Ak generate the σ-field onEk\Δk(E) for pairwise
disjoint Borel A1, . . . , Ak ⊆ E, a measurable function ρk : Ek → [0,∞) is “the” k-point
intensity function iff

E
[ k∏
i=1

X(Ai)
]
=

∫
∏k

i=1 Ai

ρk dμk . (3.3)

Since X is simple, Xk
(
Ak \ Dk(A)

)
=
(
X(A)

)
k
, where (n)k := n(n − 1) · · · (n − k + 1).

Since ρk vanishes on the diagonal, it follows from (3.2) that for disjoint A1, . . . , Ar and
non-negative k1, . . . , kr summing to k,

E
[ r∏
j=1

(
X(Aj)

)
kj

]
=

∫
∏r

j=1 A
kj
j

ρk dμk . (3.4)

Again, this characterizes ρk, even if we use only r = 1.
In the special case that X(E) = n a.s. for some n ∈ Z

+, then the definition (3.2) shows
that a random ordering of the n points of X has density ρn/n!. More generally, (3.2) shows
that for all k < n,

the density of a random (ordered) k-tuple of X is ρk/(n)k , (3.5)
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whence in this case,

ρk(x1, . . . , xk) =
1

(n − k)!

∫
En−k

ρn(x1, . . . , xn) dμ
n−k(xk+1, . . . , xn) . (3.6)

We call X determinantal if for some measurable K : E2 → C and all k ≥ 1, ρk(F ) =
det(K�F ) μk-a.e. Here, K�(x1, . . . , xk) is the matrix [K(xi, xj)]i,j≤k. In this case, we
denote the law of X by PK .

We consider only K that are locally square integrable (i.e., |K|2μ2 is Radon), are Her-
mitian (i.e., K(y, x) = K(x, y) for all x, y ∈ E), and are positive semidefinite (i.e., K�F
is positive semidefinite for all finite F , written K ( 0). In this case, K defines a positive
semidefinite integral operator (Kf)(x) :=

∫
K(x, y)f(y) dμ(y) on functions f ∈ L2(μ)

with compact support. For every Borel A ⊆ E, we denote by μA the measure μ restricted
to Borel subsets of A and by KA the compression of K to A, i.e., KAf := (Kf)�A for
f ∈ L2(A, μA). The operator K is locally trace-class, i.e., for every compact A ⊆ E, the

compression KA is trace class, having a spectral decomposition KAf =
∑

k λA
k (f, φA

k )φ
A
k ,

where 〈φA
k ; k ≥ 1〉 are orthonormal eigenfunctions of KA with positive summable eigen-

values 〈λA
k ; k ≥ 1〉. If A1 is the set where

∑
k λA

k |φA
k |2 < ∞, then μ(A \ A1) = 0 and∑

k λA
k φA

k ⊗ φA
k converges on A2

1, with sum μ2
A-a.e. equal to K. We normally redefine K

on a set of measure 0 to equal this sum. Such a K defines a determinantal point process iff
the integral operator K extends to all of L2(μ) as a positive contraction [39, 51, 26]. The
joint intensities determine uniquely the law of the point process [27, Lemma 4.2.6]. Poisson
processes are not determinantal processes, but when μ is continuous, they are distributional
limits of determinantal processes.

3.3. Construction. To see that a positive contraction defines a determinantal point process,
we first considerK that defines an orthogonal projection onto a finite-dimensional subspace,
H . Then K =

∑n
k=1 φk ⊗ φk for every orthonormal basis 〈φk ; k ≤ n〉 of H and ωH =∧n

i=1 φk is a unit multivector in the notation of Subsection 2.1. Because of (3.1), we have

1

n!

∫
det[K(xi, xj)]i,j≤n dμn(x1, . . . , xn) =

∥∥∥ n∧
k=1

φk

∥∥∥2 = 1 , (3.7)

i.e., det[K(xi, xj)]/n! is a density with respect to μn. Although in the discrete case, the
absolute squared coefficients of

∧n
k=1 φk give the elementary probabilities, now coefficients

are replaced by a function whose absolute square gives a probability density. As noted
already, (3.7) means that F �→ det(K�F ) is the n-point intensity function. In order to show
that this density gives a determinantal process with kernel K, we use the Cauchy-Binet
formula, which may be stated as follows: For k × n matrices a = [ai,j ] and b = [bi,j ] with
aJ := [ai,j ]i≤k

j∈J
, we have

det
(
[ai,j ][bi,j ]

T
)
=
∑
|J|=k

det aJ · det bJ =
∑

σ,τ∈Sym(k,n)
im(σ)=im(τ)

(−1)σ(−1)τ
k∏

i=1

ai,σ(i)bi,τ(i) ,

where im(σ) denotes the image of σ and the sums extend over all pairs of injections

σ, τ : {1, 2, . . . , k} � {1, 2, . . . , n} .
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Here, the sign (−1)σ of σ is defined in the usual way by the parity of the number of pairs
i < j for which σ(i) > σ(j). We have

ρk(x1, . . . , xk) =
1

(n − k)!

∫
En−k

det[K(xi, xj)] dμ
n−k(xk+1, . . . , xn)

=
1

(n − k)!

∫
En−k

∑
σ∈Sym(n)

(−1)σ
n∏

i=1

φσ(i)(xi) ·

·
∑

τ∈Sym(n)

(−1)τ
n∏

i=1

φτ(i)(xi) dμ
n−k(xk+1, . . . , xn) (3.8)

=
∑

σ,τ∈Sym(k,n)
im(σ)=im(τ)

(−1)σ(−1)τ
k∏

i=1

φσ(i)(xi)φτ(i)(xi)

= det
(
K�(x1, . . . , xk)

)
.

Here, the first equality uses (3.6), the second equality uses (3.1), the third equality uses
the fact that

∫
E

φσ(i)(xi)φτ(i)(xi) dμ(xi) is 1 or 0 according as σ(i) = τ(i) or not, and
the fourth equality uses Cauchy-Binet. Note that a factor of (n − k)! arises because for
every pair of injections σ1, τ1 ∈ Sym(k, n) with equal image, there are (n − k)! extensions
of them to permutations σ, τ ∈ Sym(n) with σ(i) = τ(i) for all i > k; in this case,
(−1)σ(−1)τ = (−1)σ1(−1)τ1 . We write PH for the law of the associated point process on
E.

Lemma 3.1. Let Xn ∼ PKn with Kn(x, x) ≤ f(x) for some f ∈ L1
loc(E, μ). Then

{PKn ; n ≥ 1} is tight and every weak limit point of Xn is simple.

Proof. By using the kernel Kn(x, y)/
√

f(x)f(y) with respect to the measure fμ, we may
assume that f ≡ 1. Tightness follows from

mP[Xn(A) ≥ m]≤E[Xn(A)]=

∫
A

Kn(x, x) dμ(x) .

For the rest, we may assume that E is compact and μ(E) = 1. Let X be a limit point of Xn.
Let μd be the atomic part of μ and μc := μ − μd. Choose m ≥ 1 and partition E into sets
A1, . . . , Am with μc(Ai) ≤ 1/m. Let A be such that μd(E \A) = 0 and μc(A) = 0. Let U
be open such that A ⊆ U and μc(U) < 1/m. Then

P[X is not simple] ≤ lim sup
n

(
P[Xn(U \ A) ≥ 1] +P[∃i Xn(Ai) ≥ 2]

)
≤ lim sup

n

(
E[Xn(U \ A)] +

∑
i

E[(Xn(Ai))2]
)

≤ μc(U) +
∑
i

μ(Ai)
2 < 2/m .

Now, given any locally trace-class orthogonal projectionK ontoH , choose finite-dimen-
sional subspaces Hn ↑H with corresponding projections Kn. Clearly Kn(x, y)→K(x, y)
μ2-a.e. and Kn(x, x) ≤ K(x, x) μ-a.e. Thus, the joint intensity functions converge a.e.
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By dominated convergence, if A ⊂ Ek \ Δk(E) is relatively compact and Borel, then
EHn [X(A)] → ∫

A
det(K�F ) dμk(F ). By uniform exponential moments ofX(A) [27, proof

of Lemma 4.2.6], it follows that all weak limit points of PHn are equal, and hence, by
Lemma 3.1, define PH with kernel K. (In Subsection 3.7, we shall see that 〈PHn ; n ≥ 1〉
is stochastically increasing.)

Finally, let K be any locally trace-class positive contraction. Define the orthogonal pro-
jection on L2(E, μ)⊕ L2(E, μ) whose block matrix is(

K
√

K(I − K)√
K(I − K) I − K

)
. (3.9)

Take an isometric isomorphism of L2(E, μ) to �2(E′) for some denumerable set E′ and
interpret the above as an orthogonal projection K ′ on L2(E, μ)⊕�2(E′). Then K ′ is clearly
locally trace-class andK is the compression ofK ′ toE. Thus, we definePK by intersecting
samples of PK′

with E. We remark that by writing K ′ as a limit of increasing finite-rank
projections that we then compress, we see thatPK may be defined as a limit of determinantal
processes corresponding to increasing finite-rank positive contractions.

Conjecture 3.2. If K is a locally trace-class positive contraction, then PK has trivial tail
in that every event in

⋂
compact A⊂E F (E \ A) is trivial.

3.4. Mixtures. Rather than using compressions as in the last paragraph above, an alterna-
tive approach to definingPK uses mixtures and starts from finite-rank projections, as in Sub-
section 2.5. This approach is due to [26]. Consider first a finite-rank K :=

∑n
j=1 λjφj ⊗φj .

Let Ij ∼ Bern(λj) be independent. Let H :=
⊕

j [Ijφj ]; thus, K = EPH. We claim that
PK := EPH is determinantal with kernel K. Indeed, it is clearly a simple point process.
Write ΦJ :=

∧
j∈J Ijφj , ψj :=

√
λjφj , and ψJ :=

∧
j∈J ψj . Let F ∈ Ek. Combin-

ing Cauchy-Binet with (3.1) yields det
(
K�F

)
= k!

∑
|J|=k |ψJ(F )|2. Similarly, the joint

intensities of EPH are the expectations of the joint intensities of PH, which equal

E
[
det(PH�F )

]
= E
[
k!
∑
|J|=k

|ΦJ(F )|2
]
= det

(
K�F

)
.

Essentially the same works for trace-class K =
∑∞

j=1 λjφj ⊗ φj ; we need merely take,
in the last step, a limit in the above equation as n → ∞ for Kn :=

∑n
j=1 λjφj ⊗ φj , since

all terms are non-negative and Kn → K a.e.
Given this construction ofPK for trace-classK, one can then constructPK for a general

locally trace-class positive contraction by defining its restriction to each relatively compact
set A via the trace-class compression KA.

As noted by [26], a consequence of the mixture representation is a CLT due originally to
[52]:

Theorem 3.3. Let Kn be trace-class positive contractions on spaces L2(En, μn). Let Xn ∼
PKn and write |Xn| := Xn(En). If Var

(|Xn|
)→ ∞ as n → ∞, then 〈|Xn| ; n ≥ 1〉 obeys

a CLT.

3.5. Simulation. In order to simulate PK when K is a trace-class positive contraction,
it suffices, by taking a mixture as above, to see how to simulate X ∼ PH when n :=
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dimH < ∞. The following algorithm [26, Algo. 18] gives a uniform random ordering of
X as 〈X1, . . . , Xn〉. Since E

[
X(E)

]
= n, the measure E[X]/n = n−1K(x, x) dμ(x) is

a probability measure on E. Select a point X1 at random from that measure. If n = 1,
then we are done. If not, then let H1 be the orthogonal complement in H of the func-
tion KX1

:=
∑n

k=1 φk(X1)φk ∈ H , where 〈φk ; k ≤ n〉 is an orthonormal basis for
H . Then dimH1 = n − 1 and we may repeat the above for H1 to get the next point,
X2, then H2 := H1 ∩ K⊥

X2
, etc. The conditional density of Xk+1 given X1, . . . , Xk is

(n−k)−1 det
(
K�(x,X1, . . . , Xk)

)
/ det

(
K�(X1, . . . , Xk)

)
by (3.5), i.e., (n−k)−1 times

the squared distance from Kx to the linear span of KX1 , . . . ,KXk
. It can help for rejection

sampling to note that this is at most (n−k)−1K(x, x). One can also sample faster by noting
that the conditional distribution of Xk+1 is the same as that of Pv, where v is a uniformly
random vector on the unit sphere of Hk.

3.6. Transference principle. Note that if N1, . . . , Nr are bounded N-valued random vari-
ables, then the function (k1, . . . , kr) �→ E

[∏r
j=1

(
Nj

)
kj

]
determines the joint distribution

of 〈Nj ; j ≤ r〉 since it gives the derivatives at (1, 1, . . . , 1) of the probability generating

function (s1, . . . , sr) �→ E
[∏r

j=1 s
Nj

j

]
.

Let us re-examine (3.4) in the context of a finite-rank K =
∑n

i=1 λiφi ⊗ φi. Given
disjoint A1, . . . , Ar ⊆ E and non-negative k1, . . . , kr summing to k, it will be convenient
to write κ(j) := min

{
m ≥ 1 ; j ≤∑m


=1 k

}
for j ≤ k. We have by Cauchy-Binet

EK
[ r∏

=1

(
X(A
)

)
k�

]
=

∫
∏r

�=1 A
k�
�

ρk dμk =

∫
∏r

�=1 A
k�
�

det(K�(x1, . . . , xk))

k∏
j=1

dμ(xj)

=

∫
∏r

�=1 A
k�
�

∑
σ,τ∈Sym(k,n)
im(σ)=im(τ)

(−1)σ(−1)τ
k∏

j=1

λσ(j)φσ(j)(xj)φτ(j)(xj)

k∏
j=1

dμ(xj)

=
∑

σ,τ∈Sym(k,n)
im(σ)=im(τ)

(−1)σ(−1)τ
k∏

j=1

∫
Aκ(j)

λσ(j)φσ(j)(xj)φτ(j)(xj) dμ(xj)

=
∑

σ,τ∈Sym(k,n)
im(σ)=im(τ)

(−1)σ(−1)τλim(σ)
k∏

j=1

(
1Aκ(j)

φσ(j), φτ(j)

)

=
∑

σ∈Sym(k,n)

(−1)σλim(σ) det
[(

1Aκ(j)
φσ(j), φ


)]
j≤k

∈im(σ)

.

As an immediate consequence of this formula, we obtain the following important princi-
ple of Goldman [21, Proposition 12] that allows one to infer properties of continuous deter-
minantal point processes from corresponding properties of discrete determinantal probability
measures:

Theorem 3.4. Let (E, μ) and (F, ν) be two Radon measure spaces on locally compact
Polish sets. Let 〈Ai〉 be pairwise disjoint Borel subsets of E and 〈Bi〉 be pairwise disjoint
Borel subsets of F . Let λk ∈ [0, 1] with

∑
k λk < ∞. Let 〈φk〉 be orthonormal in L2(E, μ)

and 〈ψk〉 be orthonormal in L2(F, ν). Let K :=
∑

k λkφk ⊗ φk and L :=
∑

k λkψk ⊗ ψk.
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If
(
1Ai

φj , φk

)
=
(
1Bi

ψj , ψk

)
for all i, j, k, then the PK-distribution of 〈X(Ai)〉 equals

the PL-distribution of 〈X(Bi)〉.
Proof. When only finitely many λk �= 0, this follows from our previous calculation. The
general case follows from weak convergence of the processes corresponding to the partial
sums, as in the paragraph following Lemma 3.1.

This permits us to compare to discrete measures via [21, Lemma 16]:

Lemma 3.5. Let μ be a Radon measure on a locally compact Polish space, E. Let 〈Ai〉
be pairwise disjoint Borel subsets of E. Let φk ∈ L2(E, μ) for k ≥ 1. Then there ex-
ists a denumerable set F , pairwise disjoint subsets 〈Bi〉 of F , and vk ∈ �2(F ) such that
(φj , φk) = (vj , vk) and

(
1Aiφj , φk

)
=
(
1Bivj , vk

)
for all i, j, k.

Proof. Without loss of generality, we may assume that
⋃

i Ai = E. For each i, fix an
orthonormal basis 〈wi,j ; j < ni〉 for the subspace of L2(E, μ) spanned by {1Aiφj}. Here,
ni ∈ N ∪ {∞}. Define Bi := {(i, j) ; j < ni} and F :=

⋃
i Bi. Let T be the isometric

isomorphism from the span of {wi,j ; i ≥ 1, j < ni} to �2(F ) that sends wi,j to 1{(i,j)}.
Defining vk := T (φk) yields the desired vectors.

3.7. Stochastic inequalities. We now show how the discrete models of Subsection 3.6 al-
low us to obtain the analogues of the stochastic inequalities known to hold for discrete de-
terminantal probability measures.

For a Borel set A ⊆ E, let F (A) denote the σ-field onN (E) generated by the functions
ξ �→ ξ(B) for Borel B ⊆ A. We say that a function that is measurable with respect to F (A)
is, more simply, measurable with respect to A. The obvious partial order on N (E) allows
us to define what it means for a function f : N (E) → R to be increasing. As in the discrete
case, we say that P has negative associations if E[f1f2] ≤ E[f1]E[f2] for every pair f1, f2
of bounded increasing functions that are measurable with respect to complementary subsets
of E. An event is increasing if its indicator is increasing. Then P has negative associations
iff

P(A1 ∩ A2) ≤ P(A1)P(A2) (3.10)

for every pairA1,A2 of increasing events that are measurable with respect to complementary
subsets of E.

We also say that P1 is stochastically dominated by P2 and write P1 � P2 if P1(A) ≤
P2(A) for every increasing event A.

Call an event elementary increasing if it has the form {ξ ; ξ(B) ≥ k}, where B is a
relatively compact Borel set and k ∈ N. Write U (A) for the closure under finite unions
and intersections of the collection of elementary increasing events with B ⊆ A; the notation
U is chosen for “upwardly closed”. Note that every event in U (A) is measurable with
respect to some finite collection of functions ξ �→ ξ(Bi) for pairwise disjoint relatively
compact Borel Bi ⊆ A. Write U (A) for the closure of U (A) under monotone limits, i.e.,
under unions of increasing sequences and under intersections of decreasing sequences; these
events are also increasing. This is the same as the closure of U (A) under countable unions
and intersections.

Lemma 3.6. Let A be a Borel subset of a locally compact Polish space, E. Then U (A) is
exactly the class of increasing Borel sets in F (A).



Determinantal probability 151

We give a proof at the end of this subsection. First, we derive two consequences. A
weaker version (negative correlations of elementary increasing events) of the initial one is
due to [20].

Theorem 3.7. Let μ be a Radon measure on a locally compact Polish space, E. Let K be a
locally trace-class positive contraction on L2(E, μ). Then PK has negative associations.

Proof. Let A ⊂ E be Borel. Let A1 ∈ U (A) and A2 ∈ U (E \ A). Then A1,A2 ∈ F (B)
for some compact B by definition of U (·). We claim that (3.10) holds for A1, A2, and
P = PKB , i.e., for P = PK .

Now A1 is measurable with respect to a finite number of functions ξ �→ ξ(Bi) for some
disjoint Bi ⊆ A ∩ B(1 ≤ i ≤ n) and A2 is measurable with respect to a finite number of
functions ξ �→ ξ(Ci) for some disjoint Ci ⊆ B \ A(1 ≤ i ≤ n). Thus, there are functions
g1 and g2 such that 1A1(ξ) = g1

(
ξ(B1), . . . , ξ(Bn)

)
and 1A2(ξ) = g2

(
ξ(C1), . . . , ξ(Cn)

)
.

By Theorem 3.4 and Lemma 3.5, there is some discrete determinantal probability measure
PQ on some denumerable set F and pairwise disjoint sets B′

i, C
′
i ⊆ F such that the joint

PKB -distribution of all X(Bi) and X(Ci) is equal to the joint PQ-distribution of all X(B′
i)

and X(C ′
i). Define the corresponding events A′

i by 1A′
1
(ξ) = g1

(
ξ(B′

1), . . . , ξ(B
′
n)
)
and

1A′
2
(ξ) = g2

(
ξ(C ′

1), . . . , ξ(C
′
n)
)
. Since A′

i depend on disjoint subsets of F , Theorem 2.10
gives that PQ(A′

1 ∩ A′
2) ≤ PQ(A′

1)P
Q(A′

2). This is the same as (3.10) by Theorem 3.4.
The same (3.10) clearly then holds in the less restrictive setting Ai ∈ U (A) by taking

monotone limits. Lemma 3.6 completes the proof.

Theorem 3.8 (Theorem 3 of [21]). Suppose that K1 and K2 are two locally trace-class
positive contractions such that K1 % K2. Then PK1 � PK2 .

Proof. It suffices to show that PK1(A) ≤ PK2(A) for every A ∈ U (E). Again, it suffices
to assume that Ki are trace class. Lemma 3.5 applied to all eigenfunctions of K1 and K2

yields a denumerable F and two positive contractions K ′
i on �2(F ), together with an event

A′, such thatPK′
i(A′) = PKi(A) for i = 1, 2. Furthermore, by construction, every function

in �2(F ) is the image of a function in L2(E) under the isometric isomorphism T used to
prove Lemma 3.5, whence K ′

1 % K ′
2. Therefore Theorem 2.9 yields PK′

1(A′) ≤ PK′
2(A′),

as desired.

Again, it would be very interesting to have a natural monotone coupling of PK1 with
PK2 . For some examples where this would be desirable, see Subsection 3.8.

Lemma 3.6 will follow from this folklore variant of a theorem of Dyck [16]:

Theorem 3.9. Let X be a Polish space on which ≤ is a partial ordering that is closed in
X ×X . Let U be a collection of open increasing sets that generates the Borel subsets of X .
Let U ∗ be the closure of U under countable intersections and countable unions. Suppose
that for all x, y ∈ X , either x ≤ y or there is U ∈ U and an open set V ⊂ X such that
x ∈ U , y ∈ V , and U ∩ V = ∅. Then U ∗ equals the class of increasing Borel sets.

Proof. Obviously every set in U ∗ is Borel and increasing. To show the converse, we prove
a variant of Lusin’s separation theorem. Namely, we show that if W1 ⊂ X is increasing and
analytic (with respect to the paving of closed sets, as usual) and if W2 ⊂ X is analytic with
W1 ∩ W2 = ∅, then there exists U ∈ U ∗ such that W1 ⊆ U and U ∩ W2 = ∅. Taking W1

to be Borel and W2 := X \ W1 forces U = W1 and gives the desired conclusion.
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To prove this separation property, we first show a stronger conclusion in a special case:
Suppose thatA1, A2 ⊂ X are compact such thatA1 is contained in an increasing setW1 that
is disjoint from A2; then there exists an open U ∈ U ∗ and an open V such that A1 ⊆ U ,
A2 ⊆ V , and U ∩ V = ∅. Indeed, since W1 is increasing, for every (x, y) ∈ A1 × A2, we
do not have that x ≤ y, whence by hypothesis, there exist Ux,y ∈ U and an open Vx,y with
x ∈ Ux,y , y ∈ Vx,y , and Ux,y ∩ Vx,y = ∅. Because A2 is compact, for each x ∈ A1, we
may choose y1, . . . , yn ∈ A2 such that A2 ⊆ Vx :=

⋃n
i=1 Vx,yi . Define Ux :=

⋂n
i=1 Ux,yi .

Then Ux is open, contains x, and is disjoint from Vx, whence compactness of A1 ensures the
existence of x1, . . . , xm ∈ A1 with A1 ⊆ U :=

⋃m
j=1 Uxj ∈ U ∗. Then V :=

⋂m
j=1 Vxj is

open, contains A2, and is disjoint from U , as desired.
To prove the general case, let π1 and π2 be the two coordinate projections on X2 =

X ×X . Define I(A) = I
(
π1(A)×π2(A)

)
for A ⊆ X2 to be 0 if there exists U ∈ U ∗ such

that π1(A) ⊆ U and U ∩ π2(A) = ∅; and to be 1 otherwise.
We claim that I is a capacity in the sense of [29, (30.1)]. It is obvious that I(A) ≤ I(B) if

A ⊆ B and it is simple to check that if A1 ⊆ A2 ⊆ · · · , then limn→∞ I(An) = I
(⋃

n An

)
.

Suppose for the final property thatA is compact and I(A) = 0; we must find an openB ⊇ A
for which I(B) = 0. There exists some W1 ∈ U ∗ with π1(A) ⊆ W1 and W1 ∩ π2(A) = ∅.
Then the result of the second paragraph yields sets U and V that giveB := U×V as desired.

Now let W1 and W2 be as in the first paragraph. If A ⊆ W1 × W2 is compact, then
setting Ai := πi(A) and applying the second paragraph shows that I(A) = 0. Thus, by the
Choquet capacitability theorem [29, (30.13)], I(W1 × W2) = 0.

Proof of Lemma 3.6. Clearly every set in U (A) is increasing and in F (A). For the con-
verse, endow A with a metric so that it becomes locally compact Polish while preserving its
class of relatively compact sets and its Borel σ-field: Choose a denumerable partition of A
into relatively compact sets Ai and make each one compact and of diameter at most 1; make
the distance between x and y be 1 if x and y belong to differentAi. LetX := N (A)with the
vague topology and let U be the class of elementary increasing events defined with respect
to (relatively compact) sets B ⊆ A that are open for this new metric. Apply Theorem 3.9.
Since U ∗ ⊆ U (A), the result follows.

3.8. Example: Orthogonal polynomial ensembles. Natural examples of determinantal
point processes arise from orthogonal polynomials with respect to a probability measure
μ on C. Assume that μ has infinite support and finite moments of all orders. Let Kn

denote the orthogonal projection of L2(C, μ) onto the linear span Polyn of the functions
{1, z, z2, . . . , zn−1}. There exist unique (up to signum) polynomials φk of degree k such
that for every n, 〈φk ; 0 ≤ k < n〉 is an orthonormal basis of Polyn. By elementary row
operations, we see that for variables (z1, . . . , zn), the map (z1, . . . , zn) �→ det[φi(zj)]i,j≤n

is a Vandermonde polynomial up to a constant factor, whence

det(Kn�{z1, . . . , zn}) = det[φi(zj)][φi(zj)]
∗ = cn

∏
1≤i<j≤n

|zi − zj |2

for some constant cn. Therefore, the density of PKn (with points randomly ordered) with
respect to μn is given by cn/n! times the square of a Vandermonde determinant.

Classical examples include the following:

OPE1. If μ is Gaussian measure on R, i.e., dμ(x) = (2π)−1/2e−x2/2 dx, then φk are the Her-
mite polynomials, cn =

(∏n−1
j=1 j!

)−1
, and PKn is the law of the Gaussian unitary
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ensemble, which is the set of eigenvalues of (M+M∗)/
√
2, whereM is an n×nma-

trix whose entries are independent standard complex Gaussian. (A standard complex
Gaussian random variable is the same as a standard Gaussian vector in R

2 divided by√
2 in order that the complex variance equal 1. Its density is π−1e−|z|

2

with respect
to Lebesgue measure on C.) This is due to Wigner; see [40].

OPE2. If μ is unit Lebesgue measure on the unit circle {z ; |z| = 1}, then φk(z) = zk,
so cn = 1, and PKn is the law of the circular unitary ensemble, which is the set
of eigenvalues of a random matrix whose distribution is Haar measure on the set of
n × n unitary matrices. This ensemble was introduced by Dyson, but the law of the
eigenvalues is due to Weyl; see [27].

OPE3. If μ is standard Gaussian measure on C, then φk(z) = zk/
√

k!, cn =
(∏n−1

j=1 j!
)−1

,
and PKn is the law of the nth (complex) Ginibre process, which is the set of eigen-
values of an n × n matrix whose entries are independent standard complex Gaussian.
This is due to Ginibre; see [27].

OPE4. If μ is unit Lebesgue measure on the unit disk D := {z ; |z| < 1}, then φk(z) =√
k + 1 zk, so cn = n!, and the limit of PKn is the law of the zero set of the random

power series whose coefficients are independent standard complex Gaussian, which
converges in the unit disk a.s. This is due to Peres and Virág [45].

OPE5. If μ has density z �→ nπ−1
(
1 + |z|2)−n−1

with respect to Lebesgue measure on C,

then φk(z) =
√(

n−1
k

)
zk for k < n, so cn =

∏n−1
j=1

(
n−1
j

)
, and PKn is the law of

the nth spherical ensemble, which is the set of eigenvalues of M−1
1 M2 when Mi are

independent n×nmatrices whose entries are independent standard complex Gaussian.
(Here, we are limited to Polyn since the larger spaces do not lie in L2(μ).) This is due
to Krishnapur [31]; see [27]. The process was studied earlier by [13] and [18], but
without observing the connection to eigenvalues. Inverting stereographic projection,
we identify this process with one whose density with respect to Lebesgue measure on
the unit sphere in R

3 is proportional to
∏

1≤i<j≤n ‖vi − vj‖2.
For additional information on such processes, see [50, 23, 47, 17]. For an extension to

complex manifolds, see [3, 4, 5].
By Theorem 3.8, the processesPKn stochastically increase in n for each of the examples

above except the last. It would be interesting to see natural monotone couplings. Perhaps
the last example also increases stochastically in n.

The Ginibre process is the limit of the nth Ginibre processes as n → ∞; it has the
kernel ezw̄ with respect to standard Gaussian measure on C. This process is invariant
under all isometries of C. For each of the plane, sphere, and hyperbolic disk, there is
only a 1-parameter family of determinantal point processes having a kernel K(z, w) that
is holomorphic in z and in w̄ and whose law is isometry invariant [31, Theorem 3.0.5].
For the sphere, that family has already been given above; the parameter is a positive in-
teger. For the other two families, the parameter is a positive real number, α. In the case
of the plane, the processes are related simply by homotheties, Mα : z �→ z/α. The push-
forward of the Ginibre process with respect to M√

α has kernel eαzw̄ with respect to the
measure απ−1e−α|z|2dμ(z), where μ is Lebesgue measure on C. Do these processes in-
crease stochastically in α, like Poisson processes do? In the hyperbolic disk, the processes
have kernel α(1−zw̄)−α−1 with respect to the measure π−1(1−|z|2)α−1dμ(z), where μ is
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Lebesgue measure on D. (We fix a branch of (1−z)−α−1 for z ∈ D.) These give orthogonal
projections onto the generalized Bergman spaces. The case α = 1 is that of the limiting
OPE4 above. Do these processes stochastically increase in α?

4. Completeness

Recall that when H is a finite-dimensional subspace of �2(E), the measure PH is supported
by those subsets B ⊆ E that project to a basis of H under PH . Similarly, when K is
the kernel of a finite-rank orthogonal projection onto H ⊂ L2(E, μ), define the functions
Kx := K(·, x) =∑k≥1 φk(x)φk ∈ H . Then the measure PK is supported by those ξ such
that 〈Kx ; x ∈ ξ〉 is a basis of H , since K(x, y) = (Ky, Kx). Here, x ∈ ξ means that
ξ({x}) = 1.

The question of extending this to infinite-dimensional H turns out to be very interesting.
A basis of a finite-dimensional vector space is a minimal spanning set. Although PHB
is PH -a.s. linearly independent, minimality does not hold in general, even for the wired
spanning forest of a tree, as shown by the examples in [24]. See also Corollary 4.5. However,
the other half of being a basis does hold in the discrete case and is open in the continuous
case.

4.1. Discrete completeness. Let [V ] be the closed linear span of V ⊆ �2(E).

Theorem 4.1 ([33]). For every H ≤ �2(E), we have [PHB] = H PH -a.s.

We give an application of Theorem 4.1 for E = Z, but it has an analogous statement for
every countable abelian group. Let T := R/Z be the unit circle equipped with unit Lebesgue
measure. For a measurable function f : T → C and n ∈ Z, the Fourier coefficient of f at
n is f̂(n) :=

∫
T
f(t)e−2πint dt. Let f̂�S denote the restriction of f̂ to S. If A ⊆ T is

measurable, we say S ⊆ Z is complete for A if the set {f1A ; f ∈ L2(T), f̂�(Z \ S) ≡ 0}
is dense in L2(A), where we identify L2(A) with the set of functions in L2(T) that vanish
outside A. The case where A is an interval is quite classical; see [46] for a review. A crucial
role in that case is played by the following notion of density of S.

Definition 4.2. For an interval [a, b] ⊂ R \ {0}, define its aspect

α
(
[a, b]
)
:= max

{|a|, |b|}/min
{|a|, |b|} .

For a discrete S ⊆ R, the Beurling-Malliavin density of S, denoted BM(S), is the supre-
mum of those D ≥ 0 for which there exist disjoint nonempty intervals In ⊂ R \ {0} with
|S ∩ In| ≥ D|In| for all n and

∑
n≥1[α(In)− 1]2 = ∞.

Corollary 4.3 ([33]). Let A ⊂ T be Lebesgue measurable with measure |A|. Then there
is a set of Beurling-Malliavin density |A| in Z that is complete for A. Indeed, let PA be
the determinantal probability measure on 2Z corresponding to the Toeplitz matrix (j, k) �→
1̂A(k − j). Then PA-a.e. S ⊂ Z is complete for A and has BM(S) = |A|.

When A is an interval, the celebrated theorem of Beurling and Malliavin [6] says that if
S is complete for A, then BM(S) ≥ |A|, and that if BM(S) > |A|, then S is complete for
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A. (This holds for S that are not necessarily sets of integers, but we are concerned in this
subsection only with S ⊆ Z.)

Corollary 4.3 can be compared (take T \ A and Z \ S) to a theorem of Bourgain and
Tzafriri [9], according to which there is a set S ⊂ Z of (Schnirelman) density at least 2−8|A|
such that if f ∈ L2(T) and f̂ vanishes off S, then

|A|−1

∫
A

|f(t)|2 dt ≥ 2−16‖f‖22 .

It would be interesting to find a quantitative strengthening of Corollary 4.3 that would en-
compass this theorem of [9].

The following theorem is equivalent to Theorem 4.1 by duality:

Theorem 4.4 ([33]). For every H ≤ �2(E), we have P[B]H = [B] PH -a.s.

As an example, consider the wired spanning forest of a graph, G. Here, H := �(G). In
this case, HB := P[B]�(G) = �(B) for B ⊆ E. Thus, the conclusion of Theorem 4.4 is
that PHF , which equalsWSFF, is concentrated on the singleton {F} forWSFG-a.e. F. This
was a conjecture of [2], established by [42].

Corollary 4.5. For every H ≤ �2(E), PH -a.s. the maps PH : [B] → H and P[B] : H →
[B] are injective with dense image.

Proof. Both statements are equivalent to [B] ∩ H⊥ = {0} = H ∩ B⊥, and these are the
contents of Theorems 4.1 and 4.4.

4.2. Continuous completeness. If K is a locally trace-class orthogonal projection onto H ,
then for h ∈ H , we have

h(x) = (Kh)(x) =

∫
E

K(x, y)h(y) dμ(y) =

∫
E

h(y)K(y, x) dμ(y) =
(
h, Kx

)
.

In other words, K is a reproducing kernel forH . A subset S ofH is called complete for H if
the closed linear span of S equals H; equivalently, the only element of H that is orthogonal
to S is 0.

An analogue of Theorem 4.1 was conjectured by Lyons and Peres in 2010:

Conjecture 4.6. If K is a locally trace-class orthogonal projection onto H , then for PK-a.e.
X, [{Kx ; x ∈ X}] = H , i.e., if h ∈ H and h�X = 0, then h ≡ 0.

Just as in the discrete case, this appears to be on the critical border for many special
instances, as we illustrate for several processes where E = C:

1. Let μ be Lebesgue measure on R and K(x, y) := sinπ(x− y)/
(
π(x− y)

)
, the sine-

kernel process. Denote the Fourier transform on R by f̂(t) :=
∫
R
f(x)e−2πitx dx for

f ∈ L1(R), and, by isometric extension, for f ∈ L2(R). Write I := 1[−1/2,1/2].

Since K(x, 0) = Î(x), we have (Kf)(x) =
(
f ∗ Î

)
(x) = ̂̌fI(x), where f̌ is the

inverse Fourier transform of f . Therefore, the induced operator K arises from the
orthogonal projection onto the Paley-Wiener space {f ∈ L2(R, μ) ; f̌(t) = 0 if |t| >
1/2}. The sine-kernel process arises frequently; e.g., it is various scaling limits of the
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nth Gaussian unitary ensemble “in the bulk” as n → ∞. (A related scaling limit of
the GUE is Wigner’s semicircle distribution.) We may more easily interpret Conjec-
ture 4.6 for Fourier transforms of functions in L2[−1/2, 1/2]: It says that for PK-a.e.
X, the only h ∈ L2[−1/2, 1/2] such that ĥ�X = 0 is h ≡ 0. Although the Beurling-
Malliavin theorem applies, no information can be deduced because BM(X) = 1 a.s.
However, Ghosh [20] has proved this case.

2. Let μ be standard Gaussian measure on C and K(z, w) := ezw̄. This is the Gini-
bre process. It corresponds to orthogonal projection onto the Bargmann-Fock space
B2(C) consisting of the entire functions that lie in L2(C, μ); this is the space of power
series

∑
n≥0 anz

n such that
∑

n n!|an|2 < ∞. Completeness of a set of elements{
eλz ; λ ∈ Λ

} ⊂ B2(C) in B2(C) is equivalent to completeness in L2(R) (with
Lebesgue measure) of the Gabor system of windowed complex exponentials{

t �→ exp
[− i Imλt − (t − Reλ)2

]
; λ ∈

√
2Λ
}

,

which is used in time-frequency analysis of non-band-limited signals. The equivalence
is proved using the Bargmann transform

f �→
(
z �→ π−1/4

∫
R

f(t) exp
[√

2tz − z2

2
− t2

2

]
dt
)
,

which is an isometry from L2(R) toB2(C). That the critical density is 1 was shown in
various senses going back to von Neumann; see [14]. This case has also been proved
by Ghosh [20].

3. Let μ be unit Lebesgue measure on the unit disk D := {z ; |z| < 1} and K(z, w) :=(
1 − zw̄

)−2
. This process is the limiting OPE4 in Subsection 3.8. It corresponds

to orthogonal projection onto the Bergman space A2(D) consisting of the analytic
functions that lie in L2(D, μ). What is known about the zero sets of functions in the
Bergman space [15] is insufficient to settle Conjecture 4.6 in this case and it remains
open.

The two instances above that have been proved by Ghosh [20] follow from his more
general result that Conjecture 4.6 holds whenever μ is continuous and PK is rigid, which
means that X(B) is measurable with respect to the PK-completion of F (E \ B) for every
ball B ⊂ E. The limiting process OPE4 is not rigid [25]. Ghosh and Krishnapur (personal
communication, 2014) have shown that PK is rigid only if K is an orthogonal projection.
It is not sufficient that K be a projection, as the example of the Bergman space shows. A
necessary and sufficient condition to be rigid is not known.

Let K be a locally trace-class orthogonal projection onto H ≤ L2(E, μ). For a function
f , write fK for the function f(x)/

√
K(x, x). Let X ∼ PK . Clearly fK�X ∈ �2(X) for a.e.

X. Also, for h ∈ H , the function hK is bounded. A conjecture analogous to Corollary 4.5 is
that X is a sort of set of interpolation for H in the sense that given any countable dense set
H0 ⊂ H , for a.e. X, the set {hK�X ; h ∈ H0} is dense in �2(X).

One may also ask about completeness for appropriate Poisson point processes.
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5. Discrete invariance

Suppose Γ is a group that acts on E and that K is Γ-invariant, i.e., K(γx, γy) = K(x, y)
for all γ ∈ Γ, x ∈ E, and y ∈ E. (This is equivalent to the operator K being Γ-equivariant.)
Then the probability measure PK is Γ-invariant. This contact with ergodic theory and other
areas of mathematics suggests many interesting questions. Lack of space prevents us from
considering more than just a few aspects of the case where E is discrete and from giving all
definitions.

5.1. Integer lattices. Let E := Γ := Z
d. In this case, K is invariant iff K(m,n) =

f̂(n − m) for some f : Td → [0, 1], where f̂(n) :=
∫
Td f(t)e−2πin·t dt. We write Pf in

place of PK . Some results and questions from [37] follow.

Theorem 5.1. For all f , the process Pf is isomorphic to a Bernoulli process.

This was shown in dimension 1 by [49] for those f such that
∑

n≥1 n|f̂(n)|2 < ∞ by
showing that those Pf are weak Bernoulli (WB), also called “β-mixing” and “absolutely
regular”. Despite its name, it is known that WB is strictly stronger than Bernoullicity. The
precise class of f for which Pf is WB is not known.

As usual, the geometric mean of a nonnegative function f is GM(f) := exp
∫
log f .

Theorem 5.2. For all f , the process Pf stochastically dominates product measure PGM(f)

and is stochastically dominated by product measure P1−GM(1−f). These bounds are optimal.

We conjecture that (Kolmogorov-Sinai) entropy is concave, as would follow from Con-
jecture 2.6.

Conjecture 5.3. For all f and g, we have H
(
P(f+g)/2

) ≥ (H(Pf ) + H(Pg)
)
/2.

Question 5.4. Let f : T → [0, 1] be a trigonometric polynomial of degree m. Then Pf is m-
dependent, as are all (m+1)-block factors of independent processes. Is Pf an (m+1)-block
factor of an i.i.d. process? This is known when m = 1 [10].

5.2. Sofic groups. Let Γ be a sofic group, a class of groups that includes all finitely gen-
erated amenable groups and all finitely generated residually amenable groups. No finitely
generated group is known not to be sofic. Let E be Γ or, more generally, a set acted on by Γ
with finitely many orbits, such as the edges of a Cayley graph of Γ. The following theorems
are from [38].

Theorem 5.5. For every Γ-equivariant positive contraction Q on �2(E), the process PQ is
a d̄-limit of finitely dependent (invariant) processes. If Γ is amenable and E = Γ, then PQ

is isomorphic to a Bernoulli process.

Even if P1 and P2 are Γ-invariant probability measures on 2Γ with P1 � P2, there
need not be a Γ-invariant monotone coupling ofP1 andP2 [41]. The proof of the preceding
theorem depends on the next one:

Theorem 5.6. If Q1 and Q2 are two Γ-equivariant positive contractions on �2(E) with
Q1 % Q2, then there exists a Γ-invariant monotone coupling of PQ1 and PQ2 .
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The proof of Theorem 5.5 also uses the inequality

d̄
(
PQ,PQ′) ≤ 6 · 32/3‖Q − Q′‖1/31

for equivariant positive contractions, Q and Q′, where ‖T‖1 := tr(T ∗T )1/2 is the Schatten
1-norm. When Q and Q′ commute, one can improve this bound to

d̄(PQ,PQ′
) ≤ ‖Q − Q′‖1 .

We do not know whether this inequality always holds.
Write FK(Q) := exp tr log |Q| for the Fuglede-Kadison determinant of Q when Q is a

Γ-equivariant operator. The following would extend Theorem 5.2. It is open even for finite
groups.

Conjecture 5.7. For all Γ-equivariant positive contractions Q on �2(Γ), the process PQ

stochastically dominates product measure PFK(Q)I and is stochastically dominated by prod-
uct measure PI−FK(I−Q)I , and these bounds are optimal.

5.3. Isoperimetry, cost, and �2-Betti numbers. It turns out that the expected degree of a
vertex in the free uniform spanning forest of a Cayley graph depends only on the group, via
its first �2-Betti number, β1(Γ), and not on the generating set used to define the Cayley graph
[34]:

Theorem 5.8. In every Cayley graph G of a group Γ, we have

EFSF(G)[degF(o)] = 2β1(Γ) + 2 .

This is proved using the representation of FSF as a determinantal probability measure. It
can be used to give a uniform bound on expansion constants [36]:

Theorem 5.9. For every finite symmetric generating set S of a group Γ, we have |SA \ A| >
2β1(Γ)|A| for all finite non-empty A ⊂ Γ.

There are extensions of these results to higher-dimensional CW-complexes and higher
�2-Betti numbers [34].

In unpublished work with D. Gaboriau [35], we have shown the following:

Theorem 5.10. Let G be a Cayley graph of a finitely generated group Γ and ε > 0.
Then there exists a Γ-invariant finitely dependent determinantal probability measure PQ

on {0, 1}E(G) that stochastically dominates FSFG and such that

EQ
[
degS(o)

] ≤ EFSF

[
degF(o)

]
+ ε .

In addition, if Γ is sofic, then d̄(PQ,FSF) ≤ ε.

If it could be shown that PQ, or indeed every invariant finitely dependent probability
measure that dominates FSF, yields a connected subgraph a.s., then it would follow that
β1(Γ) + 1 is equal to the cost of Γ, a major open problem of [19].

Acknowledgments. Partially supported by NSF grant DMS-1007244. I am grateful to
Alekos Kechris for informing me of Theorem 3.9; the proof given seems to be due to Alain
Louveau. I thank Norm Levenberg for references.
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Rough paths, signatures and the modelling of
functions on streams

Terry Lyons

Abstract. Rough path theory is focused on capturing and making precise the interactions between
highly oscillatory and non-linear systems. The techniques draw particularly on the analysis of LC
Young and the geometric algebra of KT Chen. The concepts and theorems, and the uniform estimates,
have found widespread application; the first applications gave simplified proofs of basic questions
from the large deviation theory and substantially extending Ito’s theory of SDEs; the recent applica-
tions contribute to (Graham) automated recognition of Chinese handwriting and (Hairer) formulation
of appropriate SPDEs to model randomly evolving interfaces. At the heart of the mathematics is the
challenge of describing a smooth but potentially highly oscillatory and vector valued path xt parsimo-
niously so as to effectively predict the response of a nonlinear system such as dyt = f(yt)dxt, y0 = a.
The Signature is a homomorphism from the monoid of paths into the grouplike elements of a closed
tensor algebra. It provides a graduated summary of the path x. Hambly and Lyons have shown that
this non-commutative transform is faithful for paths of bounded variation up to appropriate null mod-
ifications. Among paths of bounded variation with given Signature there is always a unique shortest
representative. These graduated summaries or features of a path are at the heart of the definition of
a rough path; locally they remove the need to look at the fine structure of the path. Taylor’s theorem
explains how any smooth function can, locally, be expressed as a linear combination of certain special
functions (monomials based at that point). Coordinate iterated integrals form a more subtle algebra of
features that can describe a stream or path in an analogous way; they allow a definition of rough path
and a natural linear “basis” for functions on streams that can be used for machine learning.

Mathematics Subject Classification (2010). 93C15, 68Q32, 60H10, 34F05, 60H15.

Keywords. Rough paths, regularity structures, machine learning, functional regression, numerical
approximation of parabolic PDE, shuffle product, tensor algebra.

1. A path or a text?

The mathematical concept of a path embraces the notion of an evolving or time ordered
sequence of events, parameterised by a continuous variable. Our mathematical study of these
objects does not encourage us to think broadly about the truly enormous range of “paths” that
occur. This talk will take an analyst’s perspective, we do not expect to study a particular path
but rather to find broad brush tools that allow us to study a wide variety of paths - ranging
form very “pure” mathematical objects that capture holonomy to very concrete paths that
describe financial data. Our goal will be to explain the progress we have made in the last
50 years or so in describing such paths effectively, and some of the consequences of these
developments.
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Let us start by noting that although most mathematicians would agree on a definition of
a path, most have a rather stereotyped and limited imagination about the variety of paths
that are “in the wild”. One key observation is that in most cases we are interested in paths
because they represent some evolution that interacts with and influences some wider system.
Another is that in most paths, in standard presentations, the content and influence are locked
into complex multidimensional oscillations.

The path in the figure is a piece of text. Each character in the text is encoded using ascii
as a byte of 8 bits, each byte is represented as four letters of two bits, each two bit letter
is represented by a line from the centre to one of the four corners of a square (for visial
reasons the centre of this square is dispaced slightly to create a loop). The text can easily be
represented in other ways, perhaps in different font or with each character as a bitmap. Each
stream has broadly the same effect on a coarse scale although the detailed texture is perhaps
a bit different.

2. Financial data or a semimartingale

One important source of sequential data comes from financial markets. An intrinsic fea-
ture of financial markets is that they are high dimensional but there is a strong notion of
sequencing of events. Buying with future knowledge is forbidden. Much of the information
relates to prices, and one of the radical successes of applied mathematics over the last 20-
30 years came out of the approximation of price processes by simple stochastic differential
equations and semimartingales and the use of Itô’s calculus. However, modern markets are
not represented by simple price processes. Most orders happen on exchanges, where there
are numerous bids, offers, and less commonly, trades. Much activity in markets is concerned
with market making and the provision of liquidity; decisions to post to the market are based
closely on expectation of patterns of behaviour, and most decisions are somewhat distant
from any view about fundamental value. If one is interested in alerting the trader who has a
bug in his code, or understanding how to trade a large order without excessive charges then
the semi-martingale model has a misplaced focus.
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Figure 2.1. A snapshot of level one order book data

The data in the Figure 2.1 is a snapshot of the level one order book showing activity on
a market for oil futures over 500 changes (roughly a 15 minute period). One can see the bid
and offer prices changing, although trades happen (and so the last executed price changes)
much less frequently. It is questionable whether a semi-martingale model for prices can
capture this rich structure effectively.

3. Paths - simply everywhere - evolving systems

Informally, a stream is a map γ from a totally ordered set I to some state space, where we are
interested in the effect (or transformation of state) this stream achieves. As we have noted the
same stream of information can admit different representations with different fidelity. When
the totally ordered set I is an interval and there are reasonable path properties (e.g. such
as right continuity) we will call the stream a path. Nonetheless, many interesting streams
are finite and discrete. There are canonical and informative ways to convert them [10] to
continuous paths.

It is worth noting that, even at this abstract level, there are natural mathematical oper-
ations and invariances that are applied to a stream. One can reparameterise the speed at
which one examines the stream and simultaneously the speed at which one looks at the ef-
fects. One can split a stream into two or more segments (a coproduct). One can sub-sample
a stream. In general we will focus on those streams which are presented in a way where
such sub-sampling degrades the information in the stream gradually. One can also merge or
interleave discrete streams according to their time stamps if the totally ordered sets I , I ′can
be interleaved. All of these properties are inherited for the properties of totally ordered sets.
If the target “effect” or state space is linear there is also the opportunity to translate and so
concatenate streams or paths [15] and so get richer algebraic structures. One of the most
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interesting and economically important questions one can ask about a stream is how to sum-
marise (throw away irrelevant information) so as to succinctly capture its effects. We give a
few examples in Table 3.1.

text schoolchild precis
sound audio engineer faithful perception

web page search provider interest for reader
web click history advertiser effective ad placement
Brownian path numerical analysis effective simulation
rough paths analyst RDEs

Table 3.1. Examples of contexts where streams are summarised while retaining their essence.

What is actually quite surprising is that there is a certain amount of useful work one can
do on this problem that does not depend on the nature of the stream or path.

4. A simple model for an interacting system

We now focus on a very specific framework where the streams are maps from a real interval,
that we will intuitively refer to as the time domain, into an a Banach space that we will refer
to as the state space. We will work with continuous paths in continuous time but, as we
mentioned, there are canonical ways to embed discrete tick style data into this framework
using the Hoff process and in financial contexts this is important. There is also a more
general theory dealing with paths with jumps [Williams, Simon].

4.1. Controlled differential equations. A path is a map γ from an interval J = [J−, J+]
into a Banach space E. The dimension of E may well be finite, but we allow for the possi-
bility that it is not. It has bounded (p-)variation if

sup
...ui<ui+1...∈[J−,J+]

∑
i

∥∥γui+1
− γu
∥∥ < ∞

sup
...ui<ui+1...∈[J−,J+]

∑
i

∥∥γui+1 − γu
∥∥p < ∞

where p ≥ 1 In our context the path γ is controlling the system, and we are interested in its
effect as measured by y and the interactions between γ and y. It would be possible to use
the theory of rough paths to deal with the internal interactions of autonomous and “rough”
systems, one specific example of deterministic McKean Vlasov type is [4].

Separately there needs to be a space F that carries the state of the system and a family of
different ways to evolve. We represent the dynamics on F through the space Ω (F ) of vector
fields on F. Each vector field provides a different way for the state to evolve. We connect
this potential to evolve the state in F to the control γ via a linear map

V : E
linear→ Ω (F ) .

Immediately we can see the controlled differential equation

dyt = V (yt) dγt, yJ− = a
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πJ

(
yJ−
)

:= yJ+

provides a precise framework allowing for the system y to respond to γ according to the
dynamics V . We call such a system a controlled differential equation.

The model of a controlled differential equation is a good one. Many different types of
object can be positioned to fit the definition. Apart from the more obvious applied examples,
one can view a finite automata (in computer science sense) and the geometric concept of
lifting a path along a connection as producing examples.

There are certain apparently trivial properties that controlled differential equations and
the paths that control them have; none the less they are structurally essential so we mention
them now.

Lemma 4.1 (Reparameterisation). If τ : I → J is an increasing homeomorphism, and if

dyt = V (yt) dγt, yJ− = a,

then the reparameterised control produces the reparameterised effect:

dyτ(t) = V
(
yτ(t)
)
dγτ(t), yτ(I−) = a.

Lemma 4.2 (Splitting). Let πJ be the diffeomorphism capturing the transformational effect
of γ|J . Let t ∈ J . Then πJ can be recovered by composing the diffeomorpisms π[J−,t],
π[t,J+] associated with splitting the interval J at t and considering the composing the effect
of γ|

[J−,t]
and γ|[t,J+] separately:

π[t,J+]π[J−,t] = πJ .

In this way we see that, assuming the vector fields were smooth enough to solve the dif-
ferential equations uniquely and for all time, a controlled differential equation is a homomor-
phism from the monoid of paths with concatenation into the diffeomorphisms/transformations
of the state space. By letting π act as an operator on functions we see that every choice of V
defines a representation of the monoid of paths in E

Remark 4.3 (Subsampling). Although there is a good behaviour with respect to sub-sampling,
which in effect captures and quantifies the numerical analysis of these equations, it is more
subtle and we do not make it explicit here.

Remark 4.4. Fixing V , restricting γ to smooth paths on [0, 1] and considering the solutions y
with y0 = a, generically the closure of the set of pairs (γ, y) in the uniform topology is NOT
the graph of a map; γ → y is not closable and so is not well defined as a (even an unbounded
and discontinuous) function in the space of continuous paths. Different approximations lead
to different views as to what the solution should be.

4.2. Linear controlled differential equations. Where the control γ is fixed and smooth,
the state space is linear, and all the vector fields are linear, then the space of responses y, as
one varies the starting location a, is a linear space and π[S,T ] : a = yS → yT is a linear
automorphism. This case is essentially Cartan’s development of a path in a Lie Algebra into
a path in the Lie Group starting at the identity. From our point of view it is a very important
special case of our controlled differential equations; it reveals one of the key objects we want
to discuss in this paper.
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Suppose F is a Banach space, and A is a linear map E → HomR (F, F ) and that γt is a
path in E. Consider the linear differential equation

dyt = Aytdγt.

By iterating using Picard iteration one obtains

yJ+ =

⎛
⎜⎝ ∞∑

n=0

An

∫
· · ·
∫

J−≤u1≤...≤un≤J+

dγu1 ⊗ . . . ⊗ dγun

⎞
⎟⎠ y0

The Signature of γ over the interval J = [J−, J+]

Definition 4.5. The Signature S of a bounded variation path (or more generally a weakly
geometric p-rough path) γ over the interval J = [J−, J+] is the tensor sequence

S (γ|J) :=
∞∑

n=0

∫
· · ·
∫

u1≤...≤un∈Jn

dγu1
⊗ . . . ⊗ dγun

∈
∞⊕

n=0

E⊗n

It is sometimes written S (γ)J or S (γ)J−,J+
.

Lemma 4.6. The path t → S (γ)0,t solves a linear differential equation controlled by γ.

Proof. The equation is the universal non-commutative exponential:

dS0,t = S0,t ⊗ dγt.

S0,0 = 1

The solution to any linear equation is easily expressed in terms of the Signature

dyt = Aytdγt

y
J+

=

( ∞∑
0

AnSn
J

)
y
J− (4.1)

πJ =
∞∑
0

AnSn
J

and we will see in the next sections that this series converges very well and even the first few
terms in S are effective in describing the response yT leading to the view that γ|J → S (γ|J)
is a transform with some value. The use of S to describe solutions to linear controlled
differential equations goes back at least to Chen, and Feynman. The magic is that one can
estimate the errors in convergence of the series (4.1) without detailed understanding of γ or
A.
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5. Remarkable estimates (for p > 1)

It seems strange, and even counter intuitive, that one should be able to identify and abstract a
finite sequence of features or coefficients describing γ adequately so that its effect on a broad
range of different systems could be accurately predicted without detailed knowledge of the
system A or the path γ - beyond those few coefficients. But that is the truth of it, there are
easy uniform estimates capturing the convergence of the series (4.1) based entirely on the
length (or more generally p-rough path variation) of the control and the norm of A as a map
from E to the linear vector fields on F .

Lemma 5.1. If γ is a path of finite variation on J with length |γJ | < ∞, then

Sn
J : =

∫
· · ·
∫

u1≤...≤un∈Jn

dγu1
⊗ . . . ⊗ dγun

≤ |γJ |n
n!

giving uniform error control∥∥∥∥∥∥∥yJ+ −
N−1∑
0

An

∫
· · ·
∫

J−≤u1≤...≤un≤J+

dγu1 ⊗ . . . ⊗ dγuny0

∥∥∥∥∥∥∥ ≤
( ∞∑

n=N

‖A‖n |γJ |n
n!

)
‖y0‖ .

Proof. Because the Signature of the path always solves the characteristic differential equa-
tion it follows that one can reparameterise the path γ without changing the Signature of γ.
Reparameterise γ so that it is defined on an interval J of length |γ| and runs at unit speed.
Now there are n! disjoint simplexes inside a cube obtained by different permuted rankings
of the coordinates and thus

‖Sn
J ‖ : =

∥∥∥∥∥∥
∫

· · ·
∫

u1≤...≤un∈Jn

dγu1
⊗ . . . ⊗ dγun

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∫

· · ·
∫

u1≤...≤un∈Jn

γ̇u1
⊗ . . . ⊗ γ̇un

du1 . . . dun

∥∥∥∥∥∥
=

∫
· · ·
∫

u1≤...≤un∈Jn

‖γ̇u1
⊗ . . . ⊗ γ̇un

‖ du1 . . . dun

=

∫
· · ·
∫

u1≤...≤un∈Jn

du1 . . . dun

=
|γJ |n
n!

.

from which the second estimate is clear.

The Poisson approximation of a normal distribution one learns at high school ensures
that the estimates on the right become very sharply estimated in terms of λ → ∞ and pretty
effective as soon as N ≥ ‖A‖ |γJ |+ λ

√‖A‖ |γJ |.
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Remark 5.2. The uniform convergence of the series

N−1∑
n=0

An

∫
· · ·
∫

J−≤u1≤...≤un≤J+

dγu1
⊗ . . . ⊗ dγun

y0

and the obvious continuity of the terms of the series in the inputs (A, γ, y0) guarantees that
the response yT is jointly continuous (uniform limits of continuous functions are continuous)
in (A, γ, y0) where γ is given the topology of 1-variation (or any of the rough path metrics).
It is already the case that

γ →
∫

· · ·
∫

J−≤u1≤u2≤J+

dγu1 ⊗ dγu2

fails the closed graph property in the uniform metric.

6. The Log signature

It is easy to see that the Signature of a path segment actually takes its values in a very
special curved subspace of the tensor algebra. Indeed, Chen noted that the map S is a
homomorphism of path segments with concatenation into the algebra, and reversing the path
segment produces the inverse tensor. As a result one sees that the range of the map is closed
under multiplication and has inverses so it is a group (inside the grouplike elements) in the
tensor series. It is helpful to think of the range of this Signature map as a curved space in
the tensor series. As a result there is a lot of valuable structure. One important map is the
logarithm; it is one to one on the group and provides a flat parameterisation of the group in
terms of elements of the free Lie series.

Definition 6.1. If γt ∈ E is a path segment and S is its Signature then

S = 1 + S1 + S2 + . . . ∀i, Si ∈ E⊗i

log (1 + x) = x − x2/2 + . . .

logS =
(
S1 + S2 + . . .

)− (S1 + S2 + . . .
)2

/2 + . . .

The series logS =
(
S1 + S2 + . . .

) − (S1 + S2 + . . .
)2

/2 + . . . which is well defined, is
referred to as the log Signature of γ.

Because the space of tensor series T ((E)) :=
⊕∞

0 E⊗n is a unital associative algebra
under ⊗,+ it is also a Lie algebra, and with [A,B] := A ⊗ B − B ⊗ A.

Definition 6.2. There are several canonical Lie algebras associated to T ((E)); we use the
notation L (E) for the algebra generated by E (the space of Lie polynomials), L(n) (E)
the projection of this into T (n) (E) = T ((E)) /

⊕∞
n+1 E⊗m (the Lie algebra of the free

nilpotent group Gn of n steps) and L ((E)) the projective limit of the L(n) (E) (the Lie
Series).

Because we are working in characteristic zero, we may take the exponential, and this
recovers the Signature, so no information is lost. A key observation of Chen [6]was that if
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γ is a path segment then logS (γ) ∈ L ((E)). The map from paths [8, 23]to L(n) (E) via
the projection πn : T ((E)) → T (n) (E) is onto. Up to equivalence under a generalised
notion of reparameterisation of paths known as treelike equivalence, the map from paths γ
of finite length in E to their Signatures S (γ) ∈ T ((E)) or log-Signatures logS ∈ L ((E))
is injective [15]. Treelike equivalence is an equivalence relation on paths of finite variation,
each class has a unique shortest element, and these tree reduced paths form a group. How-
ever the range of the log-Signature map in L ((E)), although well behaved under integer
multiplication is not closed under integer division [21] and so the Lie algebra of the group of
tree reduced paths is well defined but not a linear space; it is altogether a more subtle object.

Implicit in the definition of a controlled differential equation

dyt = f (yt) dγt, y0 = a

is the map f . This object takes an element e ∈ E and an element y ∈ F and produces a
second vector in F , representing the infinitesimal change to the state y of the system that
will occur if γ is changed infinitesimally in the direction e. This author is clear that the best
way to think about f is as a linear map from the space E into the vector fields on F . In this
way one can see that the integral of f along γ in its simplest form is a path in the Lie algebra
and that in solving the differential equation we are developing that path into the group. Now,
at least formally, the vector fields are a Lie algebra (for the diffemorphisms of F) and subject
to the smoothness assumptions we can take Lie brackets to get new vector fields. Because
L ((E)) is the free Lie algebra over E (Chapter II, [2]) any linear map f of E into a Lie
algebra g induces a unique Lie map extension f∗ to a Lie map from L ((E)) to g. This map
can be readily implemented and is well defined because of the abstract theory

e → f (e) a vector field
e1e2 − e2e1 → f (e1) f (e2)− f (e2) f (e1) a vector field

f̃ : L(n) (E) → vector fields.

although in practice one does not take the map to the full projective limit.

7. The ODE method

The linkage between truncations of the log-Signature in L ((E)) and vector fields on Y is a
practical one for modelling and understanding controlled differential equations. It goes well
beyond theory and underpins some of the most effective and stable numerical approaches
(and control mechanisms) for translating the information in the control γ into information
about the response.

If dyt = f (yt) dγt, and yJ− = a then how can we use the first few terms of the (log-)
Signature of γ to provide a good approximation to yJ+? We could use picard iteration, or
better an euler method based on a Taylor series in terms of the Signatures. Picard iteration for
exp z already illustrates one issue. Picard interation yields a power series as approximation
- fine if z = 100,but awful if x = −100. However, there is a more subtle problem to do
with stability that almost all methods based on Taylor series have - stability - they can easily
produce approximations that are not feasible. These are aggravated in the controlled case
because of the time varying nature of the systems. It can easily happen that the solutions
to the vector fields are hamiltonian etc. The ODE method uses the first few terms of the
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Signature to construct a time invariant ODE (vector field) that if one solves it for unit time, it
provides an approximation to the desired solution. It pushes the numerics back onto state of
the art ODE solvers. Providing the ODE solver is accurate and stable then the approximation
to y will also be. One can use symplectic solvers etc. At the level of rough paths, the
approximation is obtained by replacing the path γ with a new rough path γ̂ (a geodesic
in the nilpotent group Gn) with the same first few terms in the Signature; this guarantees
the feasibility of the approximations. Today, rough path theory can be used to estimate the
difference between the solution and the approximation in terms of the distance between γ
and γ̂ even in infinite dimensions.[5][3]

Remark 7.1. A practical numerical scheme can be built as follows.

1. Describe γ over a short interval J in terms of first few terms of logS
(
γ[J−,J+]

)
ex-

pressed as a linear combination of terms of a fixed hall basis:

logSJ = l1 + l2 + . . . ∈ L ((E))

l(n) = πn (logSJ) = l1 + . . . + ln ∈ L(n) (E)

l1 =
∑
i

λiei

l2 =
∑
i<j

λij [ei, ej ] ,

. . .

and use this information to produce a path dependent vector field V = f̃
(
l(n)
)
.

2. Use an appropriate ODE solver to solve the ODE ẋt = V (xt), where x0 = yJ− .
A stable high order approximation to yJ+

is given by xJ+
.

3. Repeat over small enough time steps for the high order approximations to be effective.

4. The method is high order, stable, and corresponding to replacing γ with a piecewise
geodesic path on successively finer scales.

8. Going to rough paths

As this is a survey, we have deliberately let the words rough path enter the text before they are
introduced more formally. Rough path theory answers the following question. Suppose that
γ is a smooth path but still on normal scales, a highly rough and oscillatory path. Suppose
that we have some smooth system f . Give a simple metric on paths γ and a continuity
estimate that ensures that if two paths that are close in this metric then their responses are
quantifiably close as well. The estimate should only depend on f through its smoothness.
There is such a theory [20], and a family of rough path metrics which make the function
γ → y uniformly continuous. The completion of the smooth paths γ under these metrics are
the rough paths we speak about. The theory extends to an infinite dimensional one and the
estimates are uniform in a way that does not depend on dimension.

There are many sources for this information on rough paths for different kinds of audi-
ence and we do not repeat that material. We have mentioned that two smooth paths have
quantifiable close responses to a smooth f over a fixed time interval if the first terms in the
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Signature agree over this time interval. We can build this into a metric:

dp (γ|J , γ̂|J) = sup
J−≤u1≤...≤un≤J+

∑
i

max
m≤�p�

∥∥Sm
(
γ|[ui,ui+1]

)− Sm
(
γ̂|[ui,ui+1]

)∥∥p/m
and providing the system is Lip (p + ε) the response will behave uniformly with the control.
The completion of the piecewise smooth paths under dp are p-variation paths. They do not
have smoothness but they do have a “top down” description and can be viewed as living in a
*p+-step nilpotent group over E.

It is worth distinguishing the Kolmogorov and the rough path view on paths. In the
former, one considers fixed times ti, open sets Oi, and considers the probability that for all
i, xti ∈ Oi. In other words the emphasis is on where the path is at given times. This gated
description will never capture the rough path; parameterisation is irrelevant but increments
over small intervals [ui, ui+1], are critical. More accurately one describes a path through an
examination of the effect of it’s path segment into a simple nonlinear system (the lift onto a
nilpotent group). Knowing this information in an analytically adequate way is all one needs
to know to predict the effect of the path on a general system.

The whole rough path theory is very substantial and we cannot survey it adequately here.
The range is wide, and is related to any situation where one has a family of non-commuting
operators and one wants to do analysis on apparently divergent products and for example it is
interesting to understand the paths one gets as partial integrals of complex Fourier transform
as the nonlinear Fourier transform is a differential equation driven by this path. Some results
have been obtained in this direction [22] while the generalisations to spatial contexts are so
huge that they are spoken about elsewhere at this congress. Many books are now written on
the subject [11].and new lecture notes by Friz are to appear soon with recent developments.
So in what is left of this paper we will focus on one topic the Signature of a path and
the expected Signature of the path with a view to partially explaining how it is really an
extension of Taylor’s theorem to various infinite dimensional groups, and how we can get
practical traction from this perspective. One key point we will not mention is that using
Taylor’s theorem twice works! This is actually a key point that the whole rough path story
depends on and which validates its use. One needs to read the proofs to understand this
adequately and, except for this sentence, suppress it completely here.

9. Coordinate iterated integrals

In this short paper we have to have a focus, and as a result we cannot explore the analysis and
algebra needed to fully describe rough paths or to discuss the spatial generalisations directly
even though they are having great impact[14][13]. Nonetheless much of what we say can be
though of as useful foundations for this work. We are going to focus on the Signature as a
tool for understanding paths and as a new tool to help with machine learning.

The essential remark may seem a bit daunting to an analyst, but will be standard to
others. The dual of the enveloping algebra of a group(like) object has a natural abelian
product structure and linearises polynomial functions on a group. This fact allows one to
use linear techniques on the linear spaces to approximate generic smooth (and nonlinear)
functions on the group. Here the group is the “group” of paths.

Monomials are special functions on R
n, and polynomials are linear combinations of

these monomials. Because monomials span an algebra, the polynomials are able to approx-
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imate any continuous function on a compact set. Coordinate iterated integrals are linear
functionals on the tensor algebra and at the same time they are the monomials or the features
on path space.

Definition 9.1. Let e = e1 ⊗ . . . ⊗ en ∈ (E∗)⊗n ⊂ T (E∗), and φe (γ) := 〈e,S (γ)〉 then
we call φe (γ) a coordinate iterated integral.

Remark 9.2. Note that S (γ) ∈ T ((E)) =
⊕∞

0 E⊗n and

φe (γ) = 〈e,S (γ)〉
=

∫
· · ·
∫

u1≤...≤un∈Jn

〈e1, dγu1〉 . . . 〈en, dγun〉

justifying the name. φe is a real valued function on Signatures of paths.

Lemma 9.3. The shuffle product , on T (E∗) makes T (E∗) a commutative algebra and
corresponds to point-wise product of coordinate integrals

φe (γ)φf (γ) = φe�f (γ)

This last identity, which goes back to Ree, is important because it says that if we consider
two linear functions on T ((E)) and multiply them together then their product - which is
quadratic actually agrees with a linear functional on the group like elements. The shuffle
product identifies the linear functional that does the job.

Lemma 9.4. Coordinate iterated integrals, as features of paths, span an algebra that sepa-
rates Signatures and contains the constants.

This lemma is as important for understanding smooth functions on path spaces as mono-
mials are for understanding smooth functions on R

n.There are only finitely many of each
degree if E is finite dimensional (although the dimension of the spaces grow exponentially)
[20]. We will see later that this property is important for machine learning and nonlinear
regression applications but first we want to explain how the same remark allows one to un-
derstand measures on paths and formulate the notion of Fourier and Laplace transform.

10. Expected signature

The study of the expected Signature was initiated by Fawcett in his thesis [9]. He proved

Proposition 10.1. Let μ be a compactly supported probability measure on paths γ with
Signatures in a compact set K. Then Ŝ = Eμ (S (γ)) uniquely determines the law of S (γ) .

Proof. Consider Eμ(φe (γ)).

Eμ(φe (γ)) = Eμ (〈e,S (γ)〉)
= 〈e,Eμ (S (γ))〉
=
〈
e,Ŝ
〉

Since the e with the shuffle product form an algebra and separate points of K the Stone-
Weierstrass Theorem implies they form a dense subspace in C (K) and so determine the law
of the Signature of γ.
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Given this lemma it immediately becomes interesting to ask how does one compute
Eμ (S). Also, Eμ (S) is like a Laplace transform and will fail to exist for reasons of tail
behaviour of the random variables. Is there a characteristic function? Can we identify the
general case where the expected Signature determines the law in the non-compact case. All
of these are fascinating and important questions. Partial answers and strong applications are
emerging. One of the earliest was the realisation that one could approximate effectively to a
complex measure such as Wiener measure by a measure on finitely many paths that has the
same expected Signature on T (n) (E)[17, 19].

11. Computing expected signatures

Computing Laplace and Fourier transforms can often be a challenging problem for under-
graduates. In this case suppose that X a Brownian motion with Lévy area on a bounded C1

domain Ω ⊂ R
d,stopped on first exit. The following result explains how one may construct

the expected Signature as a recurrence relation in PDEs[18].

Theorem 11.1. Let

F (z) : = Ez

(
S
(
X|[0,TΩ]

))
F ∈ S

((
R

d
))

F = (f0, f1, . . . , )

Then F satisfies and is determined by a PDE finite difference operator

Δfn+2 = −
d∑

i=1

ei ⊗ ei ⊗ fn − 2

d∑
i=1

ei ⊗ ∂

∂zi
fn+1

f0 ≡ 1, f1 ≡ 0, and fj |∂Ω ≡ 0, j > 0

Combining this result with Sobolev and regularity estimates from PDE theory allow one
to extract much nontrivial information about the underlying measure although it is still open
whether in this case the expected Signature determines the measure. This question is difficult
even for Brownian motion on min(Tτ , t) although (unpublished) it looks as if the question
can be resolved.

Other interesting questions about expected Signatures can be found for example in [1].

12. Characteristic functions of signatures

It is possible to build a characteristic function out of the expected Signature by looking at
the linear differential equations corresponding to development of the paths into finite di-
mensional unitary groups. These linear images of the Signature are always bounded and so
expectations always make sense.

Consider SU (d) ⊂ M (d) and realise su (d) as the space of traceless Hermitian matrices
and consider

ψ : E → su (d)
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dΨt = ψ (Ψt) dγt.

Essential features of the co-ordinate interated integrals included that they were linear
functions on the tensor algebra, that they were real valued functions that separated signatures,
and that they spanned an algebra.

It is core to rough path theory that any representation of paths via a linear controlled
equation can also be regarded as a linear function and that products can also be represented
as sums. If one can show that products associated to the finite dimensional unitary groups
can be expressed as sums of finite linear combinations of finite dimensional unitary repre-
sentations, and add an appropriate topology on grouplike elements, one can repeat the ideas
outlined above but now with expectations that always exist and obtain the analogue of char-
acteristic function.

Theorem 12.1. Ψt is a linear functional on the tensor algebra restricted to the Signatures
S
(
γ|[0,t]

)
and is given by a convergent series. It is bounded and so its expectation as γ varies

randomly always makes sense. The function ψ → E
(
ΨJ+

(S)
)

is an extended characteristic
function.

Proposition 12.2. ψ → Ψ(S) (polynomial identities of Gambruni and Valentini) span an
algebra and separate Signatures as ψ and d vary.

Corollary 12.3. The laws of measures on Signatures are completely determined by ψ →
E (Ψ (S))

Proof. Introduce a polish topology on the grouplike elements.

These results can be found in [7], the paper also gives a sufficient condition for the
expected Signature to determine the law of the underlying measure on Signatures.

13. Moments are complicated

The question of determining the Signature from its moments seems quite hard at the moment.

Example 13.1. Observe that if X is N (0, 1) then although X3 is not determined by its
moments, if Y = X3 then (X,Y ) is. The moment information implies E

((
Y − X3

)2)
=

0.

We repeat our previous question. Does the expected Signature determine the law of the
Signature for say stopped Brownian motion. The problem seems to capture the challenge.

Lemma 13.2 ([7]). If the radius of convergence of
∑

znE ‖Sn‖ is infinite then the expected
Signature determines the law.

Lemma 13.3 ([18]). If X a Brownian motion with Lévy area on a bounded C1 domain
Ω ⊂ R

d then
∑

znE ‖Sn‖ has at the least a strictly positive lower bound on the radius of
curvature.

The gap in understanding between the previous two results is, for the author, a fascinating
and surprising one that should be closed!
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14. Regression onto a feature set

Learning how to regress or learn a function from examples is a basic problem in many
different contexts. In what remains of this paper, we will outline recent work that explains
how the Signature engages very naturally with this problem and why it is this engagement
that makes it valuable in rough path theory too.

We should emphasise that the discussion and examples we give here is at a very primitive
level of fitting curves. We are not trying to do statistics, or model and make inference about
uncertainty. Rather we are trying to solve the most basic problems about extracting relation-
ships from data that would exist even if one had perfect knowledge. We will demonstrate
that this approach can be easy to implement and effective in reducing dimension and doing
effective regression. We would expect Baysian statistics to be an added layer added to the
process where uncertanty exists in the data that can be modelled reasonably.

A core idea in many successful attempts to learn functions from a collection of known
(point, value) pairs revolves around the identification of basic functions or features that are
readily evaluated at each point and then try to express the observed function a linear com-
bination of these basic functions. For example one might evaluate a smooth function ρ at a
generic collection {xi ∈ [0, 1]} of points producing pairs {(yi = ρ (xi) , xi)} Now consider
as feature functions {φn : x → xn, n = 0, . . . N}. These are certainly easy to compute for
each xi. We try to express

ρ -
N∑

n=0

λnφn

and we see that if we can do this (that is to say ρ is well approximated by a polynomial) then
the λn are given by the linear equation

yj =

N∑
n=0

λnφn (xj) .

In general one should expect, and it is even desirable, that the equations are significantly
degenerate. The purpose of learning is presumably to be able to use the function

∑N
n=0 λnφn

to predict ρ on new and unseen values of x and to at least be able to replicate the observed
values of y.

There are powerful numerical techniques for identifying robust solutions to these equa-
tions. Most are based around least squares and singular value decomposition, along with L1

constraints and Lasso.
However, this approach fundamentally depends on the assumption that the φn span the

class of functions that are interesting. It works well for monomials because they span an
algebra and so every Cn (K) function can be approximated in Cn (K) by a multivariate
real polynomial. It relies on a priori knowledge of smoothness or Lasso style techniques to
address over-fitting.

I hope the reader can now see the significance of the coordinate iterated integrals. If
we are interested in functions (such as controlled differential equations) that are effects of
paths or streams, then we know from the general theory of rough paths that the functions
are indeed well approximated locally by linear combinations of coordinate iterated integrals.
Coordinate iterated integrals are a natural feature set for capturing the aspects of the data that
predicting the effects of the path on a controlled system.
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The shuffle product ensures that linear combinations of coordinate iterated integrals are
an algebra which ensures they span adequately rich classes of functions. We can use the
classical techniques of non-linear interpolation with these new feature functions to learn and
model the behaviour of systems.

In many ways the machine learning perspective explains the whole theory of rough paths.
If I want to model the effect of a path segment, I can do a good job by studying a few
set features of my path locally. On smaller scales the approximations improve since the
functionals the path interacts with become smoother. If the approximation error is small
compared with the volume, and consistent on different scales, then knowing these features,
and only these features, on all scales describes the path or function adequately enough to
allow a limit and integration of the path or function against a Lipchitz function.

15. The obvious feature set for streams

The feature set that is the coordinate iterated integrals is able (with uniform error - even
in infinite dimension) via linear combinations whose coefficients are derivatives of f , to
approximate solutions to controlled differential equations [3]. In other words, any stream of
finite length is characterised up to reparameterisation by its log Signature (see [15]) and the
Poincare-Birkhoff-Witt theorem confirms that the coordinate iterated integrals are one way
to parameterise the polynomials on this space. Many important nonlinear functions on paths
are well approximated by these polynomials.

We have a well defined methodology for linearisation of smooth functions on unparam-
eterised streams as linear functionals of the Signature. As we will explain in the remaining
sections, this has potential for practical application even if it comes from the local embed-
ding of a group into its enveloping algebra and identifying the dual with the real polynomials
and analytic functions on the group.

16. Machine learning, an amateur’s first attempt

Applications do not usually have a simple fix but require several methods in parallel to
achieve significance. The best results to date for the use of Signatures have involved the
recognition of Chinese characters [24] where Ben Graham put together a set of features
based loosely on Signatures and state of the art deep learning techniques to win a worldwide
competition organised by the Chinese Academy of Sciences.

We will adopt a different perspective and simply explain a very transparent and naive
approach, based on Signatures, can achieve with real data. The work appeared in [12]. The
project and the data depended on collaboration with commercial partners acknowledged in
the paper and is borrowed from the paper.

16.1. classification of time-buckets from standardised data. We considered a simple
classification learning problem. We considered a moderate data set of 30 minutes intervals
of normalised one minute financial market data, which we will call buckets. The buckets
are distinguished by the time of day that the trading is recorded. The buckets are divided
into two sets - a learning and a backtesting set. The challenge is simple: learn to distinguish
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the time of day by looking at the normalised data (if indeed one can - the normalisation is
intended to remove the obvious). It is a simple classification problem that can be regarded
as learning a function with only two values

f (time series) → time slot
f (time series) = 1 time slot=10.30-11.00
f (time series) = 0 time slot=14.00-14.30

.

Our methodology has been spelt out. Use the low degree coordinates of the Signature of
the normalised financial market data γ as features φi (γ), use least squares on the learning
set to approximately reproduce f

f (γ) ≈
∑
i

λiφi (γ)

and then test it on the backtesting set. To summarise the methodology:

1. We used futures data normalised to remove volume and volatility information.

2. We used linear regression based pair-wise separation to find the best fit linear function
to the learning pairs that assign 0 to one case and 1 to the other. (There are other well
known methods that might be better.)

(a) We used robust and automated repeated sampling methods of LASSO type (least
absolute shrinkage and selection operator) based on constrained L1 optimisation
to achieve shrinkage of the linear functional onto an expression involving only a
few terms of the Signatures.

3. and we used simple statistical indicators to indicate the discrimination that the learnt
function provided on the learning data and then on the backtesting data. The tests
were:

(a) Kolmogorov-Smirnov distance of distributions of score values
(b) receiver operating characteristic (ROC) curve, area under ROC curve
(c) ratio of correct classification.

We did consider the full range of half hour time intervals. The other time intervals were
not readily distinguishable from each other but were easily distinguishable from both of
these two time intervals using the methodology mapped out here. It seems likely that the
differences identified here were due to distinctive features of the market associated with the
opening and closing of the open outcry market.
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(a) Learning set: Estimated densities of the regressed
values, K-S distance: 0.8, correct classification: 90%

(b) Out of sample: Estimated densities of the regressed
values, K-S distance: 0.84, correct classification: 89%

(c) ROC curve. Area under ROC – learning set: 0.976, out of sample: 0.986

Figure 16.1. 14:00-14:30 EST versus 10:30-11:00 EST
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Figure 16.2. Visualisation: two dimensional projections of the 4th order signature onto coefficients
selected as significant by Lasso shrinkage. The selected features allow clear visual separation of the
time buckets.

17. Linear regression onto a law on paths

In the previous section we looked at using the linearising nature of the Signature as a pratical
tool for learning functions. In this final section we want to remain in the world of data and
applications but make a more theoretical remark. Classic nonlinear regression is usually
stated with a statistical element. One common formulation of linear regression has that a
stationary sequence of random data pairs that are modeled by

yi = f (xi) + εi

where εi is random and has conditional mean zero. The goal is to determine the linear
functional f with measurable confidence.

There are many situations where it is the case that one has a random but stationary se-
quence (γ, τ) of stream pairs, and one would like to learn, approximately, the law of τ
conditional on γ. Suppose that we reformulate this problem in terms of Signatures and ex-
pected Signatures (or better: charateristic functions) recalling that expected Signatures etc.
characterise laws.

Problem 17.1. Given a random but stationary sequence (γ, τ) of stream pairs find the func-
tion Φ : S (γ) → E (S (τ) |S (γ)) .
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Then putting Yi = S (τi) and Xi = S (γi) we see that

Yi = Φ(Xi) + εi

where εi is random and has mean zero. If the measure is reasonably localised and smooth
then we can well approximate Φ by a polynomial; and using th elinearising nature of the
tensor algebra to a linear function φ of the Signature. In other words the apparently difficult
problem of understanding conditional laws of paths becomes (at least locally) a problem of
linear regression

Yi = Φ(Xi) + εi

whch is infinite dimensional but which has well defined low dimensional approximations
[16].
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Variational formulas for directed polymer and
percolation models

Timo Seppäläinen

Abstract. Explicit formulas for subadditive limits of polymer and percolation models in probability
and statistical mechanics have been difficult to find. We describe variational formulas for these limits
and connections with other features of the models such as Busemann functions and Kardar-Parisi-
Zhang (KPZ) fluctuation exponents.
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Keywords. Busemann function, cocycle, convex duality, directed polymer, last-passage percolation,
Kardar-Parisi-Zhang universality, random environment, variational formula.

1. Introduction

This paper reviews recently discovered variational formulas for the limiting free energy den-
sity and time constant of directed polymer and percolation models, together with connections
to other features of the models such as Busemann functions and fluctuation exponents. The
existence of these limits comes from subadditive ergodic theory. Consequently there is no
obvious formula for the limit, in contrast with the additive ergodic theorem whose limit is
an expectation. We restrict the discussion to the simplest path geometry in the plane. Some
results generalize in various directions, such as higher dimension, more general ergodic en-
vironment, and more general admissible paths. The results outlined in this note come from
papers [12, 13, 27, 28, 32].

Busemann functions, as limits of gradients of passage times, were introduced into first-
passage percolation by C. Newman and coworkers in the 1990’s [25]. Since then Busemann
functions have emerged as a central object in the study of geodesics and invariant distribu-
tions of percolation models and related interacting particle systems. See [3, 7, 11, 17] for a
selection of the literature. In this review we look at Busemann functions for the log-gamma
polymer in the positive temperature setting, as opposed to the zero-temperature setting of
percolation. The connection with the variational formulas comes from the fact that the Buse-
mann functions are minimizers in a variational problem that characterizes the limiting free
energy density of the log-gamma polymer.

Directed percolation and polymer models on the plane are expected to be members of
the Kardar-Parisi-Zhang (KPZ) universality class. The name comes from the influential 1986
paper [21]. For a mathematical review, see [9]. The KPZ universality class is characterized
by the following features:

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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(i) In a system of size n × n, fluctuations of quantities such as the free energy and the
passage time have order of magnitude n1/3 while fluctuations of polymer paths have
order of magnitude n2/3.

(ii) In the n → ∞ limit, properly scaled random quantities converge weakly to limit
distribution that come from random matrix theory.

This should be contrasted with the diffusive behavior of random walk: a path of length n
fluctuates on the scale n1/2 and limit distributions are Gaussian. KPZ universality remains
presently a conjecture. Results on both the fluctuation exponents and limit distributions exist
for a handful of exactly solvable models [2, 5, 6, 9, 20, 26, 33, 34].

Fluctuation behavior is not the focus of this paper, but we will touch upon KPZ fluctua-
tion exponents at the end. The exponents arise naturally in this context because they can be
studied through controlling the fluctuations of Busemann functions. This can be achieved to
satisfaction in exactly solvable models where the curvature of the limit shape is known.

Independently and simultaneously with the work described in Section 3, A. Krishnan
derived an analogous variational formula for first-passage percolation where paths are not
restricted to be directed [22].

Notation and some definitions. The �1 norm of a point x = (x1, x2) ∈ R
2 is |x|1 =

|x1| + |x2|. The basis vectors of R2 are e1 = (1, 0) and e2 = (0, 1). The usual gamma
function for ρ > 0 is Γ(ρ) =

∫∞
0

xρ−1e−x dx. Random variable X has the Gamma(ρ)
probability distribution onR+ if P (X ≤ t) =

∫ t
0
Γ(ρ)−1xρ−1e−x dx for t ≥ 0. A shorthand

for this is X ∼ Gamma(ρ). Ψ0 = Γ′/Γ and Ψ1 = Ψ′0 are the digamma and trigamma
functions.

2. Last-passage percolation and directed polymers on the planar lattice

We begin with a description of the probability space that contains the random weights used
to construct the models. Let Ω = R

Z
2

be the space of weight configurations ω = (ωx)x∈Z2 .
Ω is endowed with its Borel σ-algebraS and the group of translations {Tx}x∈Z2 that act via
(Txω)y = ωx+y for x, y ∈ Z

2. Let P be a Borel probability measure on (Ω,S) under which
the weights ωx are independent and identically distributed (i.i.d.) random variables. This
means that, for any distinct vertices x1, . . . , xn ∈ Z

2 and arbitrary Borels setsA1, . . . , An ⊆
R,

P{ωx1 ∈ A1, . . . , ωxn ∈ An} =

n∏
i=1

P{ω0 ∈ Ai}.

Such a measure P is invariant and ergodic under the translations. This means that P(TxA) =
P(A) for every Borel set A ⊆ Ω, and furthermore, an invariant Borel set A (one that satisfies
TxA = A for all x ∈ Z

2) has probability P(A) ∈ {0, 1}. The probability space (Ω,S,P)
now contains a random weight ωx assigned to each point x ∈ Z

2. This provides the random
environment or random medium ω.

Let Π0,v denote the set of directed lattice paths from the origin 0 to a fixed point v. A
directed, or up-right, path is only allowed steps e1 and e2. The figure gives an example of a
directed path from 0 to v = (5, 4).
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Figure 2.1. An up-right path from 0 = (0, 0) to (5, 4) in Z2
+.

Fix a Borel function V : R → R. The directed polymer model gives each directed path
x� = (x0, . . . , x|v|1) from 0 to v a probability proportional to the exponential of the weight
of the path:

Q0,v(x�) =
1

Z0,v
2−|v|1 exp

(
β

|v|1−1∑
k=0

V (ωxk
)
)

for x� ∈ Π0,v (2.1)

where

Z0,v =
∑

x�∈Π0,v

2−|v|1 exp
(
β

|v|1−1∑
k=0

V (ωxk
)
)

(2.2)

is the partition function that normalizes Q0,v to a probability measure. The factor 2−|v|1 is
included only to make the sum into an expectation over equally likely random walk paths.
The parameter β > 0 is the inverse temperature. The free energy Gβ

0,v = β−1 logZ0,v

is a quantity of key interest. Note that Q0,v(x�), Z0,v and Gβ
0,v are all functions of the

environment ω. For this reason Q0,v(x�) is called the quenched probability on paths and
Z0,v the quenched partition function. We use the function V (ωx) in the exponential, instead
of simply the weight ωx, to give us some added flexibility.

The model defined by (2.1)–(2.2) is called the point-to-point polymer because the path
is pinned or fixed at both endpoints 0 and v. The analogous point-to-line model admits all
paths of fixed length N that start at the origin. The set of paths is Π0,(N) = ∪|v|1=NΠ0,v . In
the point-to-line case it is natural to include a tilt or external field h ∈ R

2 in the model. The
quenched probability, partition function and free energy are

Q(N)(x�) =
1

Z(N)
2−N exp

{
β

N−1∑
k=0

V (ωxk
) + βh · xN

}
for x� ∈ Π0,(N), (2.3)



188 Timo Seppäläinen

Z(N) =
∑

x�∈Π0,(N)

2−N exp
{
β

N−1∑
k=0

V (ωxk
) + βh · xN

}
(2.4)

and

Gβ
(N)(h) = β−1 logZ(N). (2.5)

The point-to-line case is distinguished by the subscript (N) in parentheses. While all the
quantities depend on β, β is included explicitly only in the notation Gβ because that is
where we want to indicate explicitly the distinction between β < ∞ and β = ∞.

If we take β → ∞ the probability measures Q0,v and Q(N) concentrate on those paths
that maximize the exponent. This is the zero-temperature polymer, also known as the last-
passage percolation model or the corner growth model. The key quantity is the maximal
last-passage time of directed paths: in the point-to-point case

G∞
0,v = max

x�∈Π0,v

|v|1−1∑
k=0

V (ωxk
) (2.6)

and in the point-to-line case

G∞
(N)(h) = max

x�∈Π0,(N)

{N−1∑
k=0

V (ωxk
) + h · xN

}
.

The directed percolation model admits a natural description as a model of a randomly
growing cluster At on the plane. Suppose V (ωx) ≥ 0 so that V (ωx) can be interpreted as a
waiting time. Then define the cluster at time t ≥ 0 by

At = {x ∈ Z
2
+ : G∞

0,x ≤ t}
The questions of interest are about the large-scale behavior of this model: namely, how

do the random path and the quantities Gβ
0,x and Gβ

(N)(h) behave as the point x or the param-
eter N is taken to infinity?

Let us make a further assumption: namely, that the random weights satisfy a moment
bound

E(|V (ω0)|p) < ∞ for some p > 2. (2.7)

The starting points are the following laws of large numbers, for both β < ∞ and β = ∞: in
the point-to-point case

gβpp(ξ) = lim
N→∞

N−1Gβ
0,�Nξ� for ξ ∈ R

2
+ (2.8)

and in the point-to-line case

gβpl(h) = lim
N→∞

N−1Gβ
(N)(h) for h ∈ R

2. (2.9)

The limits gβpp and gβpl are deterministic continuous functions of their arguments ξ and h.
For the polymer model these are the limiting free energy densities and for the percolation
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model the limiting time constants. In particular, g∞pp describes the limit shape of the growing
cluster. As t → ∞, the scaled random set t−1At converges almost surely to the set {ξ ∈
R

2
+ : g∞pp (ξ) ≤ 1}. In first-passage percolation this shape theorem goes back to [10], and for

last-passage percolation it is recorded in [23].
The function gβpp is homogeneous: gβpp(cξ) = cgβpp(ξ) for c > 0. Consequently it is

sufficient and convenient to consider it only on the set U = {ξ = (s, 1− s) : 0 ≤ s ≤ 1} of
asymptotic velocities of admissible paths. The relative interior of U is U◦ = {ξ = (s, 1−s) :
0 < s < 1}.

Once a law of large numbers is understood, the next questions asked in probability con-
cern the chances of deviations. As mentioned in the Introduction, it is expected that, accord-
ing to KPZ universality, deviations are of order N1/3. This means that we would expect
probabilities

P
{
Gβ

0,�Nξ� − Ngβpp(ξ) ≤ N1/3s
}

of fluctuations in the N1/3 scale to converge to something nontrivial. Such results exist for
exactly solvable models.

This section concludes with some historical remarks. The directed polymer model was
introduced in 1985 by Huse and Henley [18]. First-passage percolation arose already in
1965 in the work of Hammersley and Welsh [15]. The origins of last-passage percolation
are murkier. The corner growth model with exponential weights appeared in Rost’s seminal
paper [29] on a hydrodynamic limit of the totally asymmetric simple exclusion process, but
without the last-passage formulation. The study of directed last-passage percolation picked
up in the 1990’s, with explicit shape results for exactly solvable cases in different geometries
in the articles [1, 8, 19, 30, 31]. Early motivation for [1] came from [16].

3. Variational formulas for the limits

Properties of the limits gβpp(ξ) and gβpl(h) have remained difficult to analyze and, prior to the
results explained below, no formulas for these limits have been found. Part of the reason
is that these are instances of superadditive convergence. This can be contrasted with the
classical law of large numbers or the ergodic theorem: if {Xk}k∈N is a stationary, ergodic
sequence of integrable random variables, then

lim
n→∞n−1

n∑
k=1

Xk = E(X1) almost surely (3.1)

and so there is no mystery about the limit value.
We proceed to describe variational formulas for the limits gβpp(ξ) and gβpl(h). Assumption

(2.7) remains in force throughout the discussion. We need some preliminaries first.

Definition 3.1. A measurable function B : Ω×Z
2 ×Z

2 → R is a stationary L1(P) cocycle
if it satisfies the following three conditions.

(i) Integrability: for each z ∈ {e1, e2}, E|B(0, z)| < ∞.

(ii) Stationarity: for P-a.e. ω and all x, y, z ∈ Z
2, B(ω, z + x, z + y) = B(Tzω, x, y).
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(iii) Cocycle property: for P-a.e. ω and for all x, y, z ∈ Z
2, B(ω, x, y) + B(ω, y, z) =

B(ω, x, z). The space of cocycles is denoted by C.
A centered cocycle is a stationary L1 cocycle F (ω, x, y) that satisfies E[F (x, y)] = 0 for all
x, y ∈ Z

2. The space of centered cocycles is denoted by C0.
The space C0 of centered cocycles is theL1(P) closure of gradientsF (ω, x, y) = ϕ(Tyω)−

ϕ(Txω), see [28, Lemma C.3]. If B is a stationary L1 cocycle, there exists a unique vector
h(B) ∈ R

2 such that

E[B(0, ei)] = −h(B) · ei for i ∈ {1, 2}. (3.2)

Then
F (x, y) = h(B) · (x − y)− B(x, y) (3.3)

is a centered cocycle.

Theorem 3.2. In the point-to-line case, the limits in (2.9) have these variational represen-
tations: for 0 < β < ∞

gβpl(h) = inf
F∈C0

P- ess sup
ω

β−1 log
∑

i∈{1,2}

1
2e

βV (ω0)+βh·ei+βF (ω,0,ei) (3.4)

and for β = ∞
g∞pl (h) = inf

F∈C0
P- ess sup

ω
max

i∈{1,2}
{V (ω0) + h · ei + F (ω, 0, ei)}. (3.5)

Furthermore, in both cases a minimizing cocycle F ∈ C0 exists.

The existence of a minimizing cocycle is proved by taking a weak limit of averages of
increments of G(N)(h).

There is a duality between the point-to-point and point-to-line limits, given by

gβpp(ξ) = inf
h∈R2

{gβpl(h)− h · ξ} for ξ ∈ U◦ (3.6)

and

gβpl(h) = sup
ξ∈U◦

{gβpp(ξ) + h · ξ} for h ∈ R
2. (3.7)

Let us say that ξ ∈ U◦ and h ∈ R
2 are dual if

gβpp(ξ) = gβpl(h)− h · ξ. (3.8)

Formulas (3.4)–(3.5) and the duality (3.6) lead to analogous variational formulas for the
point-to-point case.

Theorem 3.3. In the point-to-point case, the limits in (2.8) have these variational formulas
for ξ ∈ U◦. For 0 < β < ∞

gβpp(ξ) = inf
B∈C

P- ess sup
ω

β−1 log
∑

i∈{1,2}

1
2e

βV (ω0)−βB(ω,0,ei)−βh(B)·ξ (3.9)
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and for β = ∞
g∞pp (ξ) = inf

B∈C
P- ess sup

ω
max

i∈{1,2}
{V (ω0)− B(ω, 0, ei)− h(B) · ξ} (3.10)

where the infima are over stationary L1 cocyles B. In each case a minimizing cocycle B
exists.

The variational formulas presented in this section were proved in articles [12, 27, 28],
first for β < ∞ by developing a suitable large deviation theory, and then for last-passage
percolation by letting β → ∞.

4. Busemann functions for the log-gamma polymer

To illustrate cocycles that solve the variational formulas, we turn to the exactly solvable
log-gamma polymer. For this model we can prove that so-called Busemann functions exist.
These are limits of gradients of the free energy. In certain exactly solvable models Busemann
functions have tractable probability distributions. Then we can realize the program alluded
to in the introduction, namely derivation of KPZ fluctuation exponents through control of
the fluctuations of Busemann functions. This is the topic of Section 5 below.

Fix 0 < ρ < ∞ and let weights {ωx} be i.i.d. Gamma(ρ) distributed. The partition
functions of the log-gamma polymer are defined by

Zu,v =
∑

x �∈Πu,v

|v−u|1−1∏
i=0

ω−1
xi

for u ≤ v in Z
2. (4.1)

Note that the weight at u is included and v excluded. This corresponds to (2.2) with

V (ωx) = − logωx + log 2. (4.2)

The inverse temperature parameter β is not explicitly present in the log-gamma polymer so
it is fixed at β = 1 and dropped from the notation. In a sense, parameter ρ plays the role of
temperature.

In addition to the duality (3.8) between tilts h ∈ R
2 and directions ξ ∈ U◦, a third

variable λ ∈ (0, ρ) is in bijective correspondence with directions ξ = (s, 1 − s) ∈ U◦ via
the equation

sΨ1(λ)− (1− s)Ψ1(ρ − λ) = 0. (4.3)

We call ξ the characteristic direction of (λ, ρ).

Theorem 4.1. Fix ξ ∈ U◦ and let λ = λ(ξ) ∈ (0, ρ) be determined by (4.3). Then on
(Ω,S,P) there exists a stationary L1 cocycle {Bξ(x, y) : x, y ∈ Z

2} with the following
properties.

(a) Suppose a point v ∈ N
2 tends to infinity in the first quadrant so that v/|v|1 → ξ. Then

for all x, y ∈ Z
2 these almost sure limits hold:

Bξ(x, y) = lim
v→∞
(
logZx,v − logZy,v

)
. (4.4)
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(b) Let h = (h1, h2) be dual to ξ in the sense of (3.8). Then for i ∈ {1, 2}

lim
N→∞

(
logZ(N)(h) ◦ Tx − logZ(N−1)(h) ◦ Tx+ei

)
= Bξ(x, x + ei) + hi. (4.5)

(c) For each x ∈ Z
2 the process {e−Bξ(x+ie1,x+(i+1)e1) : i ∈ Z+} is i.i.d. Gamma(λ),

the process {e−Bξ(x+je2,x+(j+1)e2) : j ∈ Z+} is i.i.d. Gamma(ρ − λ), and these two
processes are independent of each other.

Parts (a) and (c) of the theorem above are contained in Theorem 4.1 of [13] and part (b)
is in Theorem 6.1 of the same paper. From part (c) above we can calculate the mean vector
h(Bξ) defined in (3.2):

h(Bξ) = −(E[Bξ(0, e1)] , E[B
ξ(0, e2)]

)
=
(
Ψ0(λ),Ψ0(ρ − λ)

)
(4.6)

again with λ = λ(ξ) defined by (4.3).
The next theorem gives the minimizers of the variational formulas. Inverse temperature

is fixed at β = 1 and dropped from the notation.

Theorem 4.2. Fix ξ = (s, 1 − s) ∈ U◦ and let λ = λ(ξ) ∈ (0, ρ) be determined by (4.3).
Let Bξ be the cocycle in Theorem 4.1.

(a) h = (h1, h2) ∈ R
2 is dual to ξ ∈ U◦ if and only if

h1 − h2 = Ψ0(λ)−Ψ0(ρ − λ). (4.7)

(b) Bξ is a minimizer in (3.9) and the essential supremum disappears: for P-a.e. ω,

gpp(ξ) = log
∑

i∈{1,2}

1
2e

V (ω0)−Bξ(ω,0,ei)−h(Bξ)·ξ = −ξ · h(Bξ). (4.8)

(c) Suppose h = h(Bξ) + (t, t) for some t ∈ R. Then h and ξ are dual. Cocycle
F (ω, x, y) = h(Bξ) · (x − y)− Bξ(ω, x, y) is a minimizer in (3.4) for this h and the
essential supremum disappears: for P-a.e. ω and j ∈ {1, 2},

gpl(h) = log
∑

i∈{1,2}

1
2e

V (ω0)+h·ei+F (ω,0,ei) = (h − h(Bξ)) · ej = t. (4.9)

The theorem above is collected from results in Section 5 of [13].

Remark 4.3. The organization of this section does not represent the chronological order of
discovery. The formula

gpp(ξ) = −ξ · (Ψ0(λ(ξ)),Ψ0(ρ − λ(ξ))
)

= inf
ν∈(0,ρ)

ξ · (−Ψ0(ν),−Ψ0(ρ − ν)
) (4.10)

was computed first in [32] and then in [14] before the Busemann functions were derived.
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An additional corollary of the Busemann limits of Theorem 4.1 is the convergence of the
quenched polymer measures to random walks in correlated random environments. Define a
transition probability on Z2 by

πξ(ω, x, x + ei) =
e−Bξ(ω,x,x+ei)

e−Bξ(ω,x,x+e1) + e−Bξ(ω,x,x+e2)
, i ∈ {1, 2},

and let Pω,ξ be the path measure of the Markov chain that starts at 0 and follows transitions
πξ(ω, x, x + ei).

Corollary 4.4. Consider the log-gamma polymer with i.i.d. Gamma(ρ) weights {ωx}, V as
in (4.2), and β = 1. Let Q0,v and Q(N) be the quenched polymer measures defined by (2.1)
and (2.3). Fix ξ ∈ U◦ and let h be dual to ξ. Let v ∈ N

2 tend to infinity in the first quadrant
so that v/|v|1 → ξ. Let N → ∞. Then for P-a.e. ω both measures Q0,v and Q(N) converge
weakly to Pω,ξ.

Proof. Consider the point-to-point case. Fix an admissible path segment (xk)
m
k=0.

Q0,v{Xk = xk for k = 0, . . . ,m} =
Zxm,v

Z0,v
2−m exp

( m−1∑
k=0

V (ωxk
)
)

−→ e−Bξ(0,xm)2−m exp
( m−1∑

k=0

V (ωxk
)
)
=

m−1∏
k=0

e−Bξ(xk,xk+1)

ωxk

= Pω,ξ{Xk = xk for k = 0, . . . ,m}.
The last step relied on ωx = e−Bξ(ω,x,x+e1) + e−Bξ(ω,x,x+e2) which comes from the limit
in Theorem 4.1(a).

The weak limit above is in Theorem 7.1 of [13]. Theorem 8.2 of that paper exhibits a
stationary, ergodic invariant distribution for the environment as seen from the particle for the
random walk in random environment with transition πξ. Whether the environment process
initialized as in Corollary 4.4 converges to the stationary process is currently open.

5. Stationary log-gamma polymer and fluctuation exponents

The Busemann limits of Theorem 4.1 represent a stationary version of the polymer process
{Zu,v}u≤v of (4.1), as explained next. Continue with a fixed ξ ∈ U◦, λ = λ(ξ) ∈ (0, ρ)
determined by (4.3), and the cocycle Bξ of Theorem 4.1. For x ∈ Z

2 define weight

τx−ei,x = e−Bξ(ω,x−ei,x) on the edge {x − ei, x} for i ∈ {1, 2}, and
weight σx = e−Bξ(ω,x−e1,x) + e−Bξ(ω,x−e2,x) on the vertex x.

Theorem 5.1. For any x ∈ Z
2, the weights

{τx+(i−1)e1,x+ie1 , τx+(j−1)e2,x+je2 , σx+(i,j) : i, j ∈ N} (5.1)

are independent with marginal distributions

τz−e1,z ∼ Gamma(λ), τz−e2,z ∼ Gamma(ρ − λ),

and σz ∼ Gamma(ρ).
(5.2)
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The collection in (5.1) should be viewed as consisting of boundary edge weights τ on the
axes and bulk weights σ in the first quadrant relative to the origin at x. This is a stationary
log-gamma polymer process for partition functions that combine boundary weights and bulk
weights. If we place the origin at 0 then such a partition function is defined by

Z
(λ)
0,v =

∑
x�∈Π0,v

( texit∏
i=1

τ−1
xi−1, xi

)( |v|1∏
j=texit+1

σ−1
xj

)
, v ∈ Z

2
+, (5.3)

where the exit time texit of the path (xk)k≥0 from the boundary is texit = te1 ∨ te2 with

te1 = max{k ≥ 0 : xi = (i, 0) for 0 ≤ i ≤ k} (5.4)

and
te2 = max{� ≥ 0 : xj = (0, j) for 0 ≤ j ≤ �}. (5.5)

For each path te1 ∧ te2 = 0. The superscript (λ) on Z
(λ)
0,v denotes the stationary process with

parameter λ. Then one shows inductively that

τx−ei,x =
Z

(λ)
0,x−ei

Z
(λ)
0,x

∀x ∈ Z
2
+ and i ∈ {1, 2} such that x − ei ∈ Z

2
+.

Theorem 5.1 tells us that the joint distributions of the ratios of partition functions Z
(λ)
0,v are

invariant under lattice translations. This is the precise sense in which the process {Z(λ)
0,v }v∈Z2

+

is stationary.
The partition function (5.3) of the stationary polymer can be also written as (with v =

(m,n) ∈ N
2)

Z
(λ)
0,v = σ−1

v

m∑
k=1

( k∏
i=1

τ−1
(i−1)e1, ie1

)
Z(k,1),v

+ σ−1
v

n∑

=1

( 
∏
j=1

τ−1
(j−1)e2, je2

)
Z(1,
),v

(5.6)

where Zu,v denotes the original log-gamma partition function (4.1) but in terms of the
i.i.d. Gamma(ρ) weights {σx}. This gives a coupling (simultaneous construction) of the
stationary polymer process and the original polymer process. Through this coupling the
stationary process can be used to study the original log-gamma polymer.

We indicate some of the benefits of the stationary log-gamma process. The characteristic
direction is relevant again. The next theorem states the KPZ fluctuation exponent 1/3 for the
free energy of the stationary log-gamma polymer.

Theorem 5.2 (Theorem 2.1 [32]). Let λ ∈ (0, ρ) and ξ ∈ U◦ correspond to each other via
(4.3). Let Z(λ)

0,v be the stationary log-gamma partition function defined by (5.3) with weights
distributed as in (5.2). Then there exists a constant 0 < C < ∞ such that, for N ≥ 1,

C−1N2/3 ≤ Var(logZ
(λ)
0,�Nξ�) ≤ CN2/3.
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If ξ is not the characteristic direction for (λ, ρ) then asymptotically the fluctuations of
logZ

(λ)
0,�Nξ� are Gaussian of order N

−1/2. In other words, the classical central limit theorem
rules. This is because the Gaussian fluctuations of the boundary weights τ in (5.6) dominate
the fluctuations of the partition functions Z.

The coupling (5.6) allows us to pass fluctuation bounds to the original log-gamma poly-
mer with i.i.d. weights. However, the result is weaker than the one in Theorem 5.2.

Theorem 5.3. Let 0 < ρ < ∞ and let Zu,v denote the partition function of (4.1) with
i.i.d. Gamma(ρ) weights. Let gpp(ξ) be the limiting free energy density from (4.10). Then for
1 ≤ p < 3/2 there exists a constant 0 < Cp < ∞ such that, for N ≥ 1,

C−1
p Np/3 ≤ E

[ | logZ0,�Nξ� − Ngpp(ξ) |p
] ≤ CpN

p/3.

The upper bound is in Theorem 2.4 of [32]. The lower bound is as yet unpublished, al-
though we have published the analogous result for the O’Connell-Yor semidiscrete polymer
in [24]. The theorem is proved by coupling Z0,�Nξ� with a stationary polymer Z

(λ)
0,�Nξ�

with parameter λ chosen according to (4.3). This brings the quantities logZ
(λ)
0,�Nξ� and

logZ0,�Nξ� within O(N1/3) of each other. Details appear in [32].
Results on Busemann functions and fluctuation exponents, analogous to those in Sections

4 and 5 for the log-gamma polymer, are valid also for the exactly solvable last-passage
percolation processes, where the weights {ωx} are i.i.d. exponential or geometric random
variables. Results on fluctuation exponents were derived in [4]. Extension of these properties
beyond exactly solvable models, to the corner growth model (2.6) with general weights, is
currently under way.
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Criticality and Phase Transitions:
five favorite pieces

Vladas Sidoravicius

Abstract. We present few recent results concerning the phase transition and behavior of classical
equilibrium and non-equilibrium systems at criticality. Five topics are discussed: a) continuity of the
phase transition for Bernoulli percolation, Ising and Potts models; b) geometry of critical percolation
clusters in the context of self-destructive percolation; c) non-equilibrium phase transitions and criti-
cal behavior of conservative lattice gasses; d) dynamic phase transitions for KPZ growth models and
solution of slow bond problem; e) solution of Coffman-Gilbert conjecture.
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1. Introduction

Equilibrium and non-equilibrium Statistical Mechanics offers many classes of models which
exhibit non-trivial behavior and undergo different types of phase transitions. While equi-
librium systems are relatively well understood away from criticality, and, in some cases,
at criticality too, understanding of their critical behavior below upper critical dimension
poses substantial mathematical difficulties and still remains poorly understood. For non-
equilibrium systems situation is much less clear even away from criticality. However in the
last several years some progress has been made in various directions, bringing solutions to
some old conjectures, developing new mathematical concepts and tools, and opening new
areas of research. Constantly growing “global” understanding of critical systems on the the-
oretical and rigorous levels led in some cases to establishment of new fruitful links and con-
nections between different subfields, such as models of self-organized criticality and usual
non-equilibrium critical systems, models exhibiting dynamic phase transition and classical
interacting particle systems.

This note contains five separte parts presenting recent progress and discussing some open
problems in following selected directions: a) classical question of continuity of the phase
transition for Bernoulli percolation, Ising and Potts models; b) geometry of critical perco-
lation clusters in the context of self-destructive percolation and its connections to “ghost”
forest fire models; c) non-equilibrium phase transitions (absorbing state phase transitions)
and critical behavior of conservative lattice gasses; d) criticality for dynamic phase transi-
tions, KPZ type growth systems in presence of a columnar defect and the solution of slow
bond problem; e) solution of Coffman-Gilbert conjecture.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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An interested reader is referred to an extended version of this article [105].

2. Continuity of the phase transition

Determining whether a phase transition is continuous or discontinuous is one of the funda-
mental questions in statistical physics. Bernoulli percolation has offered the mathematicians
a setup to develop techniques to prove either continuity or discontinuity of the phase tran-
sition, which in the case of continuity corresponds to the absence of an infinite cluster at
criticality. Harris [66] proved that the nearest neighbor bond percolation model with pa-
rameter 1/2 on Z

2 does not contain an infinite cluster almost surely. Viewed together with
Kesten’s result that pc ≤ 1/2 [72], it provided the first proof of such type of statement. Since
the original proof of Harris, a few alternative arguments have been found for planar graphs.
In the late eighties, dynamic renormalization ideas were successfully applied to prove conti-
nuity in octants and half spaces of Zd, d ≥ 3, [14, 15]. The continuity was also proved for Zd

with d ≥ 19 using the lace expansion technique [65], and for non-amenable Cayley graphs
using mass-transport arguments [24]. Despite all these developments, a general argument
to prove the continuity of the phase transition for the nearest neighbor Bernoulli percolation
on arbitrary lattices is still missing, and the fact that the Bernoulli percolation undergoes
a continuous phase transition on Z

3 still represents one of the major open questions in the
field.

Bernoulli percolation in slabs. Here we state the continuity for Bernoulli percolation on a
class of non-planar lattices, namely slabs.

Consider the graph S, called slab of width k, given by the vertex set Z2×{0, . . . , k} and
edges between nearest neighbors. In what follows,Pp denotes the Bernoulli bond percolation
measure with parameter p on S defined as follows: every edge of Z2 × {0, . . . , k} is open
with probability p (if it is not open, it is said to be closed) independently of the other edges.
Let pc(k) be the critical parameter of Bernoulli percolation on S. Let B be a subset of Z3,
the event {0 B←→ ∞} denotes the existence of an infinite path of open edges in B starting
from 0.

Theorem 2.1 ( [45]). For any k > 0, Ppc(k)[0
S←→ ∞] = 0.

For site percolation on S2, an ad hoc argument was provided in [38]. Proof of [45] works
equally well (with suitable modifications) for any graph of the form Z

2 × G, where G is
finite. This includes G = {0, . . . , k}d−2 for d ≥ 3.

Similarly, symmetric finite range percolation on Z
2 can be treated via the same tech-

niques (once again, relevant modifications must be done). Let us state the result in this
setting. Let p ∈ [0, 1]Z

2

be a set of edge-weight parameters, and M > 0. We consider func-
tions p’s that are M -supported (meaning pz = 0 for |z| ≥ M ) and invariant under reflection
and π/2-rotation (meaning that for all z, piz = pz̄ = pz). Consider the graph with vertex
set Z2 and edges between any two vertices and the percolation Pp defined as follows: the
edge (x, y) is open with probability px−y , independently of the other edges.

Theorem 2.2 ([45]). M > 0. The probability Pp[0 ←→ ∞] is continuous, when viewed as
a function defined on the set of M -supported and invariant p’s.

From the slab to Z
3? The fact that Z2 × {0, . . . , k}d−2 is approximating Z

d when k tends
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to infinity suggests that the non-percolation on slabs could shed a new light on the prob-
lem of proving the absence of infinite cluster (almost surely) for critical percolation on Z

d.
Nevertheless, we wish to highlight that this is not immediate. Indeed, while pc(k) is known
to converge to pc(Z

3) [63], passing at the limit requires a new ingredient. For instance, a
uniform control (in k) on the explosion of the infinite-cluster density for p tending to the
critical point would be sufficient.

Proposition 2.3. Let f : [0, 1] → R be a continuous function such that f(0) = 0. If for any
k ≥ 0 and any p ∈ (0, 1),

Pp[0
S←→ ∞] ≤ f(p − pc(k)),

then Ppc(Z3)[0
Z
3

←→ ∞] = 0.

It is natural to expect that proving the existence of f is roughly of the same difficulty as
attacking the problem directly on Z

3. Nevertheless, it could be that a suitable renormaliza-
tion argument enables one to prove the existence of f .

Continuity of phase transition for Ising model. Here we present an answer to a question
of the continuity at the critical point of the spontaneous magnetization of the standard three
dimensional Ising model. More generally, the model may be formulated on a graph, whose
vertex set and edge set we denote by G and E ⊂ G

2 correspondingly. Associated with the
sites are ±1 valued spin variables, whose configuration is denoted σ = (σx : x ∈ G).

For a general ferromagnetic pair interaction, the system’s Hamiltonian defined for finite
subsets Λ ⊂ G and boundary conditions τ ∈ {−1, 0, 1}G\Λ is given by the function

Hτ
Λ(σ) := −

∑
x∈Λ

hσx −
∑

{x,y}⊂Λ:x �=y

Jx,yσxσy −
∑

x∈Λ:y∈G\Λ
Jx,yσxτy , (2.1)

for any σ ∈ {−1, 1}Λ, where (Jx,y)x,y∈Zd is a family of nonnegative coupling constants,
and h is the magnetic field.

For β ∈ (0,∞), finite volume Gibbs states with boundary conditions τ are given by
probability measures on the spaces of configurations in finite subsets Λ ⊂ G under which
the expected values of functions f : {−1, 1}Λ → R are

〈f〉τΛ,β,h =
∑

σ∈{−1,1}Λ
f(σ)

e−βHτ
Λ(σ)

Zτ (Λ, β, h)
,

where the sum is normalized by the partition function Zτ (Λ, β, h) so that 〈1〉τΛ,β,h = 1. Of
particular interest is the following pair of boundary conditions (b.c.):

free b.c.: τx = 0 for all x ∈ G\Λ.
plus b.c.: τx = 1 for all x ∈ G\Λ.

The corresponding measures are denoted by 〈·〉0Λ,β,h and 〈·〉+Λ,β,h respectively.
For each of these two boundary conditions, the finite volume Gibbs states are known to

converge to the corresponding infinite-volume Gibbs measures. We focus here on the case
G = Z

d, and interactions which are:
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c1) translation invariant: Jx,y = J0,y−x,

c2) ferromagnetic: Jx,y ≥ 0,

c3) locally finite: |J | :=∑x∈Zd J0,x < ∞.

c4) aperiodic: for any x ∈ Z
d, there exist 0 = x0, x1, . . . , xm−1, xm = x such that

Jx0,x1Jx1,x2 , . . . , Jxm−1,xm > 0.

Of particular interest is the model’s phase transition, which in the (β, h) plane occurs
along the h = 0 line and is reflected in the nonvanishing of the symmetry breaking order
parameter:

m∗(β) := 〈σ0〉+β . (2.2)

For temperatures (T ≡ β−1) at which m∗(β) > 0, the mean magnetization at nonzero
magnetic field h changes discontinuously at h = 0. The discontinuity is symptomatic of the
co-existence of two distinct Gibbs equilibrium states :

〈·〉+β = lim
h↘0

〈·〉β,h 〈·〉−β = lim
h↗0

〈·〉β,h (2.3)

which carry the residual magnetizations:

〈σ0〉±β = ±m∗(β) , (2.4)

with m∗(β) customarily referred to as the spontaneous magnetization.

Property c3) guarantees that at small β (in particular, for β < |J |−1, see e.g. [50, 56])
m∗(β) = 0, and there is no symmetry breaking. However, in dimensions d > 1 each such
model exhibits a phase transition at some βc ∈ (|J |−1,∞), withm∗(β) > 0 for β > βc [89].
For d = 1 such a transition occurs if Jx−y ≥ 1/|x − y|α with α ∈ (1, 2) [51] and also for
the boundary value α = 2 [5], in which case m∗(β) is discontinuous at βc [5, 108]).

Relevant to the continuity of the spontaneous magnetization is the Long Range Order
(LRO) parameter:

MLRO(β) := lim
n→∞

1

|Λn|
∑
x∈Λn

〈σ0σx〉0β , (2.5)

where Λn = [−n, n]d, for the model on Z
d (the limit existing by monotonicity arguments),

or the LRO parameter’s variant

M̃LRO(β) := inf
B⊂Zd,|B|<∞

1

|B|2
∑

x,y∈B
〈σxσy〉0β ≡ inf

B⊂Zd,|B|<∞

〈[
1

|B|
∑
x∈B

σx

]2〉0

β

(2.6)
which satisfies

inf
x∈Zd

〈σ0σx〉0β ≤ M̃LRO(β) ≤ MLRO(β) . (2.7)

It may be noted that whereas m∗(βc) provides direct information about the states at β >
βc, the monotonicity arguments of [81] imply that MLRO(βc) provides direct information
about the states at β < βc and, furthermore, the following relation holds.
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Proposition 2.4. For any translation invariant ferromagnetic Ising model on Z
d: at all

β ≥ 0
MLRO(β) ≤ m∗(β)2 (2.8)

with equality holding at values of β at which P (β, 0) is continuously differentiable.

Our main general result is:

Theorem 2.5 ([8]). For any ferromagnetic Ising model on Z
d whose coupling constants

(Jx,y)x,y∈Zd satisfy the conditions C1-C4: if

M̃LRO(β) = 0 (2.9)

then also
m∗(βc) = 0 , (2.10)

and the system has only one Gibbs state at βc.

The proof is based on the technique of the model’s random current representation which
was developed in [3] starting from the Griffiths-Hurst-Sherman switching lemma (which
was earlier used in [62] for the GHS inequality). In this representation the onset of the
Ising model’s symmetry breaking is presented as a percolation transition in a system of
random currents with constrained sources. The perspective that this picture offers has already
shown itself to be of value in yielding a range of results for the model’s critical behavior
(c.f. [3, 4, 6, 101]). The incremental step taken here is to consider directly the limiting
shift invariant infinite systems of random currents. This allows to add to the available tools
arguments based on the ‘uniqueness of infinite cluster’ principle, which is of relevance to the
question of continuity of the state at the model’s critical temperature.

Continuity for Potts model. The Potts model is a model of random coloring of Z2 intro-
duced as a generalization of the Ising model to more-than-two components spin systems. In
this model, each vertex of Z2 receives a spin among q possible colors. The energy of a con-
figuration is proportional to the number of frustrated edges, meaning edges whose endpoints
have different spins. The model was introduced by Potts [91] (actually it was suggested to
him by his adviser Domb). In two dimensions, it exhibits a reach panel of possible critical
behaviors depending on the number of colors, and despite the fact that the model is exactly
solvable (yet not rigorously for q �= 2), the mathematical understanding of its phase transi-
tion remains restricted to a few cases (namely q = 2 and q large).

An extensive physics literature has been devoted to the question of continuity of the
phase transition in the case of the Potts model. In the planar case, Baxter [17–19] used a
mapping between the Potts model and solid-on-solid ice-models to compute the free energy
at criticality and was able to predict that the phase transition was continuous for q ≤ 4
and discontinuous for q ≥ 5. While this computation gives a good insight on the behavior
of the model, it relies on unproved assumptions which, forty years after their formulation,
seem still very difficult to justify rigorously. In [46] we prove that the phase transition is
continuous for q ∈ {2, 3, 4} without any reference to unproved assumptions.

Most of our work is devoted to the study of the so-called random-cluster model. This
model is a probability measure on edge configurations (each edge is declared open or closed)
such that the probability of a configuration is proportional to

p# open edges(1− p)# closed edgesq# clusters,
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where clusters are maximal connected subgraphs, and (p, q) ∈ [0, 1] × R+. For q = 1, the
model is simply Bernoulli percolation.

Since its introduction by Fortuin and Kasteleyn [57], the random-cluster model has be-
come an important tool in the study of phase transitions. The spin correlations of Potts mod-
els are rephrased as cluster connectivity properties of their random-cluster representations
via the Edwards and Sokal coupling [52]. As a byproduct, properties of the random-cluster
model can be transferred to the Potts model, and vice-versa.

While the understanding of critical Bernoulli percolation in 2 dimensions is now fairly
well understood, the case of the random-cluster model remains mysterious. The long range
dependency makes the model challenging to study probabilistically, and some of its most
basic properties were not proved until recently. In [46] we derive several properties of the
critical model, including a suitable generalization of the celebrated Russo-Seymour-Welsh
theory available for Bernoulli percolation. This powerful tool enables us to prove several
new results on the critical phase.

Our approach fits to the more general context of the study of conformally invariant pla-
nar lattice models. In the early eighties, physicists Belavin, Polyakov and Zamolodchikov
postulated conformal invariance of critical planar statistical models [22, 23]. This prediction
enabled physicists to harness Conformal Field Theory in order to formulate many conjec-
tures on these models. From a mathematical perspective, proving rigorously the conformal
invariance of a model (and properties following from it) constitutes a formidable challenge.

In recent years, the connection between discrete holomorphicity and planar statistical
physics led to spectacular progress in this direction. Kenyon [70, 71], Smirnov [107] and
Chelkak and Smirnov [35] exhibited discrete holomorphic observables in the dimer and
Ising models and proved their convergence to conformal maps in the scaling limit. These
results paved the way to the rigorous proof of conformal invariance for these two models.
Other discrete observables have been proposed for a number of critical models, including
self-avoiding walks and Potts models. While these observables are not exactly discrete holo-
morphic, their discrete contour integrals vanish, a property shared by discrete holomorphic
functions.

It is a priori unclear whether this property is of any relevance for the models. Never-
theless, in the case of the self-avoiding walk, it was proved to be sufficient to compute the
connective constant of the hexagonal lattice [49]. In our case, we also use parafermionic
observables introduced independently in [60, 95, 107].
Definition of the models and main statements. Consider an integer q ≥ 2 and a subgraph
G = (VG, EG) of the square lattice Z2. Here and below, VG is the set of vertices of G and
EG ⊂ V 2

G is the set of edges. For simplicity, the square lattice will be identified with its set
of vertices, namely Z2. For two vertices x, y ∈ VG, x ∼ y denotes the fact that (x, y) ∈ EG.

Let τ ∈ {1, . . . , q}Z2

. The q-state Potts model on G with boundary conditions τ is
defined as follows. The space of configurations is Ω = {1, . . . , q}Z2

. For a configuration
σ = (σx : x ∈ Z

2) ∈ Ω, the quantity σx is called the spin at x (it is sometimes interpreted
as being a color). The energy of a configuration σ ∈ Ω is given by the Hamiltonian

Hτ
G(σ) :=

⎧⎪⎨
⎪⎩
−

∑
x∼y

{x,y}∩G �=∅

δσx,σy
if σx = τx for x /∈ VG,

∞ otherwise.

Above, δa,b denotes the Kronecker symbol equal to 1 if a = b and 0 otherwise. The spin-
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configuration is sampled proportionally to its Boltzmann weight: at an inverse-temperature
β, the probability μτ

G,β of a configuration σ is defined by

μτ
G,β [σ] :=

e−βHτ
G(σ)

Zτ
G,β

where Zτ
G,β :=

∑
σ∈Ω

e−βHτ
G(σ)

is the so-called partition function defined in such a way that the sum of the weights over all
possible configurations equals 1.

Infinite-volume Gibbs measures can be defined by taking limits, as G tends to Z
2, of

finite-volume measures μτ
G,β . In particular, if (i) := τ denotes the constant configuration

equal to i ∈ {1, . . . , q}, the sequence of measures μ(i)
G,β converges, asG tends to infinity, to a

Gibbs measure denoted by μ
(i)
Z2,β . This measure is called the infinite-volume Gibbs measure

with monochromatic boundary conditions i.
The Potts models undergoes a phase transition in infinite volume at a certain critical

inverse-temperature βc(q) ∈ (0,∞) in the following sense

μ
(i)
Z2,β [σ0 = i] =

{
1
q if β < βc(q),
1
q + mβ > 1

q if β > βc(q).

The value βc(q) is computed in [20] and is equal to log(1+
√

q) for any integer q (this value
was previously known for q = 2 [88] and q ≥ 26 [79]).

The phase transition is said to be continuous if μ(i)
Z2,βc(q)

[σ0 = i] = 1
q and discontinuous

otherwise. The main result is the following.

Theorem 2.6 ([46] Continuity of the phase transition for 2, 3 or 4 colors). Let q ∈ {2, 3, 4}.
Then for any i ∈ {1, . . . , q}, we have

μ
(i)
Z2,βc(q)

[σ0 = i] = 1
q .

This result was known in the q = 2 case. For two colors, the model is simply the Ising
model. Onsager computed the free energy in [88] and Yang obtained a formula for the
magnetization in [114]. In particular, this formula implies that the magnetization is zero at
criticality. This results has been reproved in a number of papers since then. Let us mention
a recent proof [113] not harnessing any exact integrability.

For q equal to 3 or 4, the result is new. Exact (yet non rigorous) computations per-
formed by Baxter strongly suggest that the phase transition is continuous for q ≤ 4, and
discontinuous for q > 4. This result therefore tackles the whole range of q for which the
phase transition is continuous. Let us mention that the technology developed in [46] is not
restricted to the study of Potts models for q ≤ 4: a property of Potts models with q ≥ 5
colors witnessing ordering at criticality is also derived. Unfortunately, we were unable to
show rigorously that the phase transition is discontinuous in the sense defined above.

In dimension d ≥ 3, the phase transition is expected to be continuous if and only if
q = 2. The best results in this direction are the following. On the one hand, the fact that the
phase transition is continuous for the Ising model (q = 2) is known for any d ≥ 3 [8] (in
fact, the critical exponents are known to be taking their mean-field value for d ≥ 4 [6]). On
the other hand, mean-field considerations together with Reflection Positivity enabled [30] to
prove that for any q ≥ 3, the q-state Potts model undergoes a discontinuous phase transition
above some dimension dc(q). Finally, Reflection Positivity can be harnessed to prove that
for any d ≥ 2, the phase transition is discontinuous provided q is large enough [74].
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The random-cluster model. The proof of Theorem 2.6 is based on the study of a graphical
representation of the Potts model, called the random-cluster model. Consider p ∈ [0, 1],
q > 0 and a subgraph G = (VG, EG) of the square lattice. A configuration ω is an element
of Ω′ = {0, 1}EG . An edge e with ω(e) = 1 is said to be open, while an edge with ω(e) = 0
is said to be closed. Two vertices x and y in VG are said to be connected (this event is
denoted by x ←→ y) if there exists a sequence of vertices x = v1, v2, . . . , vr−1, vr = y
such that (vi, vi+1) is an open edge for every i < r. A connected component of ω is a
maximal connected subgraph of ω. Let o(ω) and c(ω) be respectively the number of open
and closed edges in ω.

The random-cluster measure on EG with edge-weight p, cluster-weight q, and free
boundary conditions is defined by the formula

φ0
G,p,qω =

po(ω)(1− p)c(ω)qk0(ω)

Z0
G,p,q

,

where k0(ω) is the number of connected components of the graph ω, and Z0
G,p,q is defined

in such a way that the sum of the weights over all possible configurations equals 1. We also
define the random-cluster measure on EG with edge-weight p, cluster-weight q, and wired
boundary conditions by the formula

φ1
G,p,qω =

po(ω)(1− p)c(ω)qk1(ω)

Z1
G,p,q

,

where k1(ω) is the number of connected components of the graph ω, except that all the
connected components of vertices in the vertex boundary ∂G, i.e. the set of vertices in
VG with less than four neighbors in G, are counted as being part of the same connected
component. Again, Z1

G,p,q is defined in such a way that the sum of the weights over all
possible configurations equals 1.

For q ≥ 1, infinite-volume measures can be defined on Z
2 by taking limits of finite-

volume measures for graphs tending to Z2. In particular, the infinite-volume random-cluster
measure with free (resp. wired) boundary conditions φ0

Z2,p,q (resp. φ1
Z2,p,q) can be defined

as the limit of the sequence of measures φ0
G,p,q (resp. φ

1
G,p,q) for G ↗ Z

2.
The random-cluster model with q ≥ 1 undergoes a phase transition in infinite volume in

the following sense. There exists pc(q) ∈ (0, 1) such that

φ1
Z2,p,q[ω]0 ←→ ∞ =

{
0 if p < pc(q),

θ1(p, q) > 0 if p > pc(q),

where {0 ←→ ∞} denotes the event that 0 belongs to an infinite connected component. The
value of pc(q) was recently proved to be equal to

√
q/(1 +

√
q) for any q ≥ 1 in [20]. The

result was previously proved in [? ] for Bernoulli percolation (q = 1), in [88] for q = 2
using the connection with the Ising model and in [80] for q ≥ 25.72.

Similarly to the Potts model case, a notion of continuous/discontinuous phase transition
can be defined: the phase transition is said to be continuous if

φ1
Z2,pc(q),q

[0 ←→ ∞] = 0

and discontinuous otherwise. The following theorem is the alter ego of Theorem 2.6.
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Theorem 2.7 ([46] Continuous phase transition for cluster-weight 1 ≤ q ≤ 4). Let q ∈
[1, 4], then φ1

Z2,pc(q),q
[0 ←→ ∞] = 0.

Let us now describe briefly the Edwards-Sokal coupling [52] and its application. Fix
q ≥ 2 integer. From a random-cluster configuration sampled according to φ1

G,p,q , color each
component (meaning all the vertices in it) with one color chosen uniformly in {1, . . . , q},
except for the connected component containing the vertices in ∂Gwhich receive color i. The
law of the random coloring thus obtained is μ

(i)
G,β , where β = − log(1 − p). This coupling

between the random-cluster model with integer cluster-weight and the Potts models enables
to deduce Theorem 2.6 from Theorem 2.7 immediately. Proving Theorem 2.7 requires a
much better understanding of the critical phase than the one available until now. Except for
the q = 1, q = 2 and q ≥ 25.72 cases, very little was known on critical random-cluster
models. The following theorem provides new insight on the possible critical behavior of
these models.

For an integer n, let Λn denote the box [−n, n]2 of size n. An open path is a path of
adjacent open edges (we refer to the next section for a formal definition). Let 0 ←→ ∂Λn

be the event that there exists an open path from the origin to the boundary of Λn. For a
rectangle R = [a, b]× [c, d], let Ch(R) be the event that there exists an open path in R from
{a} × [c, d] to {b} × [c, d].

Theorem 2.8. Let q ≥ 1. The following assertions are equivalent :

P1) (Absence of infinite cluster at criticality) φ1
Z2,pc,q

[0 ←→ ∞] = 0.

P2) φ0
[Z2,pc,q

= φ1
Z2,pc,q

.

P3) (Infinite susceptibility) χ0(pc, q) :=
∑
x∈Z2

φ0
Z2,pc,q

[0 ←→ x] = ∞.

P4) (Sub-exponential decay for free boundary conditions)

lim
n→∞

1
n log φ0

Z2,pc,q
[0 ←→ ∂Λn] = 0.

P5) (RSW) For any α > 0, there exists c = c(α) > 0 such that for all n ≥ 1,

φ0
[−n,(α+1)n]×[−n,2n],pc,q

[Ch([0, αn]× [0, n])] ≥ c.

The previous result was previously known in a few cases:

• Bernoulli percolation (random-cluster model with q = 1). In such case P2) is obvi-
ously satisfied. Furthermore, Russo [100] proved that P1), P3) and P4) are all true
(and therefore equivalent). Finally, P5) was proved by Russo [100] and Seymour-
Welsh [104].

• Random-cluster model with q = 2. This model is directly related to the Ising via the
Edwards-Sokal coupling.

• Random-cluster model with q ≥ 25.72. In this case, none of the above properties are
satisfied, as proved by using the Pirogov-Sinai technology [80].
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3. Self-destructive percolation

Self-destructive percolation was introduced in [26] in an attempt to understand the behavior
(and existence) of infinite-parameter forest fire model studied in physics literature. It may
be formulated for both bond and site percolation, we choose to consider the latter. Fix some
infinite connected graph G.

For δ, p ≥ 0 consider a regular site percolation configuration with intensity p. Close all
sites contained in the possibly many infinite clusters; we say infinite clusters are “burned”.
Finally open every site with probability δ, independently of all previous choices. Call Pp,δ

the measure governing the configuration thus obtained and θ(p, δ) the Pp,δ-probability that
a given site (called the origin) is in an infinite cluster.

More formally, let Z2 denote the square lattice with vertices V (Z2) (also called sites)
and edges E(Z2). For sites x, y ∈ V (Z2) we write x ∼ y, alternatively (x, y) ∈ E(Z2),
when ‖x − y‖2 = 1. Set Ω = {0, 1}V (Z2). We call an element ω ∈ Ω a configuration and
write {ω(x) : x ∈ V (Z2)} for its coordinates. A site x with ω(x) = 1 is called open (or
ω-open when the configuration needs to be specified), while one with ω(x) = 0 is called
closed.

For a configuration ω and x, y ∈ V (Z2), we say x is connected to y in ω, and write
x ↔ω y, if there exists an ω-open path with endpoints x and y. We write x ↔ω ∞ and say
that x is connected to infinity if there exists an infinite ω-open path starting at x. Finally we
write x ↔ω y and x ↔ω ∞ for the negations of the above events. A cluster is a connected
component of the graph induced by the open sites of Z2.

For p ∈ [0, 1], let Pp be the site percolation measure on Z
2 with intensity p. That is

Pp is the product measure on Ω with Pp(ω(x) = 1) = p for all x ∈ V (Z2). Finally let
pc = sup{p ≥ 0 : Pp(0 ↔ω ∞) = 0}. For p > pc it is well known that there exists Pp-a.s.
a unique infinite cluster.

Let p ∈ [0, 1] and consider a configuration ω chosen according to Pp. We define a
modification of ω, called ω̄, as follows.

For x ∈ V (Z2),

ω̄(x) =

{
1 if ω(x) = 1 and x ↔ω ∞,

0 otherwise.
(3.1)

Let δ ≥ 0 and σ be a configuration chosen according to Pδ , independently of ω. The
enhancement of ω̄ with intensity δ is ω̄δ(x) = ω̄(x) ∨ σ(x).

Let Pp,δ denote the probability measure governing ω, σ and thus ω̄ and ω̄δ . To avoid
confusion, when working with Pp,δ , we will usually state which configuration we refer to.
When writing simply Pp,δ(A) we mean Pp,δ(ω̄

δ ∈ A). Let

θ(p, δ) = Pp,δ(0 ↔ω̄δ ∞). (3.2)

Note that Pp,δ is increasing in δ, hence so is θ.
Let δc(p) = sup{δ : θ(p, δ) > 0} and let pc = pc(G) denote the critical point for regular

site percolation. Then it is easy to see that δc(p) = pc−p
1−p for p ≤ pc. Hence self-destructive

percolation is only interesting for p > pc. In [26], it was conjectured that, for planar lattices,
δc is uniformly bounded away from 0 when p > pc.

The conjecture is somewhat surprising. When p is very close to pc the infinite percolation
cluster is very thin, and even after burning it, one may expect that opening only few sites
suffices to obtain a new infinite cluster.
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Recently in [2] was proven that, for non-amenable graphs G, the conclusion of the con-
jecture is false, i.e. that δc(p) → 0 as p → pc. The same has been shown in [1] for high
dimensional lattices (more precisely for bond percolation on Z

d with d large enough).
In two dimensions it has been proved in [26, Prop. 3.1] that δc(p) > 0 for any given

p > pc. This later was strengthened by van den Berg and de Lima [29] to the linear lower
bound δc(p) ≥ (p − pc)/p, but a bound which is non-zero and uniform in p could not be
obtained. Finally, in [73] the afore-mentioned conjecture was proved:

Theorem 3.1 ([73]). If G is planar and invariant under translation (by some u ∈ R
2 \ {0}),

rotation (of an angle ϕ ∈ (0, π)) and reflection with respect to a line, then there exists δ > 0
such that for all p > pc(G), θ(p, δ) = 0.

We mention that Theorem 3.1 also holds in the same form for bond percolation. In the
present paper we will prove the theorem in the setting of site percolation on Z

2. We will
point out throughout the paper how to adapt our proof to other planar lattices.

Let us turn to the implications of Theorem 3.1. Let δc be the limit of δc(p) as p ↘ pc.
Theorem 3.1 together with the results in [28] shows that the function (p, δ) → θ(p, δ) is
continuous on the set [0, 1]2 \ {pc} × (0, δc], while it is discontinuous on {pc} × (0, δc].

This result has important consequences for forest fires. Intuitively, an infinite-parameter
forest fire is a process indexed by t ≥ 0 defined as follows. At the initial time t = 0, all
sites are closed. As t increases, sites open independently, at times distributed exponentially
with rate 1. When an infinite cluster appears it is immediately burned (i.e. all its sites are
closed). Then sites become open again at rate 1. It is not clear whether such a model actually
exists. In [73] we also show that our results combined with those in [26] imply that infinite-
parameter forest fires cannot be defined on two-dimensional lattices.

To avoid the problems of definition, one can investigate theN -parameter forest fire mod-
els withN < ∞. That is, we modify the dynamics above by burning clusters as soon as their
‘size’ reachesN . Our results with those of [27] provide some insight to the behavior of these
processes. We find a behavior which is quite different compared to that of a mean field ver-
sion of the forest fire model cf. [93].

4. Non-equilibrium phase transitions

Modern Statistical Mechanics offers a large and important class of driven-dissipative lattice
systems that naturally evolve to a critical state, which is characterized by power-law distri-
butions of the sizes of relaxation events (a paradigm example is the emergence of avalanches
caused by small perturbations in sandpile models). In many mathematically interesting and
physically relevant cases such systems are attracted to a stationary critical state without be-
ing specifically tuned to a critical point. In particular, it is believed that this phenomenon lies
behind random fluctuations at the macroscopic scale, and creation of self-similar shapes in a
variety of growth systems.

Due to strong non-locality of correlations and dynamic long-range effects, classical ana-
lytic and probabilistic techniques fail in most cases of interest, making the rigorous analysis
of such systems a major mathematical challenge.

Studies of the above phenomenon are confined to very fewmodels, and its conceptual un-
derstanding is extremely fragmented. Among theories which attempt to explain long-ranged
spatio-temporal correlations, the physical paradigm called ‘self-organized criticality’ takes
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its particular place [42, 67]. These are systems whose natural dynamics drives them towards,
and then maintains them at the edge of stability [42]. However, from point of view of non-
equilibrium statistical mechanics it is becoming increasingly evident that ‘self-organized
criticality’ is related to conventional critical behavior, namely that of an absorbing-state
phase transition. The known examples are variations of underlying non-equilibrium systems
which actually do have a parameter and exhibit critical phenomena. The phase transition in
these systems arises from a conflict between a spread of activity and a tendency for this ac-
tivity to die out [43, 83], and the transition point separates an active and an absorbing phase
in which the dynamics gets eventually extinct in any finite region.

Here we focus on two chief examples of conservative, infinite-volume systems which be-
long to the above mentioned family: the activated random walk model for reaction-diffusion
and the stochastic sandpile model. We briefly describe the models.

The reaction-diffusion model is given by the following conservative particle dynamics in
Z
d. Each particle can be in one of two states: an active A-state, and a passive S-state. Each

particle in theA-state performs a continuous-time random walk with jump rateDA = 1. The
jumps have a probability density p(·) on Zd such that the set {z ∈ Z

d : p(z) > 0} generates
the whole group (Zd,+). Independently of anything else, each particle in the A-state turns
to the S-state at a halting rate λ > 0. Once a particle is in the S-state, it stops moving, i.e.,
its jump rate is DS = 0, and it remains in the S-state until the instant when another particle
is present at the same vertex. At such an instant the particle which is in S-state flips to the
A-state, giving the transition A+S → 2A. A particle in the S-state stands still forever if no
other particle ever visits the vertex where it is located. The catalyzed transition A+S → 2A
and the spontaneous transition A → S represent the spread of activity versus a tendency for
this activity to die out. According to these rules, the transition A → S effectively occurs
if and only if, at the instant of such a transition, the particle does not share its vertex with
another particle (the innocuous instantaneous transition 2A → A+S → 2A is not observed).
Particles in the A-state do not interact among themselves. This system will be referred to as
the model of Activated Random Walks (ARW).

In sandpile models the state of the system is represented by the number of particles
η(x) = 0, 1, 2, . . . at each vertex x ∈ Z

d. The vertex x is stable when η(x) < Nc, for some
threshold value Nc, and unstable when η(x) � Nc. Relaxation (update of the state) happens
by toppling each unstable vertex, i.e., sending particles to its neighbors following a certain
(deterministic or stochastic) rule. Here we study the following sandpile dynamics, which
is a variation of Manna’s model frequently considered in the physics literature [41, 84].
The threshold for stability of vertices is Nc = 2, and each unstable vertex topples after
an exponentially-distributed time, sending 2 particles to neighbors chosen independently at
random. We will refer to this model as the Stochastic Sandpile Model (SSM).1

For these systems, the relation between self-organized and ordinary criticality is under-
stood as follows. On the one hand, ‘self-organized criticality’ appears in their parameter-
free, finite-volume variation: particles are added to the bulk of a finite box, and absorbed
at its boundary during relaxation. The particle addition happens at a slow rate, or only af-
ter the system globally stabilizes. In this dynamics, when the average density μ inside the
box is too small, mass tends to accumulate. When it is too large, there is intense activity
and a substantial number of particles is absorbed at the boundary. With this carefully de-
signed mechanism, the model is attracted to a critical state with an average density given by

1In the so-called Abelian Sandpile,Nc = 2d, and an unstable vertex deterministically sends one particle to each
of its 2d neighbors when toppling.
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0 < μc < ∞, though it was not explicitly tuned to this critical value. On the other hand,
the corresponding conservative systems in infinite volume exhibit ordinary criticality in the
sense that their dynamics fixate for μ < μc and do not fixate for μ > μc, and moreover the
critical exponents of the finite-volume addition-relaxation dynamics are related to those of
the conservative dynamics in infinite volume.

The critical behavior of stochastic sandpiles seems to belong to the same universality
class as the depinning of a linear elastic interface subject to random pinning potentials,
roughly depicted by a nailed carpet being detached from the floor by an external force of
critical intensity, where the rupture of each nail induces other ruptures nearby, giving rise to
“avalanches”.

The deterministic sandpile defines a universality class sui generis, and is marked by
strong non-ergodic effects [43].

This seems to be due to the failure of the toppling procedure in eliminating certain mi-
croscopic symmetries in the configuration by the time the system becomes unstable, as a
consequence of the existence of many toppling invariants.

In the stochastic sandpile models, by contrast, the addition-relaxation operators are them-
selves random, leading to a set of coupled polynomial equations [42, 102]. Their explicit
solutions are not known in a general form, and very little can be said rigorously about the
phase transition of such systems. The reaction-diffusion dynamics, in turn, might be even
more apt to dispel microscopic symmetries, for not only the moves are random, but also the
particles jump individually rather than in pairs.

The main pursuit in this framework is to describe the critical behavior, the scaling re-
lations and critical exponents, and whether the critical density is the same as the long-time
limit attained in the driven-dissipative version. These questions are however far beyond the
reach of current techniques.

Despite of multiple efforts even the existence of phase transition for these two models
was not know till recently.

Definition 4.1. We say that the system locally fixates if ηt(x) - the number of particles at
vertex x, is eventually constant for each x, otherwise we say that the system stays active.

Theorem 4.2 ([97]). Consider the Stochastic Sandpile Model in the one-dimensional lattice
Z, with initial distribution ν given by i.i.d. Poisson random variables with parameter μ.
There exists μc ∈ [ 14 , 1] such that the system locally fixates a.s. if μ < μc, and stays active
a.s. if μ > μc.

Theorem 4.3 ([97]). Consider the Activated Random Walk Model with nearest-neighbor
jumps in the one-dimensional lattice Z with halting rate λ and with initial distribution ν
given by i.i.d. Poisson random variables in N0 with parameter μ. There exists μc ∈

[
λ

1+λ , 1
]

such that the system locally fixates a.s. if μ < μc and stays active a.s. if μ > μc.

Theorem 4.3 should be contrasted with the particular case of totally asymmetric jumps, for
which it is known that μc = λ

1+λ , so the lower bound is sharp. Note also that μc = 1 when
λ = +∞. Theorems 4.2 and 4.3 remain true under more general hypotheses.

Remark 4.4. The methods and ideas used in [97] potentially could be extended to higher
dimensions, however they come short due to technical difficulties controlling geometry of
configuration. By using multi scale analysis techniques results analogous to the Theorems
4.2 and 4.3 were recently obtained in [106] for any dimension, provided the density of par-
ticles is sufficiently small.
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Critical flow in one dimension. Here we consider the flow process, i.e., the process which
counts the amount of particles which have passed through the origin 0. We find the scaling
limit of this process for the biased particle-hole model in Z (see [32] for definition), which
is given by the running maximum of a Brownian motion.

The biased particle-hole model is very close to ARW and a similar scaling limit should
hold for the ARW with asymmetric walks at λ = ∞. It would be interesting to understand
the scaling limit of totally-asymmetric walks with finite λ at critical density μc = λ

1+λ , but
we have not been able to find the correct description. The case of asymmetric walks and
finite λ is much less clear, let alone that of symmetric walks.

Consider the particle-hole model with jump probabilities p > 1
2 to the right and q = 1−p

to the left, and initial condition having mean μ = 1 and positive finite variance σ2. We define
the flow process as

Ct := number of particles which have passed through 0 before time t, t ≥ 0.

Let (Bt)t≥0 be a one-dimensional Brownian motion started at 0 and B̃t := max{Bs : s ≤ t}
denote its running maximum. The theorem below states that the scaling limit of the flow
process (Ct)t≥0 is (B̃t)t≥0. The plateaux of B̃ (given by excursions of B below its running
maximum) correspond to the ever longer intervals of inactivity at the origin in the model.
Moreover, the scale invariance B̃L2t

d
= L B̃t indicates that the amount of particles which

pass through the origin before time t is of order
√

t, providing a critical exponent. The above
observations are in agreement with the predictions of vanishing activity and non-fixation.

Theorem 4.5 ([32]). For d = 1, let v = p − q > 0 denote the average speed of a moving
particle in the particle-hole model. Assume E[η0(0)] = 1 and E[η0(o)

2] = 1 + σ2 with
0 < σ < ∞. Then the scaling limit of the flow process (Ct)t≥0 is given by(

1
σL CL2t

v

)
t≥0

d−→
(
B̃t

)
t≥0

,

where d→ denotes convergence in distribution in D[0,∞) with the M1-topology.

For many open problems we refer to [32, 44].

5. Dynamic phase transition and slow bond problem

In this section we address to the following question: how can localized defect, especially
if it is small, affect the macroscopic behavior of a growth system? This is one of the fun-
damental questions in non-equilibrium growth: is the asymptotic shape changed (faceted)
in the macroscopic neighborhood of such a defect at any value of its strength, or, when the
defect is too weak, do the fluctuations of the bulk evolution become predominant and de-
stroy the effects of the obstruction in such a way that its presence becomes macroscopically
undetectable?

Such a vanishing presence of the macroscopic effect as a function of the strength of
obstruction represents what is called dynamic phase transition. The existence of such a
transition, its scaling properties, the shape of the density profile near the obstruction are
among the most important issues.
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Consider classical Ulam’s problem of maximal increasing subsequence casted in the
language of continuum last passage percolation: LetΠ be a Poisson point process of intensity
1 onR2. For points u = (0, 0) and u′ = (n, n) let Ln denote the maximum number of points
which can be collected along an increasing path from u to u′. We call Ln the length of a
maximal path from (0, 0) to (n, n). It is well known (see [82, 112], and [9] for an alternative
proof), that

lim
n→∞

ELn

n
= 2. (5.1)

Now, for λ > 0, let Σλ be a one dimensional poisson process of intensity λ on the line
x = y independent of Π. Let Πλ be the point process obtained by superimposing Π and Σλ,
i.e., a realisation of Πλ is obtained by taking two independent realisations of Π and Σλ, and
superimposing the point configurations. Let Lλ

n denote the maximum number of points of
Πλ on an increasing path from (0, 0) to (n, n). It is easy to observe that taking λ sufficiently
large changes the law of large numbers for Lλ

n from that of Ln, i.e., for λ sufficiently large

lim
n→∞

ELλ
n

n
> 2. (5.2)

An important problem is whether there is a non-trivial phase transition in λ, i.e., whether for
any λ > 0 the law of large numbers for Lλ

n differs from that of Ln, or there exists λc > 0,
such that the law of large number for Lλ

n is same as that of Ln for λ < λc. Our main result
settles this question:

Theorem 5.1 ([16]). For every λ > 0,

lim
n→∞

ELλ
n

n
> 2. (5.3)

We also consider a discrete last passage percolation on Z
2
+, defined by associating with

each vertex x ∈ Z
2
+ a random variable ξx ∼ exp(1), and ξx are i.i.d. for all x ∈ Z

2
+. Let

π = {x0 = (0, 0), x1, . . . , xn = (n, n)} be an oriented path connecting (0, 0) to (n, n).
Define

L1
n = max

π

n∑
i=0

ξxi
;

It is well known that

lim
n→∞

EL1
n

n
= 4 (5.4)

This description also corresponds to totally asymmetric exclusion process X(t) in continu-
ous time, where X(t) = (ηk(t))

∞
k=−∞ ∈ {0, 1}Z, a particle (ηk = 1) jumps with exponen-

tial rate to the right one step provided there is no particle at k + 1(ηk+1 = 0), and where the
initial configuration is I(−∞,0](k) (“step initial conditions”). This form of simple exclusion
process was introduced and studied by Rost, [99]. Now let us modify the distribution of
passage times, by taking

ξ(x,y) ∼
{
exp(1) if x �= y

exp (1− ε) if x = y.
(5.5)
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and ask the same question: does the law of large numbers change for any ε > 0. In TASEP
representation this change corresponds to local modification of the dynamics: particles are
jumping across the edges of E(Z) \ 〈0, 1〉 with intensity 1, and the edge 〈0, 1〉 is crossed at
intensity 1 − ε. This model was proposed in [68, 69] by Janowsky and Lebowitz in their
attempt to understand nonequilibrium stationary states of macroscopic systems. Clearly the
rate decrease will increase the particle density to the immediate left of this “blockage” bond
and decrease the density to its immediate right, but what is not obvious is that this pertur-
bation may have global effect, in addition to local effects, in particular change the current
of the system. The question got to prominence due to long-standing controversy based on
numerical analysis, weather εc > 0 or LLN for Lε

n changes for any value ε > 0, and became
known as “slow bond problem”. The difficulty comes from the fact that differently from lo-
cal perturbations of equilibrium systems, where the effect of such perturbation is local, effect
of any local perturbation in non-equilibrium systems carrying fluxes of conserved quantities
is felt at large scales.

Mean-field theory analysis predicted an infinitely long traffic jam for any ε > 0 and only
a logarithmic depletion density pro- file near a slow bond [68]. In retrospect, based on finite
size scaling analysis of simulation data the value εc ∼ 0.2 was predicted in [64]. Rigorously
this question was addressed also in [37, 103]. Our second results confirms predictions made
in [68]:

Theorem 5.2 ([16]). In discrete last passage percolation model for every ε > 0,

lim
n→∞

ELε
n

n
> 4. (5.6)

The above mentioned models belong to 1 + 1 dimensional Kardar - Parisi - Zhang uni-
versality class. Part of the success relies on the fact that models we mention here lend them-
selves to the explicit computation of various quantities, such as growth speed and interface
fluctuations. The proofs depend on exact algebraic computations, and it is not clear how to
apply them as soon as the dynamics are modified in a non-translation-invariant way, with an
exception of symmetrized cases [13].

6. Coffman-Gilbert conjecture

In this final section we discuss another prominent model - a classical greedy single-server
system on the unit-length circle R/Z. Customers arrive following a Poisson process with
rate λ. Each arriving customer chooses a position on R/Z uniformly at random and waits
for service. If there are no customers in the system, the server stands still. Otherwise, the
server chooses the nearest waiting customer and travels in that direction at speed v > 0,
ignoring any new arrivals. Upon reaching the position of such customer, the server stays
there until service completion, which takes a random time T that is independent of the past
configurations and has expectation μ−1.

The above system was introduced by Coffman and Gilbert in 1987 [36], and since then
became a paradigm example of a routing mechanism that depends on the system state. This
is the so-called greedy server, due to the simple strategy of targeting the nearest customer.

It was conjectured in [36] that when λ < μ, the greedy server on the circle should be a
stable system for any v > 0. Since then, a number of related models have been proposed
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and studied. Stability was verified only in case of light-traffic assumptions, i.e., for λ and μ
fixed and v large enough, or for case of the greedy server on a discrete ring Z/nZ.

However, these approximations were unable to identify and tackle the main difficulty of
this system, which is is due to the interplay between the server’s motion and the environment
of waiting customers that surround it. This interplay is given by the interaction resulting from
the choice of the next customer and the removal of those who have been served.

The main difficulty in studying greedy server systems in continuous spaces is due to
the interplay between the server’s motion and the environment of waiting customers that
surround it. This interplay is given by the interaction resulting from the greedy choice of
the next customer and the removal of those who have been served. The server’s path is self-
repelling, since the removal of already served customers makes it less likely for the greedy
server to take the next step back into the recently visited regions.

In some well-known examples of self-repelling motions, the self-interaction comes from
an explicit prescription of the distribution of next step in terms of the past occupation times.
For the excited random walks [25], perturbed Brownian motions [33, 34, 39, 40, 90], and
excited Brownian motions [92], whenever there is a drift, it is pushing the motion in a certain
fixed direction. For the random walk avoiding its past convex hull [12, 115] and the prudent
walk [21, 31], there is a growing forbidden region containing the previous trajectory, which
strongly pushes the motion outwards.

For the greedy server, as well as for the class of other models, such as the true self-
avoiding walk [109, 110], the true self-repelling motion [111], and the Brownian motion
with repulsion [87], there is a mixture of information, and “self-repulsion” does not imme-
diately imply “repulsion towards ∞”, since the particle is allowed to cross its past path,
receiving contradictory signals from different directions. In fact, some of the latter models
are recurrent and some are transient.

It was clear since these models were introduced that they could not be treated via standard
methods and tools. Still nowadays, a lot remains to be understood even in dimension d = 1,
and, despite the existence of a few scattered techniques that have proved useful in particular
situations, this rich field of study lacks a systematic basis.2

Few words on previous results. Stability was verified for the greedy server on R/Z under
light-traffic assumptions [77], and for the greedy server on a discrete ring Z/nZ [58, 59, 85],
see below. It was also shown for several related models, including a class of non-greedy
policies [76], a gated-greedy variant on convex spaces [11], and random non-greedy servers
on general spaces [10]. See [96] and references therein for a recent review.

The light-traffic regime is given by

λ

(
1

μ
+

1

2v

)
< 1.

This regime was studied in [77], particularly the limit λ → 0 for which the first terms of
Taylor expansions of some performance measurements were computed. A simple coupling
argument works for proving stability under light-traffic assumption.

On the other hand, stability under the general condition λ < μ is known to hold for
the polling server on R/Z, i.e., the server whose strategy is to always travel in the same
direction. In [75] this fact was proven using a decomposition of the set of waiting customers

2 Except for the family of universality classes given by the Schramm-Loewner Evolutions, which include 2-
dimensional loop-erased random walk and several other models.
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into a collection of Galton-Watson trees that turn out to be subcritical for λ < μ. This
decomposition provides a detailed description of the busy cycles (sequence of configurations
observed between two consecutive regeneration times) and the stationary state.

Simulations indicate that under heavy traffic conditions the greedy server dynamics re-
sembles that of the polling server [36]. This suggests that a possible strategy for proving
stability of the greedy server might be to adapt the above argument. In this case the first step
would be to understand its local behavior, and a natural approach is to consider a system
on an infinite line. A model on Z was studied in [78], where it is shown that the server is
eventually going to move in a fixed random direction.

Yet, discrete models have not been able to grasp the microscopic nature of the greedy
mechanism in continuous space, neither on Z nor on Z/nZ, and there are major obstacles in
extrapolating any approach based on a discrete approximation. This difficulty is due to the
self-interaction of the server’s path at the microscopic level, which takes place because the
server’s trajectory influences the set of waiting customers and at the same time is determined
by the latter.

Stochastic evolution of profiles. To address the issues mentioned above, we consider a
representation of the customers environment which reflects its randomness as perceived by
the server.

More precisely, we only want to learn the information that is necessary and sufficient to
determine the next movement, and the positions of further waiting customers should remain
unknown. Each time the server has to scan the system state to determine the position of the
next target, we acquire exactly two pieces of information: the presence of a customer at that
position and the absence of any other customer at smaller distances.

The arrivals are represented by a space-time Poisson Point Process ν ⊆ (R/Z) × R,
and in this approach one is ignoring the points of ν that have not yet influenced the server’s
trajectory. One can think of this scheme as re-sampling the set of waiting customers at each
departure time, according to the appropriate conditional distribution. The latter is given
in terms of the space-time region where the configuration ν has not been revealed. In this
setting the state of the system is given by the positions of the server and the current customer,
plus the profile corresponding to the boundary of this region where ν is unknown. The
knowledge of this triplet determines the distribution of its future without the need of any
further information from the past, yielding a Markovian evolution.

Definition 6.1. We say that t is a regeneration time if the system becomes empty at time t,
i.e., if there is one customer at time t− and no customers at time t+. Let τ∅ := inf{t >
0 : t is a regeneration time}. We say that the system is recurrent if, starting from the empty
state ∅, there will be a.s. a regeneration time, i.e., P∅[τ∅ < ∞] = 1. We say that the system
is stable, or positively recurrent, if E∅[τ∅] < ∞.

Our main theorem settles Coffman-Gilbert conjecture in the dimension one:

Theorem 6.2 ([98]). Suppose that the distribution of the service time T is geometric, expo-
nential, or deterministic. For any λ < μ and any v > 0, the greedy server on the circle is
stable.

Heuristics of the proof is following: If the server is busy most of the time, the system
must be stable, since in average the service time is smaller than the inter-arrival time. The
fundamental problem in showing stability is therefore the possibility that the server spend a
long time zigzagging on regions with low density of customers, due to a trapping configura-
tion produced by the stochastic dynamics.
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For the analogous model on the real line this cannot be the case: the server may zigzag
for a finite period of time, but it is bound to eventually choose a direction and head that
way [61].

On the same grounds, since the greedy routing mechanism is local, this can neither be
the case on the circle – at least until the server realizes that it is not operating on the infinite
line.

Suppose we are given a configuration where the circle is crowded of waiting customers,
and, from this point on, our goal is to alleviate this situation. We would like to say that, with
high probability, after a short time the server will choose a direction and then cope with its
workload as the polling server would.

There are two situations where the server may feel that it is on the circle rather than on
the line. First, if it arrives at a given point x for the second time after performing a whole
turn on the circle, it will encounter an environment that has been affected by its previous
visit. This is not a serious problem, because if it happens it will imply that all the customers
which were initially present will have then been served, and typically the server will have
served more customers than new ones will have arrived.

The second difference is what poses a real issue. The server has a tendency to go into
regions that have been least recently visited, since in these regions the average interdistance
between customers is smaller, and they have bigger chance to attract the server via its greedy
mechanism. This is indeed how transience is proved on R. Let us call the age of a point in
space the measurement in time units of how recently it was visited by the server in the past.
On the line, the age is minimal at the server’s position, and increases as we go further away
from the server. The new regions encountered thus become older and older, and the server
surrenders to the fact that the cleared regions it is leaving behind cannot compete with the
old regions ahead.

However, this is not true on the circle: the age profile cannot increase indefinitely. This
gives rise to the possibility of the following tricky scenario. Imagine that on a tiny region
around some point x the system is much older than on any close neighborhood. When the
server enters this region, it will take a very long time to finish with all the waiting customers.
After finishing with all these customers tightly packed in space, there will no longer be a
strong difference between the ages ahead and behind the server, who may end up going back
to the region that has just been cleared, invalidating the argument.

Open Problem. Under the assumption λ < μ, show stability of the server on the two
dimensional torus for any v > 0.

References

[1] D. Ahlberg, H. Duminil-Copin, G. Kozma, and V. Sidoravicius, Seven-dimensional
forest fires, preprint, Annales de l’Institut Henri Poincaré, Probabilités et Statistiques,
arXiv:1302.6872, 2013.

[2] D. Ahlberg, V. Sidoravicius, and J. Tykesson, Bernoulli and self-destructive perco-
lation on non-amenable graphs, Electronic communications in Probability, preprint,
arXiv:1302.6870, 2013.



218 Vladas Sidoravicius

[3] M. Aizenman, Geometric analysis of φ4 fields and Ising models, Comm. Math. Phys.
86 (1982), no. 1, 1–48.

[4] M. Aizenman, D.J. Barsky, and R. Fernandez, The phase transition in a general class
of Ising-type models is sharp, J. Stat. Phys. 47 (1987), no. 3-4, 343–374.

[5] M. Aizenman, J.T. Chayes, L. Chayes, and C.M. Newman, Discontinuity of the mag-
netization in one-dimensional 1/|x − y|2 Ising and Potts models, J. Stat. Phys. 50
(1988), no. 1-2, 1–40.

[6] M. Aizenman and R. Fernandez, On the critical behavior of the magnetization in
high-dimensional Ising models, J. Stat. Phys. 44 (1986), no. 3-4, 393–454.

[7] M. Aizenman and C.M. Newman, Uniqueness of the Infinite Cluster and Continuity
of Connectivity Functions for Short and Long Range Percolation, Commun. Math.
Phys. 107 (1986), 505–531.

[8] M. Aizenman, H. Duminil-Copin, and V. Sidoravicius, Random Currents and Con-
tinuity of Ising Model’s Spontaneous Magnetization, Comm. Math. Phys. Preprint
arXiv:1311.1937, 2013.

[9] D. Aldous and P. Diaconis, P. Hammersley’s interacting particle process and longest
increasing subsequences, Probab. Theory Related Fields 103 (1995), no. 2, 199–213.

[10] E. Altman and S. Foss, Polling on a space with general arrival and service time
distribution, Oper. Res. Lett. 20 (1997), 187–194.

[11] E. Altman and H. Levy, Queueing in space, Adv. in Appl. Probab. 26 (1994), 1095–
1116.

[12] O. Angel, I. Benjamini, and B. Virág, Random walks that avoid their past convex hull,
Electron. Comm. Probab. 8 (2003), pp. 6–16.

[13] J. Baik and E.M. Rains, Symmetrized random permutations, In MSRI Publications 40:
Random Matrix Models and Their Applications, ed. P. Bleher and A. Its, Cambridge,
2001.

[14] D.J. Barsky, G.R. Grimmett, and C.M. Newman, Dynamic renormalization and conti-
nuity of the percolation transition in orthants, In Spatial stochastic processes, volume
19 of Progr. Probab., pages 37–55. Birkhäuser Boston, Boston, MA, 1991.

[15] , Percolation in half-spaces: equality of critical densities and continuity of the
percolation probability, Probab. Theory Related Fields 90(1) (1991), 111–148.

[16] R. Basu, V. Sidoravicius, A. Sly, Last Passage Percolation with a Defect Line and
Slow Bond Problem, Preprint 2014.

[17] R.J. Baxter, Generalized ferroelectric model on a square lattice, Studies in Appl.
Math. 50 (1971), 51–69.

[18] , Potts model at the critical temperature, Journal of Physics C: Solid State
Physics, 6(23):L445, 1973.



Criticality and Phase Transitions 219

[19] , Exactly solved models in statistical mechanics, Academic Press Inc. [Har-
court Brace Jovanovich Publishers], London, 1989. Reprint of the 1982 original.

[20] V. Beffara and H. Duminil-Copin, Critical point and duality in planar lattice models,
2012.

[21] V. Beffara, S. Friedli, and Y. Velenik, Scaling limit of the prudent walk, Electron.
Commun. Probab., 15 (2010), 44–58.

[22] A.A. Belavin, A.M. Polyakov, and A.B. Zamolodchikov. Infinite conformal symmetry
of critical fluctuations in two dimensions, J. Statist. Phys. 34(5-6) (1984), 763–774.

[23] , Infinite conformal symmetry in two-dimensional quantum field theory, Nu-
clear Phys. B, 241(2):333–380, 1984.

[24] I. Benjamini, R. Lyons, Y. Peres, and O. Schramm, Critical percolation on any nona-
menable group has no infinite clusters, The Annals of Probability, 27(3):1347–1356,
1999.

[25] I. Benjamini and D.B. Wilson, Excited random walk, Electron, Comm. Probab., 8
(2003), pp. 86–92.

[26] J. van den Berg and R. Brouwer, Self-destructive percolation, Random Structures and
Algorithms 24 (2004), no. 4, 480–501.

[27] , Self-organized forest-fires near the critical time, Comm. Math. Phys. 267
(2006), no. 1, 265–277.

[28] J. van den Berg, R. Brouwer, and B. Vagvolgyi, Box-Crossings and Continuity Results
for Self-Destructive Percolation in the Plane, In and Out of Equilibrium 2, vol. 60,
Birkhauser Basel, 2008, pp. 117–135.

[29] J. van den Berg and B.N.B. de Lima, Linear lower bounds for c(p) for a class of 2D
self-destructive percolation models, Random Structures & Algorithms 34 (2009), no.
4, 520–526.

[30] M. Biskup, L. Chayes, and N. Crawford, Mean field driven first-order phase transi-
tions in systems with long- range interactions, J. Stat. Phys. 122 (6) (2006), 1139–
1193.

[31] M. Bousquet-Melou, Families of prudent self-avoiding walks, J. Combin. Theory Ser.
A 117 (2010), 313–344.

[32] M. Cabezas, L. Rolla, V. Sidoravicius, Non-equilibrium Phase Transitions: Activated
Random Walks at Criticality, Journal of Statistical Physics (2014), arXiv:1307.4450.

[33] P. Carmona, F. Petit, and M. Yor, Beta variables as times spent in [0,∞[ by certain
perturbed Brownian motions, J. London Math. Soc. (2), 58 (1998), pp. 239–256.

[34] L. Chaumont and R.A. Doney, Pathwise uniqueness for perturbed versions of Brown-
ian motion and reflected Brownian motion, Probab. Theory Related Fields 113 (1999),
519–534.



220 Vladas Sidoravicius

[35] D. Chelkak and S. Smirnov, Universality in the 2D Ising model and conformal invari-
ance of fermionic observables, Invent. Math. 189(3) (2012), 515–580.

[36] J.E.G. Coffman and E. N. Gilbert, Polling and greedy servers on a line, Queueing
Systems Theory Appl. 2 (1987), 15–145.

[37] P. Covert and F. Rezakhanlou, Hydrodynamic Limit for Particle Systems with Noncon-
stant Speed Parameter, Journal of Stat. Phys. 88, No. 1/2, 1997.

[38] M. Damron, C.M. Newman, and V. Sidoravicius, Absence of site percolation at criti-
cality in Z

2 × {0, 1}, Random Structures and Algorithms, Preprint arXiv:1211.4138,
2012.

[39] B. Davis, Weak limits of perturbed random walks and the equation Yt = Bt +
α sup{Ys : s ≤ t}+ β inf{Y s : s ≤ t}, Ann. Probab. 24 (1996), 2007–2023.

[40] , Brownian motion and random walk perturbed at extrema, Probab. Theory
Related Fields 113 (1999), 501–518.

[41] D. Dhar, The abelian sandpile and related models, Physica A 263 (1999), 4–25.

[42] , Theoretical studies of self-organized criticality, Physica A 369, 29–70
(2006)

[43] R. Dickman, Nonequilibrium phase transitions in epidemics and sandpiles, Physica
A 306 (2002), 90–97.

[44] R. Dickman, L.T. Rolla, and V. Sidoravicius, Activated random walkers: facts, con-
jectures and challenges, J. Stat. Phys. 138 (2010), 126–142.

[45] H. Duminil-Copin, V. Sidoravicius, and V. Tassion, Absence of infinite cluster for
critical Bernoulli percolation on slabs, Preprint arXiv:1401.7130.

[46] , Continuity of the phase transition for planar Potts models with 1 ≤ q ≤ 4,
Preprint. 2014

[47] H. Duminil-Copin. Parafermionic observables and their ap- plications to planar sta-
tistical physics models, volume 25 of Ensaios Matematicos. Brazilian Mathematical
Society, 2013.

[48] H. Duminil-Copin, V. Sidoravicius, and V. Tassion. Continuous phase transition for
planar Potts models with 1–q–4, Preprint, 2014.

[49] H. Duminil-Copin and S. Smirnov. The connective constant of the honeycomb lattice
equals

√
2 +

√
2, Ann. of Math. (2) 175(3) (2012), 1653–1665.

[50] R.L. Dobrushin, Prescribing a system of random variables by the help of conditional
distributions, Prob. Theo. and its App. 15 (1970), 469–497.

[51] F.J. Dyson, Existence of a phase-transition in a one-dimensional Ising ferromagnet,
Comm. Math. Phys. 12 (1969), no. 2, 91–107.



Criticality and Phase Transitions 221

[52] R. G. Edwards and A. D. Sokal. Generalization of the Fortuin-Kasteleyn-Swendsen-
Wang representation and Monte Carlo algorithm, Phys. Rev. D (3) 38 (6) (1988),
2009–2012.

[53] A. Fey, L. Levine, and D.B. Wilson, Approach to criticality in sandpiles, Phys. Rev.
E 82, 031121 (2010).

[54] , Driving sandpiles to criticality and beyond, Phys. Rev. Lett. 104, 145703
(2010).

[55] A. Fey-den Boer and F. Redig, Organized versus self-organized criticality in the
Abelian sandpile model, Markov Process. Relat. Fields 11 (2005), 425–442.

[56] M.E. Fisher, Critical temperatures of anisotropic Ising lattices II, general upper
bounds, Phys. Rev. 162 (1967), 480.

[57] C.M. Fortuin and P.W. Kasteleyn. On the random-cluster model. I. Introduction and
relation to other models, Physica 57 (1972), 536–564.

[58] S. Foss and G. Last, Stability of polling systems with exhaustive service policies and
state- dependent routing, Ann. Appl. Probab. 6 (1996), 116–137.

[59] , On the stability of greedy polling systems with general service policies,
Probab. Engrg. Inform. Sci. 12 (1998), 49–68.

[60] E. Fradkin and L. P Kadanoff, Disorder variables and para-fermions in two-
dimensional statistical mechanics, Nuclear Physics B 170(1) (1980), 1–15.

[61] S. Foss, L.T. Rolla, and V. Sidoravicius, Transience of a server with greedy strategy
on the real line, Annals of Probability (to appear). arXiv:1111.4846v3, 2011.

[62] R.B. Griffiths, C.A. Hurst, and S. Sherman, Concavity of mag- netization of an ising
ferromagnet in a positive magnetic field, J. Math. Phys. 11 (1970), 790.

[63] G.R. Grimmett and J.M. Marstrand, The supercritical phase of percolation is well
behaved, Proceedings of the Royal Soci- ety of London. Series A: Mathematical and
Physical Sciences, 430(1879):439, 1990.

[64] M. Ha, J. Timonen, and M. den Nijs, Queuing transitions in the asymmetric simple
exclusion process, Phys. Rev. E 68 (2003).

[65] T. Hara and G. Slade, Mean-field behaviour and the lace expansion, NATOASI Series
C Math. and Physical Sciences-Advanced Study Institute, 420(1994), 87–122.

[66] T.E. Harris, A lower bound for the critical probability in a certain percolation process,
Math. Proceedings of the Cambridge Philosophical Society, 56(01) (1960), 13–20.

[67] H. Hinrichsen, Non-equilibrium critical phenomena and phase transitions into ab-
sorbing states, Adv. Phys. 49 (2000), 815–958.

[68] S. Janowsky and J. Lebowitz, Finite size effects and shock fluctuations in the asym-
metric simple exclusion process, Phys. Rev. A 45 (1992), 618-625.



222 Vladas Sidoravicius

[69] S. Janowsky and J. Lebowitz, Exact results for the asymmetric simple exclusion pro-
cess with a blockage, J. Star. Phys. 77 (1994), 35-51.

[70] R. Kenyon, Conformal invariance of domino tiling, Ann. Probab. 28(2) (2000), 759–
795.

[71] , Dominos and the Gaussian free field, Ann. Probab. 29 (3) (2001), 1128–
1137.

[72] H. Kesten, The critical probability of bond percolation on the square lattice equals 1,
Comm. Math. Phys. 74(1) (1980), 41–59.

[73] D. Kiss, I. Manolescu, and V. Sidoravicius, Planar lattices do not recover from forest
fires, arXiv:1312.7004, 2013.

[74] R. Kotecky and S.B. Shlosman, First-order phase transitions in large en- tropy lattice
models, Comm. Math. Phys. 83(4) (1982), 493–515.

[75] D.P. Kroese and V. Schmidt, A continuous polling system with general service times,
Ann. Appl. Probab. 2 (1992), 906–927.

[76] , Single-server queues with spatially distributed arrivals, Queueing Systems
Theory Appl. 17 (1994), 317–345.

[77] , Light-traffic analysis for queues with spatially distributed arrivals, Math.
Oper. Res. 21 (1996), 135–157.

[78] I.A. Kurkova and M.V. Menshikov, Greedy algorithm, Z case, Markov Process. Re-
lated Fields 3 (1997), 243–259.

[79] L. Laanait, A. Messager, and J. Ruiz. Phases coexistence and surface ten- sions for
the Potts model, Comm. Math. Phys. 105(4) (1986). 527–545.

[80] L. Laanait, A. Messager, S. Miracle-Sole, J. Ruiz, and S. Shlosman, Interfaces in the
Potts model. I. Pirogov-Sinai theory of the Fortuin-Kasteleyn representation, Comm.
Math. Phys. 140(1) (1991), 81–91.

[81] J. Lebowitz, Coexistence of phases in Ising ferromagnets, J. Stat. Phys. 16 (1977), no.
6, 463–476.

[82] B.F. Logan and L.A. Shepp. A variational problem for random Young tableaux, Ad-
vances in Math. 26 (1977), 206–222.

[83] S. Lubeck, Universal scaling behavior of non-equilibrium phase transitions, Int. J.
Mod. Phys. B 18 (2004), 3977–4118.

[84] S.S. Manna, Two-state model of self-organized criticality, J. Phys. A, Math. Gen. 24,
L363–L369 (1991).

[85] R. Meester and C. Quant, Stability and weakly convergent approximations of queueing
systems on a circle, http://citeseerx.ist.psu.edu/viewdoc/summary, 1999.

[86] Meester, R.; Quant, C., Connections between ‘self-organised’ and ‘classical’ critical-
ity, Markov Process. Relat. Fields 11 (2005), 355–370.



Criticality and Phase Transitions 223

[87] T. Mountford and P. Tarrès, An asymptotic result for Brownian polymers, Ann. Inst.
Henri Poincaré Probab. Stat. 44 (2008), 29–46.

[88] L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder
transition, Phys. Rev. (2) 65 (1944), 117–149.

[89] R. Peierls, On Ising’s model of ferromagnetism, Math. Proc. Camb. Phil. Soc. 32
(1936), 477–481.

[90] M. Perman and W. Werner, Perturbed Brownian motions, Probab. Theory Related
Fields 108 (1997), 357–383.

[91] R.B. Potts, Some generalized order-disorder transformations, In Proceedings of the
Cambridge Philosophical Society 48, pp 106–109. Cambridge Univ Press, 1952.

[92] O. Raimond and B. Schapira, Excited Brownian motions, ALEA Lat. Am. J. Probab.
Math. Stat. 8 (2011), 19–41.

[93] B. Rath and B. Toth, Erdos-Renyi randomgraphs+forestfires=self-organized critical-
ity, Electron. J. Probab. 14 (2009), no. 45, 1290–1327.

[94] Redig, F., Mathematical aspects of the abelian sandpile model, In: Bovier, A., Dun-
lop, F., van Enter, A., den Hollander, F., Dalibard, J. (eds.) Mathematical Statistical
Physics’ Session LXXXIII. Lecture Notes of the Les Houches Summer School, pp.
657–730. Else- vier, Amsterdam (2006).

[95] V. Riva and J. Cardy, Holomorphic parafermions in the Potts model and stochastic
Loewner evolution, J. Stat. Mech. Theory Exp. (12):P12001, 19 pp. (electronic), 2006.

[96] L. Rojas-Nandayapa, S. Foss, and D. P. Kroese, Stability and performance of greedy
server systems: A review and open problems, Queueing Syst. 68 (2011), pp. 221–227.

[97] Rolla, L.; Sidoravicius, V., Absorbing-state phase transition for stochastic sandpiles
and activated random walks, Invent. Math. 188 (2012), no. 1, 127–150.

[98] L.T. Rolla and V. Sidoravicius, Proof of Coffman-Gilbert Conjecture: Stability of the
Greedy algorithm on the Circle, arXiv:1112.2389, 2012

[99] H. Rost, Non-Equilibrium Behaviour of a Many Particle Process: Density Profile and
Local Equilibria, Zeitschrift f. Warsch. Verw. Gebiete 58 (1981), 41–53.

[100] L. Russo, A note on percolation, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete
43(1) (1978), 39–48.

[101] A. Sakai, Lace expansion for the Ising model, Comm. Math. Phys. 272 (2007), no. 2,
283–344.

[102] T. Sadhu and D. Dhar, Steady state of stochastic sandpile models, J. Stat. Phys. 134
(2009), 427–441.

[103] T. Seppalainen, Hydrodynamic Profiles for the Totally Asymmetric Exclusion Process
with a Slow Bond, Journal of Statistical Physics, 102, Nos. 1/2, 2001



224 Vladas Sidoravicius

[104] P.D. Seymour and D.J.A. Welsh, Percolation probabilities on the square lattice, Ann.
Discrete Math., 3 (1978), 227–245. Advances in graph theory (Cambridge Combina-
torial Conf., Trinity College, Cambridge, 1977).

[105] V. Sidoravicius, Perplexing world of critical systems, Preprint 2014.

[106] V. Sidoravicius and A. Teixeira, Phase transition for activated random walks, Preprint
2014.

[107] S. Smirnov, Conformal invariance in random cluster models. I. Holomorphic fermions
in the Ising model, Ann. of Math. (2), 172(2) (2010), 1435–1467.

[108] D.J. Thouless, Long-range order in one-dimensional Ising systems, Physical Review
187 (1969), 732–733.

[109] B. Toth, The ‘true’ self-avoiding walk with bond repulsion on Z: limit theorems, Ann.
Probab. 23 (1995), pp. 1523–1556.

[110] , Self-interacting random motions—a survey, in Random walks (Budapest,
1998), vol. 9 of Bolyai Soc. Math. Stud., Janos Bolyai Math. Soc., Budapest, 1999,
pp. 349–384.

[111] B. Toth and W. Werner, The true self-repelling motion, Probab. Theory Related Fields
111 (1998), pp. 375–452.

[112] A.M. Vershik and S.V. Kerov, Asymptotics of the Plancherel measure of the symmetric
group and the limiting form of Young tables, Soviet Math. Dokl. 18 (1977), 527–531.
Translation of Dokl. Acad. Nauk. SSSR 233 (1977), 1024–1027.

[113] W. Werner, Percolation et modèle d’Ising, volume 16 of Cours Spécialisés [Special-
ized Courses], Société Mathématique de France, Paris, 2009.

[114] C.N. Yang, The spontaneous magnetization of a two-dimensional Ising model, Phys.
Rev. (2), 85 (1952), 808–816.

[115] M.P.W. Zerner, On the speed of a planar random walk avoiding its past convex hull,
Ann. Inst. H. Poincare Probab. Statist. 41 (2005), 887–900.

IMPA, Estr. Dona Castorina 110, Jardim Botanico, Cep 22460-320, Rio de Janeiro, RJ, Brasil
E-mail: vladas@impa.br



Aggregation and minimax optimality in
high-dimensional estimation

Alexandre B. Tsybakov

Abstract. Aggregation is a popular technique in statistics and machine learning. Given a collection of
estimators, the problem of linear, convex or model selection type aggregation consists in constructing a
new estimator, called the aggregate, which is nearly as good as the best among them (or nearly as good
as their best linear or convex combination), with respect to a given risk criterion. When the underlying
model is sparse, which means that it is well approximated by a linear combination of a small number
of functions in the dictionary, the aggregation techniques turn out to be very useful in taking advantage
of sparsity. On the other hand, aggregation is a general way of constructing adaptive nonparametric es-
timators, which is more powerful than the classical methods since it allows one to combine estimators
of different nature. Aggregates are usually constructed by mixing the initial estimators or functions of
the dictionary with data-dependent weights that can be defined is several possible ways. An impor-
tant example is given by aggregates with exponential weights. They satisfy sharp oracle inequalities
that allow one to treat in a unified way three different problems: Adaptive nonparametric estimation,
aggregation and sparse estimation.

Mathematics Subject Classification (2010). Primary 62G05; Secondary 62J07.

Keywords. High-dimensional model, aggregation, sparsity, oracle inequality, minimax estimation,
exponential weights.

1. Introduction

Aggregation of estimators in the regression model has been studied starting from [7, 27, 33,
39]. In this paper, we focus on the connection between aggregation and high-dimensional
statistics. In particular, we show that some aggregation techniques, such as exponential
weighting, achieve minimax rates in high-dimensional problems with sparsity constraints in
an adaptive way. The results obtained for such methods are better than those available for
the Lasso and related �1-penalized techniques. Furthermore, the procedure of exponential
weighting accomplishes the task of universal aggregation.

We consider the Gaussian regression model with fixed design. Suppose that we observe
{(Xi, Yi)}ni=1 such that

Yi = f(Xi) + ξi, i = 1, . . . , n, (1.1)

where X is an arbitrary set, f : X → R is an unknown function, Xi ∈ X are nonrandom,
and ξi are independent random variables. Unless explicitly stated otherwise, we will assume
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that ξi are independent identically distributed (i.i.d.) Gaussian random variables with mean
zero and variance σ2, ξi ∼ N (0, σ2).

Let f̂ be an estimator of f based on the observations {(Xi, Yi)}ni=1. To measure the
performance of f̂ , we use the squared error loss of the form

‖f̂ − f‖2 =
1

n

n∑
i=1

(f̂(Xi)− f(Xi))
2

and we define the squared risk of estimator f̂ asE‖f̂−f‖2 whereE denotes the expectation
sign. The pseudo-norm ‖f‖ is referred to as the empirical norm of a function defined on
X . For vectors b ∈ R

n, we will also consider the empirical �2-norm defined by ‖b‖2 =
1
n

∑n
i=1 b2i , while |b|22 =

∑n
i=1 b2i defines the usual �2-norm |b|2.

Assume that we are given a collection of functions {f1, . . . , fM} called the dictio-
nary, where fj : X → R. Assume also that we are given a subset Θ of R

M . For
θ = (θ1, . . . , θM ) ∈ Θ we consider the linear combinations fθ defined by

fθ(x)
def
=

M∑
j=1

θjfj(x), x ∈ X .

Functions fθ are viewed as approximations of the unknown f . Choosing the dictionary
{f1, . . . , fM} to be rich enough and M sufficiently large, one can expect fθ to be close to f
under appropriate assumptions. This motivates the study of estimator of f having the form

f̂ = fθ̂ =

M∑
j=1

θ̂jfj ,

where θ̂j are suitable estimators of the coefficients θj . The overall aim is to mimimize the
risk by choosing an optimal θ̂j . However, depending on the assumptions that we make about
the dictionary, the set Θ and f , we are led to different optimality properties. We introduce
here three different settings and discuss the corresponding minimax optimality frameworks.

1.1. Setting 1: Linear regression and sparsity. Assume that f is a linear combination of
functions from the dictionary:

∃θ∗ ∈ R
M : f(x) = fθ∗(x) =

M∑
j=1

θ∗j fj(x). (1.2)

Then (1.1) takes the form of a linear regression model, i.e., it can be written as

y = Xθ∗ + ξ, (1.3)

where y = (Y1, . . . , Yn)
T , ξ = (ξ1, . . . , ξn)

T , andX ∈ R
n×M is a deterministic matrix with

entries fj(Xi), i = 1, . . . , n, j = 1, . . . ,M . Estimation of f is now reduced to estimation
of θ∗ in (1.3). Classical theory of linear regression deals with the case n ≤ M , which is a
necessary condition of identifiability of θ∗ when we only know that θ∗ ∈ R

M . However,
motivated by several applications, recent years have witnessed an increasing interest in the
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problems where M is greater than n and often M 1 n. In this case, f is not identifiable
without additional assumptions on θ∗. A natural and most popular additional assumption is
a sparsity constraint. It consists in restricting the parameter θ∗ to the classΘ = B0(s) where
B0(s) is the �0-ball in RM :

B0(s) = {θ ∈ R
M : |θ|0 ≤ s}, s = 1, . . . ,M. (1.4)

Here,

|θ|0 def
=

M∑
j=1

I(θj �= 0)

is the “�0 norm” of θ, where I(·) denotes the indicator function. Vectors θ belonging to
B0(s) are called s-sparse. It turns out that, under the s-sparisty restriction, estimation with
reasonable accuracy is possible. A natural question arising in this context is: What is the
optimal way to estimate θ∗ if we know that θ∗ ∈ B0(s)?

We will consider optimality in a minimax sense. Let θ̂ be an estimator of θ∗. The
corresponding estimator of f is then f̂ = fθ̂ and, in view of (1.2) - (1.3), the squared risk
takes the form

E‖f̂ − f‖2 = Eθ∗

(
1

n
|X(θ̂ − θ∗)|22

)
.

Here and below, Eθ denotes the expectation with respect to the distribution of y = Xθ + ξ
where ξ is a Gaussian vector in R

n with i.i.d. components ξi ∼ N (0, σ2).
An estimator θ̂ is called minimax optimal on the class B0(s) if there exists a sequence

of positive numbers ψn,M,s such that, for all n and M , the following two conditions are
satisfied:

sup
θ∗∈B0(s)

Eθ∗

(
1

n
|X(θ̂ − θ∗)|22

)
≤ Cψn,M,s, (1.5)

inf
T

sup
θ∗∈B0(s)

Eθ∗

(
1

n
|X(T − θ∗)|22

)
≥ cψn,M,s (1.6)

where C and c are positive constants independent of n,M, s, and infT denotes the infimum
over all estimators of θ∗ based on the sample {(Xi, Yi)}ni=1 satisfying the model (1.3). This
property is commonly referred to as the minimax optimality. A sequence ψn,M,s such that
(1.5) and (1.6) hold is called minimax rate of convergence (or optimal rate of convergence)
on B0(s). Our main goal in this setting is to find a minimax optimal estimator θ̂ on the class
B0(s). Along with B0(s), other classes can be considered, such as the �q-balls Bq(δ) =

{θ ∈ R
M : |θ|q ≤ δ} where |θ|q = (

∑M
j=1 |θj |q)

1
q , 0 < q < ∞, δ > 0. The notion

of optimality is defined for them analogously. This problem, in its particular case where
XTX/n is the identity matrix, and M = n (called the Gaussian sequence model) and with
an asymptotic point of view (n → ∞), has been in the focus of the statistical literature since
the 1990ies [1, 16, 17]; for its non-asymptotic treatment, see [4]. We are interested here
in a more general linear regression setting and we deal with the non-asymptotic minimax
optimality. We also consider more general classes, such as intersection of �0-ball with �q-
ball, 0 < q ≤ 2, for which we propose an adaptive estimator. Here, adaptivity means that
the estimator is independent of s, q, and of the radius δ of the �q-ball and it achieves the
minimax rates simultateously for all 1 ≤ s ≤ M , δ > 0, 0 < q ≤ 2.
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1.2. Setting 2: Nonparametric regression. Let Fβ,L be a class of smooth functions on
X ⊆ R

d indexed by β > 0 and L > 0. Common examples of Fβ,L are balls in a Sobolev
or Besov space (see [19, 34] for more details). Assume that f ∈ Fβ,L. The parameter β
typically stands for the number of derivatives of f that are assumed bounded in some norm
by L, the radius of the ball. In this setting, the dictionary {f1, . . . , fM} is usually composed
of the first M = n functions of some orthonormal basis. For example, it can be the Fourier
or wavelet basis. A key property in the nonparametric regression setting (following from
the definition of the class Fβ,L) is that f can be well approximated by a linear combination
of basis functions. It can be stated, for example, as follows: For any f ∈ Fβ,L, and any
k = 1, . . . , n, there exists θ∗ = θ∗(f) ∈ R

k such that

∥∥∥f −
k∑

j=1

θ∗j fj
∥∥∥ ≤ C(β, L)k−β , (1.7)

where C(β, L) is a constant depending only on β, L. A minimax optimal estimator f̂ is the
estimator that satisfies, for all n,

sup
f∈Fβ,L

E‖f̂ − f‖2 ≤ Cψn,β , (1.8)

inf
f̃

sup
f∈Fβ,L

E‖f̃ − f‖2 ≥ cψn,β , (1.9)

where C and c are positive constants independent of n, β, and inf f̃ denotes the infimum over
all estimators of f based on the sample {(Xi, Yi)}ni=1. A positive sequence ψn,β such that
(1.8) and (1.9) hold is called the minimax rate of convergence (or optimal rate of conver-
gence) on Fβ,L.

Along with finding minimax optimal estimators in this setting, the second important
issue is adaptivity: How to construct adaptive estimators that is estimators f̂ , which are
independent of β and L and satisfy (1.8) with optimal rate of convergence ψn,β for all pairs
(β, L) in a wide range of values?

1.3. Setting 3: Aggregation of estimators. This setting will be the main object of study
below. Suppose that we are given a collection of estimators f̂1, . . . , f̂M of f and a subset Θ
of RM . The goal is to find a new estimator f̃ , called the aggregate, which is approximately
at least as good as the best linear combination fθ =

∑M
j=1 θj f̂j with weights θ in the set Θ.

The best linear combination is defined as the one that solves the minimization problem

min
θ∈Θ

E‖f − fθ‖2.

Unlike in the previous two settings, here fθ is a random function depending on the data, and
we do not assume that ‖f − fθ‖ is zero or small (cf. (1.2), (1.7)); it may happen that all fθ
for some Θ are very far from f . Some common examples of Θ are the following.

(L) Linear aggregation: Θ = R
M . The aim of linear aggregation is to construct an

estimator f̃ , which is approximately as good as the best linear combination of the
initial estimators f̂1, . . . , f̂M .

(C) Convex aggregation: Θ is the simplex

Θ = ΛM def
=
{
θ ∈ R

M : θj ≥ 0,
M∑
j=1

θj = 1
}
.
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Convex aggregation aims to find an estimator f̃ , which is approximately as good as
the best convex combination of the initial estimators f̂1, . . . , f̂M .

(MS) Model Selection type aggregation: Θ = {e1, . . . , eM} where ei are the canonical
basis vectors in R

M . The MS-aggregation aims to mimic the best among the initial
estimators f̂1, . . . , f̂M .

Other types of aggregation can be considered as well, for example, the s-sparse aggregation
corresponding to Θ = B0(s), or the �q-aggregation corresponding to Θ = Bq(δ) with
0 < q < ∞, δ > 0.

The goal of aggregation is to mimic the best linear combination of initial estimators with
weights restricted to a given set Θ of possible weights. The word “best” here is formalized
as choosing f̃ with the smallest possible excess risk (also known under the name of regret)
defined by

EΘ(f̃ , f)
def
= E‖f̃ − f‖2 − inf

θ∈Θ
E‖fθ − f‖2. (1.10)

Based on the excess risk, we can introduce the concept of minimax optimality for aggre-
gation [33]. An estimator f̃ is called an optimal aggregate for the class Θ if there exists a
sequence of positive numbers ψn,M (Θ) such that, for all n and M ,

sup
f̂1,...,f̂M

{
sup
f

EΘ(f̃ , f)
} ≤ Cψn,M (Θ), (1.11)

sup
f̂1,...,f̂M

{
inf
f̂

sup
f

EΘ(f̂ , f)
} ≥ cψn,M (Θ). (1.12)

Here, inf f̂ is the minimum over all estimators, C and c are positive constants independent
of n and M , and supf , supf̂1,...,f̂M are the suprema over all possible functions f and over
wide classes of preliminary estimators. In some cases, these will be all possible estimators
f̂1, . . . , f̂M with no restriction; in other cases it will suffice to consider classes of f̂1, . . . , f̂M
such that f̂j’s are bounded in the empirical norm ‖ · ‖ uniformly over j. If (1.11) and
(1.12) hold for some positive sequence ψn,M (Θ), this sequence is called an optimal rate of
aggregation for the class Θ [33]. Two questions arise in this context. First, how to construct
an optimal aggregate f̃ for a given class Θ? Second, is it possible to construct a universal
aggregate, i.e., an aggregate which is optimal simultaneously for a large scale of classes Θ?

Inequalities (1.11) and (1.12) establish upper and lower bounds for the minimax regret,
respectively. The upper bound (1.11) can be equivalently written in the form of oracle in-
equality1

E‖f̃ − f‖2 ≤ inf
θ∈Θ

E‖fθ − f‖2 + Cψn,M (Θ), (1.13)

that should be valid for all f̂1, . . . , f̂M in a wide class, and for all f . This garantees that the
risk of the suggested aggregate f̃ is at least as good as the risk of the unknown oracle θ∗

minimizing E‖fθ − f‖2, up to a remainder term of the order ψn,M (Θ), which characterizes
the price to pay for aggregation. Lower bounds (1.12) ensure that this is the minimal price;
the remainder term cannot be of smaller order whatever the aggregate is. For sparsity classes,
for example, whenΘ = B0(s), the rate ψn,M (Θ) is a function of s; the corresponding oracle
inequalities are called sparsity oracle inequalities.

1Here and in the sequel, we denote by C positive constants, possibly different on different appearances.
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2. Reduction to aggregation of functions

Aggregates are usually constructed in the form

f̃ =
M∑
j=1

θ̂j f̂j

where θ̂j are suitably chosen statistics measurable with respect to the data, and f̂j are the pre-
liminary estimators. In what follows, we will assume that θ̂j and estimators f̂j are stochas-
tically independent. This can be achieved by creating two independent samples from the
initial sample {(Xi, Yi)}ni=1 by randomization (sample cloning), cf. [27]. The estimators f̂j
are constructed from the first sample while the second one is used to perform aggregation,
i.e., to compute the weights θ̂j . To carry out the analysis of aggregation, it is enough to work
conditionally on the first sample, so that f̂j can be considered as deterministic functions.
Thus, the problem reduces to aggregation of deterministic functions that we will denote as
previously fj

def
= f̂j , j = 1, . . . ,M . The procedure of sample cloning by randomization is

based on the following elementary fact.

Lemma 2.1. Let Yi = f(Xi)+ξi. Let ωi be a standard normal random variable independent
of ξi. Set Yi1 = Yi + σωi, and Yi2 = Yi − σωi. Then we have Yi1 = f(Xi) + ξi1, and
Yi2 = f(Xi) + ξi2, where ξi1 ∼ N (0, 2σ2), ξi2 ∼ N (0, 2σ2) and ξi1 is independent of ξi2.

Thus, by adding to and subtracting from the observations Yi the variables σωi, we obtain
two independent Gaussian n-samples D1 = {(Xi, Yi1)}ni=1 and D2 = {(Xi, Yi2)}ni=1,
where Yik = f(Xi) + ξik, k = 1, 2. The observations in both samples are of the same
form as in the original sample {(Xi, Yi)}ni=1, with the only difference that the variance of
the noise is doubled.

Now, we use D1 to construct preliminary estimators f̂1, . . . , f̂M and we use D2 to deter-
mine the weights θ̂1, . . . , θ̂M . Denoting by E(k) the expectations with respect to the distri-
bution of Dk for k = 1, 2, we may write the oracle inequality (1.13) that we need to prove
in the form

E(1)E(2)‖f̃ − f‖2 ≤ inf
θ∈Θ

E(1)‖fθ − f‖2 + Cψn,M (Θ). (2.1)

To obtain (2.1), it suffices to show that, for fixed functions f1, . . . , fM , f , we have

E(2)‖f̃ − f‖2 ≤ inf
θ∈Θ

‖fθ − f‖2 + Cψn,M (Θ), (2.2)

where fθ =
∑M

j=1 θjfj , and f̃ =
∑M

j=1 θ̂jfj with θ̂j measurable with respect to D2.
Thus, using the sample cloning device, we can reduce aggregation of estimators to its

special case, which is aggregation of fixed functions. This will be the setting considered in
the rest of the paper. In this case, the minimax framework of aggregation (cf. Setting 3 in
the Introduction) changes only in that the excess risk takes the form

EΘ(f̃ , f)
def
= E‖f̃ − f‖2 − inf

θ∈Θ
‖fθ − f‖2 (2.3)

(no expectation in the term infθ∈Θ ‖fθ − f‖2). Accordingly, an estimator f̃ is called an
optimal aggregate for the class Θ if there exists a sequence of positive numbers ψn,M (Θ)
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such that (1.11) and (1.12) are satisfied where instead of f̂j we have fixed functions fj .
Upper bounds on the maximum excess risk are then equivalent to oracle inequalities

E‖f̃ − f‖2 ≤ inf
θ∈Θ

‖fθ − f‖2 + Cψn,M (Θ). (2.4)

Such an oracle inequality being established, we can obtain upper bounds for the minimax
risks in Settings 1 and 2 as simple corollaries. Indeed, those settings impose additional strong
restrictions on f ; the oracle risk infθ∈Θ ‖fθ − f‖2 is 0 in Setting 1, and it admits a bound
such as (1.7) in Setting 2. In Setting 3, the oracle risk can be arbitrary, therefore we use only
the excess risk to measure the performance of aggregates.

3. Least squares aggregation

A first simple idea is to construct aggregates by minimizing the least squares (LS) criterion.
Given a set Θ and a collection of deterministic functions f1, . . . , fM , we take

θ̂LS(Θ) ∈ argmin
θ∈Θ

‖y − fθ‖2

and we define the LS aggregate as

f̃ = fθ̂LS(Θ) =
M∑
j=1

θ̂LS
j (Θ)fj .

Proposition 3.1. Let θ̂LS def
= θ̂LS(RM ) be a global least squares estimator. Assume that

E(ξi) = 0, E(ξiξj) = 0, if i �= j for i, j = 1, . . . , n. If E(ξ2i ) = σ2, i = 1, . . . , n, then for
all f, f1, . . . , fM , and integers n ≥ 1, M ≥ 1, we have

E‖fθ̂LS − f‖2 = min
θ∈RM

‖fθ − f‖2 + σ2R

n
. (3.1)

where R = Rank(X) denotes the rank of matrix X . Furthermore, if E(ξ2i ) ≤ σ2, i =
1, . . . , n, then under the same other assumptions for any convex set Θ ⊂ R

M ,

E‖fθ̂LS(Θ) − f‖2 ≤ min
θ∈Θ

‖fθ − f‖2 + 4σ2R

n
. (3.2)

Proof. We prove only (3.2) since (3.1) follows from a simple orthogonal decomposition, cf.,
e.g., [31]. Below, we will denote by f and fθ not only the functions from X to R but also the
n-vectors of values of these functions at pointsX1, . . . , Xn. Then, the model of observations
(1.1) can be written as y = f + ξ, and fθ = Xθ for all θ. Set for brevity f̃ = fθ̂LS(Θ). From
the definition of this estimator we get by a simple algebra that, for any θ ∈ Θ,

‖f̃ − f‖2 ≤ ‖fθ − f‖2 + 2〈f̃ − fθ, ξ〉 (3.3)

where 〈f, g〉def= 1
n

∑n
i=1 f(Xi)g(Xi) . On the other hand, f̃ − fθ ∈ Im(X), and thus 〈f̃ −

fθ, ξ〉 = 〈f̃ − fθ, Aξ〉 where A is the orthogonal projector on Im(X). This and (3.3) imply

‖f̃ − f‖2 ≤ ‖fθ − f‖2 + 1

2
‖f̃ − fθ‖2 + 2‖Aξ‖2 . (3.4)
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Since Θ is convex, for all θ′ ∈ Θ we have ‖f − fθ∗‖2 + ‖fθ′ − fθ∗‖2 ≤ ‖fθ′ − f‖2 where
θ∗ = argmin

θ∈Θ
‖fθ − f‖2. This inequality with θ′ = θ̂LS(Θ), and (3.4) with θ = θ∗ imply that

‖f̃ − f‖2 ≤ ‖fθ∗ − f‖2 + 4‖Aξ‖2. Now, (3.2) follows by taking here the expectations and
noticing that E‖Aξ‖2 ≤ σ2R

n .

Proposition 3.2. Let Θ be a subset of the simplex ΛM , and let ξ1, . . . , ξn be independent
zero mean σ-subgaussian random variables, i.e., E exp(sξi) ≤ exp(s2σ2/2) for all s > 0,
i = 1, . . . , n. Then, for all f , all integers n ≥ 1, M ≥ 2, and all dictionaries {f1, . . . , fM}
such that max

j=1,...,M
‖fj‖ ≤ L, we have

E‖fθ̂LS(Θ) − f‖2 ≤ inf
θ∈Θ

‖fθ − f‖2 + 2σL

√
2 logM

n
.

Proof. In view of (3.3), it suffices to prove thatE〈f̃ , ξ〉 ≤ σL
√

2 logM
n where f̃ = fθ̂LS(Θ).

ButE〈f̃ , ξ〉 ≤ E maxθ′∈ΛM 〈fθ′ , ξ〉 = E max1≤j≤M 〈fj , ξ〉 and the random variable 〈fj , ξ〉
is σ̄-subgaussian with σ̄ = σ‖fj‖/

√
n ≤ σL/

√
n. By the standard properties of subgaussian

variables, E max1≤j≤M 〈fj , ξ〉 ≤ σ̄
√
2 logM .

Consider now convex aggregation and MS-aggregation by the LS method. The cor-
responding weights are θ̂LS

conv
def
= θ̂LS(ΛM ), and θ̂LS

MS
def
= θ̂LS({e1, . . . , eM}). The MS-

aggregate selects one function in the dictionary:

fθ̂LS
MS

= fĵ where ĵ ∈ argmin1≤j≤M‖y − fj‖2.

The following corollaries are straightforward in view of Propositions 3.1 and 3.2.

Corollary 3.3 (Convex aggregation). For all f , all integers n ≥ 1, M ≥ 2, and all dictio-
naries {f1, . . . , fM} such that max

j=1,...,M
‖fj‖ ≤ L, we have

E‖fθ̂LS
conv

− f‖2 ≤ min
θ∈ΛM

‖fθ − f‖2 +
(
4σ2R

n
∧ 2σL

√
2 logM

n

)
.

Corollary 3.4 (MS-aggregation). For all f , all integers n ≥ 1, M ≥ 2, and all dictionaries
{f1, . . . , fM} such that max

j=1,...,M
‖fj‖ ≤ L, we have

E‖fθ̂LS
MS

− f‖2 ≤ min
1≤j≤M

‖fj − f‖2 + 2σL

√
2 logM

n
.

The rate of aggregation σ2R
n of the global least squares estimator given in (3.1) is the

optimal rate of linear aggregation, see Section 8 below and [6, 31, 33]. Also, the rate of the
convex aggregate fθ̂LS

conv
given in Corollary (3.3) is the optimal rate of convex aggregation

up to a minor discrepancy in the expression under the logarithm [31, 33]. However, for
MS-aggregation the situation is different. The optimal rate for MS-aggregation is of the
order (logM)/n [31, 33], while the LS-aggregate fθ̂LS

MS
achieves only the rate

√
(logM)/n

according to Corollary 3.4. Moreover, it turns out that fθ̂LS
MS

cannot do better; the upper
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bound of Corollary 3.4 is tight for it. Indeed, the next theorem shows that not only the least
squares MS-aggregate but also any method that selects a single function in the dictionary
cannot have faster rate. This includes methods of model selection by penalized empirical
risk minimization. We call estimators Ŝn taking values in {f1, . . . , fM} the selectors.

Theorem 3.5 ([32]). Assume that n ≥ 1, M ≥ 2 are such that

(σ ∨ 1)
√
(logM)/n ≤ C0

for 0 < C0 < 1 small enough. Then, there exists a dictionary {f1, . . . , fM} with ‖fj‖ ≤ 1,
j = 1, . . . ,M, such that the following holds. For any selector Ŝn, there exists a regression
function f such that ‖f‖ ≤ 1 and

E‖Ŝn − f‖2 ≥ min
1≤j≤M

‖fj − f‖2 + C∗σ

√
logM

n

for some positive constant C∗ independent of n and M.

A related result about suboptimality of selectors when f̂j are preliminary estimators
rather than fixed functions is proved in [18].

Thus, we see that choosing one of the functions in a finite dictionary to solve the problem
of model selection is suboptimal in the sense that the rate

√
(logM)/n is too slow. A natural

idea is to extend the class of estimators by taking a convex combination of the functions in
the dictionary rather than selecting one function. It turns out that this is sufficient; under
a particular choice of weights in this convex combination, namely the exponential weights,
one can achieve oracle inequalities with the optimal rate (logM)/n.

4. Exponentially weighted aggregates

Let f1, . . . , fM be a given dictionary of functions. Consider the exponentially weighted
aggregate

f̂EW def
= fθ̂EW =

M∑
j=1

θ̂EW
j fj

where the weights θ̂EW = (θ̂EW
1 , . . . , θ̂EW

M ) are defined as

θ̂EW
j =

exp(−nr̂j/β)πj∑M
k=1 exp(−nr̂k/β)πk

.

Here, r̂j = ‖y − fj‖2 is the empirical risk corresponding to function fj , β > 0 is a tuning
parameter, and π1, . . . , πM is a set of prior probabilities, πk > 0,

∑M
k=1 πk = 1. This

definition dates back at least to [37] where the method was introduced in the context of the
theory of prediction of deterministic individual sequences. It is now a popular tool in that
theory, cf. [8, 18] where one can find further references.

Note that

θ̂EW = argmin
θ∈ΛM

⎛
⎝ M∑

j=1

θj r̂j +
β

n
K(θ, π)

⎞
⎠ (4.1)
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whereK(θ, π) =
∑M

j=1 θj log
θj
πj

≥ 0 (with the convention that 0·log 0 = 0) is the Kullback-
Leibler divergence between the discrete probability measures defined by the probability vec-
tors θ ∈ ΛM and π ∈ ΛM . Since, by Jensen’s inequality,

∑M
j=1 θj r̂j≥‖y− fθ‖2, we see that

θ̂EW minimizes, over the simplex ΛM , an upper bound on the empirical risk penalized by
the Kullback-Leibler divergence from π:

‖y − fθ‖2 + β

n
K(θ, π).

So, intuitively, the method penalizes the solution for being far from the prior π.

Theorem 4.1. For β ≥ 4σ2, and for all f, f1, . . . , fM , and integers n ≥ 1, M ≥ 1, we have

E‖f̂EW − f‖2 ≤ min
θ∈ΛM

⎛
⎝ M∑

j=1

θj‖f − fj‖2 + β

n
K(θ, π)

⎞
⎠ . (4.2)

If the ξi are not Gaussian but rather i.i.d. symmetric random variables such that P (|ξi| ≤
B) = 1 for some finite B > 0, then (4.2) holds for any β ≥ 4B2.

The proof of this theorem can be found in [12, 13, 15] as a special case of more general
results relaxing the assumptions on the distribution of ξi and allowing for continuous priors
(see also [14]). More recent work [9, 23, 29] proposes estimators other than f̂EW satisfying
analogous oracle inequalities both in expectation and in probability.

Note that the right-hand side of (4.2) is similar to (4.1). The only difference is that in
(4.1) we have the empirical risks r̂j = ‖y − fj‖2 rather than the deterministic discrepancies
‖f − fj‖2. Thus, the minimization problem in (4.1) is an empirical analog of the right-hand
side of (4.2). An immediate corollary of Theorem 4.1 is the following.

Theorem 4.2. For β ≥ 4σ2, and for all f, f1, . . . , fM , and integers n ≥ 1, M ≥ 1, we have

E‖f̂EW − f‖2 ≤ min
1≤j≤M

(
‖f − fj‖2 + β

n
log

1

πj

)
.

In particular, if πj =
1
M , j = 1, . . . ,M, and M ≥ 2,

E‖f̂EW − f‖2 ≤ min
1≤j≤M

‖f − fj‖2 + β

n
logM.

Thus, the exponentially weighted aggregate achieves the optimal rate of the order
(logM)/n, which cannot be attained by the selectors. A result similar to Theorem 4.2
was proved in [24] for the case where fj are not arbitrary fixed functions but rather the least
squares estimators on linear subspaces of RM . In [24], these estimators are constructed from
the same sample y that is used to compute the weights, and the weights are are different:

wj =
exp
(
−nr̂j

β − dim(j)
2

)
πj∑M

k=1 exp
(
−nr̂k

β − dim(k)
2

)
πk

(4.3)

where dim(j) is the dimension of the space on which the jth least squares estimator projects.
Extension of the results of [24] to affine estimators are given in [10, 11].
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5. Sparsity pattern aggregation

We call a sparsity pattern any binary vector p ∈ P def
= {0, 1}M . Denote by |p| = |p|0 the

number of ones in p. To each sparsity pattern p = (p1, . . . , pM ) ∈ P , we associate a linear
subspace Sp of RM :

Sp def
= span {ej : pj = 1} , dim(Sp) = |p|.

From the initial sample y, we clone two randomized independent samples y(1) ∈ R
n and

y(2) ∈ R
n with N (0, 2σ2) errors as described in Section 2. For each p ∈ P , we construct a

least squares estimator θ̂p on Sp based on the first sample y(1):

θ̂p ∈ argmin
θ∈Sp

‖y(1) − fθ‖2. (5.1)

Set r̂p = ‖y(2) − fθ̂p‖2 and define a vector θ̂SPA = (θ̂SPA
p , p ∈ P) with components

θ̂SPA
p =

exp(−nr̂p/β)πp∑
p′∈P exp(−nr̂p′/β)πp′

, ∀p ∈ P.

Here, {πp, p ∈ P} is a prior probability measure on P with πp ≥ 0 (not necessarily πp > 0;
values πp = 0 are possible, as opposed to the priors in Section 4). The sparsity pattern
aggregate is defined by

f̂SPA def
=
∑
p∈P

θ̂SPA
p fθ̂p .

From Theorem 4.2 (where we replace σ2 by 2σ2 to account for the sample cloning) we get
that if β = 8σ2, then

∀f : E‖f̂SPA − f‖2 ≤ min
p∈P:πp �=0

[
E‖fθ̂p − f‖2 + 8σ2

n
log

1

πp

]
(5.2)

while from Proposition 3.1 (again, replacing σ2 by 2σ2),

∀f : E‖fθ̂p − f‖2 ≤ min
θ∈Sp

‖fθ − f‖2 + 2σ2|p|
n

. (5.3)

Consider the prior distribution

πp =

⎧⎪⎨
⎪⎩
((

M
|p|
)
e|p|H

)−1

if |p| ≤ R,

1/2 if |p| = M,
0 otherwise,

(5.4)

where H > 0 is the normalizing constant such that
∑

p∈P πp = 1.
Denote by f̂ES the sparsity pattern aggregate f̂SPA with the prior πp given in (5.4).

Following [31], we will call f̂ES the Exponential Screening (ES) estimator. The corre-
sponding vector of weights is denoted by θ̂ES . Algorithms of computation of this estimator
via Markov Chain Monte-Carlo schemes are discussed and analyzed in [31, 32].

Combining (5.2) – (5.4) leads to the following sparsity oracle inequality, cf. [31].
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Theorem 5.1. Let f̂ES be the Exponential Screening estimator with β = 8σ2. Then for all
f , f1, . . . , fM , and all integers n ≥ 1, M ≥ 1, we have

E‖f̂ES − f‖2 ≤ min
θ∈RM

[
‖fθ − f‖2 + Cσ2

n

(
R ∧ |θ|0 log

(eM
|θ|0
))]

+
C ′σ2

n
(5.5)

where C,C ′ are absolute positive constants, and R = Rank(X). Here and in the sequel,
0 · log∞ = 0 by convention.

In [31], the oracle inequality (5.5) is proved for a slightly different estimator, with modi-
fied weights (4.3) and without sample cloning. A weaker result of this form, not taking into
account the rank of X , is given in [3]. Inequalities close to (5.5) that hold with high prob-
ability but without accounting for the rank of X are obtained for some estimators different
from f̂ES in [10].

Theorem 5.1 is the main result that will allow us to show that one and the same estimator
f̂ES achieves the minimax rates of convergence in the three different settings described in
the Introduction. Moreover, it achieves these rates adaptively to the parameters of the classes
in the first two settings and to the choice of Θ (universal aggregation) in Setting 3. The rest
of the paper is devoted to deriving these properties as corollaries of Theorem 5.1.

Remark 5.2. All the results stated below for the estimators f̂ES = fθ̂ES and θ̂ES are also
valid for any other estimators fθ̂ and θ̂ such that (5.5) holds with fθ̂ in place of f̂ES . Indeed,
only (5.5) will be used in the subsequent argument.

6. Sparsity oracle inequalities on �0-balls

Theorem 5.1 and monotonicity of the function x �→ x log(eM/x) imply the following upper
bounds.

Theorem 6.1 ([31]). Let f̂ES be the exponential screening estimator with β = 8σ2 and let
θ̂ES denote the corresponding vector of weights. Then for all f , f1, . . . , fM , and all integers
n ≥ 1, M ≥ 1, 1 ≤ s ≤ M ,

E‖f̂ES − f‖2 ≤ min
θ∈B0(s)

‖fθ − f‖2 + Cσ2

(
s

n
log

(
eM

s

)
∧R

n

)
(6.1)

where C > 0 is an absolute constant. If the model is linear: y = Xθ + ξ, then

sup
θ∈B0(s)

Eθ|X(θ̂ES − θ)|22/n ≤ Cσ2

(
s

n
log

(
eM

s

)
∧R

n

)
. (6.2)

The bounds of Theorem 6.1 are sparsity oracle inequalities. They cannot be improved in
a minimax sense, see Section 8 below. Analogous oracle inequalities with leading constant
1 can be also established for the Lasso and related techniques [22] but they need strong as-
sumptions on the dictionary {f1, . . . , fM} such as the restricted isometry or restricted eigen-
value condition. In contrast to this, the ES estimator satisfies the sparsity oracle inequalities
under no assumption on the dictionary. Moreover, Theorem 6.1 shows that the ES estimator
simultaneously takes advantage of two types of sparsity: small number of non-zero entries of
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θ (�0 norm) and small rank of matrix X . This is not available for the least squares estimators
on B0(s) studied in [28, 36] among others. Note also that the least squares estimators on
B0(s) cannot achieve the excess risk bound (6.1) with leading constant 1 required for the
aggregation setting.

7. Estimation on �q-balls and on intersection of �0- and �q-balls

From Theorem 5.1, we can also deduce oracle inequalities and upper bounds on the risk of
the estimator f̂ES on �q-balls with 0 < q ≤ 2. They follow from (5.5) using the “Maurey
argument” as first noticed in [5, 6] for q = 1. The proof for q = 1 is based on the next lemma
(cf. [5, 6, 31]).

Lemma 7.1. Let ‖fj‖ ≤ L, j = 1, . . . ,M, and 1 ≤ m ≤ M . Then, for any f and any
θ ∈ R

M there exists θ′ ∈ R
M such that |θ′|0 ≤ m and

‖fθ′ − f‖2 ≤ ‖fθ − f‖2 + L2|θ|21
m

.

The case 0 < q < 1 was considered in [10, 35, 38], and the case 1 < q ≤ 2 in [35].
Deriving bounds on the risk over �q-balls with 0 < q < 1 from (5.5) can be done based on
the following extension of Lemma 7.1.

Lemma 7.2. Let ‖fj‖ ≤ L, j = 1, . . . ,M, and 1 ≤ m ≤ M . Then, for any f, any 0 < q ≤ 1
and any θ ∈ R

M there exists θ̄ ∈ R
M such that |θ̄|0 ≤ 2m and

‖fθ̄ − f‖2 ≤ ‖fθ − f‖2 + L2|θ|2qm1−2/q .

Proof. By Lemma 7.1, for any h : X → R and any θ′′ ∈ R
M there exists θ′ ∈ R

M such
that |θ′|0 ≤ m and

‖fθ′ − h‖2 ≤ ‖fθ′′ − h‖2 + |θ′′|21L2

m
. (7.1)

Take any θ ∈ R
M and let J ⊆ {1, . . . ,M} be the set of indices corresponding to the

m largest in absolute value components of θ. Take any f : X → R and use (7.1) with
θ′′ = θJc , h = f − fθJ where θJ = (θjI(j ∈ J), j = 1, . . . ,M). Then (7.1) takes the form

‖fθ′+θJ − f‖2 ≤ ‖fθ − f‖2 + |θJc |21L2

m
. (7.2)

Set θ̄ = θ′ + θJ . By construction, |θ̄|0 ≤ 2m. Finally, note that

|θ|(j) ≤ |θ|q
j1/q

(7.3)

where |θ|(j) is the jth largest absolute value of the components of θ. Using (7.3) we get the
following bound which together with (7.2), yields the lemma:

|θJc |1 =
∑

j≥m+1

|θ|(j) ≤ |θ|1−q
(m)

∑
j≥m+1

|θ|q(j) ≤
( |θ|q

m1/q

)1−q

|θ|qq = |θ|qm1−1/q.
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Lemmas 7.1 and 7.2 combined with Theorem 5.1 imply the following result.

Theorem 7.3. Assume that ‖fj‖ ≤ 1, j = 1, . . . ,M, and 0 < q ≤ 1. Let f̂ES be the
exponential screening estimator with β = 8σ2 and let θ̂ES denote the corresponding vector
of weights. Then for any f , and any δ > 0, and integers n ≥ 1, M ≥ 2,

E‖f̂ES − f‖2 ≤ min
θ∈Bq(δ)

‖fθ − f‖2 + Cψn,M (Bq(δ)) (7.4)

where C > 0 is an absolute constant, and

ψn,M (Bq(δ)) = σ2−qδq
[
1

n
log

(
1 +
(σ

δ

)q M

nq/2

)]1−q/2

∧ σ2R

n
. (7.5)

Furthermore, if the model is linear, y = Xθ + ξ, then for any n ≥ 1, M ≥ 2, 1 ≤ s ≤ M ,
and δ > 0 we have

sup
θ∈B0(s)∩Bq(δ)

1

n
Eθ|X(θ̂ES − θ)|22 ≤ Cψ̄n,M (δ, s, q) (7.6)

where C > 0 is an absolute constant, and

ψ̄n,M (δ, s, q) = ψn,M (Bq(δ)) ∧ σ2s

n
log

(
eM

s

)
∧
(
δ2 +

σ2

n

)
.

Proof. By Theorem 5.1, for an absolute constant C > 0 and any 1 ≤ m ≤ M/2,

E‖f̂ES − f‖2 ≤ min
θ∈RM

[
‖fθ − f‖2 + Cσ2

n
|θ|0 log

(eM
|θ|0
)]

+
Cσ2

n

≤ min
θ:|θ|0≤2m

‖fθ − f‖2 + Cσ2m

n
log
(eM
2m

)

where we have used the monotonicity of the mapping x �→ x log(eM/x). This and Lemma
7.2 imply

E‖f̂ES − f‖2 ≤ min
θ∈Bq(δ)

‖fθ − f‖2 + C

(
δ2m1−2/q +

σ2m

n
log
(eM

m

))
. (7.7)

Minimizing the right hand side of (7.7) in m we obtain the first term on the right hand side
of (7.5). The minimum with σ2R/n comes from Theorem 5.1. Thus (7.4) follows. To show
(7.6), we note that replacing the minimum on the right hand side of (5.5) by the value at
θ = 0 and using that f = fθ for θ ∈ Bq(δ) yields

sup
θ∈Bq(δ)

1

n
Eθ|X(θ̂ES − θ)|22 ≤ sup

θ∈Bq(δ)

‖fθ‖2 + Cσ2

n
≤ δ2 +

Cσ2

n
(7.8)

where we have used that ‖fθ‖ ≤ |θ|1 maxj ‖fj‖ ≤ δ for θ ∈ Bq(δ) if 0 ≤ q ≤ 1. Finally,
(7.6) is straightforward in view of the last display, (7.4), and (6.2).

The rates on �q-balls with 0 < q ≤ 1 follow from (7.6) by setting there s = M (then
B0(s) = R

M ). Note also that the upper bounds of Theorem 7.3 are optimal in a minimax
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sense, cf. Section 8 below. Theorem 7.3 shows that the estimator θ̂ES attains minimax rates
over all B0(s)∩Bq(δ) with 0 < q ≤ 1 (cf. (7.6)), adaptively to s, δ, q, and, in addition, θ̂ES

achieves optimal rates of aggregation on these sets (cf. (7.4) ). For 1 < q ≤ 2 we only show
that θ̂ES accomplishes the first task – minimax rates over �q-balls, under the boundedness
assumption on the maximal eigenvalue λmax(X

TX/n) of matrix XTX/n.

Theorem 7.4. Assume that λmax(X
TX/n) ≤ L2, and 1 < q ≤ 2. Let θ̂ES denote the

vector of weights of the exponential screening estimator with β = 8σ2. If the model is
linear, y = Xθ + ξ, then for any n ≥ 1, M ≥ 2, 1 ≤ s ≤ M , and δ > 0 we have

sup
θ∈B0(s)∩Bq(δ)

1

n
Eθ|X(θ̂ES − θ)|22 ≤ Cψ̄n,M (Lδ, s, q) (7.9)

C > 0 is an absolute constant.

Proof. In this case, we get the analog (7.8) with Lδ instead of δ since ‖fθ‖2 ≤ L2|θ|22 ≤
(Lδ)2 for θ ∈ Bq(δ), 1 < q ≤ 2. To complete the proof, it suffices to show that, for any
θ ∈ R

M there exists θ̄ ∈ R
M such that |θ̄|0 ≤ m and

|X(θ̄ − θ)|22/n = ‖fθ̄ − fθ‖2 ≤ L2|θ|2qm1−2/q . (7.10)

This replaces Lemma 7.2 when the model is linear, i.e., f = fθ. Given (7.10), the argu-
ment follows the same lines as in the proof of (7.6). To prove (7.10), take θ̄ = θJ where
J ⊆ {1, . . . ,M} is the set of indices corresponding to the m largest in absolute value com-
ponents of θ. Then ‖fθ̄− fθ‖2 ≤ λmax(X

TX/n)|θ̄−θ|22 ≤ L2|θJc |22. Using (7.3) we deduce
(7.10) from the chain of inequalities

|θJc |22 =
∑

j≥m+1

|θ|2(j) ≤ |θ|2−q
(m)

∑
j≥m+1

|θ|q(j) ≤
( |θ|q

m1/q

)2−q

|θ|qq = |θ|2qm1−2/q.

8. Minimax lower bounds

The rates for the minimax risk on the intersection of �0- and �q-balls obtained in the previous
section are optimal if δ ≥ c∗σ/

√
n where c∗ > 0 is a constant as follows from the next

theorem.

Theorem 8.1. Let M ≥ 1, n ≥ 1, 1 ≤ s ≤ M , M ≤ n, and δ > 0. Let either Θδ,s,q =
B0(s) ∩ Bq(δ) and 0 < q ≤ 1 or Θδ,s,q = δΛM ∩ B0(s) and q = 1. Then there exists a
dictionary f1, . . . , fM with max1≤j≤M ‖fj‖ ≤ 1 such that

inf
f̂

sup
θ∈Θδ,s,q

Eθ‖f̂ − fθ‖2 ≥ Cψ̃n,M (δ, s, q)

where C > 0 is a constant independent of n,M, δ, s, and

ψ̃n,M (δ, s, q) = ψn,M (Bq(δ)) ∧ σ2s

n
log

(
eM

s

)
∧ δ2 .
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The proof of Theorem 8.1 is given in [31](q = 1), and in [38](0 < q < 1). These papers
also describe the additional conditions on the matrix X , for which the lower bound holds
when not necessarily M ≤ n. Some bounds on the sparse eigenvalues of XTX/n are then
required. Minimax lower bounds for the case δ = ∞, corresponding to the class B0(s) are
studied in [2, 6, 28, 36]. The other extreme case s = M , corresponding to the class Bq(δ),
0 < q ≤ 1, is studied in [28] under specific asymptotics on n,M, δ that do not provide the
general form of ψ̃n,M (δ,M, q); related results are given in [40] for different risk. For the
diagonal case when XTX/n is the identity matrix and M = n, upper and lower bounds
under some specific asymptotics separately on B0(s) and on Bq(δ) are proved in [1, 16, 17];
they are extended to non-asymptotic bounds in [4, 21].

Remark 8.2. If we assume that max
1≤j≤M

‖fj‖ ≤ L instead of max
1≤j≤M

‖fj‖ ≤ 1, the lower

bound of Theorem 8.1 remains valid with δ replaced by Lδ. This remark concerns also the
upper bounds of Theorem 7.3.

9. Nonparametric estimation and group sparsity

Consider now Setting 2 of the Introduction (nonparametric regression). Assume that f ∈Fβ,L

and the class Fβ,L is such that assumption (1.7) holds. Theorem 5.1 with M = n, and this
assumption imply that

E‖f̂ES − f‖2 ≤ C(β, L)2k−2β +
Cσ2

n
k log n (9.1)

for any k ≤ n. Minimizing this bound in k and taking the suprema we obtain

sup
f∈Fβ,L

E‖f̂ES − f‖2 ≤ C ′(β, L)

(
log n

n

)−2β/(2β+1)

(9.2)

where C ′(β, L) is a constant depending only on β and L. Thus, the estimator f̂ES attains
(adaptively in β, L) the rate n−2β/(2β+1) up to a logarithmic factor. Note that n−2β/(2β+1)

is the optimal rate of convergence of the squared risk for major classes Fβ,L satisfying
assumption (1.7) [34]. The extra logarithmic factor in (9.2) can be avoided by using, instead
of f̂ES , a group exponential weighted aggregate, which is of independent interest and is
defined as follows.

Let B1, . . . , BK be given subsets of {1, . . . ,M} called the groups. Consider θ ∈ R
M

such that supp(θ) ⊆ B =
⋃K

k=1 Bk where supp(θ) is the set of indices of non-zero compo-
nents of θ. For any such θ, we denote by J(θ) a subset of {1, . . . ,K} of smallest cardinality
among all J such that supp(θ) ⊆ BJ =

⋃
k∈J Bk. Define

g(θ) = |J(θ)|, B(θ) =
∣∣ ⋃
k∈J(θ)

Bk

∣∣
where | · | denotes the cardinality. For any subset J of {1, . . . ,K}, denote by pJ the sparsity
pattern in P with coordinates

pJj =

{
1 if j ∈ ⋃k∈J Bk,
0 otherwise,
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for j = 1, . . . ,M . Consider the set of all such sparsity patterns:

Pg =
{
pJ , J ⊆ {1, . . . ,K}} .

To each sparsity pattern p ∈ Pg, we assign a least squares estimator θ̂p constructed from the
first subsample y(1), cf. (5.1). Define the following prior probability distribution on Pg:

πgp =

[(
K

|J |
)
e|J|H ′

]−1

, ∀ p = pJ , J ⊆ {1, . . . ,K},

where H ′ =
∑K

k=0 e−k, and consider the exponentially weighted aggregate

f̂ g =
∑
p∈Pg

θ̂gpfθ̂p , (9.3)

where θ̂g = (θ̂gp, p ∈ Pg) is a vector with components

θ̂gp =
exp(−nr̂p/β)π

g
p∑

p′∈P exp(−nr̂p′/β)πgp′
, ∀p ∈ Pg.

Theorem 9.1. [32] Let β = 8σ2. Then for any f , f1, . . . , fM , and any integers n ≥ 1,
M ≥ 1, we have

E‖f̂g − f‖2 ≤ inf
θ∈RM :

supp(θ)⊆B

{
‖fθ − f‖2 + Cσ2

n

(
B(θ) + g(θ) log

(
eK

g(θ)

)
+ 1

)}
(9.4)

where C > 0 is an absolute constant.

Remark that Theorem 9.1 is stated for arbitrary groups Bj . They can overlap and not
necessarily cover the whole set {1, . . . ,M}.

Using (9.4), one can prove that the aggregate f̃ g achieves the optimal rate of convergence
under the group sparsity setting [32]. Note that upper bounds for the risk of the Group Lasso
estimators in [20, 26] as well as in the earlier papers cited therein depart from this optimal
rate at least by a logarithmic factor. Moreover, they are obtained under strong assumptions
on the dictionary {f1, . . . , fM} such as restricted isometry or restricted eigenvalue type con-
ditions, while (9.4) is valid under no assumption on the dictionary.

We now apply Theorem 9.1 for Setting 2 of the Introduction. Let M = n, and let all
groups Bj be of the same size T = 2(log n)23 and form a partition of {1, . . . , n}, so that,
w.l.o.g., n = KT . Let the class Fβ,L be such that (1.7) holds. Denote by f̃ g the estimator
(9.3) with this choice of parameters. In particular, functions fj are those from (1.7). Fix any
f ∈ Fβ,L. Set k∗ = 2n1/(2β+1)3, and let θ∗ be the vector in R

n whose first k∗ components
are the values θ∗1 , . . . , θ

∗
k∗ from (1.7), and other components are 0. Then g(θ∗) ≤ k∗/T + 1,

and B(θ∗) ≤ k∗ + T . Plugging these values into the right hand side of (9.4) and using (1.7)
with k = k∗, we find

E‖f̃ g − f‖2 ≤ C(β, L)2k−2β
∗ +

Cσ2(k∗ + T )

n

(
1 +

1

T
log

(
en

k∗ + T

))
, (9.5)

which immediately implies the next corollary.
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Corollary 9.2. For any class of functions Fβ,L such that (1.7) holds, we have

sup
f∈Fβ,L

E‖f̃g − f‖2 ≤ c(β, L, σ2)n−2β/(2β+1) (9.6)

where c(β, L, σ2) is a constant depending only on β, L, and σ2.

Remark that (9.2) and (9.6) are adaptive results. Indeed, the estimators f̂ES and f̃ g do
not depend on the parameters β and L, and satisfy these upper bounds simultaneously for all
classes Fβ,L such that (1.7) holds.

10. Universal aggregation

Along with the three main types of aggregation (MS, C, L) described in the Introduction,
two other natural examples are of interest: the s-sparse aggregation (Ls) [6], and the convex
s-sparse aggregation (Cs) [25]. As summarized in Table 10.1, the sets Θ for the five types
of aggregation are either �0-balls or intersections of �0-balls with the simplex ΛM .

Problem Θ Description of the oracle

(MS) Θ(MS) = B0(1) ∩ ΛM Best in dictionary

(C) Θ(C) = ΛM Best convex combination

(L) Θ(L) = R
M = B0(M) Best linear combination

(Ls) Θ(Ls)
= B0(s) Best s-sparse linear combination

(Cs) Θ(Cs)
= B0(s) ∩ ΛM Best s-sparse convex combination

Table 10.1.

The next theorem follows from (6.1), (7.4) with q = δ = 1 and the inclusion ΛM ⊂
B1(1).

Theorem 10.1. [31] Assume that max1≤j≤M ‖fj‖ ≤ 1. Then, for any f , any M ≥ 2,
n ≥ 1, 1 ≤ s ≤ M , and Θ ∈ {Θ(MS),Θ(C),Θ(L),Θ(Ls)

,Θ(Cs)
} the exponential screening

estimator with β = 8σ2 satisfies the following oracle inequality

E‖f̂ES − f‖2 ≤ min
θ∈Θ

‖fθ − f‖2 + Cψn,M (Θ) .

Here, C > 0 is an absolute constant,

ψn,M (Θ) = ψ∗n,M (Θ)∧σ2R

n

and ψ∗n,M (Θ) is given in Table 10.2.

Theorem 8.1 implies that the rates ψn,M (Θ) given in Theorem 10.1 are optimal rates of
aggregation for the corresponding classes Θ. Indeed, to show (1.12) with the same rates, it
suffices to use the lower bounds for the minimax risk, since obviously

inf
f̂

sup
f

(
E‖f̂ − f‖2 −min

θ∈Θ
‖fθ − f‖2

)
≥ inf

f̂
sup
θ∈Θ

Eθ‖f̂ − fθ‖2. (10.1)
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On the other hand, the sets Θ in Theorem 10.1 are either �0-balls or intersections of �0-
balls with the �1-simplex ΛM , and the lower bounds for the minimax risk on these sets are
available from Theorem 8.1.

Problem ψ∗n,M (Θ)

(MS) σ2 logM
n

(C)
√

σ2

n log
(
1 + Mσ√

n

)
(L) σ2R

n

(Ls) σ2s
n log

(
eM
s

)
(Cs)

√
σ2

n log
(
1 + Mσ√

n

)
∧ σ2s

n log
(
eM
s

)
Table 10.2.

If assumption max
1≤j≤M

‖fj‖ ≤ 1 in Theorem 10.1 is replaced by max
1≤j≤M

‖fj‖ ≤ L, the

rates in Table 10.2 remain valid with the only difference that
√

σ2

n log
(
1 + Mσ√

n

)
should be

replaced by L

√
σ2

n log
(
1 + Mσ

L
√
n

)
.

We see that the problem of aggregation is closely related to that of minimax estimation
on the intersection of �0- and �1-balls. Indeed, for both problems upper bounds for the risk
and for the excess risk are attained by one and the same estimator, which is the exponential
screening estimator. Furthermore, the optimal rates of aggregation in Theorem 10.1 are
similar to the minimax rates on the intersection of the corresponding �0- and �1-balls (cf.
Section 7).

Using (10.1), the upper bounds (6.1), (7.4), and Theorem 8.1 we also find that the esti-
mator f̂ES attains the optimal rates of �q-aggregation:

Theorem 10.2. Let the assumptions of Theorems 8.1 and 10.1 be satisfied, and 0 < q ≤ 1.
Then the estimator f̂ES with β = 8σ2 is an optimal aggregate for the classes Θ = Bq(δ),
δ > 0. The optimal rates of aggregation for these classes are ψn,M (Bq(δ)). In addition,
this estimator is an optimal aggregate for the classes Θ = Bq(δ)∩B0(s) with δ ≥ c∗σ/

√
n

where c∗ > 0 is a constant independent of n,M . The optimal rates of aggregation for these
classes are ψ̃n,M (δ, s, q).

In summary, the exponential screening estimator enjoys the property of universal ag-
gregation, i.e., it attains optimal rates of aggregation simultaneously on all the classes Θ
considered in this section.
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Operator limits of random matrices
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Abstract. We present a brief introduction to the theory of operator limits of random matrices to
non-experts. Several open problems and conjectures are given. Connections to statistics, integrable
systems, orthogonal polynomials, and more, are discussed.
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1. Introduction

Wigner introduced random matrices to mathematical physics as a model for eigenvalues in
a disordered system, such as a large nucleus. In the classical approach to random matrices,
one considers some statistic of the matrix, and tries to understand the large n limit.

Here we follow a different approach. It is along the lines of the “objective method”
coined by David Aldous. The goal is to take a limit of the entire object of interest, in this
case the matrix itself. This has the advantage that the structure in the matrix will be pre-
served in the random limit. This method has been very successful in understanding random
objects, notable examples are (the classical) Brownian motion, the continuum random tree,
the Brownian map, and SLE, and recent limits of dense and sparse graphs.

This study of random matrices was initiated by the predictions in the work of Edelman
and Sutton [19]. They suggested that the tridiagonal matrix models introduced by Trotter
[43] and Dumtiriu and Edelman [17], should have certain differential operator limits. Their
work was the starting point of intense activity in the area, which is what this paper intends
to review.

We will first introduce the tridiagonal models. Then we consider various operator limits
and discuss some applications.

2. Tridiagonal models

Trotter never thought that his 1984 paper [43], in which he introduced tridiagonalization to
the theory of random matrices, would ever be very important. Indeed, he just used it to give
a different proof for the Wigner semicircle law for the GOE, of which there are (and had
been) a plethora of other proofs. His proof was nevertheless beautiful, and we will present a
quick modern version in Section 3.

Proceedings of the International Congress of Mathematicians, Seoul, 2014



248 Bálint Virág

Tridiagonalization is a method to find eigenvalues of self-adjoint matrices that is still
used in modern software, for example in the Lanczos algorithm. It is also useful if we want
to store the eigenvalues of an n×nmatrix, but not n2 data points, without operations beyond
linear algebra.

Starting with an n × n symmetric matrix A, first conjugate it with a special block or-
thogonal matrix so that its first coordinate vector is fixed. Writing both matrices in the block
form (

1
O

)(
a b†

b C

)(
1

O†

)
=

(
a (Ob)†

Ob OCO†

)

so one can choose O so that b becomes a nonnegative multiple of the first coordinate vector,
and the first row is like that of a tridiagonal matrix. One can iterate this procedure (conjugat-
ing by an orthogonal matrix fixing the first k coordinates in the kth step), to get a tridiagonal
matrix.

The Gaussian orthogonal ensemble (GOE) is the random matrix A = (M + M t)/
√
2

where M has independent standard Gaussian entries. It has the property that conjugation by
an orthogonal matrix preserves its distribution.

Exploiting this property and independence, we see that the result of tridiagonalization is
a symmetric matrix with independent diagonals ai, (resp. off-diagonals bi). Setting β = 1
and dividing by

√
nβ we get the tridiagonal matrix T with entries

ai ∼ N(0, 2/nβ), bi ∼ χ(n−i)β/
√

nβ. (2.1)

(Recall that χk is the distribution of the length of an n-dimensional vector with independent
standard normal entries). Starting with standard complex normals gives the Gaussian unitary
ensemble (GUE) and the same story with β = 2. It will be convenient to consider the
resulting joint density for the variables ai, log bi as a constant times

exp(−β
4n trV (T ))×

n−1∏
k=1

b
β(n−k)
k (2.2)

with V = x2.
The tridiagonalization procedure seem to produce a non-unique result (there are many

choices for the orthogonal matrices), but this is not the case. If the vectors e,Ae, . . . An−1e
are linearly independent, we always get the same Jacobi matrix (tridiagonal with positive
off-diagonals). It is, in fact the matrix A written in the Gram-Schmidt orthonormalization of
this basis.

In both descriptions, T is an orthogonal conjugate to A, with the first coordinate vector
fixed. If one defines this as an equivalence relation on symmetric matrices where e is cyclic,
then each class contains exactly one Jacobi matrix, so they are natural class representatives.

So T , with 2n − 1 parameters, encodes the n eigenvalues of A. But what else does this
encode? Check that

Ak
11 = T k

11 =

∫
xkdσ,

for the spectral measure

σ =
n∑

i=1

qiδλi
,
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where qi = ϕ2
i,1 for the normalized eigenvectors ϕi. So T encodes the spectral measure,

which is a probability measure supported on n points and so are described by 2n− 1 param-
eters.

Since for the GOE the eigenvectors are uniform on the unit n-sphere and independent of
the eigenvalues, we can write the joint density on λi, log qi as a constant times

exp(−βn trV (A))×
∏
i<j

|λi − λj |β
n∏

k=1

q
β/2
i (2.3)

using the well-known formula for the eigenvalue distribution [1]. Now the factors the left of
× in (2.2) and (2.3) are equal, since A, T have the same eigenvalues. Interestingly, the same
holds for the value on the right, see Section 3.1 of [12]! Since it is also known that the map

(a1, . . . , an, log b1, . . . log bn−1) �→ (λ1, . . . , λn, log q1, . . . log qn) (2.4)

is a bijection, it follows that it is measure-preserving (up to a fixed constant). As a conse-
quence, the equivalence of measures (2.2), (2.3) holds for all functions V and β > 0. When
V = x2, the model is called the β-Hermite ensemble and this was shown with the same
methods by Dumitriu and Edelman [17]. Just as in the special cases of the GOE and GUE,
the tridiagonal matrix T has independent entries.

This model (2.3) on n points is called Dyson’s beta ensemble.

Structure of the tridiagonal matrices. As one expects, various features of the eigenvalue
distribution can be read off the tridiagonal matrix T . For example, the top (and bottom)
eigenvectors of the matrix have all of their �2 mass in the first order n1/3 coordinates. So in
order to understand edge statistics, one can take a scaling limit of this part of T .

Similarly, for the β-Hermite T eigenvectors for eigenvalues near 0 have their �2-mass
distributed through the whole length n. So bulk local statistics of eigenvalues will be under-
stood by taking an operator limit of T on this scale.

So while local eigenvalue statistics have to do with the global structure of T , the global
statistics of eigenvalues (such as the Wigner semicircle law) have to do with the local struc-
ture of T at a random vertex, as we will see next. The spectral measure at the first coordinate
is also closely related to the eigenvalue distribution.

3. Density of states

In this section, we pursue the point of view of operator limits to deduce theWigner semicircle
law. In fact, we will get two proofs, one using rooted convergence of graphs, and the other
using Benjamini-Schramm convergence.

Rooted convergence and the Wigner semicircle law. A sequence of edge-labeled, bounded
degree rooted graphs (Gn, o) is said to converge locally to a rooted graph G if for every r,
the r neighborhood of o the graph stabilizes and the labels in the neighborhood converge
pointwise as n → ∞.

For example, using the asymptotics

χn ≈ √
n + N(0, 1/2),
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we see that the β-Hermite ensemble matrix T = Tn (thought of as weighted adjacency
matrix) rooted at the first vertex converges almost surely locally to the graph T ∗ of the
nonnegative integers (with weights 1) as n → ∞ and β is fixed.

Here we identity the graphs with their adjacency matrices. Recall the spectral measure
of G at o is the measure whose k-th moments are Gk

o,o. The method of moments shows that
rooted convergence implies convergence of spectral measures at the root o.

The moments of the spectral measure of T ∗ at o these are the number of returning simple
random walk paths that stay nonnegative; they characterize the Wigner semicircle law.

What we have shown is that the spectral measures converge almost surely. But the spec-
tral measure assigns Dirichlet(β/2, . . . β/2) weights to the eigenvalues, see (2.3). The law
of large numbers for these weights shows that the empirical eigenvalue distribution has the
same limit.

An argument like this works for more general potentials V – in this case the limiting
rooted labeled graph is the Jacobi operator associated to the orthogonal polynomials with
respect to the measure e−V (x) dx, see [31].

Benjamini-Schramm limits and the Wigner semicircle law. Here we deduce the semicir-
cle law in a way which is, essentially, equivalent to Trotter’s [43] but uses no computation.
A sequence of unrooted, labeled finite graphs Gn is said to converge to a random rooted
graph (G, o) in the Benjamini-Schramm sense if the law of (Gn, o) converges there with
uniform choice of o. The convergence is with respect to the topology of rooted convergence
introduced above.

Again, the method of moments shows that the expected spectral measure at o, which is
the empirical eigenvalue distribution of Gn, converges to the expected spectral measure of
(G, o) at o.

A moment of thought shows that the almost sure Benjamini-Schramm limit of the β-
Hermite ensembles is

√
UZ, where Z is the graph of the integers, rooted at o, U is a uniform

random variable that comes from the mean of the χ variable at the uniformly chosen location
of the root.

Now Z is also the Benjamini-Schramm limit of n-cycles, whose eigenvalues are the real
parts of equally spaced points on the circle {|z| = 2} ⊂ C. Hence the spectral measure of Z
is the real part of uniformly chosen point on the circle of radius 2.

The expected spectral measure μ of
√

UZ is thus the real part of the uniformly chosen
point from a random circle with radius 2

√
U ; but this is just another way to chose a point

from uniform measure in the disk of radius two. Thus μ is the semicircle law.

4. The β-Hermite random measure on R

A special property of the β-Hermite matrices
√

nTn is that they are minors of each other; as
a result, they are the minor of a semi-infinite Jacobi matrix J = Jβ .

The β → ∞ limit J∞ has zeros on the diagonal and
√

k at positions (k + 1, k) and
(k, k + 1). Its spectral measure at the first coordinate is standard normal.

Such matrices have relevance in the theory of orthogonal polynomials. Here we review a
few brief facts. Given a measure μ with infinite support on R with sufficiently thin tails, the
kth orthonormal polynomial is the unique degree n polynomial with positive main coefficient
that is orthogonal in L2(R, μ) to all lower degree polynomials.
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One can show that there are unique an and bn > 0 so that the pn satisfy a recur-
sion pk−1bk−1 + pkak + pk+1bk = xpk. In other words, the (not necessarily �2) vector
p(x) = (pk(x))k≥0 satisfies the eigenvector equation Jp(x) = xp(x) where J is the infinite
tridiagonal matrix built from the a-s and b-s. Note that here it is crucial that the numbering
is reversed compared to (2.1).

Note that p(x) restricted to the first n coordinates is an eigenvector of the n×n minor of
J if and only if pn(x) = 0. In particular, the pn are constant multiples of the characteristic
polynomials of this minor.

Conversely, given such J and assuming that it is self-adjoint, one can recover the measure
μ as the spectral measure of J at the first coordinate. Since Jβ is easily shown to be self-
adjoint, we have shown

Theorem 4.1 (Coupling of the β-Hermite ensembles). There exists a random measure μβ

so that for all n the zeros of the orthogonal polynomial pn with respect to μβ are distributed
as the eigenvalues of the n-point β-Hermite ensemble.

It also follows that the β-Hermite eigenvalues are exactly the Gaussian quadrature points
for this measure!

The measure μβ can be thought of as a random “rough” version of the standard nor-
mal distribution (μ∞). The measure has been studied by Breuer, Forrester, and Smilansky
[8]. They showed that its Hausdorff dimension is almost surely equal to (1 − 2/β)+. For
β < 2, the measure is pure point. A similar phenomenon holds for the family of Gaussian
multiplicative cascade measures, see, for example [40] in some sense it is a noncommutative
version. A natural question is the following

Question 1 (Spectral measure and multiplicative cascades). Does the β-Hermite measure
and the Gaussian multiplicative cascade measure with the same Hausdorff dimension have
the same fractal spectrum?

Question 2 (Nested models). Can any other Dyson β-ensembles be coupled this way? How
about other natural random matrix models?

5. Edge limits and the stochastic Airy operator

For n large and k = o(n), we have the asymptotics χn−k � √
n−k/

√
4n+N(0, 1/2). Thus

the top minor of size o(n) of (2I − T ) looks like a discrete second derivative plus multipli-
cation by 2k/n, plus multiplication by discrete independent noise. The precise continuous
analogue would be

SAOβ = −∂2
t + t + 2√

β
b′ (5.1)

called the Stochastic Airy Operator, where b′ is a distribution (the derivative of standard
Brownian motion). Edelman and Sutton [19] conjectured that this operator, acting onL2(R+)
with Dirichlet boundary conditions f(0) = 0, is the edge limit of Tn. This was proved in in
[38]:

Theorem 5.1. There exists a coupling of the β-Hermite random matrices Tn on the same
probability space so that a.s. we have

n2/3(2I − Tn) → SAOβ
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in the norm-resolvent sense: for every k the bottom kth eigenvalue converges the and corre-
sponding eigenvector converges in norm. Here 2I−Tn acts on the embedding R

n ⊂ L2(R+)
with coordinate vectors ej = n1/61[j−1,j]n−1/3 .

The limiting distribution of the top eigenvalue of the GOE, and GUE are called the
Tracy-Widom distribution TWβ with β = 1, 2, respectively. It follows that for β = 1, 2 the
negative of the bottom eigenvalue −Λ0 of SAOβ has TWβ distribution. For more general β,
this can be taken as a definition of TWβ.

The domain of SAOβ can be defined precisely (see [4]), but we will not do that here. The
eigenvalues and eigenvectors can be defined though the Courant-Fisher characterization,

Λk = inf
A:dimA=k+1

sup
f∈A,‖f‖2=1

〈f, SAOβf〉.

the latter can be defined via integration by parts as long as f , f ′ and
√

tf are in L2(R+),
and in the formula A is a subspace of such functions. The eigenvectors are defined as the
corresponding minimizers, and can be shown to be unique, see [38].

Glimpses of the proof of Theorem 5.1. We explain how to show that the bottom eigenvalue
converges (see [38] for the rest). It is a nice exercise [38] to show that given a Brownian path
and ε > 0 there is a random constant C so that for every function f with f, f ′,

√
tf ∈ L2(R)

we have ∣∣∣∣
∫

f2 dB

∣∣∣∣ ≤ C‖f‖2 + ε(‖f ′‖2 + ‖√tf‖2) = C‖f‖2 + ε〈f,AOf〉.

where AO = SAO∞ is the usual Airy operator−∂2
t +t. In other words, we have the positive

definite order of operators

− C + (1− ε)AO ≤ SAOβ ≤ (1 + ε)AO+ C (5.2)

Using Skorokhod’s representation and the central limit theorem, we can guarantee a coupling
so that the integrated potential of 2I−Tn converges uniformly on compacts to that of SAOβ .
Moreover, the discrete analogues of the bound (5.2) will hold with uniform constants C
and all n. Note that taking the bottom eigenvector f0 of SAOβ and plugging it into the
approximating operators, the Rayleigh quotient formula shows that their bottom eigenvalues
satisfy

lim supλ(n) ≤ Λ0

Conversely, SAOβ can be tested against any weak limit of the bottom eigenfunctions
f(n), which must exist because of the discrete version of (5.2) guarantees enough tightness.
As a result,

lim inf λ(n) ≥ Λ0.

A different operator appears at the so-called hard edge, see [37, 39] for further analysis.

6. Applications of the stochastic Airy operator

The stochastic Airy operator is a Schrödinger-type operator, and therefore tools from the
classical theory are applicable.
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First, as a self-adjoint operator, one can use Rayleigh quotients or positive definite or-
dering to characterize its low-lying eigenvalues. Second, as a Schrödinger operator, one can
use oscillation theory for the same. We will briefly show how these methods work.

Theorem 6.1. Let Λk ↑ be the eigenvalues of SAOβ . Then almost surely

lim
k→∞

Λk

k2/3
=

(
3π

2

)2/3

Proof. As a consequence of (5.2), that inequality (5.2) also holds when we replace the op-
erators AO, SAOβ by their k + 1st eigenvalues Ak, Λk. By letting ε → 0 we see that
Λk/Ak → 1 a.s. Now note that eigenfunctions of AO are translates of the solution Ai of the
Airy differential equation

(−∂2
t + t)Ai = 0, Ai(t) → 0 as t → ∞ (6.1)

by some a so that Ai(−a) = 0. The classical asymptotics of the zeros of Ai now imply the
claim.

Applications of the Rayleigh quotient formula. Next, we show an argument from [38]
that gives a sharp bound on the sub-Gaussian left tail of the TWβ distribution of −Λ0. It
only relies on Rayleigh quotients and standard Gaussian tail bounds!

Lemma 6.2.

P (Λ0 > a) ≤ exp
(
− β

24
a3(1 + o(1))

)
.

Proof. The Raleigh quotient formula implies that

Λ0 > a ⇒ 〈f, SAOβf〉 > a

for all nice functions f . Note that any fixed f will give a bound, and 〈f, SAOβf〉 is just a
Gaussian random variable with mean ‖f ′‖22 + ‖f√t‖22 and variance 4

β ‖f‖44. In the quest for
a good f one expects the optimal f to be relatively “flat" and ignore the ‖f ′‖22 term. In the
tradition of zero-knowledge proofs, it is legal to hide the resulting variational problem and
how to solve it from the reader (see [38] Section 4). Out of the hat comes

f(x) = (x
√

a) ∧
√

(a − x)+ ∧ (a − x)+,

where the middle term is dominant, while the others control ‖f ′‖2. Then

a‖f‖22 ∼ a3

2
, ‖f ′‖22 = O(a), ‖√xf‖22 ∼ a3

6
, ‖f‖44 ∼ a3

3
.

The proof is completed by substitution, with a standard normal N ,

P (Λ0 > a) ≤ P

(
2√
3β

a3/2 N > a3
(
1

2
− 1

6
+ o(1)

))
= exp

(
− β

24
a3(1 + o(1))

)
.
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Applications of Sturm-Liouville oscillation theory. Taking the logarithmic derivative
W = f ′/f (also called Riccati transformation) transforms the eigenvalue equation SAOβf =
λf to a first order non-linear ODE. We write this in the SDE form

dW = 2√
β

db +
(
t − λ − W 2

)
dt (6.2)

this can be thought of as an equation on the circle compactification of R: a solution that
explodes to −∞ in finite time should continue from +∞. In this sense, the solution is
monotone in λ: increasing λ moves it the “down” direction on the circle.

Let’s first restrict the operator to a finite interval [0, τ ] with Dirichlet boundary condition.
Then λ is an eigenvalue iff an explosion happens at τ , and increasing λmoves the explosions
to the left. On (0, τ) we thus have

#{ explosions } = # { eigenvalues < λ } . (6.3)

For the SAOβ this statement remains true with τ = ∞, and as a consequence

P (Wλ never explodes) = P (λ < Λ0).

Let Pt,w denote the law of the solution W of the λ = 0 version of (6.2) started at time t and
location w. Setting

F (t, w) = Pt,w(W never explodes ),

we see that the translation invariance of (6.2) implies that

lim
w↑∞

F (−λ,w) = P (λ < Λ0).

This gives a characterization for the Tracy-Widom distribution TWβ of −Λ0. Boundary
hitting probabilities of an SDE can always be expressed as solutions of a PDE boundary
value problem. Indeed, such functions are martingales and are killed by the generator, see
[5]. So F satisfies

∂tF + 2
β ∂2

wF + (t − w2) ∂wF = 0 for t, w ∈ R, (6.4)

with F (t, w) → 1 as t, w → ∞ together, and F (t, w) → 0 as w → −∞ with t bounded
above.

It is easy to check that the problem has a unique bounded solution, and so it gives a
characterization of the Tracy-Widom-β distribution. However, new ideas were needed to
connect these equation to the Painlevé systems; before we turn to these, we consider an
application of (6.2) from [38].

SDE representation and tail bounds. We now show how the SDE representation (6.2) is
used to attain tail bounds for the law TWβ = −Λ0 in [38]. We prove the matching lower
bound to Lemma 6.2; readers not familiar with Cameron-Martin-Girsanov transformations
may skip this proof.

Lemma 6.3.

P (Λ0 > a) ≥ exp
(
− β

24
a3(1 + o(1))

)
.
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Proof. By monotonicity of the solutions, we have

P∞,−a

(
W never explodes

)
≥ P1,−a

(
W never explodes

)
≥ P0,−a

(
Wt ∈ [0, 2] for all t ∈ [−a, 0]

)
P0,0

(
W never explodes

)
.

The last factor in line two is some positive number not depending on a. To bound the first
factor from below, we first write it using Cameron-Martin-Girsanov formula as

E1,−a

[
exp

(
−β

4

∫ 0

−a

(t − b2t )dbt −
β

8

∫ 0

−a

(t − b2t )
2dt

)
; bt ∈ [0, 2] for all t ≤ 0

]
,

where, for this proof only, bt denotes a Brownian motion with diffusion coefficient 2/
√

β.
On the event above, the main contribution comes from

β

8

∫ 0

−a

(t − b2t )
2 dt =

β

24
a3 + O(a2),

of lower order is the second term∫ 0

−a

(t − b2t )dbt = ab−a +
1

3
(b3−a − b30) + (

4

β
− 1)

∫ 0

−a

btdt = O(a).

We are left to compute the probability of the event

P−a,0(bt ∈ [0, 2] for t ≤ 0) ≥ e−ca,

since it is the chance of a Markov chain staying in a bounded set for time proportional to a.
This does not interfere with the main term.

In [16] arguments of this kind are used to provide a more precise bound for the other tail
P (Λ0 < −a), including −3/4 the exponent in the polynomial correction. It was shown that

P (TWβ > a) = a−
3
4β+o(1) exp

(
−2

3
βa3/2

)
.

See [6] for further non-rigorous results in this direction.

Tail estimates for finite n. It is possible to make versions the tail estimate proofs for finite
n, before taking the limit. This was carried out by Ledoux and Rider [33]. They give strong
tail estimates for the β-Hermite (and also Laguerre) ensembles for finite n. We quote the
β-Hermite results from that paper.

Theorem 6.4. There are absolute constants c, C so that for all n ≥ 1, ε ∈ (0, 1] and β ≥ 1
the β-Hermite ensemble Tn satisfies

cβe−βnε3/2/c ≤ P
(
λ1(Tn) ≥ 2(1 + ε)

)
≤ Ce−βnε3/2/C

and
cβe−βn2ε3/c ≤ P

(
λ1(Tn) ≤ 2(1− ε)

)
≤ Cβe−βn2ε3/C

For the second lower bound we need to assume in addition that ε < c.
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7. Finite rank perturbations and Painlevé systems

Johnstone [25] asked how the top eigenvalue changes in a sample covariance matrix if the
population covariance matrix is not the identity, but has one (or a few) unusually large eigen-
values?

Similarly, what happens to the Tracy-Widom distribution when the mean of the entries of
the GOE matrix changes? These questions have been extensively studied. In short, perturba-
tions below a critical window do not make a difference, and above create a single unusually
large eigenvalue.

For the β = 2 case, [2] derived formulas for the deformed Tracy-Widom distributions
using Harish-Chandra integrals. The quest to understand the critical case for β = 1 lead to a
simple derivation of the Painlevé equations for β = 2, 4 in [5].

Note that changing the mean of the GOE is just adding a rank-1 matrix. The GOE is
rotationally invariant, so for eigenvalue distributions we may as well add a rank-1 perturba-
tion of the form ete, with the first coordinate vector e. Such a perturbation commutes with
tridiagonalization. At criticality, it becomes a left boundary condition for the stochastic Airy
operator. The relevant theorem form Bloemendal and V. [5] is

Theorem 7.1. Let μn ∈ R. Let G = Gn be a (μn/
√

n)-shifted mean n × n GOE matrix.
Suppose that

n1/3 (1− μn) → w ∈ (−∞,∞] as n → ∞. (7.1)

Let λ1 > · · · > λn be the eigenvalues of G. Then, jointly for k = 0, 1, . . . in the sense of
finite-dimensional distributions, we have

n1/6
(
λk − 2

√
n
) ⇒ −Λk−1 as n → ∞

where Λ0 < Λ1 < · · · are the eigenvalues of SAOβ,w.

Here SAOβ,w is the Stochastic Airy operator (5.1) with left boundary condition f ′(0)/f(0) =
w. Similar theorems hold for the other β-Hermite ensembles perturbed at e.

This theorem is useful in two ways. First, it gives a characterization of the perturbed TW
laws in terms of a PDE. Conversely, it gives an interpretation of the solutions of a PDE in
terms of the perturbed TW laws, giving a fast way to Painlevé expressions.

Painlevé formulas. Let u(t) be the Hastings-McLeod solution of the homogeneous Painlevé
II equation, i.e.

u′′ = 2u3 + tu, (7.2)

characterized by
u(t) ∼ Ai(t) as t → +∞ (7.3)

where Ai(t) is the Airy function (6.1). Let

v(t) =
∫∞
t

u2, E(t) = exp
(− ∫∞

t
u
)
, F (t) = exp

(− ∫∞
t

v
)
. (7.4)

Next define two functions f(t, w), g(t, w) on R
2, analytic in w for each fixed t, by the first

order linear ODEs

∂

∂w

(
f
g

)
=

(
u2 −wu − u′

−wu + u′ w2 − t − u2

)(
f
g

)
(7.5)
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and the initial conditions
f(t, 0) = E(t) = g(t, 0). (7.6)

Equation (7.5) is one member of the Lax pair for the Painlevé II equation. The other pair
gives an ODE in the variable t. This is now sufficient information to check that F (t, w) =
f(t, w)F (t) satisfies the PDE (6.4), giving a proof for the Painlevé formula P (TW2 < t) =
F (t). However, in order to be able to check, we needed to understand where to start looking,
and rank-1 perturbation theory helped!

Similar formulas hold for β = 4. For β = 1, Mo [34] has developed formulas but we do
not know how to check that they satisfy the PDE.

Problem 3 (Mo’s formulas). Find a way to check that Mo’s formulas satisfy (6.4).

In [42] Rumanov finds a new (!) Painlevé representation for the hard edge using the
corresponding stochastic operator. But we don’t know the bulk analogue, see Question 9.

8. Beta edge universality

The transformation (λ, q) �→ (a, b) in (2.4) turns complicated dependence into independence
in the β-Hermite case. For more general potentials V , the first factor in (2.3) is not a product
of factors depending on single variables any more, and so the variables are not independent.
Still, for quartic V it can be written as a product, where each factor is a function of only two
consecutive pairs (ai, bi).

This implies that the process i �→ (ai, bi) is a Markov chain. Moreover, for general
(even) polynomial V it is a η- Markov with η = deg V/2 − 1, which means that given η
consecutive pairs (ai, bi) the variables before and after are conditionally independent.

This observation leads naturally to a proof of universality [31]. There, it is shown that
for V with V ′′ > c > 0 we have

Theorem 8.1. There exists a coupling of the random matrices T = Tn on the same proba-
bility space and constants γ, ϑ, E depending on V only so that a.s. we have

γn2/3(EI − Tn) → SAOβ

in the norm-resolvent sense. Here EI − Tn acts on R
n ⊂ L2(R+) with coordinate vectors

ej = (ϑn)1/61[j−1,j](ϑn)−1/3 .

Proof outline. In [38], sufficient conditions were given for the convergence of discrete op-
erators to continuum ones, in particular to SAOβ . This was done through a more general
version of the proof of Theorem 5.1.

The most important condition is that if E is the top edge of the equilibrium measure
associated with the potential V , then the discrete version of the integrated potential converges
to the continuum one, locally uniformly:

n1/3

�tn1/3�∑
k=1

(ak + 2bk − E) → 1

2
t2 + 2√

β
bt

This amounts to having to show a central limit theorem for the η-Markov chain (ai, bi) (we
will drop the prefix η).
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• The Markov chain is time-inhomogeneous because of the coefficients of the b-terms.
However, these change on the scale of order n, while

• the Markov chain mixes exponentially fast, so in logarithmic number of steps it gets
to its (local) stationary measure, which can be approximated using a homogeneous
version of the problem.

• the local equilibrium measure is extremely close to Gaussian. Indeed, the joint dis-
tribution of stretches of length n1/2−ε are close in total variation to their Gaussian
approximation! So the CLT is true in a very strong sense, and is proved by comparing
joint densities.

• The Markov chain is not started from its local stationary distribution at i = 1. In fact,
the first coordinates of the matrix T encode the local equilibrium measure for V just
as they do in the β-Hermite case. Indeed, the limit of the right end of T is the Jacobi
operator for the equilibrium measure associated to the potential V ! See Section 3.

• Thus the CLT as required by the [38] criteria does not hold verbatim. It does hold for
T truncated after the first c log n coordinates, and it can be shown that the truncation
does not make a significant difference.

By now, universality of the β-ensemble edge eigenvalues has other proofs, some more
general, see [3, 7]. For the Jacobi ensembles, see [22].

Question 4 (Formulas). There exists asymptotic formulas for correlations and other statis-
tics of the edge and bulk processes, see for example [15]. Can these be connected to the
limiting operators directly?

Exotic edge operators. We saw in Section 3, that empirical distribution of eigenvalues of
Tn, without scaling, converge to the classical equilibrium measure form potential theory
corresponding to V .

The convexity and analyticity of V forces this measure to have a density which is decays
like x1/2 at the edges. As one might guess, this x1/2 is crucial for the SAOβ limit.

When V is analytic, the possible decay rates are x2k+1/2 for some integer k. The more
detailed analysis of universality in [31] lead us to the following conjecture. See [38] for a
more precise version, and a detailed explanation from where the conjectured limit comes
from.

Conjecture 5. After scaling, Tn converges to the random operator

Sβ,k = −∂2
t + t

1
2k+1 + 2√

β
t−

k
2k+1 b′t.

For β = 2 the eigenvalue limits have been studied in [9] via the Riemann-Hilbert ap-
proach.

9. Bulk limits – the Brownian carousel

The goal of this section is to describe the limit of the β-Hermite ensembles in the bulk.
First, for motivation, we review some history. The nonlinear transformation (a, b) →

(λ, q) of Section 2 is fundamental in several areas, including orthogonal polynomial theory,
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the Toda lattice, and more generally, integrable systems and inverse spectral theory. It goes
beyond tridiagonal matrices and point measures. A beautiful generalization, is the theory of
canonical systems, where the correspondence is between certain matrix-valued “potentials”
and measures onR. Canonical systems are a one-parameter families of differential equations
of the form

λRtf = Kf ′, on [0, η), K =

(
0 −1
1 0

)
.

where R is a nonnegative definite 2 × 2 matrix-valued function from [0, η), and f takes
values in R

2 on the same interval. When R is invertible everywhere, then the canonical
system corresponds to the eigenvalue problem of the Dirac operator

R−1K∂t (9.1)

which is symmetric with respect to the inner product

〈f, g〉 =
∫ η

0

f†t Rtgt dt.

A theory canonical systems was developed by de Branges [10] in conjunction with general-
izing the concept of Fourier transform.

The Hilbert-Pólya conjecture seeks to prove the Riemann hypothesis by finding a self-
adjoint operator whose eigenvalues are the zeros Z of ζ(1/2 + iz) for the Riemann zeta
function ζ. A famous attempt at proving the Riemann hypothesis was made by de Branges,
using Dirac operators corresponding to canonical systems.

On the other hand, the Montgomery conjecture [35] claims that as t → ∞, the random
set (Z − Ut) log t, where U is a uniform random variable on [0, 1], converges to the Sine2
process, defined as the limit of eigenvalue process of the GUE in the bulk.

A natural question is whether there exists an operator (coming from canonical system)
whose eigenvalues are give the Sine2 process. The first theorem from [46] answers this in
the affirmative, for all β. The operator we describe here is conjugate to a canonical Dirac op-
erator via a Cayley transform, see [46], but the present form is more convenient for analysis.

Consider the hyperbolic Brownian motion in the Poincaré disk satisfying the SDE

dB =
1√

β(1− t)
(1− |B|2)dZ (9.2)

where Z is a complex Brownian motion with independent standard real and imaginary parts,
and the time scaling corresponds to logarithmic time. Let

Xt =
1√

1− |B(t)|2
(

1 B(t)
B(t) 1

)
, J =

( −i 0
0 i

)
. (9.3)

Define the Brownian carousel operator as

Cβ = J X2
t ∂t on [0, 1). (9.4)

with boundary conditions f(0) parallel to (1, 1)† and f(1) parallel to (B(1), 1)† (since B
converges to a point on the unit circle). We will see that 2Cβ has a discrete set of eigenvalues
with a translation-invariant distribution. It is called the Sineβ process.

Then we have
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Theorem 9.1 ([46]). Fix ν ∈ (−2, 2). There exists unitary matrices so that for the β-Hermite
tridiagonal matrices Tn √

1− ν2 On(Tn − νI)O−1
n → Cβ

where Tn acts on the C
n as a subspace of complex 2-vector-valued functions on [0, 1).

The convergence is in the norm-resolvent sense; in particular eigenvalues converge and
eigenvectors converge in norm.

A version of this theorem, for unitary matrices (and for the associated phase function
instead of the operator) was given Killip and Stoicu [28]. In [44] a phase function version is
proved. The full operator convergence is shown in [46].

The Brownian carousel as a geometric evolution. Writing the eigenvalue equation for Cβ
as

∂tg = −λJX−1
t g, g(0) = (1, 1)†.

Shows that Pgt = eiγt , a point on the unit circle, is rotated at speed λ about the moving
center PB(t). In particular, γ satisfies

∂tγ = λ
|eiγ − B|2
1− |B|2 , γ(0) = 0. (9.5)

Oscillation theory tells us that the number of eigenvalues in the interval [0, λ] equals the
number of times eiγ visits the point B(1). This process is called the Brownian carousel,
introduced in [44] before the discovery of the operator Cβ .

We will not describe the proof of Theorem 9.1 here. Instead, we will explain how this
operator arises as a limit of lifts of (random) unitary matrices. Then we present some ap-
plications to approximating eigenvalue statistics. Finally, we will discuss a related model,
1-dimensional critical random Schrödinger operators.

10. An operator and a path associated with unitary matrices

The goal of this section is to parameterize the spectrum of a unitary matrix in a way that it
will be apparent already for finite n what the limiting operator will be. In fact, we construct
a Dirac operator whose spectrum is the lifting of that of U . Moreover, the operator depends
on a piecewise constant path in the hyperbolic plane. If this path has a limit as n → ∞ (and
some tightness conditions are satisfied) then so will the associated Dirac operator.

As it turns out, in the circular beta case the parameter path is just a random walk in
the hyperbolic plane! Hence the limit will be the operator parameterized by hyperbolic
Brownian motion.

The construction is based on the Szegő recursion, which we will briefly review here.
Let U be a unitary matrix of dimension n, and assume that for some unit vector e, the

vectors e, Ue, . . . Un−1e form a basis. There is a unique way to apply Gram-Schmidt to
orthonormalize this basis so that we get

Φ0(U)e, . . . ,Φn−1(U)e
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where Φk is a monic degree k polynomial. Define Φn to be monic of degree n so that
Φn(U)e = 0; this implies that Φn(z) = det(z − U) the characteristic polynomial of U .
Writing

Φk(z) = zk + ak−1z
k−1 + . . . + a0

we define
Φ∗k(z) = ā0z

k + ā1z
k−1 + . . . + āk = zkΦk(1/z̄).

Now note that

〈Φ∗k(U)e, U je〉 =
k∑

i=0

āi〈Uk−ie, U je〉 =
k∑

i=0

āi〈Uk−je, U ie〉 = 〈Φk(U)e, Uk−je〉.

By construction, u = Φk(U)e is perpendicular to e, . . . , Uk−1e, it follows that Φ∗k(U)e is
perpendicular to Ue, . . . , Uke. However, so is v = Φk+1(U)e − UΦk(U)e (as each term
is, by construction). Now u, v are in the span of e, . . . , Uke, so they must be collinear.
Following tradition we choose αk, the so-called Verblunski coefficients, so that

Φk+1 − zΦk = −ᾱkΦ
∗
k, (10.1)

namely

−ᾱk =
〈u, v〉
〈u, u〉 =

〈Φ∗k(U)e,−UΦk(U)e〉
‖Φ∗k(U)e‖2 .

Since Φ∗k(U)e and UΦk(U)e have the same length, we see that |αk| ≤ 1. We then get the
celebrated Szegő recursion(

Φk+1(z)

Φ∗k+1(z)

)
= AkZ

(
Φk(z)

Φ∗k(z)

)
, Φ∗0(z) = Φ0(z) = 1,

with the matrices

Ak =

(
1 −ᾱk

−αk 1

)
, Z =

(
z 0
0 1

)
.

Note that z is an eigenvalue if and only if Φn(z) = 0, equivalently by (10.1) we have

Z

(
Φn−1(z)

Φ∗n−1(z)

)
= ZAn−2Z · · ·ZA0Z

(
1

1

)
‖
(
ᾱn−1

1

)
. (10.2)

Using the Verblunski coefficients, we can define a new set of parameters

bk = PA−1
0 . . . A−1

k−1

(
0

1

)
, 0 ≤ k < n − 1 (10.3)

where P(xy) = x/y, and

b∗ = PA−1
0 . . . A−1

n−2

(
ᾱn−1

1

)
.

Then b0 = 0 and the parameters (b1, . . . , bn−1, b∗) encode the same information as the αi.
This is exactly the information contained in the spectral measure

∑n
j=1 wjδeiλj .
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Theorem 10.1. Consider the measure
∑n

j=1 wjδeiλj/n supported on n points on the unit
circle, and consider the b-coordinates (10.3). For t ∈ [0, 1] let b(t) = b�tn�, and let

Xt =
1√

1− |b(t)|2
(

1 b(t)
b̄(t) 1

)
, J =

( −i 0
0 i

)
.

Then the operator
JX2

t ∂t (10.4)

acting on functions f : [0, 1] → C
2 with the boundary conditions f1(0) = f2(0) and

f1(1) = f2(1)b∗ has discrete spectrum and the eigenvalues are λi/2 + πnZ.

Proof. We skip the standard proof of self-adjointness, see [46]. Instead of the Szegő recur-
sion, we can follow the evolution of

Γk = ZAk−2...A0 · · ·ZA0Z

(
1

1

)
,

so that

Γ0 =

(
1

1

)
, Γ1 = Z

(
1

1

)
, Γ2 = ZA0Z

(
1

1

)
, . . .

which, geometrically is a repeated rotation of the vector around a moving center given by
bk, and

Γk+1 = ZAk−1...A0Γk = Z
X−1

k/nΓk

Since J is an infinitesimal rotation element around 0, with z = eiλ/n the solution Γ(t) of
the ODE

∂tΓ(t) = −λ

2
JX−1

t Γ(t), Γ(0) =

(
1

1

)

satisfies Γ(k/n) = e−ik/2nΓk for k = 0, . . . , n. But since XtJX∗
t = J , Xt = X∗

t and
J2 = −I , this ODE is just the eigenvalue equation at λ/2 of JX2

t ∂t. Note also that Γ(1) is
parallel to the middle term of (10.2), so the boundary condition is also correct.

11. The path parameter for circular β

We now look at the circular β ensembles. Their joint eigenvalue density is proportional to
Vandermonde to the power β. What we need is that for this eigenvalue distribution we can
take the αk to be rotationally symmetric, independent with

|α2
k| ∼ Beta

[
1, (n − k − 1)β/2

]
with αn−1 uniform on the circle, as shown by Killip and Nenciu [27]. The evolution of bk is

bk+1 = A
Ak−1···A0

k .bk

where the Ak are now to be understood as linear fractional transformations, or, equivalently,
hyperbolic automorphisms in the Poincaré model.

Note that Ak moves the origin to a rotationally invariant random location, and so
A

Ak−1···A0

k moves bk to a rotationally invariant random location around bk. In particular,
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bk is just a random walk in the hyperbolic plane that can be described alternatively as fol-
lows. Let b0 = 0. Given bk, pick a point uniformly on the hyperbolic circle around bk
whose radius equals the hyperbolic distance dk of 0 and a random variable with the same
distribution as |αk|.

Given a hyperbolic Brownian motion path B, this method suggest an efficient coupling.
First pick d1, . . . , dn−1, let b0 = 0, t0 = 0, and given bk, tk let tk+1 be the first time that
dist(Bt, bk) = dk+1. Let bk+1 = B(tk+1).

Given this coupling, it is now straightforward to show that the path bn(t) → B(t) a.s.
uniformly on compacts, for B defined in (9.2). With an additional tightness argument, we
get

Theorem 11.1 ([46]). The operators Cβ,n defined by (10.4) with paths bn coupled as above,
converge in the norm-resolvent sense to the limit Cβ of (9.4). In particular, the circular β
eigenvalue process converges to the eigenvalues of Cβ .

For bulk results in the Laguerre case, see [24].

12. The Brownian carousel

The Brownian carousel description gives a simple way to analyze the limiting point process.
The hyperbolic angle of the rotating boundary point as measured from b(t) follows the Brow-
nian carousel SDE. Indeed, define αλ(t) to be the continuous function with αλ(0) = 0 so
that with X as in (9.3) (recall P(x, y)† = x/y)

eiαλ(t) = PX−1gλ(t)

for the solution gλ of the ODE 2Cβgλ = λgλ started at (1, 1)†. (A factor 2 here for backward
compatibility). While Pg evolves monotonously on the circle, the evolution of α satisfies a
coupled one-parameter family of stochastic differential equations. We apply a logarithmic
time change for simplicity to get, with f(t) = β

4 exp(−βt/4) the SDE

dαλ = λf dt + 4((e−iαλ − 1)dZ), αλ(0) = 0, (12.1)

driven by a two-dimensional standard Brownian motion. For a single λ, this reduces to the
one-dimensional stochastic differential equation

dαλ = λf dt + 2 sin(αλ/2)dW, αλ(0) = 0, (12.2)

which converges as t → ∞ to an integer multiple αλ(∞) of 2π. A direct consequence of
oscillation theory for Cβ is the following.

Proposition 12.1. The number of points N(λ) of the point process Sineβ in [0, λ] has the
same distribution as αλ(∞)/(2π).

13. Gap probabilities

In the 1950s Wigner examined the asymptotic probability of having no eigenvalue in a fixed
interval of size λ for n → ∞ while the spectrum is rescaled to have an average eigenvalue
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spacing 2π. Wigner’s prediction for this probability was

pλ = exp
(−(c + o(1))λ2

)
.

where this is a λ → ∞ behavior. This rate of decay is in sharp contrast with the exponential
tail for gaps between Poisson points; it is one manifestation of the more organized nature of
the random eigenvalues. Wigner’s estimate of the constant c, 1/(16π), later turned out to be
inaccurate. [18] improved this estimate to

pλ = (κβ + o(1))λγβ exp

(
− β

64
λ2 +

(
β

8
− 1

4

)
λ

)
(13.1)

which applies to the Sineβ process.
Dyson’s computation of the exponent γβ , namely 1

4 (
β
2 +

2
β +6), was shown to be slightly

incorrect. Indeed, [14] gave more substantiated predictions that γβ is equal to −1/8,−1/4
and −1/8 for values β = 1, 2 and 4, respectively. Mathematically precise proofs for the
β = 1, 2 and 4 cases were later given by several authors: [47], [13]. Moreover, the value of
κβ and higher order asymptotics were also established for these specific cases by [30], [20],
[11].

In [45] we give a mathematically rigorous version of Dyson’s prediction for general β
with a corrected exponent γβ using the Brownian carousel SDE.

Theorem 13.1. The formula (13.1) holds with a positive κβ and

γβ =
1

4

(
β

2
+

2

β
− 3

)
.

We include a proof of a theorem from [44] that works for more general driving functions
f (the equation (12.1)) but gives a weaker result in this case, namely the main order term in
the upper bound.

Theorem 13.2. Let f : R+ → R
+ satisfy f(t) ≤ c/(1+ t2) for all t and

∫∞
0

|df | < ∞. Let
k ≥ 0. As λ → ∞, for the point process given by the Brownian carousel with parameter f
we have

P (# of points in [0, λ] ≤ k) = exp
(− λ2(‖f‖22/8 + o(1))

)
. (13.2)

Lemma 13.3. Let Y be an adapted stochastic process with |Yt| < m, and let X satisfy the
SDE dX = Y dB where Bt is a Brownian motion. Then for each a, t > 0 we have

P (X(t)− X(0) ≥ a) ≤ exp
(−a2/(2tm2)

)
.

Proof. We may assume X(0) = 0. Then Xt = Bτ where τ is the random time change
τ =
∫ t
0
Y 2(s)ds. Since τ < m2t the inequality now follows from

P (Br > a) ≤ exp
(−a2/(2r)

)
.

Proof of Theorem 13.2. The event in (13.2) is given in terms of the Brownian carousel SDE
as limt→∞ αλ(t) ≤ 2kπ.
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Since α(t) never returns below a multiple of 2π that it has passed, it is enough to give an
upper bound on the probability that α stays less than x = 2(k+1)π. For 0 < s < t we have

P (α(t) < x | Fs) = P

(
−
∫ t

s

2 sin(α/2)dB > λ

∫ t

s

fdt − x + α(s)
∣∣∣Fs

)
.

Wemay drop the α(s) from the right hand side and use Lemma 13.3 with Y = −2 sin(α/2),
m = 2, a = λ(

∫ t
s
fdt − x/λ) to get the upper bound

P (α(t) < x | Fs) ≤ exp(−λ2r(s, t)), r(s, t) =
(
∫ t
s
fdt − x/λ)2

8(t − s)
.

Then, by just requiring α(t) < x for times ε, 2ε, . . . ∈ [0,K] the probability that α stays
less than x = 2(k + 1)π is bounded above by

E

K/ε∏
k=0

P (α((k + 1)ε) < x
∣∣Fkε) ≤ exp

{
− λ2

K/ε∑
k=0

r(εk, εk + ε)
}
.

A choice of ε so that x/λ = o(ε) as λ → ∞ yields the asymptotic Riemann sum

K/ε∑
k=0

r(εk, εk + ε) =
1

8

∫ K

0

f2(t)dt + o(1).

Letting K → ∞ provides the desired upper bound.

Next, we show a central limit theorem for the number of eigenvalues of Cβ from [32].

Theorem 13.4 (CLT for Sineβ). As λ → ∞ we have

1√
log λ

(
Sineβ [0, λ]− λ

2π

)
⇒ N (0,

2

βπ2
).

An n → ∞ version of this theorem for finite matrices from circular and Jacobi β ensem-
bles was shown by Killip [26].

Proof. We will consider the Brownian carousel SDE

dαλ = λ
β

4
e−

β
4 tdt + 2 sin(αλ/2)dB, αλ(0) = 0 t ∈ [0,∞). (13.3)

First note that α̃(t) = αλ(T + t) with T = 4
β log(βλ/4) satisfies the same SDE with λ = 1.

Therefore
αλ(∞)− αλ(T )√

log(λ)
→ 0

in probability. So it suffices to find the the weak limit of

αλ(T )− λ

2π
√
log λ

.
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We have

α(T )− λ = − 4

β
+

∫ T

0

2 sin(αλ/2)dB

which means

α(T )− λ +
4

β

d
= B̂

(∫ T

0

4 sin(αλ/2)2dt

)

for a certain standard Brownian motion B̂. In order to prove the required limit in distribution
we only need to show that 4

log λ

∫ T
0
sin(αλ/2)2dt → 8

β in probability. We have

4

log λ

∫ T

0

sin(αλ/2)2dt =
8 log [βλ/4]

β log λ
+

2

β log λ

∫ T

0

cos(αλ)dt.

The first term converges to 8/β. To bound the second term we compute

4

iβλ log λ
d
(
eiα

λ+βt/4
)
=

eiα
λ

log λ
dt +

8

βλ log λ
eiα

λ+βt/4 sin(αλ/2)dB

+
8i

βλ log λ
eiα

λ+βt/4 sin(αλ/2)2dt

+
1

iλ log λ
eiα

λ+βt/4dt.

The integral of the left hand side is 4
iβλ log λ

[
4eiα

λ(T )λ/β − 1
]
= O((log λ)−1). The inte-

grals of the last two terms in the right hand side are of the order of (λ log λ)−1
∫ T
0

eβt/4dt =
O((log λ)−1). Finally, the integral of the second term on the right has an L2 norm which is
bounded by C(log λ)−1. This means the integral of the first term on the right,

(log λ)−1

∫ T

0

eiα
λ

dt

converges to 0 in probability from which the statement of the theorem follows.

14. Random Schrödinger limits

The methods developed for tridiagonal matrices also work for critical 1-dimensional random
Schrödinger operators. It is interesting to compare the behavior of level statistics.

Consider the matrix

Hn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 1
1 v2 1

1
. . . . . .
. . . . . . 1

1 vn−1 1
1 vn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14.1)
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where vk = σωk/
√

n, and ωk are independent random variables with mean 0, variance 1
and bounded third absolute moment.

To cut a long story short, one can take a limit of this operator around the global position
E just as the β-Hermite models in Theorem 9.1. The resulting operator Sτ is an analogue
of Cβ , except it is driven by time-homogeneous hyperbolic Brownian motion on an interval
of length τ = σ2/(1 − E2/4), which is the only parameter left in the process. In [32] we
show that the large gap probabilities have a similar behaviour (exponentially decaying in
the square of the gap) to the Sineβ process (see also [23] for more detailed large deviation
results).

The CLT and the level repulsion are different, indicating much higher ordering. We
include the geometric proof of the repulsion here, using the Brownian carousel description
of Section 9. Let Schτ [I] denote the number of eigenvalues of the operator τSτ in the interval
I .

Theorem 14.1 (Eigenvalue repulsion, [32]). For ε > 0 we have

P {Schτ [0, ε] ≥ 2} ≤ 4 exp

(
− (log(2π/ε)− τ − 1)2

τ

)
. (14.2)

whenever the squared expression is nonnegative.

Proof. If there are at least two points in [0, ε] then the Brownian carousel had to take at least
one full turn. Thus

P {Schτ [0, ε] ≥ 2} ≤ P
{
γε/τ (τ) ≥ 2π

}
.

where γ is the solution of (9.5). From (9.5) we get

γε/τ (τ) ≤ ε max
0≤t≤τ

(1− |Bt|2)−1 = ε(1− max
0≤t≤τ

|Bt|2)−1

which means that

γε/τ (τ) ≥ 2π ⇒ 1− ε

2π
≤ max

0≤t≤τ
|Bt|2. (14.3)

In the Poincaré disk model the hyperbolic distance between the origin and a point z in the
unit disk is given by q(z) = log

(
1+|z|
1−|z|
)
. Thus (14.3) implies

max
0≤t≤τ

q(Bt) ≥ log (2π/ε) .

The probability that the hyperbolic Brownian motion leaves a ball with a large radius r in a
fixed time is comparable to the probability that a one-dimensional Brownian motion leaves
[−r, r] in the same time. This follows by noting that Itô’s formula with (9.2) gives

dq =
dB√
2
+

coth(q)

4
dt

for the evolution of q(B) with a standard Brownian motion B. By increasing the drift
from coth(q)/4 to ∞1q∈[0,1] + coth(1)/4 we see that q is stochastically dominated by
1 + t coth(1)/4 + |B(t)|/√2 where B is standard Brownian motion and coth(1) < 4.
Thus

P

(
max
0≤t≤τ

q(Bt) ≥ log (2π/ε)

)
≤ P

(
max
0≤t≤τ

|B(t)| ≥ log (2π/ε)− 1− τ

)
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≤ 4 exp

(
− (log(2π/ε)− τ − 1)2

τ

)

which proves the theorem.

We note that continuum random Schrödinger models can also have such limits, see [29]
and [36].

Most of this review was about eigenvalues. To conclude, we include a remarkable fact
about the shape of localized eigenvectors of 1-dimensional random Schrödinger operators,
[41].

Theorem 14.2. Pick λ uniformly from the eigenvalues of Hn and let ψλ be the correspond-
ing normalized eigenvector. Let B be a two sided Brownian motion started from 0, and
let

M(t) = exp(B(t)− |t/2|).
Then, letting τE = σ2/(1−E2/4)/4, as n → ∞ we have the convergence in joint distribu-
tion (

λ, ψλ*t/n+2dt∗
)

=⇒
(

E, M(τE(t − U))dt∗
)

where E has arcsin distribution on [−2, 2], U is uniform on [0, 1], and E,U,M are indepen-
dent. Here dt∗ signifies that the measures are both normalized to have total mass 1.

15. Further open problems

These are in addition to the problems and questions presented in the body of the article.

Question 6 (Decimation). In Forrester [21] it was shown that deleting all but every kth
eigenvalue of many finite β = 2/k ensembles gives the corresponding β = 2k ensemble.
Can the limiting operators (bulk or edge) be coupled explicitly in this way?

Question 7 (Random and deterministic orthogonal polynomials). Is there a relation between
the β = 2 random orthogonal polynomials (see section 4) and the deterministic ones? How
about the limiting operators?

Question 8 (Dynamics). Are there operator limits of matrix-valued (say Hermitian) Brow-
nian motion?

Question 9 (Painlevé in the bulk). Can one deduce the gap Painlevé equation from the
PDE’s corresponding to the generator of the Brownian carousel SDE?

Question 10 (Loop equations). Can one derive analogues of the so-called loop equations
directly from limiting operators?
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Constrained forms of statistical minimax:
Computation, communication, and privacy

Martin J. Wainwright

Abstract. A fundamental quantity in statistical decision theory is the notion of the minimax risk as-
sociated with an estimation problem. It is based on a saddlepoint problem, in which nature plays the
role of adversary in choosing the underlying problem instance, and the statistician seeks an estimator
with good properties uniformly over a class of problem instances. We argue that in many modern
estimation problems arising in the mathematical sciences, the classical notion of minimax risk suf-
fers from a significant deficiency: to wit, it allows for all possible estimators, including those with
prohibitive computational costs, unmanageable storage requirements, or other undesirable properties.
Accordingly, we introduce some refinements of minimax risk based on imposing additional constraints
on the sets of possible estimators. We illustrate this notion of constrained statistical minimax via three
vignettes, based on restrictions involving computation, communication, and privacy, respectively.

Mathematics Subject Classification (2010). Primary 62Cxx; Secondary 68W40.

Keywords. Statistical minimax; information theory, metric entropy, communication complexity, com-
putational complexity, differential privacy.

1. Introduction

Minimax theory is a cornerstone of statistical decision theory, providing a classical approach
to assessing the quality of a statistical estimator in the frequentist sense. It is based on a
saddle point problem, in which the adversary chooses a worst-case set of parameters, and the
statistician seeks to minimize the worst-case risk via a well-chosen estimator. There is now
a rich and well-developed body of theory for bounding and/or computing the minimax risk
for various statistical estimation problems (e.g., see the papers [6, 26, 43, 44] and references
therein).

In full generality, a statistical estimator of a parameter θ ∈ Θ is a measurable function
of the data, taking values in the parameter space Θ. Herein lies a serious deficiency of the
classical notion of minimax risk: apart from the measurability requirement, the infimum
over estimators is unconstrained. Consequently, the classical notion allows for the use of
estimators that may be practically infeasible for various reasons. For instance, it allows for
estimators whose computational complexity can scale arbitrarily quickly with the problem
dimension and parameters. In practice, it is typically only of interest to consider estimators
with polynomial-time complexity, or perhaps even more stringently, with linear or quadratic
complexity. In addition, it implicitly assumes that all the data can be aggregated at a cen-
tral location. For the massive data sets that are generated in many modern scientific and
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engineering applications, such centralized aggregation is often impossible, and instead, dis-
tributed methods should be used. Finally, there are many types of data—including financial
records, medical tests, and genetic data— that lead naturally to privacy concerns. Given the
prevalence of such data types, another important issue is the study of statistical estimators
that have privacy-respecting properties.

Accordingly, with the motivation of addressing these deficiencies of the classical mini-
max risk, the goal of this overview is to introduce and discuss various constrained forms of
minimax risk. We begin in Section 2 by providing a more precise definition of the problem
of statistical estimation and the notion of minimax risk. Sections 3, 4, and 5, respectively,
are devoted to constrained forms of minimax risk based on communication, privacy, and
computation. The results described here are based on joint pieces of work [17, 45, 47] with
John Duchi, Michael Jordan, and Yuchen Zhang.

2. Classical minimax risk

In order to set the stage, we begin by describing the problem of statistical estimation in gen-
eral terms, and then introducing the classical notion of minimax risk. Consider a family of
probability distributions P with support X , and consider a mapping θ : P → Θ. Thus,
associated with member P ∈ P is the parameter θ(P). Given a fixed but unknown distribu-
tion P ∈ P , suppose that we observe a sequence Xn

1 := (X1, . . . , Xn) of random variables
drawn i.i.d. according to P. Based on observing the sequence Xn

1 , our goal is to estimate
the target parameter θ∗ := θ(P). More formally, an estimator of θ∗ is a measurable function
θ̂ : Xn → Θ. In order to assess the quality of any estimator, we let ρ : Θ×Θ → [0,∞) be
some non-negative measure of error on the parameter space Θ, and consider the associated
risk function

R(θ̂, θ∗) = E
[
ρ(θ̂(Xn

1 ), θ
∗)
]
,

where the expectation is taken over the samples. Typical choices of the error function ρ are
various metrics, or powers of such metrics.

For any fixed estimator θ̂, the function θ∗ �→ R(θ̂, θ∗) characterizes its performance as
the underlying truth θ∗ ranges over the parameter space Θ. (Here and throughout the paper,
whenever the dependence of θ̂ on the samples Xn

1 is clear from the context, then we simply
write θ̂.) There are various ways in which to “scalarize” the risk function in order to assign
a single number to each estimator. In the minimax setting, for each estimator θ̂, we compute
the worst-case risk sup

P∈P R(θ̂, θ(P)), and rank estimators according to this ordering. The
estimator that is optimal in this sense defines a quantity known as the minimax risk—namely,

Mn(θ(P)) := inf
θ̂

sup
P∈P

R(θ̂, θ(P)), (2.1)

where the infimum ranges over all possible estimators.
As a prelude to later results, let us consider a few illustrative instances of these defini-

tions.

Location families: For a fixed base density function φ and vector θ ∈ R
d, consider a

distribution Pθ specified by a density function (with respect to Lebesgue measure) of the
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form fθ(x) = φ(x − θ). Letting Θ be some subset of Rd, the collection of distributions
P = {Pθ | θ ∈ Θ} is known as a location family, since θ plays the role of a centering
quantity. Important examples of location families include the normal location family (spec-

ified by the standard normal density φ(x) = e−
‖x‖22

2 /
√
2π), and for d = 1, the uniform

location family (specified by the base density φ(x) = I [x ∈ [0, 1]], where I is a zero-one
valued indicator function for set membership). A typical error measure is the squared �2-
norm ρ(θ̂, θ∗) = ‖θ̂ − θ∗‖22. We discuss the role of communication constraints for minimax
rates in location families in Section 3.

Density estimation: Parameters need not be limited to vectors, but can be more general
infinite-dimensional objects. As one instance, suppose that P consists of a family of distri-
butions supported on the interval [0, 1], and with densities with respect to Lebesgue measure.
Suppose that f∗ = θ(P) is the density of P. In this case, an estimator θ̂ returns a density
function f̂ with support on [0, 1], and a reasonable measure of error is the usual squared
L2([0, 1]) norm

ρ(f̂ , f∗) =
∫ 1

0

(
f̂(t)− f∗(t)

)2
dt. (2.2)

We discuss this example in Section 4.

Linear regression: An instance of linear regression is specified by a known design matrix
X ∈ R

n×d, in which each row corresponds to a vector of d predictors, and an unknown
weight vector θ∗ ∈ R

d. An observed response vector Y ∈ R
n is assumed to be generated by

the equation

Y = Xθ∗ + W, (2.3)

where W ∈ R
n is a vector of i.i.d. N(0, σ2) variates. Equivalently, the underlying statistical

model consists of the family of distributions {Pθ, | θ ∈ Θ}, where each Pθ is the distribution
of a N(Xθ, σ2In×n) random vector. (This example is slightly different from our set-up, in
that the components of the observed vector Y are not identically distributed for a fixed X .)
One error measure is the in-sample prediction error

ρX(θ̂, θ∗) :=
1

n
‖X(θ̂ − θ∗)‖22. (2.4)

The problem of linear regression under this error measure is discussed in detail in Section 5.

3. Estimation under communication constraints

Given the modern “data deluge”, it is often the case that centralized methods—in which all
the data can be stored on a single computer—are no longer possible to implement. Instead,
distributed methods must be used. Given a cluster of m machines, it is natural to con-
sider splitting the full data set into m separate subsets, operating separately on each subset,
and then performing some sort of communication in order to agree upon a consensus esti-
mate. In practice, the communication budget is severely limited due to power or bandwidth
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constraints, and such constraints make the problem mathematically interesting. Various re-
searchers have studied communication-efficient algorithms for statistical estimation (e.g., see
the papers [2, 15, 30, 46] and references therein). In this spirit, our first vignette is devoted
the role of communication constraints in statistical estimation: we define a communication-
constrained version of the minimax risk, and provide sharp bounds for a few examples. See
the paper [45] for further details.

Distributed estimation protocols: Recall from Section 1 the general framework of sta-
tistical estimation, based on some family of distributions P . Suppose that, for some fixed
but unknown member P of P , there are m ≥ 1 sets of data, each stored on an individual
machines. For j ∈ [m] := {1, . . . ,m}, the jth subset Xn

1,j := (X1j , . . . Xnj) is an i.i.d.
sample of size n from the unknown distribution P. Consequently, the total sample size across
all machines is N = mn. Given this distributed collection of local data sets, our goal is to
estimate θ(P) based on the full collection of data XN

1 = (Xn
1,j , j ∈ [m]), but using lim-

ited communication. Of particular interest to us is the minimal number of bits that must be
exchanged in order for a distributed protocol to match the centralized minimax rate—that is,
the optimal performance for an estimator given direct access to all N samples.

We now define a particular class of distributed protocols Π, which operate in a sequence
of rounds. At each round t = 1, 2, . . ., machine j sends to a central fusion center a message
Yt,j that is a measurable function of the local data Xn

1,j , and potentially of past messages.
We use Yt = {Yt,j}j∈[m] denote the collection of all messages sent at round t. Given a
total of T rounds, the fusion center collects the sequence (Y1, . . . , YT ), and constructs an
estimator θ̂ := θ̂(Y1, . . . , YT ).

We refer to the length Lt,j of message Yt,j is the minimal number of bits required to
encode it, and the total length L =

∑T
t=1

∑m
j=1 Lt,j of all messages sent corresponds to the

total communication cost of the protocol. Note that the communication cost is a random
variable, since the length of the messages may depend on the data, and the protocol may
introduce auxiliary randomness.

The simplest type of protocol is an independent one: it involves only on a single round
(T = 1) of communication, in which machine j sends message Y1,j to the fusion center.
Since there are no past messages, the message Y1,j is a function only of the local data Xn

1,j .
Given a class of distributions P , the class of independent protocols with budget B ≥ 0 is
given by

Aind(B,P) =

{
independent protocols Π such that sup

P∈P
EP

[ m∑
j=1

Lj

]
≤ B

}
. (3.1)

In the independent case, we use Yj to indicate the message sent from processor j, and Lj to
denote its length.

In contrast to independent protocols, the class of interactive protocols allows for interac-
tion at different stages of the message passing process. In particular, suppose that machine
j sends message Yt,j to the fusion center at time t, who then relays it back to all other ma-
chines in the system. This type of global broadcast system is reasonable in settings in which
the processors have limited power or upstream capacity, but the centralized fusion center can
send messages without limit. In the interactive setting, the message Yt,j should be viewed
as a measurable function of the local data Xn

1,j , and the past messages Y1:t−1. The family of
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interactive protocols with budget B ≥ 0 is given by

Ainter(B,P) =

{
interactive protocols Π such that sup

P∈P
EP[L] ≤ B

}
. (3.2)

Distributed minimax risks: We are now equipped to define some distributed analogues of
the classical minimax risk (2.1). Given a class of distributions P , suppose that we are inter-
ested in estimating some parameter θ : P → Θ. Given a communication budgetB, we apply
an independent protocol Π that generates a sequence of messages Y m

1 = (Y1, . . . , Ym), and
we use θ̂(Y m

1 ) to denote an estimator that is a measurable function of these messages. With
this set-up, the minimax risk for independent protocols under squared �2-error is given by

Mind
n,m(θ(P);B) := inf

Π∈Aind(B,P)
inf
θ̂

sup
P∈P

EP,Π

[‖θ̂(Y m
1 )− θ(P)‖22

]
. (3.3)

Here the double infimum is taken over all independent procotols Π that satisfy the budget
constraint B, and over all estimators θ̂(Y m

1 ). The minimax risk for interactive protocols,
denoted byMinter

n,m , is defined analogously, where the infimum is instead taken over the class
of interactive protocols.

In either case, of primary interest is the following question: how large a budget B is
required so as to ensure that the distributed minimax risk (3.3) matches the classical minimax
risk (2.1) up to constant factors? In the following subsections, we answer this question
precisely for two different classes of statistical estimation problems.

Bounds for uniform location family: We begin by considering a univariate example, in
particular the problem of estimating the location parameter in the uniform location family
U = {Pθ, θ ∈ [−1, 1]}, where Pθ denotes the uniform distribution on the interval [θ −
1, θ + 1].

Proposition 3.1. Consider the uniform location family U with n i.i.d. observations per ma-
chine:

(a) There is a universal constant c such that given a budget B = log(1/δ) for any δ ≥ 1
mn ,

the minimax risk is lower bounded as

Minter
n,m (θ(U);B) ≥ c

δ2
.

(b) Conversely, given a budget of B =
[
2 + 2 lnm

]
log(mn) bits, there is a universal

constant c′ such that

Minter
n,m (θ(U);B) ≤ c′

(mn)2
.

If each of m machines receives n observations, we have a total sample size of mn, so
the minimax rate over all centralized procedures scales as 1/(mn)2. Consequently, Propo-
sition 3.1 shows that the number of bits required to achieve the centralized rate has only
logarithmic dependence on the number m of machines and local sampl size n. Part (a)
shows that if B 5 log(mn), then the distributed minimax rate is larger than the centralized
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optimum, so that this logarithmic scaling is unavoidable.

The proof of Proposition 3.1 is based on a somewhat more general result, one involving
the geometric structure of the parameter space Θ, as captured by its metric entropy [28]. In
particular, given a subset Θ ⊂ R

d, we say {θ1, . . . , θK} are δ-separated if ‖θi − θj‖2 > δ
for i �= j. The packing entropy of Θ with respect the Euclidean norm is given by

logMΘ(δ) := log2
[
max
{
K ∈ N | {θ1, . . . , θK} ⊂ Θ are δ-separated

}]
. (3.4)

The function θ �→ logMΘ(δ) is left-continuous and non-increasing in δ, so we may define
the inverse function logM−1

Θ (B) := sup{δ | logMΘ(δ) ≥ B}. With this notation, we have
the following general result:

Theorem 3.2. For any family of distributions P and parameter set Θ = θ(P), the interactive
minimax risk is lower bounded as

Minter
n,m (θ(P);B) ≥

(1
4
logM−1

Θ (2B + 2)
)2

. (3.5)

Of course, the same lower bound also holds for Mind
n,m(θ,P, B), since any independent

protocol is a special case of an interactive protocol. Theorem 3.2 is a relatively generic
statement, not exploiting any particular structure of the problem; however, there are problems
for which it cannot be improved by more than constant factors [45].

Bounds for Gaussian location families: Proposition 3.1 shows that achieving the min-
imax risk in the uniform location family requires a budget scaling only logarithmically in
the number of machines m. It is natural to wonder whether such logarithmic dependence
holds more generally. Here we show that it does not: for the Gaussian location family, the
dependence on m must be (nearly) linear.

Consider the d-dimensional normal location family

Nd([−1, 1]d) = {N (θ, σ2Id×d) | θ ∈ Θ = [−1, 1]d}, (3.6)

and suppose that our goal is to estimate the mean vector θ ∈ R
d under the error measure

ρ(θ̂, θ∗) = ‖θ̂−θ∗‖22. Given a total ofN = mn samples, the centralized minimax rate scales
as σ2

mn , achieved by the sample mean. The following result addresses the minimal budget B
required for a distributed protocol to match this centralized minimax rate:

Theorem 3.3. There exists a universal (numerical) constant c such that

Minter
n,m (Nd([−1, 1]d);B) ≥ c

σ2d

mn
min

{
mn

σ2
,

m

logm
,

m

(B/d + 1) logm

}
. (3.7)

Consequently, Theorem 3.3 shows that to match the classical minimax risk up to con-
stant factors, the number of bits communicated must scale with the product of the dimension
d and number of machines m—more precisely, we must have B � dm/ logm. Apart
from the logarithmic factor, this lower bound is achievable by a simple procedure: each ma-
chine computes the sample mean of its local data and quantizes each coordinate to precision
σ2/n using O(d log(n/σ2)) bits. These quantized sample averages are communicated to
the fusion center using B = O(dm log(n/σ2)) total bits. The fusion center averages them,
obtaining an estimate with mean-squared error of the optimal order σ2d/(mn).
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4. Minimax theory under privacy constraints

In the modern practice of statistics, privacy concerns are becoming increasingly important.
Many forms of data, including financial records, medical records, and genetic tests, have
associated privacy concerns. In such settings, it is natural to individuals might request some
form of privacy guarantee before allowing their data to be collected. At the same time, there
is a great deal of statistical utility associated with the collection of such data, including more
efficient allocation of medical resources, and biomedical research into the genetic underpin-
nings of disease.

There is a very large body of classical research on privacy and statistical inference
(e.g., [18, 19, 23, 41]. A major focus has been on the problem of reducing disclosure risk: the
probability that a member of a dataset can be identified given released statistics of the dataset.
In a more recent line of work, a formal definition of disclosure risk, known as differential
privacy [3, 20, 21], has emerged from the theoretical computer science community, and has
been the focus of considerable attention (e.g., see the papers [11, 12, 14, 22, 25, 27, 35, 42]
and references therein). Here we describe how to use the notion of local differential privacy
in order to define a constrained version of the minimax risk; see the paper [17] for further
details.

Differential privacy: Let us begin by defining the notion of (local) differential privacy.
Suppose thatXn

1 represents the original data, where eachXi takes values in the space X . As
a means of preserving privacy, we release only a “privatized” sequence Zn

1 , where each Zi

takes values in the space Z . In the case of a non-interactive mechanism, the two sequences
are related via a conditional distribution Q that takes the product form

Qn(Z1, . . . , Zn | X1, . . . , Xn) =
n∏

i=1

Q(Zi | Xi). (4.1)

We refer to Q as the channel distribution, since it acts as a conduit between the private
data X and observed data Z. There are also more complicated, interactive forms of privacy
mechanisms, in which the product condition (4.1) is relaxed, but we restrict attention here to
this simpler case.

We now give a precise definition of local differential privacy. Let σ(Z) be the σ-field
over which the channel distribution Q is defined. Given a privacy parameter α ≥ 0, the
distribution Q is said to satisfy α-local-differential privacy if

sup
S∈σ(Z)

sup
x,x′∈X

Q(Z ∈ S | X = x)

Q(Z ∈ S | X = x′)
≤ exp(α), (4.2)

This formulation of local privacy was first proposed by Evfimievski et al. [22]. Since we
limit our discussion to local privacy throughout this overview, we typically omit the adjective
“local” from here onwards.

The definition (4.2) has a very natural consequence in terms of disclosure risk: when
the privacy parameter α is relatively close to zero, then in a uniform sense over events S,
it is impossible to distinguish between two different realizations of the private variable X .
Indeed, a simple argument shows that the definition (4.2) provides a lower bound on the error
in a binary hypothesis test between X = x and X = x′; see Wasserman and Zhou [42] for
more details.
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The Laplace mechanism is a simple way in which to enforce α-privacy. Given a datum
X , suppose that we release the private variable Z = X + W , where W follows a Laplace
distribution with parameter α—that is, it has density φ(w) = α

2 exp
(− α|w|). In this case,

for any pair x, x′ ∈ [0, 1], we have

Q(Z = z | X = x)

Q(Z = z | X = x′)
=

α
2 exp

(− α|z − x|)
α
2 exp

(− α|z − x′|) ≤ exp(α|x − x′|) ≤ exp(α), (4.3)

showing that the Laplace mechanism provides differential privacy on the interval [0, 1]. Part
of the goal of studying the α-private minimax risk is to determine under what conditions, if
any, a specific method for producing α-private variables, such as the Laplace mechanism, is
optimal.

The α-private minimax risk: We now turn to a definition of the notion of an α-private
minimax risk. As usual, let P denote a family of probability distributions on the space X ,
and suppose that our goal is to estimate some parameter θ(P). LetQα denote the class of all
channel distributions Q satisfying α-local differential privacy (4.2). In an operational sense,
any distribution Q ∈ Qα can be thought of as a privacy mechanism—namely, one means of
generating a privatized data set Zn

1 from the raw data Xn
1 . Rather than allowing estimators

to depend on the raw data, we consider only estimators θ̃ = θ̃(Zn
1 ) that are measurable

functions of the privatized data Zn
1 . For a fixed channel distribution Q (and hence fixed

distribution over the variables Zn
1 ) and a fixed estimator θ̃, the usual worst-case risk

sup
P∈P

R(θ̃(Zn
1 , θ(P)) = sup

P∈P
EP,Q

[
ρ(θ̃(Zn

1 , θ(P)
]

(4.4)

is a measure of the quality of θ̃. In addition to finding the optimal estimator θ̃, we also seek
an optimal privacy mechanism—namely, a member of Qα for which the minimax risk is
minimized. More formally, we define the α-private minimax risk as

Mn(θ(P);α) := inf
Q∈Q(α)

inf
θ̃

sup
P∈P

EP,Q

[
ρ(θ̃(Zn

1 ), θ(P))
]
. (4.5)

When α = ∞, it reduces to the usual notion of minimax risk, but of primary interest are
value of α relatively close to zero. The private minimax risk (4.5) allows us to study the
tradeoff between the privacy, as measured by the differential privacy parameter α, and the
statistical utility, as measured by the minimax risk of all estimators that make use only of the
privatized data Zn

1 .

Density estimation under α-local-privacy: We now turn to an example that demonstrates
some striking differences between the ordinary and α-private minimax risks. Recall the
problem of density estimation introduced in Section 1. Given n i.i.d. samples Xn

1 drawn
from an univariate distribution with density f∗ supported on [0, 1], and the goal is to return
an estimate f̂ of the unknown density function, and we evaluate its quality using the squared
L2([0, 1]) error previously defined in equation (2.2). In this section, we state a result that
demonstrates how the minimax rate for estimating density functions with Sobolev classes
changes with the addition of a privacy constraint.

We begin by defining Sobolev classes in terms of elliptical subsets of the sequence
space �2(N). Consider a sequence of functions {φj}∞j=1 that form an orthonormal basis for
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L2([0, 1]), so that any function f ∈ L2([0, 1]) can be expanded as a sum
∑∞

j=1 θjφj in terms
of the basis coefficients θj :=

∫
f(x)φj(x)dx, and we are guaranteed that {θj}∞j=1 ∈ �2(N).

Sobolev classes are obtained by enforcing a particular decay rate on the coefficients θ. In
particular, given a parameter s ≥ 1, the generalized Sobolev class Fs([0, 1]) is given by

Fs([0, 1]) :=
{
f =

∞∑
j=1

θjφj ∈ L2([0, 1]) for a sequence {θj}∞j=1 s.t.
∞∑
j=1

j2sθ2j ≤ 1
}
.

(4.6)

If we choose the trigonometric basis as our orthonormal basis, then membership in the classi-
cal Sobolev class Fs([0, 1]) corresponds to certain smoothness constraints on the derivatives
of f (e.g., see the book [38] for details).

In the classical (non-private) setting, the density estimate f̂ is constructed based on direct
observation of the original samples Xn

1 , where each Xi ∼ P. In this setting, it is known [36,
38] that the minimax risk for non-private estimation of densities in the class Fs([0, 1]) scales
as

Mn

(Fs([0, 1])
) � ( 1

n

) 2s
2s+1 . (4.7)

For instance, when s = 1, corresponding to Lipschitz functions when using the trigonometric
basis, then the minimax rate scales as n−

2
3 . Naturally, the minimax rate increases towards the

parametric rate n−1 as the smoothness parameter s tends to infinity. The minimax rate (4.7)
can be achieved by various methods, with one of the simplest being the orthogonal series
estimator. Given the samples Xn

1 , this method is based on computing the empirical basis
coefficients θ̂j =

1
n

∑n
i=1 φj(Xi), and then setting

f̂ =
T∑

j=1

θ̂jφj , where T = n
1

2s+1 . (4.8)

The specified choice of truncation level T provides the optimal trade-off between the bias and
variance of the estimator, and some calculations show that it achieves the minimax rate (4.7),
assuming that the smoothness level s is known to the method.

Now consider the case of α-private density estimation, in which we only observe a priva-
tized version Zn

1 of the raw data Xn
1 . The following theorem [17] characterizes the minimax

rate when the α-private channel is chosen in an optimal way:

Theorem 4.1. Consider the Sobolev class Fs([0, 1]) of densities for some s ≥ 1. Then
there are universal constants 0 < c
 ≤ cu < ∞ such that for all α ∈ (0, 1/4], the (non-
interactive) α-private minimax rate (4.5) is sandwiched as

c

( 1

nα2

)− 2s
2s+2 ≤ Mn (Fs([0, 1]);α) ≤ cu

( 1

nα2

)− 2s
2s+2 . (4.9)

The private minimax rate (4.9) differs from the classical rate (4.7) in two key ways. The
effective sample size is reduced from n to α2n, and more importantly, the exponent is re-
duced from 2s

2s+1 to 2s
2s+2 . Thus, in the case of Lipschitz densities (s = 1), the minimax

rate changes from n−
2
3 to n−

1
2 . Consequently, Theorem 4.1 reveals a fundamental tradeoff
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between privacy and statistical utility for density estimation.

How is the α-private minimax rate (4.9) achieved? In order to answer this question, two
choices must be made: a choice of the α-private channel that generates the privatized samples
Zn
1 , and an estimator that takes the private data as input. It is natural to wonder whether the

α-private Laplace mechanism (4.3)—namely, forming the samples Zi = Xi + Wi where
Wi is α-Laplace noise—combined with the orthogonal series estimate might achieve the
optimal private rate. Interestingly, this approach turns out to be highly sub-optimal, as can
be established by recourse to known results on nonparametric deconvolution. Given the
observation Z = X + W , the density of Z is a convolution of the densities of X and W .
In their study of the deconvolution problem, Carroll and Hall [10] show that if the additive
noise has a characteristic function φW with tails behaving as |φW (t)| = O(|t|−a) for some
a > 0, then no method can estimate the s-smooth density of X to accuracy greater than
n−2s/(2s+2a+1). Note that the Laplace distribution has a characteristic function with tails
decaying as t−2; consequently, as a special case of this result, no estimator based on applying
the Laplace mechanism directly to the samples can attain a rate of convergence better than
n−2s/(2s+5).

An optimal mechanism for α-private density estimation: This cautionary calculation
motivates consideration of privacy mechanisms that are not simply based on direct pertur-
bation of the samples Xn

1 , and here we describe one such mechanism that achieves the α-
private minimax rate (4.9). Recall the truncation level T = n

1
2s+1 from our earlier discussion

of the orthogonal series estimator (4.8). Now consider the T -dimensional vectors

φ(Xi) =
[
φ1(Xi) φ2(Xi) · · · φT (Xi)

]
, (4.10)

defined for each i = 1, . . . , n. These vectors are sufficient statistics for computing the
orthogonal series estimator. Accordingly, our goal is to construct a channel Q with output
space Z = R

T such that

E[Zi | Xi] = φ(Xi) for each i = 1, . . . , n. (4.11)

Our construction assumes that the orthonormal basis {φj}∞j=1 is b0-uniformly bounded,
meaning that supx |φj(x)| ≤ b0 < ∞ for all j = 1, 2, . . .. Note that many standard bases,
among them the trigonometric basis and the Walsh basis, satisfy this type of boundedness
condition. For some fixed b > b0 to be specified, the following privacy mechanism takes
as input any T -dimensional vector of the form τ = φ(Xi) for i = 1, . . . , n, as previously
defined in equation (4.10). It consists of three steps, and returns a vector Zi ∈ R

T that is
α-private, and such that the unbiasedness condition (4.11) holds.

• Given a vector τ in the box [−b0, b0]
T , form a random vector τ̃ ∈ {−b0, b0}T with

independently sampled coordinates

τ̃j =

{
+b0 with probability 1

2 +
τj
2b0

.
−b0 otherwise.

• Draw a Bernoulli random variable V equal to 1 with probability eα/(eα+1), and then
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draw Zi ∈ {−b, b}T according to

Zi ∼
{
Uniform on

{
z ∈ {−b, b}T | 〈z, τ̃〉 > 0

}
if V = 1

Uniform on
{
z ∈ {−b, b}T | 〈z, τ̃〉 ≤ 0

}
if V = 0.

(4.12)

It can be shown that the random vector Zi is α-differentially private for any initial vector
in the box [−b0, b0]

T , and moreover, the samples (4.12) are efficiently computable, say by
rejection sampling. Iteration of expectation yields

E[Zi | X = x] = cT
b

b0
√

T

(
eα

eα + 1
− 1

eα + 1

)
φ(x) = cT

b

b0
√

T

eα − 1

eα + 1
φ(x), (4.13)

for a constant cT bounded away from zero. Consequently, setting b = b0
√
T

cT
eα+1
eα−1 ensures

that the unbiasedness condition (4.11) is satisfied.
Based on this α-private mechanism, we can compute the T -dimensional random vec-

tor θ̃ := 1
n

∑n
i=1 Zi, which is guaranteed to be an unbiased estimate of the vector θ̂ =

1
n

∑n
i=1 φ(Xi) of empirical basis coefficients. Using this unbiased estimate, we can then

form the density estimate f̃ =
∑T

j=1 θ̃jφj . As shown in the paper [17], this estimator
achieves the α-private minimax rate (4.9).

5. Computationally-constrained minimax rates

In the classical definition of minimax risk (2.1), the infimum is allowed to range over all
measurable functions θ̂ : Xn → R

n. In practice, however, one is limited to estimators with
computational complexity that scales polynomially in the problem parameters. For this rea-
son, it is natural to consider more refined notions of minimax rate, in which constraints are
imposed on the computational complexity of the underlying estimators. For many problems,
at least up to constant factors, the classical minimax risk can be achieved by computation-
ally efficient estimators. In these cases, the computationally constrained minimax risk is
no different than the classical minimax risk. Thus, such refinements of minimax rates are
interesting only when it is possible to establish a gap between the performance of optimal
procedures, and that of computationally constrained methods. A recent line of work [4, 29]
has established such gaps for testing problems involving sparse and low-rank matrices, work-
ing under a conjecture in average-case complexity theory. Here we describe how, under a
standard assumption in worst-case complexity theory, such a gap exists for the problem of
high-dimensional sparse regression [47].

High-dimensional sparse regression: We begin by describing the problem of sparse re-
gression and discussing some possible estimators, both computationally efficient and inef-
ficient ones. As previously discussed, linear regression is a canonical problem in statistics,
in which a response vector Y ∈ R

n is related to matrix X ∈ R
n×d of covariates via the

observation model (2.3). Given the goal of estimating θ∗, the quality of an estimate θ̂ can
be assessed in various ways. In this discussion, we model the matrix X as a fixed quantity,
known as the case of deterministic design, and consider the (in-sample) prediction error, as
previously defined in equation (2.4).
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Recent years have witnessed intense study of the sparse form of linear regression, in
which the unknown regression vector θ∗ ∈ R

d is assumed to have at most k 5 d non-zero
entries (e.g., see the papers [5, 9, 16, 24, 31, 34, 39, 40] and references therein). The most
direct approach to solving a k-sparse instance of the linear regression model (2.3) is to seek
a k-sparse minimizer to the least-squares cost ‖Y − Xθ‖22. Doing so leads to the �0-based
estimator

θ̂
0 := arg min
θ∈B0(k)

‖Y − Xθ‖22. (5.1)

Note that this estimator returns an estimate that belongs to the �0-“ball”

B0(k) :=
{
θ ∈ R

d |
d∑

j=1

I [θj �= 0] ≤ k
}

(5.2)

of k-sparse vectors. More generally, given an estimator θ̃, we say that it belongs to class
A(k) if its output always belongs to B0(k).

The following result [8, 34] provides an upper bound on the prediction error performance
of the �0-based estimator:

Proposition 5.1 (Prediction error for θ̂
0 ). There is a universal constant c0 such that for any
design matrix X , the �0-based estimator θ̂
0 satisfies

max
θ∗∈B0(k)

E

[ 1
n
‖X(θ̂
0 − θ∗)‖22

]
≤ c0

σ2k log d

n
. (5.3)

Moreover, Raskutti et al. [34] establish a lower bound that is matching up to constant fac-
tors, showing that this bound is unimprovable when k 5 d. A notable aspect of the upper
bound (5.3) is that it holds for any design matrix X ∈ R

n×d.
Thus, in terms of the classical minimax risk (2.1), the �0-based estimator is an optimal

method. However, it is unattractive from a computational point of view. A brute force
approach requires iterating over all

(
d
k

)
subsets of size k, and Natarajan [32] shows that

computing a sparse solution to a set of linear equations is an NP-hard problem. Given this
intractability, it is natural to consider the performance of computationally efficient methods.

Prediction guarantees for �1-based methods: Convex relaxation is a standard method
for replacing a combinatorial constraint—in this case, the requirement that θ have at most
k non-zero entries—with a looser but convex constraint. A familiar relaxation of the �0-
constraint is to replace it with an �1-norm. For concreteness, we consider a Lagrangian form
of the �1-relaxation, which leads to the Lasso estimator [13, 37]

θ̂
1 = arg min
θ∈Rd

{ 1

2n
‖Y − Xθ‖22 + λn‖θ‖1

}
. (5.4)

In contrast to the �0-based estimator (5.1), it is easy to compute the Lasso estimate. Indeed,
a quadratic program of the form (5.4) can be solved to δ-accuracy in time polynomial in the
problem parameters, and log(1/δ), by various standard optimization methods (e.g., see the
books [7, 33]).

Is the Lasso estimator (5.4) is an optimal method? For some error metrics, including the
�2-norm error ‖θ̂ − θ∗‖2, it can be shown that the Lasso is essentially an optimal method, in
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terms of matching the classical minimax risk [34]. However, for the prediction error (2.4),
the best known results on the Lasso fail to match the �0-guarantee. In particular, in contrast
to the �0-estimate (5.1), the best known results on either the Lasso [5], or the closely related
Dantzig selector [9], all involve constraints known as (sparse) restricted eigenvalue (RE)
conditions, which we define next.

Restricted eigenvalues are defined in terms of subsets S of the index set {1, 2, . . . , d}, and
a cone associated with any such subset. In particular, letting Sc denote the complement of S,
we define the cone C(S) :=

{
θ ∈ R

d | ‖θSc‖1 ≤ 3‖θS‖1
}
. Here ‖θSc‖1 :=

∑
j∈Sc |θj |

corresponds to the �1-norm of the coefficients indexed by Sc, with ‖θS‖1 defined similarly.

Definition 5.2 (Sparse restricted eigenvalue). The matrix X ∈ R
n×d is said to satisfy a

uniform γ-RE condition if

1

n
‖Xθ‖22 ≥ γ‖θ‖22 for all θ ∈ ⋃

|S|=k

C(S). (5.5)

The restricted eigenvalue constant of X , denoted by γ(X), is the greatest γ such that X
satisfies the condition (5.5). The RE condition (5.5) and related quantities have been studied
extensively in past work on basis pursuit and the Lasso (e.g., [5, 9, 31, 34]). van de Geer
and Buhlmann [39] provide an overview of the different types of RE parameters, and their
relationships. The following result [5] provides an upper bound on the Lasso prediction error
under a sparse RE condition:

Proposition 5.3 (Prediction error for Lasso). There is a universal constant c1 such that for
any column-normalized design matrix X with a RE constant γ(X) > 0, the Lasso estimate
θ̂
1 satisfies

max
θ∗∈B0(k)

E

[ 1
n
‖X(θ̂
1 − θ∗)‖22

]
≤ c1

γ2(X)

σ2k log d

n
. (5.6)

Apart from the difference in universal constants, the key difference between the �1-
guarantee and the �0-guarantee is that the RE constant γ2(X) appears in the Lasso bound (5.6),
but is absent from the �0-bound (5.3). It is natural to wonder whether it might be possible
to prove a sharper bound on the Lasso, not involving the RE constant. From a fundamental
point of view, given the goal of minimizing the prediction risk (2.4), the restricted eigenval-
ues ofX should not be relevant. For instance, duplicating two rows ofX would force the RE
constant to zero, but would not make the underlying prediction problem any more difficult.
We are thus left with two possibilities:

• either the analysis leading to the bound (5.6) is not sharp, and could be improved;

• or the appearance of the RE constant is unavoidable for an �1-based method.

Our recent work shows that in fact, the second option is correct, and even more generally,
the appearance of the RE constant is intrinsic to the class of polynomial-time estimators.

Computationally-constrained minimax risk: In order to state our main result, we need
to make precise a particular notion of a polynomial-efficient estimator. Since the observa-
tion (X,Y ) consists of real numbers, any efficient algorithm can only take a finite-length
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representation of the input. Consequently, we begin by introducing an appropriate notion of
discretization. For any input value x and integer τ , the operator

*x+τ := 2−τ*2τx+ (5.7)

represents a 2−τ -precise quantization of x. (Here *u+ denotes the largest integer smaller
than or equal to u.) Given a real value x, an efficient estimator is allowed to take *x+τ as its
input for some finite choice τ . We denote by size(x; τ) the length of binary representation
of *x+τ , and denote by size(X,Y ; τ) the total length of the discretized matrix vector pair
(X,Y ).

The following definition of computational efficiency is parameterized in terms of three
quantities: (i) a positive integer b, corresponding to the number of bits required to implement
the estimator as a computer program; (ii) a polynomial function G of the triplet (n, d, k),
corresponding to the discretization accuracy of the input, and (iii) a polynomial function H
of input size, corresponding to the runtime of the program.

Definition 5.4 (Polynomial-efficient estimators). Given a pair of polynomial functions G:
(Z+)

3 → R+, H : Z+ → R+ and a positive integer b ∈ Z+, an estimator (Y,X) �→
θ̂(Y,X) is said to be (b,G,H)-efficient if:

• It can be represented by a computer program that is encoded in b bits.

• For every problem of scale (n, d, k), it accepts inputs quantized to accuracy *·+τ where
the quantization level is bounded as τ ≤ G(n, d, k).

• For every input (X,Y ), it is guaranteed to terminate in time H(size(X,Y ; τ)).

In computational complexity theory, the class POLY corresponds to problems that
are solvable in polynomial time by a Turing machine. A closely related class denoted by
PPOLY, corresponds to all problems solvable in polynomial time by a Turing machine
with a so-called advice string—meaning a side-input to the machine—that is of polynomial
length. The class PPOLY is strictly bigger than the class POLY (e.g, [1]); however, it is
widely believed thatNP �⊂ PPOLY, and the following result is stated using this inclusion
as an assumption. Moreover, we use cj , j = 2, 3 to denote universal constants independent
of the scaling parameters (n, d, k), polynomials (F,G,H) and constants (γ, σ, δ).

Theorem 5.5. If NP �⊂ PPOLY, then for any positive integer b, any scalar δ ∈ (0, 1),
any polynomial functions G : (Z+)

3 → R+ and F,H : Z+ → R+, there is a sparsity level
k ≥ 1 such that the following holds:

For any dimension d ∈ [4k, F (k)], any sample size n in the interval [c2k log d, F (k)], and
any scalar γ ∈ [2−G(n,d,k), 1

24
√
2
), there is a matrix X ∈ R

n×d such that:

(a) It has an RE constant γ(X) that is bounded as |γ(X)− γ| ≤ 2−G(n,d,k).

(b) For any (b,G,H)-efficient estimator θ̂ ∈ A(k), the mean-squared prediction error is
lower bounded as

max
θ∗∈B0(k)

E

[‖X(θ̂ − θ∗)‖22
n

]
≥ c3

γ2

σ2k1−δ log d

n
. (5.8)



Constrained forms of statistical minimax: Computation, communication, and privacy 287

Disregarding technical aspects regarding quantization, the essential part of the theorem is
that the lower bound grows inversely with the squared RE constant γ2. Consequently, within
the class of polynomial-time methods, the Lasso is an optimal method, but faster rates can
be obtained using algorithms with exponential-time complexity. We note that Theorem 5.5
is restricted to methods that return k-sparse estimates—that is, belong to the class A(k). It
is an open question as to whether analogous lower bounds can be established without this
requirement.

Acknowledgements. Research partially supported by National Science Foundation grant
CIF-31712-23800, and Office of Naval Research MURI grant N00014-11-1-0688. This lec-
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Coloring graphs with forbidden induced subgraphs

Maria Chudnovsky

Abstract. Since graph-coloring is an NP -complete problem in general, it is natural to ask how the
complexity changes if the input graph is known not to contain a certain induced subgraph H . Results
of Kamínski and Lozin, Holyer, and Levin and Galil imply that the problem remains NP -complete,
unless H is the disjoint union of paths. Recently, the question of coloring graphs that do not contain
certain induced paths has received considerable attention. Only one case of that problem remains open
for k-coloring when k ≥ 4, and that is the case of 4-coloring graphs with no induced 6-vertex path.
However, little is known for 3-coloring. In this paper we survey known results on the topic, and discuss
recent developments.

Mathematics Subject Classification (2010). Primary 05C15; Secondary 05C85.

Keywords. Graph coloring, induced subgraphs, coloring algorithms.

1. Introduction

Let G be a graph. We denote by V (G) the vertex set of G, and by E(G) the edge set of
G. For a positive integer k, a k-coloring of G is a function c : V (G) → {1, . . . , k} such
that c(u) �= c(v) for every adjacent pair of vertices u, v; if such a function exists, we say
that G admits a k-coloring or is k-colorable. The chromatic number χ(G) of a graph G
is the smallest number k for which G admits a k-coloring. The algorithmic problem of
determining the chromatic number of a graph is notoriously difficult; in fact it was one of the
initial problems Karp showed to be NP -complete [14]. The algorithmic question remains
difficult if we fix the parameter k ≥ 3 (as opposed to allowing it to be part of the input),
and ask to determine whether a given graph is k-colorable. This problem (knows as the
k-coloring problem) was shown to be NP -complete in [18]. (Determining if a graph is
2-colorable is easy). It is therefore of interest to establish classes of graphs in which the
k-coloring problem can be solved efficiently (i.e. in time that is a polynomial function of the
size of the input graph). In this paper we focus on classes of graphs defined by forbidding
certain substructures, called induced subgraphs.

2. Making the problem easier

In this paper when we say that an algorithm runs “in polynomial time” or is a “polynomial-
time algorithm” we always mean “time polynomial as a function of the number of vertices

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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in the input graph”; we will not concern ourselves with the exact polynomial function that
provides a bound on the complexity.

A cycle Ct is a graph with vertices c1, . . . , ct such that ci is adjacent to cj if and only if
|i−j| =∈ {1, t−1}, and a path Pt is a graph with vertices p1, . . . , pt such that pi is adjacent
to pj if and only if |i − j| = 1. Let G be a graph. An induced subgraph of G is a graph H
such that V (H) ⊆ V (G), and uv ∈ E(H) if and only if uv ∈ E(G) for all u, v ∈ V (H).
Given graphs G and F we say that G contains F if F is isomorphic to an induced subgraph
of G. G is F -free if G does not contain F . The question then becomes: for which graphs F
and integers k can the k-coloring problem be solved in polynomial time for F -free graphs?

The discussion in the remainder of this section assumes that P �= NP . Unfortunately,
the news is not good on this front, because of the following powerful result of Kaminski and
Lozin [13]:

Theorem 2.1. For every k, g ≥ 3, the problem of k-coloring graphs with no cycles of length
at most g is NP -complete.

Applying 2.1 with g = |V (H)|, we then obtain the following:

Theorem 2.2. Let H be a graph with a cycle. For every k ≥ 3, the problem of k-coloring
H-free graphs is NP -complete.

In other words, if the k-coloring problem is polynomial-time solvable for the class of
H-free graphs (where k ≥ 3), then H is a forest. It turns out that further restrictions need to
be placed on H before excluding H as an induced subgraph may impact the complexity of
k-coloring. A k-edge-coloring of a graph G is a function c : E(G) → {1, . . . , k} such that
c(e) �= c(f) for every pair e, f of edges of G that share and end. The algorithmic problem
of k-edge-coloring is NP -complete for all fixed k ≥ 3 [12, 15].

Next consider a construction. The line graph of a graph G, denoted by L(G), is the
graph with vertex set E(G), and e and f are adjacent in L(G) if and only if they share an
end in G. Clearly k-edge-coloring G and k-coloring L(G) are equivalent problems. A claw
is the graph with four vertices x, y, z, w, and three edges xy, xz, xw. It is an easy exercise
to show that line graphs are claw-free. We therefore deduce:

Theorem 2.3. For every k ≥ 3, the problem of k-coloring claw-free graphs is NP -complete.

Consequently,

Theorem 2.4. Let H be a graph that contains a claw. For every k ≥ 3, the problem of
k-coloring H-free graphs is NP -complete.

A component of a graph is its maximal connected subgraph. Together 2.2 and 2.4 imply
the following:

Theorem 2.5. Let k ≥ 3 be an integer, and H be a graph. If the problem of determin-
ing whether an H-free graph is k-colorable can be solved in polynomial time, then every
component of H is a path.

The remainder of this paper deals with coloring H-free graphs, where H is a path.
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3. Excluding induced paths

In this section we summarize what is currently known about the complexity of coloring
graphs with certain induced paths excluded. It turns out that excluding short induced paths
does in fact help with coloring. P2-free graphs have no edges, P3-free graphs are disjoint
unions of complete graphs, and P4-free graphs with at least two vertices are either not con-
nected or not connected in the complement (by a theorem of Seinsche [17]); in all cases
polynomial-time coloring algorithms can easily be constructed. The first non-trivial case is
the class of P5-free graphs:

Theorem 3.1 ([10]). For every integer k, the k-coloring problem can be solved in polyno-
mial time for the class of P5-free graphs.

On the other hand,

Theorem 3.2 ([11]).
(1) The 5-coloring problem is NP-complete for the class of P6-free graphs.

(2) The 4-coloring problem is NP-complete for the class of P7-free graphs.

This immediately implies that:

Theorem 3.3 ([11]).
(1) The k-coloring problem is NP-complete for the class of Pt-free graphs for all k ≥ 5

and t ≥ 6.

(2) The 4-coloring problem is NP-complete for the class of Pt-free graphs for all t ≥ 7.

To deduce 3.3 from 3.2, observe that for every integer t ≥ 0 a Pt-free graph is also Pt+1-
free, and further note that if G is a Pt-free graph that is a difficult instance for k-coloring
(where k ≥ 3 and t ≥ 2), then the graph obtained from G by adding a new vertex adjacent
to all members of V (G) is a Pt-free graph that is a difficult instance for k + 1-coloring.

Finally, in [16] it is shown that:

Theorem 3.4 ([16]). The 3-coloring problem can be solved in polynomial time for the class
of P6-free graphs.

Our focus here is on a new result of [4, 5]:

Theorem 3.5 ([4, 5]). The 3-coloring problem can be solved in polynomial time for the class
of P7-free graphs.

Thus, at the time of the writing of this manuscript, the following cases remain open:

1. the complexity of 3-coloring Pt-free graphs where t ≥ 8, and
2. the complexity of 4-coloring P6-free graphs.

Recently there has been some progress on the second question:

Theorem 3.6 ([11]). The 4-coloring problem can be solved in polynomial time for the class
of graphs that are both P6-free and C4-free.

and

Theorem 3.7 ([6]). The 4-coloring problem can be solved in polynomial time for the class
of graphs that are both P6-free and C5-free.

There are many similarities between the proofs of 3.5 and 3.7, and we will discuss them
both.
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4. List coloring

Given a graph G and a function L from V (G) to the set of all subsets of positive integers, a
coloring of (G,L) is a function c : V (G) → ⋃v∈V (G) L(v) such that c(u) �= c(v) for every
adjacent pair uv of vertices of G, and c(v) ∈ L(v) for every v ∈ V (G). In this case c is also
called list coloring, and L(v) is called the list of v. We say that (G,L) is colorable if such a
coloring exists. Clearly k-coloring is an instance of list coloring, where L(v) = {1, . . . , k}
for all v ∈ V (G).

Since list coloring is a generalization of coloring, it is an NP -complete problem in gen-
eral. However, a few special cases can be solved in polynomial time, and we make use of
this fact in our work. The first such case is the following:

Theorem 4.1 ([8]). There is a polynomial-time algorithm with the following specifications:

Input: A pair (G,L) such that |L(v)| ≤ 2 for all v ∈ V (G).

Output: A coloring of (G,L), or a determination that none exists.

The proof of 4.1 consists of a reduction to a well-known polynomial-time solvable prob-
lem called 2-SAT that we do not describe here. In fact, a slightly more general result can be
obtained using similar techniques (a set of vertices S is monochromatic in a given coloring
c if c(v) = c(u) for all u, v ∈ S.):

Theorem 4.2 ([1]). There is a polynomial-time algorithm with the following specifications:
Input:

(1) a pair (G,L) such that |L(v)| ≤ 2 for all v ∈ V (G), and

(2) a list S1, . . . , S|V (G)|t of subsets of V (G), where t is an integer.

Output: A coloring of (G,L), so that each of S1, . . . , S|V (G)|t is monochromatic, or a
determination that none exists.

Here is another, much more difficult, result from [1]

Theorem 4.3 ([1]). There is a polynomial-time algorithm with the following specifications:

Input: A pair (G,L) such that G is P6-free and L(v) ⊆ {1, 2, 3} for all v ∈ V (G).

Output: A coloring of (G,L), or a determination that none exists.

Armed with these three theorems, our strategy for both 3.5 and 3.7 is to reduce the
original problem of k-coloring a graphG to a polynomial number of problems (G1, L1), . . .,
(Gt, Lt), such that

1. G is k-colorable if and only if there exists i ∈ {1, . . . , t} such that (Gi, Li) is col-
orable,

2. each of (G1, L1), . . . , (Gt, Lt) can be solved efficiently using 4.1, 4.2 or 4.3, and

3. a k-coloring ofG can be reconstructed from a coloring of (Gi, Li) in polynomial time.

We remark that the following natural extension of 3.5 remains open:
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Question 4.4. Given a pair (G,L) where G is a P7-free graph, and L(v) ⊆ {1, 2, 3} for
every v ∈ V (G), what is the complexity of determining whether (G,L) is colorable?

The corresponding extension of 3.7 is open as well. In the next section we will explain
where our methods fall short for attacking these questions.

The only positive result we can report in this direction is the following:

Theorem 4.5 ([3]). There is a polynomial-time algorithm with the following specifications:

Input: A pair (G,L) such that G is a bipartite P7-free graph and L(v) ⊆ {1, 2, 3} for all
v ∈ V (G).

Output: A coloring of (G,L) or a determination that none exists.

5. Tools for 3-coloring

A dominating set in a graph G is a subset S ⊆ V (G) such that every vertex of V (G) \S has
a neighbor in S. For a subset X of V (G), we denote by G|X the subgraph of G induced by
X . For v ∈ V (G), we denote by N(v) the set of vertices of G adjacent to v (in particular,
v �∈ N(v)).

In view of 4.1, the following seems like a natural approach to constructing the algorithm
of 3.5:

1. Prove that there exists an integer K such that every connected P7-free graph has a
dominating set of size at most K.

2. Find a dominating set S of size at most K in G.

3. Let c be a coloring of G|S. Set L(v) = {c(v)} for every v ∈ S, and

L(v) = {1, 2, 3} \
⋃

u∈N(v)

{c(u)}

for every v ∈ V (G) \ S.

Clearly this is a polynomial-time procedure that reduces the original problem to at most
(3|V (G)|)K instances (G,L), where each instance can be efficiently solved using 4.1.

Unfortunately, the first statement above is not true as stated, but the following questions
is of interest:

Question 5.1. Which P7-free graphs G have a dominating set of size at most log |V (G)|?
So we cannot follow the approach outlined above directly. Instead, we identify a number

of efficiently detectable “reducible configurations” in the input graph, making the graph
simpler without changing its colorability properties, until a small dominating set emerges
(possibly considering a number of different candidates for being a dominating set).

Next we list some examples of reducible configurations. For a graph G, a set X ⊆ V (G)
and a vertex v ∈ V (G) \ X , we say that v is complete to X if v is adjacent to every vertex
of X , and that v is anticomplete to X if v has no neighbor in X .
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Dominating vertex. u, v ∈ V (G) such that N(u) ⊆ N(v). Please note that it follows that
u and v are non-adjacent. Clearly in this case G is 3-colorable if and only if G \ u is 3-
colorable (by making u and v be the same color). We remark that this simple reduction is the
first obstacle we encounter when trying to apply our methods to 4.4, for in the list coloring
setting we would additionally need to require that L(v) ⊆ L(u), which is not an inherent
structural property of a graph, and thus is harder to impose.

Homogeneous pair of stable sets. A stable set is a set of vertices all pairwise non-adjacent.
Let A,B ⊆ V (G) be disjoint and non-empty. We say that (A,B) is a homogeneous pair in
G if every vertex of V (G)\ (A∪B) with a neighbor in A is complete to A, and the same for
B. If in addition both A and B are stable sets, then (A,B) is a homogeneous pair of stable
sets. Let (A,B) be a homogeneous pair of stable sets such that there is at least one edge
between A and B, and suppose that |A|+ |B| ≥ 3. Let a ∈ A be adjacent to b ∈ B, and let
G′ = G \ ((A \ {a}) ∪ (B \ {b})). It is now easy to see that G is 3-colorable if and only if
G′ is.

Connected neighborhood. Let v ∈ V (G) be such that the graph N = G|N(v) is con-
nected. If N is not 2-colorable, then clearly G is not 3-colorable. Since we can check in
polynomial time if a graph is 2-colorable, we may assume that N is bipartite, and, since
it is connected, it has a unique 2-coloring; let N1, N2 be the color classes. Now, in every
3-coloring of G, the sets N1 and N2 are monochromatic. Let G′ be obtained from G \ v by,
for i = 1, 2, replacing each Ni by a new vertex ni adjacent to (

⋃
n∈Ni

N(n)) \ {v}. Now
G′ is P7-free, and G is 3-colorable if and only if G′ is.

The algorithm of 3.5 consists of two main parts. The first part deals with triangle-free
P7-free graphs, and exploits the structural information that follows from these assumptions.
The second part deals with P7-free graphs that contain a triangle. Here the structure is more
complex, but, on the other hand, if such a graph does have a 3-coloring, some of it can easily
be seen to be forced, which makes the analysis simpler. In the next two sections we discuss
the two parts of the algorithm.

6. 3-coloring P7-free graphs: the triangle-free case

The goal of this section is to describe the algorithm of 3.5 for the case when the input is a
triangle-free graph. Let G be a graph. If P is an induced path with vertices p1, . . . , pt in G,
where pipj ∈ E(G) if and only if |j − i| = 1, we write “p1 − . . . − pt is an induced path
in G” (or “is a Pt in G”). Similarly, if C is an induced cycle with vertices c1, . . . , ct in G,
where cicj ∈ E(G) if and only if |j − i| ∈ {1, t − 1}, we write “c1 − . . . − ct − c1 is an
indcued cycle in G” (or “is a Ct in G”). The complement Gc of G is the graph with vertex
set V (G) and such that uv ∈ E(Gc) if and only if uv �∈ E(G). A clique in G is a set of
vertices all pairwise adjacent. The clique number of G, denoted by ω(G), is the largest size
of a clique in G. G is called perfect if ω(H) = χ(H) for every induced subgraph H of G.
Clearly, for any fixed integer k, a perfect graph G is k-colorable if and only if G does not
contain a clique of size k + 1, and so testing if a perfect graph is k-colorable can be done in
polynomial time, simply by examining all subsets of size k + 1. (In fact, a much stronger
statement and deeper result is true: one can find the chromatic number of a perfect graph in
polynomial time [9], but we do not need this here.)
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The following is a well-known structural fact about perfect graphs, the Strong Perfect
Graph Theorem:

Theorem 6.1 ([7]). A graph G is perfect if and only if no induced subgraph of G or Gc is
isomorphic to C2n+1 with n ≥ 2.

By 6.1, if a triangle-free P7-free graph is not perfect, then it contains either a C5 or a C7.
Thus in this case it is easy to check if the input graph is perfect (as with coloring, a much
harder theorem is that testing perfection can be done in polynomial time [2], but we do not
need it), and, in view of the discussion in this first paragraph of the section, we may assume
that it is not, for otherwise we are done.

Let us thus assume that the input graph G is connected, P7-free, triangle-free, and con-
tains a C7, say c1 − c2 − c3 − c4 − c5 − c6 − c7 − c1 (the case of C5 uses similar ideas);
write C = {c1, . . . , c7}. For i ≥ 1, let Xi be the set of vertices at distance i from C, thus
the vertices of X1 have neighbors in C, the vertices of X2 are anticomplete to C but have
neighbors in X1, etc. Since G is triangle-free, it is easy to check that for every x ∈ X1 there
exist p, q, r ∈ C, such that x− p− q − r is an induced path in G, and therefore, Xi = ∅ for
i ≥ 4. For every x ∈ X1, let P (x) denote some such path x − p − q − r. We may assume
that G contains no reducible configurations.

Next we show that X3 = ∅ as well. Suppose first that there exist x, y ∈ X3 adjacent to
each other. Let x2 ∈ X2 be adjacent to x. Since G is triangle-free, x2y �∈ E(G). By the
definition of X2, there is x1 ∈ X1 adjacent to x2. But now combining y− x− x2 − x1 with
P (x1) we obtain an induced seven-vertex path in G, a contradiction. Thus X3 is a stable set.
Next, let x3 ∈ X3. Then N(x3) ⊆ X2 and N(x3) is a stable set, since G is triangle-free.
Let x2 ∈ N(x3), and let x1 ∈ X1 be a neighbor of x2. If x1 is complete to N(x3), then
N(x3) ⊆ N(x1), and G contains a reducible configuration, a contradiction. So x1 has a
non-neighbor x′2 ∈ N(x3). But now combining x1 − x2 − x3 − x′2 with P (x1) we obtain
an induced seven-vertex path in G, a contradiction. This proves that X3 = ∅.

Next let us analyze the structure of X2. First observe that if G|X2 contains an odd cycle
D (which therefore has length at least 5), then for every x1 ∈ X1 with a neighbor in D,
there exist u, v, w ∈ V (D) such that x1−u− v−w is an induced path in G, and combining
this path with P (x1), we obtain an induced seven-vertex path in G, a contradiction. This
proves that G|X2 is bipartite. Let F be a connected component of G|X2, and suppose that
|V (F )| > 1. Let (A,B) be a bipartition of F . We claim that (A,B) is a homogeneous pair of
stable sets in G. Suppose not; then we may assume that there exist x1 ∈ X1 and a1, a2 ∈ A
such that x1 is adjacent to a1 and not to a2. Choosing a1 and a2 with this property and
subject to that at minimum distance in F , we may assume that there is b ∈ B adjacent to
both a1 and a2. Since G is triangle-free, x1 − a1 − b − a2 is an induced path in G, and
combining it with P (x1) we obtain an induced seven-vertex path in G, a contradiction. This
proves the claim that (A,B) is a homogeneous pair of stable sets in G, and since G contains
no reducible configurations, we deduce that |A| = |B| = 1. To summarize, we showed that
every component of G|X2 consists either of a single vertex, or of two adjacent vertices. Let
d1, . . . , dk be the vertices of the singleton component, and let {a1, b1}, . . . , {am, bm} be the
vertex sets of the components of size two.

At this point we recall the outline of the algorithm we described at the start of Section 5.
In our current set-up, C is not a dominating set ofG, however, the set of vertices of V (G)\C
that are anticomplete to C (namely X2) is well under control. We proceed by considering all
possible colorings of C, and assigning lists of size one to vertices of C, lists of size at most
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two to vertices of X1, and lists {1, 2, 3} to vertices of X2. Thus we have so far replaced
our original problem by at most 37 list-coloring instances, each of which can “almost” be
handled by 4.1: only vertices of X2 may have lists of size three, but we know a lot about
the structure of X2. The rest of the proof consists of removing the “almost” in the previous
sentence. We will not be able to explain this completely here, but let us show a few more
steps.

To deal with d1, . . . , dk, we “guess” (by examining all possibilities) a few (constantly
many) vertices with certain properties and their colors, thus creating a set dominating all of
d1, . . . , dk. This allows us to reduce the sizes of the lists of d1, . . . , dk to two. Please note
that while until now we only guessed colors of certain fixed vertices, thus branching into a
constant number of list-coloring problems, at this stage we also guess the vertices that we
pre-color, which creates polynomially many sub-problems.

Now we deal with {a1, b1}, . . . , {am, bm}. For simplicity, let us assume that every two
vertices of X1 have a common neighbor in C. Justifying this assumption requires additional
arguments, but we will skip them here, referring the reader to [4]. Let X be the set of
vertices of X1 that have neighbors in {a1, b1, . . . , am, bm}. Let V = {v1, . . . , vm} be a set
of new vertices. We now construct a new bipartite graphH , with bipartition (X,V ) in which
x ∈ X is adjacent to vi ∈ V if and only if x has a neighbor in {ai, bi}. Suppose that for
some x, y ∈ X and i, j ∈ {1, . . . ,m} we have xvi, yvj ∈ E(H) and xvj , yvi �∈ E(H).
We may assume that, in G, x is adjacent to ai, and y to aj . Now choosing c ∈ C to be a
common neighbor of x and y, we obtain that bi − ai − x− c− y− aj − bj is a seven-vertex
path in G, a contradiction. This proves that no such x, y ∈ X and i, j ∈ {1, . . . ,m} exist,
which implies that H has a very special structure. In particular, it is not difficult to see that
some vertex x0 ∈ X is complete in H to V . In G this means (up to renaming some vertices)
that x0 is complete to {a1, . . . , am}. We can now find such a vertex x0 in polynomial time,
and examine all possibilities for the color of x0 (by branching into sub-problems). Fixing
the color of x0, in turn, allows us to reduce the size of L(ai) to two for all i ∈ {1, . . . ,m}.
At this point, in each of the sub-problems we are considering, only b1, . . . , bm have lists
of size three. These lists can be dealt with similarly to those of d1, . . . , dk by “guessing”
and pre-coloring a few more “important” vertices, thus arriving at a situation where each
sub-problem can be handled by 4.1.

7. 3-coloring P7-free graphs: using triangles

The goal of this section is to discuss the algorithm of 3.5 when the input graph contains a
triangle. The main idea here is to take advantage of the simple fact that all three-colorings
of a triangle are the same (up to permuting colors), and, moreover, starting with the coloring
of a triangle, the colors of certain other vertices are forced.

Let G be a P7-free graph that contains a triangle. A tripod in G is a triple (A1, A2, A3)
of pairwise disjoint subsets of V (G) such that

• A1 ∪ A2 ∪ A3 = {v1, . . . , vt}, where t ≥ 3

• vi ∈ Ai for i ∈ {1, 2, 3}
• v1v2v3 is a triangle

• Let i ∈ {1, 2, 3}, {j, k} = {1, 2, 3} \ {i}, and p ∈ {4, . . . , t}. If vp ∈ Ai, then vp has
a neighbor in {v1, . . . , vp−1} ∩ Aj and a neighbor in {v1, . . . , vp−1} ∩ Ak.
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The first step of the algorithm is to choose a maximal tripod (A1, A2, A3). It is easy
to see that in every 3-coloring of G, each of the sets A1, A2, A3 is monochromatic, thus
if one of A1, A2, A3 is not a stable set, the algorithm stops and outputs a determination
that no 3-coloring exists. Next we observe that, by the maximality of the tripod, every
v ∈ V (G)\ (A1∪A2∪A3) has neighbors in at most one of A1, A2, A3. Let Xi be the set of
all v ∈ V (G)\(A1∪A2∪A3) with a neighbor inAi. As in the previous section, classify the
remaining vertices of G by their distance from A1 ∪A2 ∪A3. Let Yi be the set of vertices at
distance i (so Y1 = X1 ∪X2 ∪X3; Y2 is anticomplete to A1 ∪A2 ∪A3, but every vertex of
Y2 has a neighbor in X1 ∪ X2 ∪ X3; etc). Observe that for every i ∈ {1, 2, 3} and x ∈ Xi,
and j ∈ {1, 2, 3} \ {i}, there is a ∈ Ai and b ∈ Aj such that x− a− b is an induced path in
G. This implies that Yk = ∅ for every i ≥ 5.

Once again we may assume that G has no reducible configuration. Applying arguments
similar to those in the previous section (using also the connected neighborhood reducible
configuration this time), we further deduce that Y4 = ∅.

Next we prove that there exists S ⊆ Y1 ∪ Y2 ∪ Y3, such that |S| ≤ 100 and “almost”
all vertices of Y2 ∪ Y3 have neighbors in S. Ignoring the “almost” qualification, we are now
done: since the coloring of A1 ∪ A2 ∪ A3 is unique up to permuting colors, there are only
constantly many possible 3-colorings of Z = A1 ∪ A2 ∪ A3 ∪ S, and Z is (“almost”) a
dominating set in G. Thus we can analyze all possible colorings of Z, obtaining a new list-
coloring problem from each of them, and each of these new problems can be solved using
4.1. As in the previous section, in order to complete the proof, we guess a few more vertices
that need to be added to Z to create a dominating set in G, thus branching into polynomially
many sub-problems.

8. 4-coloring

In this section we briefly discuss the ideas of the proof of 3.7, some of which may extend to
the more general question of 4-coloring P6-free graphs. Let G be a P6-free graph; then G
contains no induced cycles of length at least seven. We may assume that ω(G) ≤ 4, and that
G does not contain Cc

9 , for otherwise G is not 4-colorable. This implies that Gc contains no
odd cycle of length at least nine. As discussed in Section 6, we may assume that G is not
perfect, and so by 6.1, G contains either a C5 or a Cc

7 .
From now on we restrict our attention to the C5-free case, which is the subject of 3.7.

Let C be the vertex set of a Cc
7 in G, let X be the set of vertices of G with a neighbor in C,

and Y = V (G) \ (C ∪X). It is now easy to check that vertices in X come in two “flavors”:

• x ∈ X such that N(x) ∩ C contains a triangle; we call such vertices major, and

• x ∈ X for which there exist a, b, c ∈ C such that x− a− b− c is a path in G; we call
such vertices minor.

As in the previous two sections, our strategy here is to analyze all possible colorings
of C. Having fixed a coloring of C, we update the lists of the vertices of X; let L be the
function describing the lists. Then |L(x)| = 1 for every major vertex x, and |L(x)| ∈ {2, 3}
for every minor vertex x. Let us from now on ignore the existence of vertices in X with lists
of size three (in fact, in [6] they are treated similarly to vertices of Y , rather than of X).

A clique cutset of a graph G is a clique K of G such that G \K is not connected. Clique
cutsets can be readily used in coloring algorithms [19], due to the fact the G|K has a unique
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coloring (up to permuting colors). Now, if for some component D of G|Y , all vertices of X
with a neighbor in D are major, then we can treat G in a way similar to a graph with a clique
cutset (because G has a cutset with a unique coloring).

Let us next discuss minor vertices. It is an easy fact that if x ∈ X is minor, and D is a
component of G|Y , then x is either complete or anticomplete to V (D). An anticomponent
of a graph is a maximal connected induced subgraphH ofG such thatHc is connected (thus
Hc is a component of Gc). A more difficult, but very useful observation is that if X ′ is the
set of all minor vertices of X with a neighbor in Y , and A is an anticomponent of G|X ′,
then L(a) = L(b) for all a, b ∈ V (A).

Let D be a component of G|Y , and let A �= ∅ be the set of minor vertices of X with
a neighbor in D. Then A is complete to D. To illustrate our approach, let us assume that
D contains a triangle. Then A is a stable set (since ω(G) ≤ 4), and in particular, Gc|A is
connected. We may therefore assume that L(a) = {1, 2} for all a ∈ A. Moreover, A is
monochromatic in every 4-coloring of G.

For every d ∈ D, let

L1(d) = {2, 3, 4} \
⋃

x∈N(d), and x is major

L(x),

and
L2(d) = {1, 3, 4} \

⋃
x∈N(d), and x is major

L(x).

Now each of the problems (D,L1) and (D,L2) can be solved efficiently by 4.3.
Next considerG′ = G\D. For i = 1, 2, if (D,Li) is not colorable, letL′(a) = L(a)\{i}

for all a ∈ A. For v ∈ V (G′) \ A, let L′(v) = L(v). Now (G,L) is colorable if and only if
(G′, L′) is colorable, with the additional constraint that the set A is monochromatic. Apply-
ing similar arguments to the remaining components of Y , we reduce the original problem to
a problem that can be solved efficiently using 4.2.

9. Open problems

In this section, for the reader’s convenience, we repeat the open problems mentioned earlier
in the paper.

Question 9.1 (first mentioned as 4.4). Given a pair (G,L) where G is a P7-free graph, and
L(v) ⊆ {1, 2, 3} for every v ∈ V (G), what is the complexity of determining whether (G,L)
is colorable?

Question 9.2 (first mentioned as 5.1). Which P7-free graphs G have a dominating set of size
at most log |V (G)|? What about a constant size dominating set?

Question 9.3 (first mentioned in Section 3). What is the complexity of 3-coloring Pt-free
graphs where t ≥ 8?

Question 9.4 (first mentioned in Section 3). What is the complexity of 4-coloring P6-free
graphs?
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[10] C.T. Hoàng, M. Kamiński, V.V. Lozin, J. Sawada, and X. Shu, Deciding k-colorability
of P5-free graphs in polynomial time, Algorithmica 57 (2010), 74–81.

[11] S. Huang, Improved Complexity Results on k-Coloring Pt-Free Graphs, Proc. MFCS
2013, LNCS, to appear.

[12] I. Holyer, The NP-completeness of edge coloring, SIAM J. Comput. 10 (1981), 718–
720.
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1. Introduction

Random graphs have played an integral role in extremal combinatorics since they were first
used by Erdős [30] to prove an exponential lower bound for Ramsey numbers. The bino-
mial random graph Gn,p is a graph on n vertices where each of the

(
n
2

)
possible edges is

chosen independently with probability p. In modern terminology, Erdős’ result says that
with high probability Gn,1/2 contains no clique or independent set of order 2 log2 n. This
then translates to a lower bound of 2t/2 for the Ramsey number R(t) (this will be defined in
Section 2).

Although there were several applications of random graphs prior to their work, the first
systematic study of random graphs was undertaken by Erdős and Rényi [32, 33]. The con-
cept of random graphs was also introduced independently by several other authors but, as ex-
plained by Bollobás [10], ‘the other authors were all concerned with enumeration problems
and their techniques were essentially deterministic.’ Though it has its origins in applications
to extremal combinatorics, the theory of random graphs is now a rich and self-sustaining
area of study (see, for example, [10, 67]).

Suppose that P is a graph property, that is, a family of graphs closed under isomorphism.
In studying random graphs, we are usually concerned with determining the probability that
Gn,p is in P for some property P . For many properties, this probability exhibits a phase
transition as p increases, changing abruptly from 0 to 1. The crossover point is known as the
threshold. Formally, we say that p∗ := p∗(n) is a threshold for P if

lim
n→∞P[Gn,p is in P] =

{
0 if p = o(p∗),
1 if p = ω(p∗).

We note that, depending on the property P , the probability could also collapse from 1 to 0 as
p increases. However, for most properties considered in this paper, the behaviour is as above.
To give some simple examples, the properties of being connected and having a Hamiltonian
cycle are both known to have a threshold at p∗ = logn

n , while the property of containing a
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particular graph H has a threshold at n−1/m(H), where

m(H) = max

{
e(H ′)
v(H ′)

: H ′ ⊆ H

}
.

This function reflects the fact that a graph appears once its densest subgraph does.
Since the late eighties, there has been a great deal of interest in determining thresholds for

analogues of combinatorial theorems to hold in random graphs and random subsets of other
sets such as the integers. To give an example, we say that a graph G is K3-Ramsey if any
2-colouring of the edges of G contains a monochromatic triangle. One of the foundational
results in this area, proved by Frankl and Rödl [40] and Łuczak, Ruciński and Voigt [86],
then states that there exists C > 0 such that if p > C/

√
n then

lim
n→∞P[Gn,p is K3-Ramsey] = 1.

Frankl and Rödl used this theorem to prove that there are K4-free graphs which are K3-
Ramsey, a result originally due to Folkman [38]. However, this new method allowed one to
prove reasonable bounds for the size of such graphs, something which was not possible with
previous methods.

From this beginning, a large number of papers were written on sparse random ana-
logues of combinatorial theorems. These included papers on analogues of Ramsey’s the-
orem, Turán’s theorem and Szemerédi’s theorem, though in many cases these efforts met
with only partial success. This situation has changed dramatically in recent years and there
are now three distinct, general methods for proving sparse random analogues of combinato-
rial theorems, furnishing solutions for many of the outstanding problems in the area.

The first two of these methods were developed by Gowers and the author [24] and, in-
dependently, by Schacht [112] and Friedgut, Rödl and Schacht [45]. The third method was
found later by Balogh, Morris and Samotij [6] and, independently, by Saxton and Thoma-
son [111]. Broadly speaking, the method employed by Gowers and the author builds on the
transference principle developed by Green and Tao [60] in their proof that the primes con-
tain arbitrarily long arithmetic progressions; the method of Schacht and Friedgut, Rödl and
Schacht extends a multi-round exposure technique used by Rödl and Ruciński [98] in their
study of Ramsey’s theorem in random graphs; and the third method is a byproduct of general
results about the structure of independent sets in hypergraphs, themselves building on meth-
ods of Kleitman and Winston [69] and Sapozhenko [108–110]. Of course, this summary
does a disservice to all three methods, each of which involves the introduction of several
new ideas. Surprisingly, all three proofs are substantially different and all three methods
have their own particular strengths, some of which we will highlight below.

Rather than focusing on these three methods from the outset, we will further describe
the developments leading up to them, explaining how these new results fit into the broader
context. This will also allow us to review many of the important subsequent developments.
We begin by discussing random analogues of Ramsey-type theorems.

2. Ramsey-type theorems in random sets

Ramsey’s theorem [93] states that for any graph H and any natural number r there exists n
such that any r-colouring of the edges of the complete graph Kn on n vertices contains a
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monochromatic copy ofH . The smallest such n is known as the r-colour Ramsey number of
H and denoted R(H; r). When r = 2, we simply write this as R(H) and when H = Kt, we
just writeR(t). The result of Erdős mentioned in the introduction then says thatR(t) ≥ 2t/2,
while an upper bound due to Erdős and Szekeres [37] says that R(t) ≤ 4t. Though there
have been lower order improvements to both of these estimates [17, 115], it remains a major
open problem to give an exponential improvement to either of them.

Given a graph H and a natural number r, we say that a graph G is (H, r)-Ramsey if in
any r-colouring of the edges of G there is guaranteed to be a monochromatic copy of H .
Ramsey’s theorem is the statement that Kn is (H, r)-Ramsey for n sufficiently large, while
the overall aim of graph Ramsey theory is to decide which graphs are (H, r)-Ramsey for a
given H and r. Though coNP-hard in general [15], this problem has borne much fruit and
there is now a large theory with many interesting and important results (see, for example,
[59]). One of the highlights of this theory is the following random Ramsey theorem of
Rödl and Ruciński [96–98], which determines the threshold for Ramsey’s theorem to hold in
random graphs. As mentioned in the introduction, this result built on earlier work of Frankl
and Rödl [40] and Łuczak, Ruciński and Voigt [86]. Here and throughout the paper, we will
write v(H) and e(H) for the number of vertices and edges, respectively, of a graph H .

Theorem 2.1. For any graph H that is not a forest consisting of stars and paths of length 3
and any positive integer r ≥ 2, there exist positive constants c and C such that

lim
n→∞P[Gn,p is (H, r)-Ramsey] =

{
0 if p < cn−1/m2(H),

1 if p > Cn−1/m2(H),

where

m2(H) = max

{
e(H ′)− 1

v(H ′)− 2
: H ′ ⊆ H and v(H ′) ≥ 3

}
.

There are two parts to this theorem, one part saying that for p < cn−1/m2(H) the
random graph Gn,p is highly unlikely to be (H, r)-Ramsey and the other saying that for
p > Cn−1/m2(H) it is almost surely (H, r)-Ramsey. Following standard usage, we will
refer to these two parts as the 0-statement and the 1-statement, respectively.

The threshold in Theorem 2.1 occurs at p∗ = n−1/m2(H). This is the largest probability
for which there is some subgraph H ′ of H such that the number of copies of H ′ in Gn,p

is approximately the same as the number of edges. For p significantly smaller than p∗, the
number of copies of H ′ will also be significantly smaller than the number of edges. A rather
delicate argument [96] then allows one to show that the edges of the graph may be colored so
as to avoid any monochromatic copies of H ′. For p significantly larger than p∗, almost every
edge in the random graph is contained in many copies of every subgraph ofH . The intuition,
which takes substantial effort to make rigorous [98], is that these overlaps are enough to force
the graph to be Ramsey.

That the proof of the 0-statement is delicate is betrayed by the omitted cases, which
have smaller thresholds. For example, if a graph contains the star K1,r(t−1)+1, then any r-
colouring of the edges of this graph will contain a monochromaticK1,t. However, the thresh-
old for the appearance of K1,r(t−1)+1 is lower than the threshold suggested by m2(K1,t).
A more subtle case is when H = P4, the path with 3 edges (and 4 vertices), and r = 2. In
this case, a cycle of length five with a pendant edge at each vertex is (P4, 2)-Ramsey. While
the threshold for the appearance of these graphs is at n−1, which is the same as n−1/m2(H),
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the threshold is coarse. This means that they start to appear with positive probability al-
ready when p = c/n for any positive c. This implies that the 0-statement only holds when
p = o(1/n).

It is worth saying a little about the proof of the 1-statement in Theorem 2.1. We will
focus on the case when H = K3 and r = 2. The key idea is to write Gn,p as the union of
two independent random graphs Gn,p1

and Gn,p2
, chosen so that

p = p1 + p2 − p1p2 and p2 = Lp1

for some large constant L. We first expose the smaller random graph Gn,p1
. With high

probability, every colouring of Gn,p1
will contain many monochromatic paths of length 2.

If p1 is a sufficiently large multiple of 1/
√

n, it is also possible to show that with high
probability these monochromatic paths are well distributed. In particular, for any given
colouring of Gn,p1 , there are at least cn3 triangles in the underlying graph Kn such that
there is a path of the same colour, say red, between each pair of vertices in each triangle.

We now expose Gn,p2 . If this graph contains any of the cn3 triangles described above,
we are done, since each edge of this triangle must take the colour blue. Otherwise, together
with the red connecting path, we would have a red triangle. By Janson’s inequality [66], the
probability that Gn,p2 does not contain any of the cn3 triangles associated to this particular
colouring is at most 2−c′p2n

2

, where c′ depends on c. However, we must remember to
account for every possible colouring of Gn,p1 . To do this, we take a union bound. Indeed,
since there are at most 2p1n

2

colourings ofGn,p1
, the probability that there exists a colouring

such that Gn,p2 does not intersect the associated set of triangles is at most 2p1n
2

2−c′p2n
2

. If
we choose L sufficiently large, this probability tends to zero, completing the proof.

This method also allowed Rödl and Ruciński to determine the threshold for van der
Waerden’s theorem to hold in random subsets of the integers. Van der Waerden’s theorem
[124] states that for any natural numbers k and r there exists n such that any r-colouring
of [n] := {1, 2, . . . , n} contains a monochromatic k-term arithmetic progression, that is, a
monochromatic subset of the form {a, a+d, . . . , a+(k−1)d}. To state the random version
of this theorem, we define [n]p to be a random subset of [n] where each element is chosen
independently with probability p. We also say that a subset I of the integers is (k, r)-vdW if
in any r-colouring of the points of I there is a monochromatic k-term arithmetic progression.
Rödl and Ruciński’s random van der Waerden theorem [98, 99] is then as follows.

Theorem 2.2. For any positive integers k ≥ 3 and r ≥ 2, there exist positive constants c
and C such that

lim
n→∞P[[n]p is (k, r)-vdW] =

{
0 if p < cn−1/(k−1),

1 if p > Cn−1/(k−1).

The threshold is again a natural one, since it is the point where we expect that most
vertices in [n]p will be contained in a constant number of k-term arithmetic progressions.
We will say more about this in the next section when we discuss density theorems.

One question left open by the work of Rödl and Ruciński was whether Theorem 2.1
could be extended to hypergraphs. While some partial progress was made [100, 101], the
general problem remained open, not least because of the apparent need to apply a hypergraph
analogue of the regularity lemma, something which has only been developed in recent years
[55, 88, 104, 120]. Approaches which circumvent hypergraph regularity were developed
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independently by Friedgut, Rödl and Schacht [45] and by Gowers and the author [24], so
that the following generalisation of Theorem 2.1 is now known. We write G

(k)
n,p for the

random k-uniform hypergraph on n vertices, where each edge is chosen independently with
probability p.

Theorem 2.3. For any k-uniform hypergraph H and any positive integer r ≥ 2, there exists
C > 0 such that

lim
n→∞P[G(k)

n,p is (H, r)-Ramsey] = 1 if p > Cn−1/mk(H),

where

mk(H) = max

{
e(H ′)− 1

v(H ′)− k
: H ′ ⊆ H and v(H ′) ≥ k + 1

}
.

We note that the approach in [24] applies when H is strictly k-balanced, that is, when
mk(H) > mk(H

′) for every subgraphH ′ ofH . However, almost all hypergraphs, including
the complete hypergraph K

(k)
t , satisfy this requirement. A similar caveat applies to many of

the theorems stated in this survey. We will usually make this explicit.
The 0-statement corresponding to Theorem 2.3 was considered by Gugelmann, Person,

Steger and Thomas (see [61, 62]). In particular, their results imply the corresponding 0-
statement for complete hypergraphs. However, there are again cases where the true threshold
is smaller than n−1/mk(H). Indeed, the picture seems to be more complicated than for graphs
since there are examples other than the natural generalisations of paths and stars for which
the 1-statement may be improved. We refer the reader to [61] for a more complete discussion.

One may also consider the threshold for asymmetric Ramsey properties. We say that
a graph G is (H1, H2, . . . , Hr)-Ramsey if any colouring of the edges of G with colours
1, 2, . . . , r contains a monochromatic copy of Hi in colour i for some i ∈ {1, 2, . . . , r}.
A conjecture of Kohayakawa and Kreuter [71], which generalises Theorem 2.1, says that if
H1, H2, . . . , Hr are graphs with 1 < m2(Hr) ≤ · · · ≤ m2(H1), then the (H1, H2, . . . , Hr)-
Ramsey property has a threshold at n−1/m2(H1,H2), where

m2(H1, H2) = max

{
e(H ′

1)

v(H ′
1)− 2 + 1/m2(H2)

: H ′
1 ⊆ H1 and v(H ′

1) ≥ 3

}
.

Since the 0-statement fails to hold for certain forests, this statement should be qualified
further, but it seems likely to hold for most collections of graphs.

Kohayakawa and Kreuter established the conjecture when H1, H2, . . . , Hr are cycles.
As noted in [87], the same method shows that the KŁR conjecture (which we discuss in
Section 4) would imply the 1-statement of the conjecture when H1 is strictly 2-balanced,
that is, when m2(H1) > m2(H

′
1) for all proper subgraphs H ′

1. Since the KŁR conjecture is
now an established fact, the following theorem is known to hold (as was noted explicitly by
Balogh, Morris and Samotij [6]).

Theorem 2.4. For any graphs H1, H2, . . . , Hr with 1 < m2(Hr) ≤ · · · ≤ m2(H1) and
such that H1 is strictly 2-balanced, there exists C > 0 such that

lim
n→∞P[Gn,p is (H1, H2, . . . , Hr)-Ramsey] = 1 if p > Cn−1/m2(H1,H2).

A slightly weaker statement was established by Kohayakawa, Schacht and Spöhel [79]
without appealing to the KŁR conjecture. Their proof is much closer in spirit to Rödl and
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Ruciński’s proof of Theorem 2.1. A corresponding 0-statement when H1, H2, . . . , Hr are
cliques was established by Marciniszyn, Skokan, Spöhel and Steger [87]. However, the
0-statement remains open in general.

The methods developed in [24] and [45] also allow one to extend Rödl and Ruciński’s
results on random analogues of van der Waerden’s theorem to a more general setting. A clas-
sical theorem of Rado [92] generalises van der Waerden’s theorem by establishing necessary
and sufficient conditions for a system of homogeneous linear equations

k∑
j=1

aijxj = 0 for 1 ≤ i ≤ �

to be partition regular, that is, to be such that any finite colouring of the natural numbers
contains a monochromatic solution (x1, x2, . . . , xk) to this system of equations. To give an
example, the solutions to the system of equations xi + xi+2 = 2xi+1 for i = 1, 2, . . . , k− 2
are k-term arithmetic progressions and so van derWaerden’s theorem implies that this system
of equations is partition regular. An extension of Theorem 2.2 was proved by Rödl and
Ruciński in [99], but their 1-statement only applied to density regular systems of equations
(though see also [57]). These are systems of equations, like the system defining k-term
arithmetic progressions, whose solutions sets are closed under translation and dilation.

An extension of this theorem which applies to all partition regular systems of equations
was proved by Friedgut, Rödl and Schacht [45]. More precisely, they proved a 1-statement,
while the 0-statement had been established earlier by Rödl and Ruciński [99]. Since the
details are somewhat technical, we refer the interested reader to [45] for further particulars.

We have already mentioned that the result of Frankl and Rödl [40] may be used to prove
that there are K4-free graphs which are (K3, 2)-Ramsey. This was originally proved by
Folkman [38] using a constructive argument. More generally, he proved that for any positive
integer t there is a Kt+1-free graph which is (Kt, 2)-Ramsey. This beautiful result was
subsequently extended to r-colourings by Nešetřil and Rödl [90, 91].

Once we know that these graphs exist, it is natural to try and estimate their size. We
define the Folkman number F (t) to be the smallest natural number n such that there exists a
Kt+1-free graph G on n vertices with the property that every 2-colouring of the edges of G
contains a monochromaticKt. The upper bounds on F (t) which come from the constructive
proofs tend to have a dependency on t which, with a conservative estimate, is at least tower-
type, that is, a tower of twos of height at least t. On the other hand, the lower bound is
essentially the same as for Ramsey’s theorem, that is, F (t) ≥ 2c

′t.
Very recently, it was noted that some of the methods for proving Ramsey-type theorems

in random sets yield significantly stronger bounds for Folkman numbers [25, 102]. In partic-
ular, the following result was proved by Rödl, Ruciński and Schacht [102]. Their proof relies
heavily on the hypergraph container results developed by Balogh, Morris and Samotij [6] and
Saxton and Thomason [111] and an observation of Nenadov and Steger [89] that allows one
to apply this machinery in the Ramsey setting.

Theorem 2.5. There exists a constant c such that

F (t) ≤ 2ct
4 log t.

This bound is tantalisingly close to the lower bound and it would be of great interest to
improve it further. Since we have now brought our discussions of Ramsey-type theorems in
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random sets full circle, this provides a convenient departure point to move on to discussing
density theorems in random sets, a topic about which much less was known before recent
developments.

3. Density theorems in random sets

Turán’s theorem [123] states that the largestKt-free subgraph ofKn has at most
(
1− 1

t−1

)
n2

2

edges. Moreover, the unique Kt-free subgraph achieving this maximum is the (t−1)-partite
graph with vertex sets V1, V2, . . . , Vt−1, where each set is of order * n

t−1+ or 2 n
t−13. In par-

ticular, for t = 3, the triangle-free subgraph of Kn with the most edges is a bipartite graph
with parts of order *n

2 + or 2n
2 3. A substantial generalisation of this theorem, known as the

Erdős–Stone–Simonovits theorem [34, 36], states that for any graph H the largest H-free
subgraph of Kn has at most

(
1− 1

χ(H)−1 + o(1)
) (

n
2

)
edges, where χ(H) is the chromatic

number of H .
We say that a graph G is (H, ε)-Turán if every subgraph of G with at least(

1− 1

χ(H)− 1
+ ε

)
e(G)

edges contains a copy ofH . The original work of Frankl and Rödl [40] on Ramsey properties
in random graphs was actually motivated by a problem of Erdős and Nešetřil concerning
an analogue of Folkman’s theorem for the (H, ε)-Turán property. Specifically, they asked
whether there exist K4-free graphs which are (K3, ε)-Turán and Frankl and Rödl showed
that there are. Though not stated explicitly in their paper, Frankl and Rödl’s method implies
that for any ε > 0 there exists C > 0 such that if p > C/

√
n then

lim
n→∞P[Gn,p is (K3, ε)-Turán] = 1.

Unlike Ramsey properties, the corresponding 0-statement is easy to prove. Indeed, for p a
sufficiently small multiple of 1/

√
n, the number of triangles in Gn,p will be significantly

smaller than the number of edges. We may therefore remove all copies of K3 by deleting
one edge from each copy, leaving a subgraph which is triangle-free but contains at least
(1− δ)e(Gn,p) edges.

A similar argument provides a lower bound for all H . That is, if the number of copies
of H is significantly smaller than the number of edges, we can remove all copies of H
by deleting one edge from each copy. Therefore, if pe(H)nv(H) 5 pn2, that is, p 5
n−(v(H)−2)/(e(H)−1), the (H, ε)-Turán property cannot hold. Since the same argument ap-
plies for any subgraph H ′ of H , it is easy to see that for p 5 n−1/m2(H) the random graph
Gn,p cannot be (H, ε)-Turán. Here m2(H) is defined as in Theorem 2.1, that is,

m2(H) = max

{
e(H ′)− 1

v(H ′)− 2
: H ′ ⊆ H and v(H ′) ≥ 3

}
,

The natural conjecture that the (H, ε)-Turán property holds in random graphs with p 1
n−1/m2(H) was first stated by Haxell, Kohayakawa and Łuczak [63, 64] and reiterated by
Kohayakawa, Łuczak and Rödl [73].
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Until recently, this conjecture was only known to hold for a small collection of graphs,
including K3, K4 and K5 [40, 53, 73] and all cycles [46, 63, 64] (see also [76, 117]). A
verification of the conjecture for all graphs was completed by Schacht [112] and by Gowers
and the author [24], although we must qualify this statement by saying that the results of
[24] apply when H is strictly 2-balanced, that is, when m2(H

′) < m2(H) for all H ′ ⊂ H .
However, the class of strictly 2-balanced graphs includes many of the graphs one normally
considers, such as cliques and cycles.

Theorem 3.1. For any graph H and any ε > 0, there exist positive constants c and C such
that

lim
n→∞P[Gn,p is (H, ε)-Turán] =

{
0 if p < cn−1/m2(H),

1 if p > Cn−1/m2(H).

As mentioned in the introduction, Schacht’s proof of Theorem 3.1 builds on Rödl and
Ruciński’s proof of Theorem 2.1. In the last section, we gave a brief description of their
method, showing how it was best to think of the random graph Gn,p as the union of two in-
dependent random graphs Gn,p1 and Gn,p2 . In Schacht’s method, this multi-round exposure
is taken further, the rough idea being to expose Gn,p over several successive rounds and to
apply a density increment argument.

The method employed in [24] relies upon proving a transference principle, an idea which
originates in the work of Green and Tao [60] (see also [56, 94]). In the case of triangles, this
transference principle says that for p ≥ C/

√
n any subgraph G of Gn,p may be modelled

by a subgraph K of the complete graph Kn in such a way that the proportion of edges and
triangles in K is close to the proportion of edges and triangles in G. That is, if the sparse
graph G contains c1pn

2 edges and c2p
3n3 triangles, then the dense model K will contain

approximately c1n
2 edges and c2n

3 triangles.
Suppose now that we wish to prove Turán’s theorem for triangles relative to a random

graph. Given a subgraph G of Gn,p with
(
1
2 + ε

)
p
(
n
2

)
edges, we know, once our approxi-

mation is sufficiently good, that its dense model K has at least
(
1
2 + ε

2

) (
n
2

)
edges. A robust

version of Turán’s theorem [35] then implies that K contains at least cn3 triangles for some
c > 0 depending on ε. Provided again that our approximation is sufficiently good, this
implies that G contains at least c

2p
3n3 triangles, which is even more than we required.

Though the analogue of Turán’s theorem for hypergraphs is rather poorly understood
(see, for example, [68]), a similar strategy shows that it is still possible to transfer it to the
random setting. To state the result, we need some definitions. Given a k-uniform hypergraph
H , we let ex(n,H) be the largest number of edges in an H-free subgraph of K(k)

n and

πk(H) = lim
n→∞

ex(n,H)(
n
k

) .

We then say that a k-uniform hypergraph G is (H, ε)-Turán if every subgraph of G with
at least (πk(H) + ε) e(G) edges contains a copy of H . Let mk(H) be defined as in the
previous subsection, that is,

mk(H) = max

{
e(H ′)− 1

v(H ′)− k
: H ′ ⊆ H and v(H ′) ≥ k + 1

}
.

Then the analogue of Theorem 3.1, proved in [24, 112], states that the property of being
(H, ε)-Turán for a k-uniform hypergraph H has a threshold at n−1/mk(H).
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Theorem 3.2. For any k-uniform hypergraph H and any ε > 0, there exist positive constants
c and C such that

lim
n→∞P[G(k)

n,p is (H, ε)-Turán] =

{
0 if p < cn−1/mk(H),

1 if p > Cn−1/mk(H).

One structural counterpart to Turán’s theorem is the Erdős-Simonovits stability theorem
[114]. This says that for any graph H with χ(H) ≥ 3 and any ε > 0, there exists δ > 0

such that any H-free subgraph of Kn with at least
(
1− 1

χ(H)−1 − δ
) (

n
2

)
edges may be

made (χ(H)− 1)-partite by removing at most εn2 edges. The following sparse analogue of
this result was originally proved in [24] for strictly 2-balanced graphs. Later, Samotij [107]
found a way to amend Schacht’s method so that it applied to stability statements, extending
this result to all graphs.

Theorem 3.3. For any graph H with χ(H) ≥ 3 and any ε > 0, there exist positive constants
δ and C such that if p ≥ Cn−1/m2(H) the random graph Gn,p a.a.s. has the following

property. Every H-free subgraph of Gn,p with at least
(
1− 1

χ(H)−1 − δ
)
p
(
n
2

)
edges can

be made (χ(H)− 1)-partite by removing at most εpn2 edges.

For cliques, Turán’s theorem has a much more precise corresponding structural state-
ment, saying that the largest Kt-free subgraph is (t − 1)-partite. One may therefore ask
when this property holds a.a.s. in the random graph Gn,p. This question was first studied
by Babai, Simonovits and Spencer [4] who showed that for p > 1

2 the size of the maxi-
mum triangle-free subgraph is a.a.s. the same as the size of the largest bipartite subgraph.
This result was extended to the range p > n−c by Brightwell, Panagiotou and Steger [14].
Recently, DeMarco and Kahn [27] proved the following much more precise result.

Theorem 3.4. There is a positive constant C such that if p > C
√
log n/n then a.a.s. every

maximum triangle-free subgraph of Gn,p is bipartite.

The threshold here is different from the 1/
√

n we have come to expect. However, the
result is sharp up to the constant C. Indeed, for p = 0.1

√
log n/n, the random graph

Gn,p will typically contain a 5-cycle none of whose edges are contained in a triangle. In a
forthcoming paper, DeMarco and Kahn [28] prove the following extension of this result to
all cliques. Once again, the extra log factors are essential.

Theorem 3.5. For any natural number t, there exists C > 0 such that if

p > Cn−
2

t+1 log
2

(t+1)(t−2) n

then a.a.s. every maximum Kt-free subgraph of Gn,p is (t − 1)-partite.

We note that a related question, where one wishes to determine the range of m for which
most Kt-free graphs with n vertices and m edges are (t− 1)-partite, was solved recently by
Balogh, Morris, Samotij and Warnke [7].

The methods of [24] and [112] also allow one to prove sparse analogues of density state-
ments from other settings. For example, Szemerédi’s theorem [118] states that for any natural
number k and any δ > 0 there exists n0 such that if n ≥ n0 any subset of [n] of density
at least δ contains a k-term arithmetic progression. This is the density version of van der
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Waerden’s theorem and trivially implies that theorem by taking δ = 1
r and considering the

largest colour class. This theorem and the tools arising in its many proofs [48, 54, 95] have
been enormously influential in the development of modern combinatorics.

We say that a subset I of the integers is (k, δ)-Szemerédi if any subset of I with at least
δ|I| elements contains an arithmetic progression of length k. Szemerédi’s theorem says that
for n sufficiently large the set [n] is (k, δ)-Szemerédi, while a striking corollary of Green and
Tao’s work on arithmetic progressions in the primes [60] says that for n sufficiently large the
set of primes up to n is (k, δ)-Szemerédi.

For random subsets of the integers, the (k, δ)-Szemerédi property was first studied by
Kohayakawa, Łuczak and Rödl [72], who proved that the property of being (3, δ)-Szemerédi
has a threshold at 1/

√
n. In general, the natural conjecture is that the (k, δ)-Szemerédi

property has a threshold at n−1/(k−1). The lower bound is again straightforward, since for
p 5 n−1/(k−1) the number of k-term arithmetic progressions is significantly smaller than
the number of elements in the random set [n]p, allowing us to remove one element from
each arithmetic progression without significantly affecting the density. The corresponding
1-statement was provided in [24] and [112].

Theorem 3.6. For any integer k ≥ 3 and δ > 0, there exist positive constants c and C such
that

lim
n→∞P[[n]p is (k, δ)-Szemerédi] =

{
0 if p < cn−1/(k−1),

1 if p > Cn−1/(k−1).

A particularly satisfying approach to density theorems in random sets is provided by
the recent hypergraph containers method of Balogh, Morris and Samotij [6] and Saxton
and Thomason [111], the only probabilistic input being Chernoff’s inequality and the union
bound. In the context of Szemerédi’s theorem, one of the main corollaries of this method is
the following theorem.

Theorem 3.7. For any integer k ≥ 3 and any ε > 0, there exists C > 0 such that if
m ≥ Cn1−1/(k−1), then there are at most

(
εn
m

)
subsets of {1, 2, . . . , n} of order m which

contain no k-term arithmetic progression.

Given this statement, which is completely deterministic, it is straightforward to derive
the 1-statement in Theorem 3.6, so much so that we may now give the entire calculation. For
brevity, we write (k, δ)-Sz rather than (k, δ)-Szemerédi and Ik(n, δpn/2) for the collection
of subsets of {1, 2, . . . , n} of order δpn/2 which contain no k-term arithmetic progression.
We have

P[[n]p is not (k, δ)-Sz] ≤ P[|[n]p| < pn/2] + P[|[n]p| ≥ pn/2 and [n]p is not (k, δ)-Sz]
≤ exp(−Ω(pn)) + P[[n]p ⊇ I for some I ∈ Ik(n, δpn/2)]

≤ exp(−Ω(pn)) +

(
εn

δpn/2

)
pδpn/2

≤ exp(−Ω(pn)) +

(
2eεpn

δpn

)δpn/2

= exp(−Ω(pn)),

provided ε < δ/2e.
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Deriving Theorem 3.1 from the results of [6] and [111] involves a little more work.
To describe the idea, we focus on the case where H = K3. We begin by considering
the 3-uniform hypergraph G whose vertex set is the collection of edges in Kn and whose
edge set is the collection of triangles in Kn. Turán’s theorem for triangles may then be
restated as saying that this 3-uniform hypergraph has no independent set of order greater
than
(
1
2 + o(1)

) |V (G)|. We would now like to show that if p ≥ C/
√

n then the random set
V (G)p formed by choosing each element of V (G) independently with probability p contains
no independent set of order greater than

(
1
2 + ε

)
p|V (G)|.

One approach would be to use the union bound and Chernoff’s inequality to show that
with high probability the intersection of the random set with each independent set is as
required. An argument of this variety worked in the proof of Theorem 3.6 above, but usually
there are far too many independent sets for this approach to be feasible. The main results in
both [6] and [111] circumvent this difficulty by showing that there is a substantially smaller
collection of almost independent sets which contain all independent sets. Since these sets
are almost independent, we know, by the robust version of Turán’s theorem, that they must
also have size at most

(
1
2 + ε

2

) |V (G)|, say. Applying the union bound over this smaller set
then allows us to derive the result.

4. Regularity in random graphs

Szemerédi’s regularity lemma [119] is one of the cornerstones of modern graph theory
(see [81, 103]). Roughly speaking, it says that the vertex set of every graph G may be di-
vided into a bounded number of parts in such a way that most of the induced bipartite graphs
between different parts are pseudorandom. To be more precise, we need some definitions.

We say that a bipartite graph between sets U and V is ε-regular if, for every U ′ ⊆ U and
V ′ ⊆ V with |U ′| ≥ ε|U | and |V ′| ≥ ε|V |, the density d(U ′, V ′) of edges between U ′ and
V ′ satisfies

|d(U ′, V ′)− d(U, V )| ≤ ε.

A partition of the vertex set of a graph into t pieces V1, . . . , Vt is an equipartition if, for every
1 ≤ i, j ≤ t, we have ||Vi|− |Vj || ≤ 1. Finally, a partition is ε-regular if it is an equipartition
and, for all but at most εt2 pairs (Vi, Vj), the induced graph between Vi and Vj is ε-regular.
Szemerédi’s regularity lemma can now be stated as follows.

Theorem 4.1. For any ε > 0, there exists an integer T such that every graph G admits an
ε-regular partition V1, . . . , Vt of its vertex set into t ≤ T pieces.

For sparse graphs – that is, graphs with n vertices and o(n2) edges – the regularity lemma
stated above is vacuous, since every equipartition into a bounded number of parts is ε-regular
for n sufficiently large. However, as observed independently by Kohayakawa [70] and Rödl,
there is a meaningful analogue of the regularity lemma for sparse graphs, provided one is
willing to restrict consideration to a well-behaved class of graphs.

To make this more precise, we say that a bipartite graph between sets U and V is (ε, p)-
regular if, for every U ′ ⊆ U and V ′ ⊆ V with |U ′| ≥ ε|U | and |V ′| ≥ ε|V |, the density
d(U ′, V ′) of edges between U ′ and V ′ satisfies

|d(U ′, V ′)− d(U, V )| ≤ εp.
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That is, we alter the definition of regularity so that it is relative to a particular density p,
usually chosen to be comparable to the total density between U and V . A partition of the
vertex set of a graph into t pieces V1, . . . , Vt is then said to be (ε, p)-regular if it is an
equipartition and, for all but at most εt2 pairs (Vi, Vj), the induced graph between Vi and Vj

is (ε, p)-regular.
The class of graphs to which the Kohayakawa-Rödl regularity lemma applies are the

so-called upper-uniform graphs [75]. Suppose that 0 < η ≤ 1, D > 1 and 0 < p ≤ 1
are given. We will say that a graph G is (η, p,D)-upper-uniform if for all disjoint subsets
U1 and U2 with |U1|, |U2| ≥ η|V (G)|, the density of edges between U1 and U2 satisfies
d(U1, U2) ≤ Dp. This condition is satisfied for many natural classes of graphs, including all
subgraphs of random graphs of density p. The sparse regularity lemma of Kohayakawa and
Rödl is now as follows.

Theorem 4.2. For any ε > 0 and D > 1, there exists η > 0 and an integer T such that
for every p ∈ [0, 1], every graph G that is (η, p,D)-upper-uniform admits an (ε, p)-regular
partition V1, . . . , Vt of its vertex set into t ≤ T pieces.

A recent variant of this lemma, due to Scott [113], requires no upper-uniformity assump-
tion on G, although it is often useful to impose such a constraint in practice. Since the two
statements are interchangeable when one is dealing with a subgraph of the random graph,
we have chosen to describe the original version.

In applications, the regularity method is usually applied in combination with a counting
lemma. Roughly speaking, a counting lemma says that if we start with an arbitrary graph H
and replace its vertices by large independent sets and its edges by ε-regular bipartite graphs
with non-negligible density, then this blow-up will contain roughly the expected number of
copies of H . To state this result formally, we again need some definitions.

Given a graph H with vertex set {1, 2, . . . , k} and a collection of disjoint vertex sets
V1, V2, . . . , Vk in a graph G, we say that a k-tuple (v1, v2, . . . , vk) is a canonical copy of H
in G if vi ∈ Vi for every i ∈ V (H) and vivj ∈ E(G) for every ij ∈ E(H). We write G(H)
for the number of canonical copies of H in G. The counting lemma may now be stated as
follows.

Lemma 4.3. For any graph H with vertex set {1, 2, . . . , k} and any δ > 0, there exists a
positive constant ε and an integer n0 such that the following holds. Let n ≥ n0 and let G be
a graph whose vertex set is a disjoint union V1 ∪ V2 ∪ · · · ∪ Vk of sets of size n. Assume that
for each ij ∈ E(H), the bipartite subgraph of G induced by Vi and Vj is ε-regular and has
density dij . Then

G(H) =

⎛
⎝ ∏

ij∈E(H)

dij ± δ

⎞
⎠nk.

When combined with the regularity lemma, this result allows one to prove a number
of well-known theorems in extremal graph theory, including the Erdős–Stone–Simonovits
theorem, its stability version and the graph removal lemma. In order to extend these results
to sparse graphs, one plausible approach, championed by Kohayakawa, Łuczak and Rödl
[73], would be to extend Lemma 4.3 to sparse graphs. For example, it would be ideal if we
could replace the densities dij with dijp, the ε-regularity condition with an (ε, p)-regularity
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condition and the conclusion with

G(H) =

⎛
⎝ ∏

ij∈E(H)

dij ± δ

⎞
⎠ pe(H)nk.

We will initially aim for less, only asking to embed a single canonical copy of H . Unfor-
tunately, for reasons with which we are now familiar, we cannot hope that such a statement
holds for small p. Indeed, if p 5 n−1/m2(H), there is a subgraph H ′ of H for which
pe(H

′)nv(H′) 5 pn2. We may therefore remove all copies of H ′, and hence H , from Gn,p

while deleting only a small fraction of the edges. The resulting graph is both (ε, p)-regular,
for some small ε, and H-free.

Frustratingly, this embedding lemma also fails for larger values of p. To see this, take
a counterexample of the kind just described but with the sets Vi of order r for some r that
is much smaller than n. Now replace each vertex of this small graph by an independent set
with n/r vertices and each edge with a complete bipartite graph. This yields a graph with
n vertices in each Vi. It is easy to see that the counterexample survives this blowing-up
process, implying that the sought-after sparse embedding lemma is false whenever p = o(1)
(see [52, 74]).

However, these counterexamples have a very special structure, an observation that led
Kohayakawa, Łuczak and Rödl to conjecture that they might be rare. Roughly speaking, their
conjecture, known as the KŁR conjecture, stated that if p 1 n−1/m2(H), then the number of
counterexamples to the embedding lemma is so small that Gn,p should not typically contain
any such counterexample as a subgraph. Before stating the conjecture (or theorem as it is
now), we introduce some notation.

As above, let H be a graph with vertex set {1, 2, . . . , k}. We denote by G(H,n,m, p, ε)
the collection of all graphs G obtained in the following way. The vertex set of G is a disjoint
union V1 ∪ V2 ∪ · · · ∪ Vk of sets of size n. For each edge ij ∈ E(H), we add an (ε, p)-
regular bipartite graph with m edges between the pair (Vi, Vj). These are the only edges of
G. We also write G∗(H,n,m, p, ε) for the set of all G ∈ G(H,n,m, p, ε) that do not contain
a canonical copy of H .

Since the sparse regularity lemma could yield graphs with different densities between the
various pairs of vertex sets, it may seem surprising that we are restricting attention to graphs
where all the densities are equal. However, it is sufficient to consider just this case. In fact,
the KŁR conjecture, which we now state, is more specific still, since it also takes p = m/n2.
Again, it turns out that from this case one can deduce any other cases that may be needed.

Theorem 4.4. Let H be a fixed graph and let β > 0. Then there exist positive constants C
and ε such that

|G∗(H,n,m,m/n2, ε)| ≤ βm

(
n2

m

)e(H)

for every m ≥ Cn2−1/m2(H).

The KŁR conjecture has attracted considerable attention over the past two decades and
was resolved for a number of special cases. The cases H = K3, K4 and K5 were solved
in [72], [51], and [53], respectively. For cycles, the conjecture was proved in [9, 49] (see
also [71] for a slightly weaker version). Related results were also given in [50] and [76]. We
state it as a theorem because it has now been proved in full generality by Balogh, Morris and
Samotij [6] and by Saxton and Thomason [111].
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Many of the results discussed in this survey, including Theorems 3.1 and 3.3, follow
easily from the KŁR conjecture. Indeed, these applications were the original motivation
for the conjecture. However, there are situations where an embedding result is not enough:
rather than just a single copy of H , one needs to know that there are many copies. That is,
one needs something more like a full counting lemma. Such a counting lemma was provided
in a paper of Gowers, Samotij, Schacht and the author [26], the main result of which is
the following. We allow for different densities between parts by replacing m with a vector
m = (mij)ij∈E(H).

Theorem 4.5. For any graph H and any δ, d > 0, there exist positive constants ε and ξ with
the following property. For any η > 0, there is C > 0 such that if p ≥ CN−1/m2(H) then
a.a.s. the following holds in GN,p:

(i) For any n ≥ ηN , m with mij ≥ dpn2 for all ij ∈ E(H) and any subgraph G of
GN,p in G(H,n,m, p, ε),

G(H) ≥ ξ

⎛
⎝ ∏

ij∈E(H)

mij

n2

⎞
⎠nv(H).

(ii) Moreover, if H is strictly 2-balanced, then

G(H) = (1± δ)

⎛
⎝ ∏

ij∈E(H)

mij

n2

⎞
⎠nv(H).

We note that Theorem 4.5(i) follows from Samotij’s adaptation [107] of Schacht’s method
[112] (and may also be derived from the work of Saxton and Thomason [111]), while The-
orem 4.5(ii) follows from the work of Gowers and the author [24]. Though stronger than
Theorem 4.4 in some obvious ways, it is worth noting that Theorem 4.5 does not return
the estimate for the number of counterexamples provided by that theorem. This estimate is
important for some applications, Theorem 2.4 being a notable example.

One sample application where we need a counting result rather than an embedding re-
sult is for proving a random analogue of the graph removal lemma. This theorem, usually
attributed to Ruzsa and Szemerédi [106] (though see also [3, 31, 47]), is as follows: for any
δ > 0, there exists ε > 0 such that if G is a graph on n vertices containing at most εnv(H)

copies of H , then G may be made H-free by deleting at most δn2 edges. Though simple in
appearance, this result is surprisingly difficult to prove (see, for example, [18, 39]). It also
has some striking consequences, including the k = 3 case of Szemerédi’s theorem, originally
due to Roth [105]. A sparse random version of the graph removal lemma was conjectured
by Łuczak in [85] and proved, for strictly 2-balanced H , in [24]. The following statement,
which applies for all H , may be found in [26].

Theorem 4.6. For any graph H and any δ > 0, there exist positive constants ε and C such
that if p ≥ Cn−1/m2(H) then the following holds a.a.s. in Gn,p. Every subgraph of Gn,p

which contains at most εpe(H)nv(H) copies of H may be made H-free by removing at most
δpn2 edges.

Note that if p ≤ cn−1/m2(H), for c sufficiently small, this statement is trivially true.
Indeed, in this range, there exists a subgraph H ′ of H such that the number of copies of
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H ′ in Gn,p is smaller than δpn2, so we can simply remove one edge from each copy of
H ′. One might then conjecture, as Łuczak did, that Theorem 4.6 holds for all values of p.
For 2-balanced graphs, those with m2(H

′) ≤ m2(H) for all H ′ ⊂ H , we may verify this
conjecture by taking ε to be sufficiently small in terms of C, δ, andH . For p ≤ Cn−1/m2(H)

and ε < δC−e(H), the number of copies ofH is at most εpe(H)nv(H) ≤ εCe(H)pn2 < δpn2.
Deleting an edge from each copy yields the result.

5. Further directions

5.1. Sharp thresholds for Ramsey properties. A graph property P is said to be monotone
if it is closed under the addition of edges, that is, G ∈ P and G ⊂ G′ implies that G′ ∈ P .
A result of Bollobás and Thomason [11] shows that any monotone property has a threshold.
For example, since Ramsey properties are clearly monotone, this immediately implies that
the (H, r)-Ramsey property and the (k, r)-vdW property, both defined in Section 2, have
thresholds.

Once we have proved that a given property has a threshold, it is often interesting to study
this threshold more closely. We say that P has a sharp threshold at p∗ := p∗(n) if, for any
ε > 0,

lim
n→∞P[Gn,p is in P] =

{
0 if p < (1− ε)p∗,
1 if p > (1 + ε)p∗.

For example, the properties of being connected and having a Hamiltonian cycle have sharp
thresholds, while the property of containing a particular graph H has a non-sharp or coarse
threshold.

A seminal result of Friedgut [41] gives a criterion for assessing whether a monotone
property has a sharp threshold or not. Roughly speaking, this criterion says that if the prop-
erty is globally determined the threshold is sharp, while if it is locally determined it is not.
This fits in well with the examples given above, since connectedness and Hamiltonicity are
clearly global properties, while having a single copy of a particular H is decidedly local.

The question of whether Ramsey properties have sharp thresholds was first studied by
Friedgut and Krivelevich [43]. They proved, amongst other things, that the (H, r)-Ramsey
property is sharp when H is any tree other than a star or a path of length three. However,
the first substantial breakthrough was made by Friedgut, Rödl, Ruciński and Tetali [44], who
proved that the (K3, 2)-Ramsey property has a sharp threshold. Their result may be stated
as follows.

Theorem 5.1. There exists a bounded function ĉ := ĉ(n) such that for any ε > 0,

lim
n→∞P[Gn,p is (K3, 2)-Ramsey] =

{
0 if p < (1− ε)ĉ/

√
n,

1 if p > (1 + ε)ĉ/
√

n.

A close look at this result reveals an unusual feature: though we know that the threshold
is sharp, we do not know exactly where it lies. In principle, the function ĉ(n) could depend
on n and wander up and down between constants c and C. However, we expect that the true
behaviour should be that it tends towards a constant. It would be very interesting to prove
that this is the case. It would also be of great interest to extend Theorem 5.1 to other graphs
and a higher number of colours.
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More recently, Friedgut, Hàn, Person and Schacht [42] proved that there is a sharp thresh-
old for the appearance of k-term arithmetic progressions in every 2-colouring of [n]p. That
is, they showed that the (k, 2)-vdW property has a sharp threshold. Their proof relies in a
fundamental way on the hypergraph containers results discussed throughout this survey.

Theorem 5.2. For every integer k ≥ 3, there exists a bounded function ĉk := ĉk(n) such
that for any ε > 0,

lim
n→∞P[Gn,p is (k, 2)-vdW] =

{
0 if p < (1− ε)ĉkn

−1/(k−1),

1 if p > (1 + ε)ĉkn
−1/(k−1).

It would again be interesting to determine the asymptotic behaviour of ĉk(n) or to extend
this result to a higher number of colours.

5.2. Large subgraph theorems in random graphs. One of the most active areas of re-
search in extremal combinatorics is in finding conditions under which a graph contains cer-
tain large or even spanning sparse subgraphs (see, for example, [83]). It is therefore natural
to ask whether these results also have random analogues.

One of the standard examples in this area is Dirac’s theorem [29], which says that if a
graph on n vertices has minimum degree at least n/2 then it contains a Hamiltonian cycle,
that is, a cycle which meets every vertex. The study of random analogues of Dirac’s theorem
was initiated by Sudakov and Vu [116] and the state of the art is now the following result of
Lee and Sudakov [84].

Theorem 5.3. For any ε > 0, there exists C > 0 such that if p ≥ C logn
n then a.a.s. every

subgraph of Gn,p with minimum degree at least
(
1
2 + ε

)
pn contains a Hamiltonian cycle.

There has also been considerable work on studying random analogues of the bandwidth
theorem of Böttcher, Schacht and Taraz [13]. The bandwidth of a graph G is the smallest b
for which there is an ordering v1, v2, . . . , vn of the vertices of G such that |i− j| ≤ b for all
edges vivj . The theorem then states that for any positive integers r and Δ and any γ > 0,
there exists an integer n0 and β > 0 such that if n ≥ n0 and H is an n-vertex graph with
chromatic number r, maximum degree Δ and bandwidth at most βn, then any graph on n
vertices with minimum degree at least

(
1− 1

r + γ
)
n contains a copy of H .

For the r = 2 case, that is, for bipartiteH , the following random analogue of this theorem
was proved by Böttcher, Kohayakawa and Taraz [12].

Theorem 5.4. For any integer Δ ≥ 2 and any η, γ > 0, there exist positive constants β and
C such that if p ≥ C(log n/n)1/Δ the random graph Gn,p a.a.s. has the following property.
Any subgraph of Gn,p with minimum degree at least

(
1
2 + γ

)
pn contains any bipartite graph

on at most (1− η)n vertices with maximum degree Δ and bandwidth at most βn.

Related results were also proved by Huang, Lee and Sudakov [65]. In particular, they
showed that if H is an r-partite graph on n vertices such that every vertex is contained in a
triangle, then there exist subgraphs of the random graph Gn,p with minimum degree at least(
1− 1

r + γ
)
pn such that at least cp−2 vertices are not contained in a copy of H . That is,

we cannot hope to cover all vertices when considering random analogues of the bandwidth
theorem. However, as suggested by results in [5] and [65], it may still be possible to embed
graphs with as many as n − Cp−2 vertices.
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A celebrated result of Chvátal, Rödl, Szemerédi and Trotter [16] (see also [19, 58]) states
that for any positive integers Δ and r, there exists C > 0 such that if H is any graph with
n vertices and maximum degree Δ, then R(H; r) ≤ Cn. That is, the Ramsey number of
bounded degree graphs grows linearly in the number of vertices. However, one can do even
better.

Given a graph H and a natural number r, we define the size-Ramsey number R̂(H; r)
to be the smallest number of edges in an (H, r)-Ramsey graph. So we are now interested
in minimising the number of edges rather than the number of vertices. A striking result of
Beck [8] says that R̂(Pn; r) ≤ Cn for some C depending only on r. Using random graphs,
Kohayakawa, Rödl, Schacht and Szemerédi [78] recently proved that if H is any graph with
n vertices and maximum degree Δ, then R̂(H; r) ≤ n2− 1

Δ+o(1). That is, the size-Ramsey
number of bounded degree graphs is subquadratic in the number of vertices. Precisely stated,
their main result is the following.

Theorem 5.5. For any integers Δ ≥ 2 and r ≥ 2, there exists C > 0 such that if p ≥
C(logN/N)1/Δ the random graph GN,p with N = Cn a.a.s. has the following property.
Any r-colouring of the edges of Gn,p contains a colour class which contains every graph on
n vertices with maximum degree Δ.

In a forthcoming paper, Allen, Böttcher, Hàn, Kohayakawa and Person [1] prove a sparse
random version of the blow-up lemma. For dense graphs, this result, proved by Komlós,
Sárközy and Szemerédi [80], is a standard tool for embedding spanning subgraphs. Its sparse
counterpart should allow one to reprove many of the results mentioned in this section in a
unified way.

5.3. Combinatorial theorems relative to a pseudorandom set. While this survey has fo-
cused on combinatorial theorems relative to random sets, analogous questions may also be
asked for pseudorandom sets. Much of the work in this direction has focused on the com-
binatorial properties of the class of (p, β)-jumbled graphs. These graphs, introduced by
Thomason [121, 122], have the property that if X and Y are vertex subsets, then

|e(X,Y )− p|X||Y || ≤ β
√
|X||Y |.

As one would expect of a pseudorandom property, the random graph Gn,p is itself (p, β)-
jumbled. In this case, with high probability, we may take β to beO(

√
pn). This is essentially

optimal, that is, there are no (p, β)-jumbled graphs with β = o(
√

pn). An explicit example
of a jumbled graph is the Paley graph. This is the graph with vertex set Zp, where p is a
prime of the form 4k+1, and edge set given by joining x and y if and only if their difference
is a quadratic residue. This graph is again optimally jumbled with p = 1

2 and β = O(
√

n).
For many more examples, we refer the reader to the survey [82].

For (p, β)-jumbled graphs, one is usually interested in questions of the following form:
given a graph property P , an integer n and a density p, for what values of β is it the case
that a (p, β)-jumbled graph on n vertices satisfies P? To give an example, for any integer
t ≥ 3, there exists c > 0 such that if β ≤ cpt−1n then any (p, β)-jumbled graph on n
vertices contains a copy of Kt. For t = 3, this condition is known to be tight, as shown by
an example of Alon [2].

Very recently, a general method for transferring combinatorial theorems to pseudoran-
dom graphs was found by Fox, Zhao and the author [20]. Though we will not attempt an
exhaustive survey, the following sample result is representative.
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Theorem 5.6. For any integer t and any ε > 0, there exist positive constants δ and c such
that if β ≤ cptn then any (p, β)-jumbled graph G on n vertices has the following property.
Any subgraph of G containing at most δp(

t
2)nt copies of Kt may be made Kt-free by deleting

at most εpn2 edges.

That is, we have an extension of the removal lemma to subgraphs of pseudorandom
graphs. Although we have only stated this result for cliques, there is also a more general
statement that applies to all graphs. Moreover, with similar conditions on β, it is possible
to prove analogues of many different combinatorial statements. For example, the (Kt, r)-
Ramsey property and (Kt, ε)-Turán property both hold in pseudorandom graphs with β ≤
cptn.

Unfortunately, there is still a gap in these results, even for triangles. For t = 3, The-
orem 5.6 (which in this case was first proved by Kohayakawa, Rödl, Schacht and Skokan
[77]) says that if β ≤ cp3n then the triangle removal lemma holds for subgraphs of a (p, β)-
jumbled graph on n vertices. However, it may well be the case that β ≤ cp2n is sufficient.
If true, Alon’s example would imply that such a result was optimal.

The method of [20] was extended to hypergraphs in [21], under a different type of pseu-
dorandomness hypothesis (though see also [22]). This result was then used to prove a pseu-
dorandom analogue of Szemerédi’s theorem. Such a result was a key ingredient in Green and
Tao’s proof that the primes contain arbitrarily long arithmetic progressions. Their original
result states that if a subset of the integers satisfies two pseudorandomness conditions, the
linear forms condition and the correlation condition, then it is (k, δ)-Szemerédi. Our results
allow one to remove the correlation condition from this statement. Due to space constraints,
we are unable to say more here. However, we refer the reader to [23] for further details.
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The graph regularity method: variants, applica-
tions, and alternative methods

Jacob Fox

Abstract. Szemerédi’s regularity lemma is one of the most powerful tools in graph theory, with many
applications in combinatorics, number theory, discrete geometry, and theoretical computer science.
Roughly speaking, it says that every large graph can be partitioned into a small number of parts such
that the bipartite subgraph between almost all pairs of parts is random-like. Several variants of the
regularity lemma have since been established with many further applications. This survey discusses
recent progress in understanding the quantitative aspects of these lemmas and their applications, as
well as recent progress in developing a sparse regularity method.
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1. Introduction

Much of the world can be described as graphs, consisting of discrete elements (called ver-
tices) with connections between certain pairs of them (called edges). Some examples de-
scribed in the recent book by Lovász [91] include

• The Internet with computers connected by links;

• The World Wide Web with webpages and hyperlinks;

• Social networks like Facebook with users and friendships;

• Chemical networks like imperfect crystals with atoms and chemical bonds;

• Biological networks like the brain with neurons and synapses;

• Engineered networks like integrated circuits with transistors and wires.

Understanding the structure of these graphs can yield critical insights on topics ranging
from the spread of diseases to the properties of complex crystals. However, it is often difficult
to analyze extremely large networks; each of the examples given above has over a billion
vertices. This major practical challenge is related to exciting developments in combinatorics
and theoretical computer science.

While graph theory is an old subject with a history that goes as far back as Euler, an
important modern direction of research is developing mathematical tools for studying very
large graphs. Central to this area is a powerful result of Szemerédi [123] known as the
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regularity lemma. The regularity lemma provides a rough structural description of all large
graphs. It roughly states that the vertices of any graph can be partitioned into a bounded
number of parts such that the edges between almost every pair of parts behaves in a random-
like fashion. This result created a paradigm shift in how we view and study graphs, and it
has become a central tool in discrete mathematics with diverse applications in mathematics
and computer science.

Szemerédi [122] used an early variant of the regularity lemma in his proof of the cele-
brated Erdős-Turán conjecture (now known as Szemerédi’s theorem) that every subset of the
integers of positive upper density contains arbitrarily long arithmetic progressions. The reg-
ularity lemma (see the surveys [83], [105], [106]) has since become a central tool in extremal
combinatorics, with many applications in number theory, graph theory, theoretical computer
science, and discrete geometry.

The regularity lemma requires a few definitions to properly state it. For vertex subsets
X,Y of a graph G, e(X,Y ) denotes the number of pairs in X × Y that are edges, and the
density d(X,Y ) = e(X,Y )

|X||Y | is the proportion of pairs in X × Y that are edges. A pair of
vertex subsets X,Y is ε-regular if for all X ′ ⊂ X and Y ′ ⊂ Y with |X ′| ≥ ε|X| and
|Y ′| ≥ ε|Y |, we have |d(X ′, Y ′)− d(X,Y )| < ε. Thus, the edges between an ε-regular pair
with ε small are uniformly distributed across large subsets. Let P : V = V1 ∪ . . . ∪ Vk be
a vertex partition of a graph G = (V,E). The partition P is equitable if |Vi| = *|V |/k+ or
2|V |/k3 for 1 ≤ i ≤ k. The partition P is ε-regular if all but at most εk2 pairs of parts are
ε-regular.

Theorem 1.1 (Szemerédi’s regularity lemma). For each ε > 0 there is K(ε) such that every
graph has an equitable ε-regular partition into at most K(ε) parts.

One major drawback of applying the regularity lemma is that the number of parts K(ε)
is an exponential tower of twos of height polynomial in 1/ε. Unfortunately, this yields weak
and impractical quantitative estimates in its various applications. For almost two decades,
there was hope that the bound could be substantially improved; however, in 1997, Gowers
[61] used a probabilistic construction to show that a tower-type bound is indeed necessary.
This work was called a ‘tour de force’ in the Fields Medal citation for Gowers. Very re-
cently, L. M. Lovász and the author [53] gave a tight lower bound construction for the order
on the tower height in a version of the regularity lemma. The proof reverse engineers Sze-
merédi’s upper bound argument and shows that it is essentially best possible. The proof of
this regularity lemma and the lower bound construction are discussed in the next section.

Due to the weak quantitative bounds given by the regularity lemma, it is quite desirable
to find alternative methods which give better quantitative bounds. We describe one such
method, a powerful probabilistic technique known as dependent random choice, and some
of its many applications in Section 3. In Section 4, we discuss two additional methods, higher
order Fourier analysis and the greedy embedding method. Also in this section we discuss
the quantitative aspects of the graph removal lemma, one of the most important applications
of the regularity lemma, and some of its extensions. In Section 5, we describe a number of
variants of the regularity lemma and their applications. In particular, we describe the sparse
regularity method, which extends many classical results to sparse graphs, and recent work by
Conlon, Zhao, and the author [27] giving a strengthening of the relative Szemerédi theorem,
which simplifies the proof of the Green-Tao theorem [69] that the primes contain arbitrarily
long arithmetic progressions; see the recent exposition of the proof [28]. Unfortunately, due
to space limitations, many exciting developments related to the regularity method such as
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the blow-up lemma and the absorption method are left uncovered.

2. Regularity lemma bounds

We next describe more precisely a version of Szemerédi’s regularity lemma. This version
was first formulated by Lovász and Szegedy [92], and can easily be shown to be equivalent
to the original version of Szemerédi [123]. For a pair of vertex subsets X and Y of a graph
G, let e(X,Y ) be the number of ordered pairs of vertices (x, y) ∈ X × Y that have an edge
between them in the graph. Let d(X,Y ) = e(X,Y )

|X||Y | be the edge density between X and Y .
The irregularity of the pair X,Y is defined to be

irreg(X,Y ) = max
U⊂X,W⊂Y

∣∣e(U,W )− |U ||W |d(X,Y )
∣∣.

This is a value between 0 and |X||Y |. If this is a small fraction of |X||Y |, then the edge dis-
tribution between X and Y is quite uniform, or random-like. The irregularity of a partition
P of the vertex set of G is defined to be

irreg(P) =
∑

X,Y ∈P
irreg(X,Y ).

Szemerédi’s regularity lemma, as stated in [92], is as follows.

Theorem 2.1. For any ε > 0, there is a (least) M(ε) such that any graph G = (V,E) has a
vertex partition into at most M(ε) parts with irregularity at most ε|V |2.

It is easy to show that the two versions of the regularity lemma in Theorem 1.1 and 2.1
are equivalent up to a polynomial change in ε. We present here the standard proof of the
regularity lemma (as in Theorem 2.1). It shows that M(ε) is at most an exponential tower of
twos of height O(ε−2).

The key idea that makes the proof work is to use a density increment argument with the
mean square density. Let G = (V,E) be a graph and let P be a vertex partition into parts
V1, V2, . . . , Vk. The mean square density of the partition P is defined to be

q(P) :=
∑

1≤i,j≤k

q(Vi, Vj),

where q(Vi, Vj) =
|Vi||Vj |
|V |2 d(Vi, Vj)

2. Since the mean square density is a weighted average
of numbers between 0 and 1, every partition P satisfies 0 ≤ q(P) ≤ 1. It follows from the
Cauchy-Schwarz inequality that ifP ′ is a refinement ofP , then q(P ′) ≥ q(P). An important
observation in the proof is that one can obtain a better inequality if P is not ε-regular and P ′
is obtained in a certain way.

For partitions QX and QY of X and Y , let q(QX ,QY ) =
∑

U∈QX ,W∈QY
q(U,W ).

Lemma 2.2. Suppose P is a partition with k parts which is not ε-regular. Then there is a
refinement Q of P with at most k2k+1 parts and q(Q) ≥ q(P) + ε2.

Proof. Let X,Y ∈ P and consider the partitions PXY : X = X0
Y ∪ X1

Y and PY X : Y =
Y 0
X ∪ Y 1

X with
irreg(X,Y ) =

∣∣e(X0
Y , Y 0

X)− d(X,Y )|X0
Y ||Y 0

X |∣∣ .
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Let QX be the partition of X which is the common refinement of all PXY with Y ∈ P , and
Q be the union of theQX with X ∈ P , soQ is a vertex partititon which refines P . As PXY

has two parts for each Y �= X , and PXX gives a partition of X into four parts, we obtain
|QX | ≤ 2k−14 = 2k+1 and |Q| ≤ k2k+1. To complete the proof, we have

q(Q)− q(P) =
∑
X,Y

q(QX ,QY )− q(X,Y )

≥
∑
X,Y

q(PXY , PY X)− q(X,Y )

=
∑
X,Y

∑
U∈PXY ,W∈PY X

|U ||W |
|V |2 (d(U,W )− d(X,Y ))

2

≥
∑
X,Y

|X0
Y ||Y 0

X |
|V |2

(
d(X0

Y , Y 0
X)− d(X,Y )

)2

=
∑
X,Y

1

|X0
Y ||Y 0

X ||V |2 irreg(X,Y )2

≥
∑
X,Y

1

|X||Y ||V |2 irreg(X,Y )2

≥
⎛
⎝∑

X,Y

irreg(X,Y )

|V |2

⎞
⎠

2

,

where the inequalities are either trivial or by the Cauchy-Schwarz inequality.

Proof of Szemerédi’s regularity lemma. By repeatedly applying the above lemma, starting
with the trivial partition P0 = {V } with one part, we obtain a sequence of refinements
P0,P1, . . ., such that, letting ki denote the number of parts of Pi, we have k0 = 1, ki+1 ≤
ki2

ki+1, and q(Pi+1) ≥ q(Pi) + ε2. As the mean square density must lie in [0, 1] and
increments by at least ε2 at each step, this process must stop within ε−2 steps, yielding an
ε-regular partition Pt with t ≤ ε−2 whose number of parts kt is at most a tower of twos of
height ε−2 + O(1), completing the proof of the regularity lemma.

There are a few ways one can improve the constant factor in the above proof. First, note
that any partition refines the trivial partition with one part, which has mean square density
d2, where d = d(V, V ) is the edge density of the graph, and is refined by the partition into
singletons, which has mean square density d. Thus, the interval of possible values for the
mean square density is [d2, d], which has length at most d − d2 ≤ 1/4. This improves the
number of steps by a factor 4 in the above argument, and hence the tower height by a factor
4. A slightly more careful argument as done in [53] shows that the mean square density
actually goes up by at least 4ε2 in each iteration, giving a further factor 4 improvement.

Lower bound construction. We next present a lower bound construction which shows that
the tower height bound in Szemerédi’s regularity lemma as in Theorem 2.1 is tight up to an
absolute constant factor. As the proof that this construction indeed gives the lower bound is
quite long [53], we will only give some broad idea of how the proof goes.

The key idea is to reverse engineer the upper bound construction. A useful lemma of
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Gowers [61] shows that it suffices to construct an edge-weighted graph with weights in [0, 1]
which requires many parts in any ε-regular partition. Here the edge density between two ver-
tex subsets is the sum of the edge weights between the two subsets divided by the product of
the orders of the two parts. Gowers’ lemma follows from constructing an unweighted graph
H from a weighted graph G by taking each pair to be an edge at random with probability
equal to its edge weight, independently of the other pairs. A standard application of Cher-
noff’s inequality and the union bound shows that, with high probability, if n is the number
of vertices, then the number of edges in H and the number of edges in G between every pair
of vertex subsets are within O(n3/2) of each other.

It is convenient to constructG as an edge-weighted balanced bipartite graph with parts V1

and V2. The edge density between V1 and V2 is 1/2. We construct a sequence of equitable
partitions P0, . . . ,Ps of V = V1 ∪ V2 with s = cα−2 and α = Cε, where c is a small
enough positive constant and C is a large enough constant. We start with P0 = {V1, V2}.
For 0 ≤ i < s, the partition Pi+1 is a refinement of Pi for 0 ≤ i ≤ s− 1 with exponentially
more parts. Note that this is quite similar to the sequence of finer partitions constructed in
the proof of Szemerédi’s regularity lemma. For each pair of parts X,Y ∈ Pi with X ∈ V1

and Y ∈ V2, equitably partition X = X1
Y ∪ X2

Y and Y = Y 1
X ∪ Y 2

X uniformly at random
so that each of these parts are the union of parts from Pi+1. We call a pair X,Y ∈ Pi with
X ∈ V1 and Y ∈ V2 active if α ≤ d(X,Y ) ≤ 1− α. For each pair X,Y ∈ Pi with X ∈ V1

and Y ∈ V2, and a, b ∈ {1, 2}, we have d(Xa
Y , Y b

X) = d(X,Y ) if X,Y is not active,
d(Xa

Y , Y b
X) = d(X,Y ) + α if X,Y is active and a = b, and d(Xa

Y , Y b
X) = d(X,Y )− α if

X,Y is active and a �= b.
The main claim of the proof, from which the desired lower bound on the number of parts

easily follows, is that any ε-regular partition P is close to being a refinement of Ps. This
means that almost all vertices are in parts of P which are mostly contained in a part of Ps.
The proof does an amortized counting to show that if a part of P is not mostly contained
in a part of Ps, then it makes a substantial contribution to the irregularity of P . The main
difficulty is to account for the possibility that a small portion of a part in P could break off
at each step i.

3. Dependent random choice

There are many problems in extremal combinatorics and Ramsey theory concerning embed-
ding a small or sparse graph into a dense graph. The regularity lemma is quite helpful for
such applications, but typically gives weak bounds. One alternative idea for obtaining such
an embedding is to first find in a dense graph a large vertex subset U which has the useful
property that all (or almost all) small subsets of U have many common neighbors. Then
one can use this set U and greedily embed the desired subgraph (assuming it is bipartite)
one vertex at a time. An elaboration on this idea can be used if the desired subgraph is not
bipartite.

This approach is based on a simple yet surprisingly powerful technique known as depen-
dent random choice. Early versions of this technique were proved and applied by various
researchers, starting with Gowers [62], Kostochka and Rödl [84], and Sudakov [120]. The
basic technique, which is an example of the probabilistic method (see [3]), can be roughly
described as follows. We pick within a dense graph G a small vertex subset T uniformly
at random. Then the rich set U is simply the set of common neighbors of T . Intuitively,
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if some subset of G has only few common neighbors, it is unlikely that all the members of
the random set T will be chosen among these neighbors. Hence, we do not expect U to
contain any such subset. The survey by Sudakov and the author [58] includes many applica-
tions and variants of this basic technique. In this section, we highlight a few of these many
applications.

3.1. The Ramsey-Turán problem. One of the earliest applications of the regularity method
was an influential result of Szemerédi in Ramsey-Turán theory from 1972. The study of
Ramsey-Turán numbers was introduced by Sós [119] and was motivated by the classical
theorems of Ramsey and Turán and their connections to geometry, analysis, and number
theory; see the nice survey by Simonovits and Sós [117].

Szemerédi’s [121] result states that for every ε > 0 there is δ > 0 such that every graph
on n vertices with at least ( 18+ε)n2 edges contains aK4 or an independent set of size at least
δn. In the other direction, Bollobás and Erdős [10] gave an elegant geometric construction,
utilizing the isoperimetric inequality for the high dimensional sphere, of a K4-free graph on
n vertices with independence number o(n) and ( 18 − o(1))n2 edges. Roughly speaking, the
Bollobás-Erdős graph consists of two disjoint copies of a discretized Borsuk graph, which
connect nearly antipodal points on a high dimensional sphere. The bipartite graph between
the two disjoint copies is dense and connects points between the two spheres which are close
to each other.

Starting with Bollobás and Erdős [10] in 1976, various problems have been asked on
estimating the minimum possible independence number of a K4-free graph in the critical
window, when the number of edges is about n2

8 . These problems were recently solved by
Loh, Zhao, and the author [52]. We next summarize these results.

Sudakov [120] in 2003 used dependent random choice to show that any K4-free graph
with independence number ne−ω(

√
logn) has only o(n2) edges. Indeed, using dependent ran-

dom choice, in any dense graph, one can find a subset U of α := ne−O(
√
logn) vertices such

that every pair of vertices in U has at least α common neighbors. Either U is an independent
set, or U contains an edge e. The vertices of e have at least α common neighbors, which
either forms an independent set or contains an edge e′, in which case the vertices of e and e′

form a K4. In any case, we get an independent set of order α or a K4. This bound on the
independence number is shown in [52] to be close to best possible. Utilizing the Bollobás-
Erdős construction, it is shown that if α = ne−o((logn/ log logn)1/2), then there is a graph
on n vertices with ( 18 − o(1))n2 edges and independence number at most α. This example
shows that dependent random choice gives a close to optimal bound for this problem.

It is shown in [52] using a new variant of the dependent random choice technique that
there are constants c, c′ > 0 such that every K4-free graph on n vertices with n2/8 edges
has independence number at least cn log log n/ log n, and a construction gives an example
with independence number at most c′n(log log n)3/2/(log n)1/2.

Finally, a new proof of the Ramsey-Turán result of Szemerédi is given in [52] avoiding
all use of regularity which gives the correct quantitative dependence. It is shown that for
(log log n)3/2/(log n)1/2 5 δ < δ0, every K4-free graph on n vertices with independence
number at most δn has at most ( 18 +

3
2δ)n

2 edges, and a construction is given with ( 18 +( 13 −
o(1))δ)n2 edges.

3.2. The Balog-Szemerédi-Gowers lemma. Gowers gave an early application of depen-
dent random choice in his new proof [62] of Szemerédi’s theorem on arithmetic progressions
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in dense subsets of the integers. One of the important innovations which Gowers introduced
in this work is to use dependent random choice to give much better quantitative bounds for
a result of Balog and Szemerédi, whose original proof was based on the regularity lemma.
The Balog-Szemerédi-Gowers lemma now has many applications and is one of the most
important tools in additive combinatorics.

Let A and B be two sets of integers. The sumset A + B = {a + b : a ∈ A, b ∈ B}. For
a bipartite graph G with parts A and B and edge set E, define the partial sumset A+G B =
{a + b : (a, b) ∈ E}. The Balog-Szemerédi lemma states that if |A| = |B| = n and
G has cn2 edges and |A +G B| ≤ Cn, then one can find A′ ⊂ A and B′ ⊂ B with
|A′|, |B′| ≥ c′n and |A′ + B′| ≤ C ′n, where c′ and C ′ depend only on c and C. Due to the
use of the regularity lemma, the original proof of the Balog-Szemerédi gave a weak bound
on the parameters. Gowers’ proof gives a much better bound, showing that 1/c′ and C ′ can
be bounded by a constant degree polynomial in 1/c and C. See the survey by Sudakov and
the author [58] for the proof and further discussion.

3.3. Sidorenko’s conjecture. Up to this point, we have discussed applications of depen-
dent random choice where we improve quantitative estimates on results for which the reg-
ularity lemma was originally used. We will now discuss further advances which would not
have been possible without the advent of this new method.

A homomorphism from a graph H to a graph G is a mapping f : V (H) → V (G) such
that (f(u), f(v)) is an edge of G for each edge (u, v) of H . The homomorphism density
tH(G) is the fraction of mappings f : V (H) → V (G) which are homomorphisms.

A fundamental problem in extremal graph theory asks: how small can tH(G) be for a
graph given that the edge density tK2(G) of G is p? By taking G to be a random graph with
edge density p, we obtain the upper bound of pm for this problem. The beautiful conjectures
of Erdős and Simonovits [116] and Sidorenko [114] suggest that this bound is sharp for
bipartite graphs. That is, for any bipartite H there is a γ(H) > 0 such that the number of
copies of H in any graph G on N vertices with edge density p > N−γ(H) is asymptotically
at least the same as in the N -vertex random graph with edge density p. More succintly, for
every graph H with m edges, tH(G) ≥ tK2(G)m. Sidorenko observed that this conjecture
has the following equivalent analytic form.

Let μ be the Lebesgue measure on [0, 1] and let h(x, y) be a bounded, non-negative,
symmetric and measurable function on [0, 1]2. Let H be a bipartite graph with vertices
u1, . . . , ut in the first part and vertices v1, . . . , vs in the second part. LetE be the set of pairs
(i, j) for which (ui, vj) is an edge of H , and m = |E|. The analytic form of Sidorenko’s
conjecture states that ∫ ∏

(i,j)∈E
h(xi, yj)dμ

t+s ≥
(∫

hdμ2

)m

.

The expression on the left hand side of this inequality is quite common. For example, Feyn-
man integrals in quantum field theory, Mayer integrals in statistical mechanics, and multicen-
ter integrals in quantum chemistry are of this form (see Section 6 of [115] and its references).
Naturally, Sidorenko’s conjecture has connections to a range of topics, such as matrix the-
ory [5, 8], Markov chains [7, 98], graph limits [90], and quasirandomness. Until a few years
ago, Sidorenko’s conjecture was known to hold in a few very special cases, e.g., for complete
bipartite graphs, trees, even cycles (see [114]) and for cubes [75].

The study of quasirandom graphs was introduced by Thomason [126] and Chung, Gra-
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ham, and Wilson [16]. They showed that a large number of interesting graph properties
satisfied by random graphs are all equivalent. This idea has been quite influential, leading
to the study of quasirandomness in other structures such as hypergraphs [14, 64], groups
[65], tournaments, permutations, sequences and sparse graphs (see [15] and it references),
and progress on problems in different areas (see, e.g., [18, 64, 65]). It is closely related to
Szemerédi’s regularity lemma and its recent hypergraph generalization and all proofs of Sze-
merédi’s theorem use some notion of quasirandomness. Finally, there is also the fast-growing
study of properties of quasirandom graphs, which has recently attracted lots of attention both
in combinatorics and theoretical computer science (see, e.g., [88]).

A sequence (Gn : n = 1, 2, . . .) of graphs is called quasirandom with density p (where
0 < p < 1) if, for every graph H ,

tH(Gn) = p|E(H)| + o(1). (3.1)

This property is equivalent to many other properties shared by random graphs. One such
property is that the edge density in any vertex subset of linear cardinality is p + o(1). A
surprising fact, proved in [16], is that it is enough that (3.1) holds for H = K2 and H = C4

for a graph to be quasirandom. That is, a graph with edge density p is quasirandom with
density p if the C4-density is approximately p4. A question of Chung, Graham, and Wilson
[16] which has received considerable attention (see, e.g., [9]) asks for which graphs H is
it true that if (3.1) holds for K2 and H , then the sequence is quasi-random with density p.
Such a graph H is called p-forcing. The graph H is forcing if it is p-forcing for all p. Chung,
Graham, and Wilson prove that even cycles C2t and complete bipartite graphs K2,t with
t ≥ 2 are forcing. Skokan and Thoma [118] generalize this result to all complete bipartite
graphs Ka,b with a, b ≥ 2.

It is not difficult to show that a forcing graph must be bipartite and have at least one
cycle. Skokan and Thoma [118] ask whether these properties characterize the forcing graphs.
Conlon, Sudakov, and the author conjecture that the answer is yes and call it the forcing
conjecture.

Conjecture 3.1. A graph H is forcing if and only if it is bipartite and contains a cycle.

It is not hard to show that the forcing conjecture is stronger than Sidorenko’s conjecture.
Using dependent random choice, Conlon, Sudakov, and the author [22] proved

Sidorenko’s conjecture for a large class of bipartite graphs. The result states that Sidorenko’s
conjecture holds for any bipartite graph which has a vertex which is complete to the other
part. From this result, an approximate version of Sidorenko’s conjecture holds for all graphs.
Further, they prove the forcing conjecture for any bipartite graph which has two vertices in
one part complete to the other part. Extensions of these results to larger families of graphs
were obtained recently by Li and Szegedy using an alternative approach [89], and by Kim,
Lee, and Lee [77].

3.4. Conjectures of Hajós and Erdős-Fajtlowicz. A subdivision of a graph H is any
graph formed by replacing edges of H by internally vertex disjoint paths. This is an impor-
tant notion in graph theory, e.g., the celebrated theorem of Kuratowski uses it to characterize
planar graphs. For a graphG, σ(G) is the largest integer p such thatG contains a subdivision
of a complete graph of order p. Further, χ(G) is the chromatic number of G, and ω(G) is
the clique number of G.

Since the vertices of a clique must receive different colors in a proper coloring, we have
χ(G) ≥ ω(G). A famous conjecture of Hajós from 1961 gives a partial converse to this
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fact. It states that σ(G) ≥ χ(G). That is, every graph of chromatic number k contains a
subdivision of Kk. Dirac [34] proved that this conjecture is true for k ≤ 4, but in 1979,
Catlin [12] disproved the conjecture for k ≥ 7. By considering a random graph on n ver-
tices, Erdős and Fajtlowicz [40] in 1981 further showed that the conjecture actually fails
(and quite strongly) for almost all graphs. They proved that almost all graphs on n ver-
tices satisfy χ(G) = Θ(n/ log n) while σ(G) = Θ(n1/2). Let H(n) denote the maximum
of χ(G)/σ(G) over all n-vertex graphs G. While the Hajós conjecture is equivalent to
H(n) = 1 for all n, the Erdős-Fajtlowicz result shows that H(n) ≥ cn1/2/ log n for some
absolute constant c > 0. Erdős and Fajtlowicz further conjectured that the random graph
is essentially the strongest possible counterexample to the Hajós conjecture in that there is
an absolute constant C such that H(n) ≤ Cn1/2/ log n for all n. Erdős [39] featured this
conjecture in his paper ‘On the combinatorial problems I would most like to see solved.’

The Erdős-Fajtlowicz conjecture was recently proved by Lee, Sudakov, and the author
[50]. The proof uses dependent random choice together with several additional tools from
extremal graph theory. Dependent random choice is used in the argument to find, in a dense
graph G, a large subset U of vertices such that every pair of vertices in U have many paths
of length four where the three internal vertices are in V (G) \ U . The goal is to use this nice
subset to help construct a large clique subdivision, say of size s. We find in U a subset S
of order s with as many edges as possible. The vertices of S are the vertices of the clique
subdivision, the edges in S are used in the clique subdivision, and, using the property of U ,
we greedily connect by paths of length four each nonadjacent pair of vertices in S to obtain
the desired clique subdivision.

3.5. Two extensions of Ramsey’s theorem. The Ramsey number r(k) is the minimum n
such that every two-coloring of the edges of the complete graph Kn contains a monochro-
matic Kk. Ramsey’s theorem [101] states that r(k) exists for all k. Classical results of
Erdős and Szekeres [45] and Erdős [37] demonstrate that 2k/2 ≤ r(k) ≤ 22k for k ≥ 2.
Over the last seven decades, there have been many attempts and several improvements on
these bounds (see, e.g., [18]). However, the constant factors in the above exponents have
remained unchanged.

The field has naturally stretched in different directions. One such direction is to try to
strengthen Ramsey’s theorem and guarantee the existence of a monochromatic clique that
has some additional structure.

Erdős was interested in the distribution of monochromatic cliques in edge-colorings, and
considered the following variant of Ramsey’s theorem. For a finite set S of integers greater
than one, define its weight w(S) :=

∑
s∈S

1
log s . For a two-edge-coloring of the complete

graph on [2, n] = {2, . . . , n}, let f(c) be the maximum weight w(S) over all sets S ⊂ [2, n]
which form a monochromatic clique in coloring c. For each integer n ≥ 2, let f(n) be the
minimum of f(c) over all two-edge-colorings c of the complete graph on [2, n]. Note that
simply applying r(k) ≤ 22k yields only f(n) ≥ logn

2
1

logn = 1
2 .

In his 1981 paper ‘On the combinatorial problems I would most like to see solved’,
Erdős [39] conjectured that f(n) tends to infinity, and further asked for an accurate estimate
of f(n). Rödl [104] verified this conjecture, showing that f(n) = Ω( log log log logn

log log log log logn ). In
the other direction, a uniform random coloring shows that f(n) = O(log log n). Rödl [104]
further improved this to f(n) = O(log log log n). Nevertheless, an exponential gap between
the lower and upper bound remained. Recently, Conlon, Sudakov, and the author [25] proved
that f(n) = Θ(log log log n). Dependent random choice is an essential ingredient in the
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proof.
We next describe Rödl’s coloring which shows that f(n) = O(log log log n). Partition

[2, n] into t ≈ log log n intervals, where the ith interval is [22
i−1

, 22
i

). Two-color the edges
within the ith interval so that it contains no monochromatic clique of order 2i+1. This can
be done using the fact that the Ramsey number satisfies r(k) ≥ 2k/2. Thus, the maximum
weight of a monochromatic clique within the ith interval is at most 2i+1 1

log 22i−1 = 4. There
is a two-coloring of the edges of Kt with no monochromatic clique of order 2 log t. Color
the edges of the complete bipartite graph between interval i and interval j by the color of
the edge (i, j) in this coloring. We obtain a two-edge-coloring of the complete graph on
[2, n] such that any monochromatic clique in this coloring has nonempty intersection with
less than 2 log t intervals. Since each interval can contribute weight at most 4 to such a
monochromatic clique, the weight of any monochromatic clique in this coloring is at most
4 · 2 log t = O(log log log n).

In [25], we also used dependent random choice to give an exponential improvement
on another well-studied problem in this area. Motivated by a problem in model theory,
Väänänen asked whether, for any positive integers k and q and any permutation π of [k−1] =
{1, . . . , k − 1}, there is a positive integer R such that any q-coloring of the edges of the
complete graph on R vertices contains a monochromatic Kk with vertices a1 < . . . < ak
such that the consecutive differences a2−a1, a3−a2, . . . , ak−ak−1 satisfy the same ordering
as π. That is, we want a monochromatic clique whose differences between consecutive
vertices satisfies a prescribed ordering. The least such positive integer R which works for k,
q and all (k − 1)-permutations π is denoted by R(k; q).

Väänänen’s question was popularized by Joel Spencer and answered in the positive by
Alon and independently by Erdős, Hajnal, and Pach [42]. Alon’s proof (see [97]) uses the
Gallai-Witt theorem and gives a weak bound on R(k; q). The proof by Erdős, Hajnal, and
Pach uses a compactness argument and gives no bound on R(k; q). Later, Alon, Shelah
and Stacey all independently found proofs giving tower-type bounds for R(k; q). A natural
conjecture, made by Alon (see [113]), is that R(k; q) should grow exponentially in k. For
monotone sequences, this was confirmed by Alon and Spencer. A breakthrough on this
problem was obtained by Shelah [113], who proved the double-exponential upper bound
R(k; q) ≤ 2(q(k+1)3)qk .

Conlon, Sudakov, and the author [25] use dependent random choice to show that
R(k; q) ≤ 2k

20q

. Thus, for fixed q, R(k; q) grows as a single exponential in a power of
k.

3.6. Erdős-Hajnal conjecture. A graph H is an induced subgraph of a graph G if there is
a one-to-one mapping f : V (H) → V (G) such that every edge of H maps to an edge of G,
and every nonadjacent pair of vertices in H maps to a nonadjacent pair of vertices in G. A
graph is H-free if it does not contain H as an induced subgraph. A basic property of large
random graphs is that they almost surely contain any fixed graph H as an induced subgraph.
Conversely, there is a general belief that H-free graphs are highly structured. For example,
one of the most famous problems in graph theory, the Erdős-Hajnal conjecture [41], is of
this sort. It states that every H-free graph on n vertices contains a homogeneous set (i.e., a
clique or independent set) of size at least nc(H), where c(H) > 0 depends only on H . Erdős
and Hajnal proved that such a graph has a homogeneous set of order 2c(H)

√
logn. This is in

striking contrast to general graphs on n vertices where one cannot guarantee a homogeneous
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set of size larger than logarithmic in n.
The Erdős-Hajnal conjecture has only been solved for a few specific graphs H; see the

recent survey by Chudnovsky [13]. An interesting partial result for the general case was
obtained by Erdős, Hajnal, and Pach [43]. They show that every H-free graph G with n ≥ 2
vertices or its complement Ḡ contains a complete bipartite graph with parts of size nc(H).
Sudakov and the author obtained [56] a strengthening of this result which brings it closer
to the Erdős-Hajnal conjecture. This result states that any H-free graph on n ≥ 2 vertices
contains a complete bipartite graph with parts of size nc(H) or an independent set of size
nc(H).

To get a better understanding of the properties of H-free graphs, it is also natural to
ask for an asymmetric version of the Erdős-Hajnal result. In [56] we show that there
exists c(H) > 0 such that for any H-free graph G on n vertices and n1, n2 satisfying
(log n1)(log n2) ≤ c(H) log n, G contains a clique of size n1 or an independent set of size
n2. The proof of both of the above mentioned results from [56] utilize dependent random
choice, while the previous techniques are not strong enough to obtain these results.

Using Szemerédi’s regularity lemma, Rödl [103] proved the following Ramsey-type re-
sult for forbidden induced subgraphs. For each ε > 0 and graph H there is δ = δ(ε,H) > 0
such that every H-free graph on n vertices contains an induced subgraph with at least δn
vertices and edge density at most ε or at least 1 − ε. The use of the regularity lemma leads
to a weak estimate on δ. Sudakov and the author [55] proved a better bound, showing that
we can take δ = 2−c(H)(log 1/ε)2 . The proof uses the greedy embedding method discussed
in Subsection 4.2. The following corollary of this result and a result of Erdős and Szemerédi
[46] is also obtained in [55]. Every H-free graph on n vertices contains a homogeneous set
of order c12c2

√
(logn)/|H| log n. In addition to implying the Erdős-Hajnal bound, it also im-

plies a result of Prömel and Rödl [100] which shows that either a graph contains an unusually
large homogeneous set, or it contains all graphs up to logarithmic size as induced subgraphs.
Precisely, it says that for each C there is c > 0 such that every graph on n vertices contains
as an induced subgraph every graph on at most c log n vertices or contains a homogeneous
set of order C log n.

Sudakov and the author [55] have made the following conjecture which states that we
may take δ = εc(H) in Rödl’s result and would imply the Erdős-Hajnal conjecture.

Conjecture 3.2. For each ε > 0, every H-free graph on n vertices contains an induced
subgraph on εc(H)n vertices with edge density at most ε or at least 1− ε.

4. Further alternative methods

In the previous section, we discussed dependent random choice as an alternative to the reg-
ularity method. There have also been several quite fruitful alternative methods which have
been developed, which we discuss briefly in this section.

4.1. Higher order Fourier analysis. Szemerédi’s theorem is one of the most famous ap-
plications of the graph regularity method. It states that for each δ > 0 and positive integer
k, there is N(k, δ) such that every subset A ⊂ [N ] with N ≥ N(k, δ) and |A| ≥ δN con-
tains a k-term arithmetic progression. The original proof using the regularity lemma gives
an Ackermann-type bound.
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However, the first proof in the case k = 3 is due to Roth [108] from 1953 and uses Fourier
analysis, giving a much better bound. It is now well-understood that simply using Fourier
analysis is not sufficient to count longer arithmetic progressions. Gowers [63] developed
higher order Fourier analysis in order to give a new proof of Szemerédi’s theorem which
gives a much more reasonable bound, namely

N(k, δ) ≤ 22
δ−22

k+9

.

Higher order Fourier analysis has played a particularly important role in the development
of additive combinatorics, and is used by Green and Tao [69] in their proof that the primes
contain long arithmetic progressions, and in the work of Green, Tao, and Ziegler [70, 72–74]
on linear equations in the primes. For more on higher order Fourier analysis, see the recent
book of Tao [124].

4.2. The greedy embedding method. The Ramsey number r(H) of a graph H is the min-
imum N such that every two-coloring of the edges of the complete graph KN contains a
monochromatic copy of H . As already mentioned, for the complete graph on n vertices, we
have 2n/2 ≤ r(Kn) ≤ 22n. One direction initiated by Burr and Erdős is to study Ramsey
numbers of sparse graphs.

In particular, Burr and Erdős [11] conjectured that for eachΔ there is c(Δ) such that ev-
ery graphH with maximum degreeΔ on n vertices satisfies r(H) ≤ c(Δ)n. This conjecture
was verified by Chvátal, Rödl, Szemerédi and Trotter [17] in one of the early applications
of Szemerédi’s regularity lemma. Hence, the Ramsey number of graphs of fixed maximum
degree grow only linearly in the number of vertices. Unfortunately, because it uses the
regularity lemma, this proof gives a weak upper bound on c(Δ), namely a tower of twos
whose height is exponential inΔ. It has since been an interesting challenge to determine the
growth of c(Δ). Eaton [36], using a weak regularity lemma (see Subsection 5.1), improved
the bound on c(Δ) to double-exponential.

Shortly after, Graham, Rödl and Ruciński [66] proved, by a beautiful method which
avoids any use of the regularity lemma, that there exists a constant c for which c(Δ) ≤
2cΔ(logΔ)2 . For bipartite graphs, they [67] improved this bound by removing one logarithmic
factor in the exponent. They also proved that there are bipartite graphs with n vertices and
maximum degree Δ for which the Ramsey number is at least 2c

′Δn.
Using dependent random choice, Conlon [19], and, independently, Sudakov and the au-

thor [56] have shown how to remove the logarithmic factor in the exponent for bipartite
graphs. More recently, Conlon, Sudakov, and the author [23] extended the greedy embedding
method of Graham, Rödl, and Ruciński [66] and improved the bound on c(Δ) to 2cΔ logΔ.

Using the hypergraph regularity method, it is shown in [30, 31, 95] that for each k and
Δ, there is c(Δ, k) such that every k-uniform hypergraph on n vertices has Ramsey number
at most c(Δ, k)n. This yields Ackermann-type bounds on c(Δ, k). Extending the dependent
random choice technique to hypergraphs, Conlon, Sudakov, and the author [23] proved that
c(Δ, 3) ≤ 22

cΔ log Δ

, and, for k ≥ 4, c(Δ, k) is at most a tower of height k − 1 in Δ, which
is essentially best possible.

Burr and Erdős also made the stronger conjecture that graphs of bounded degeneracy
have linear Ramsey numbers. A graph is d-degenerate if every subgraph of it has minimum
degree at most d. Burr and Erdős conjectured that for each d there is cd such that every
d-degenerate graph H on n vertices has r(H) ≤ cdn. Kostochka and Sudakov [85] proved
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an upper bound of the form r(H) ≤ n1+o(1). The best known bound, due to Sudakov and
the author [57], is of the form r(H) ≤ nec(d)

√
logn. The proofs of these results develop a

variant of dependent random choice.
The techniques developed to estimate Ramsey numbers of sparse graphs have also had

a variety of other applications. We next briefly describe one more such application. The
induced Ramsey number rind(H) is the smallest natural number N for which there is a
graph G on N vertices such that in every two-coloring of the edges of G there is an induced
monochromatic copy of H . The existence of these numbers was independently proven by
Deuber [33], Erdős, Hajnal and Pósa [44] and Rödl [102]. The original proofs give enormous
bounds on rind(H), but it was conjectured by Erdős [38] that the actual values should be
more closer to the ordinary Ramsey numbers. In particular, Erdős conjectured that there
is a constant c such that every graph H on n vertices satisfies rind(H) ≤ 2cn. If true, the
complete graph shows that it would be best possible. Despite progress [24, 55, 56, 80, 93] on
bounding induced Ramsey numbers, this conjecture is still open. The best known bound is
rind(H) ≤ 2cn logn proved by Conlon, Sudakov and the author [24] using the same method
developed in that paper to obtain the best known bound on Ramsey numbers of bounded
degree graphs.

We next sketch the regularity-based proof that every graph H on n vertices of maximum
degreeΔ satisfies r(H) ≤ c(Δ)n. Consider a red-blue edge-coloring of the complete graph
KN , where N = cn with c chosen large enough depending only on Δ. Apply Szemerédi’s
regularity lemma with ε = C−Δ and obtain an equitable ε-regular partition. As all but a
small fraction of the pairs of parts are ε-regular, we can obtain parts V1, . . . , Vr with r being
the Ramsey number r(Δ + 1) such that each pair of parts is ε-regular. Consider the red-
blue edge-coloring of Kr where (i, j) is red if d(Vi, Vj) ≥ 1/2 and blue otherwise. By
Ramsey’s theorem, there areΔ+1 of the parts, lets call them U1, . . . , UΔ+1, such that each
pair (Ui, Uj) with i �= j is ε-regular and has density at least 1/2 in the same color, say red.

Since H has maximum degree Δ, there is a proper coloring χ : V (H) → [Δ + 1]. We
can then find a red copy of H where the embedding f(v) of each vertex v ∈ V (H) is in
Uχ(v). Suppose the vertices of H are {1, . . . , n}. One can greedily find such a red copy one
vertex at a time. After step i, we have already picked out the embedding of the first i vertices,
f(1), . . . , f(i), and we have subsets Vj,i for i < j ≤ n of potential vertices to embed vertex
j given the first i vertices have been embedded. We begin with Vj,0 = Uχ(j) for 1 ≤ j ≤ n.
The size of Vj,i is at least 4−d(j,i)|Uχ(j)| − i, where d(j, i) denotes the number of neighbors
h of j with h ≤ i. Using that d(j, i) ≤ Δ and the pairs of parts are ε-regular with density
at least 1/2, one can pick f(i + 1) from Vi+1,i appropriately so that for j > i + 1, letting
Vj,i+1 = Vj,i \ f(i + 1) with j not a neighbor of i + 1, and Vj,i+1 be the red neighborhood
of j in Vj,i if j is a neighbor of i + 1, we can continue the embedding which completes the
proof.

The approach of Graham, Rödl, and Rucinski [66] has some similarities to the approach
described above, but gets rid of applying regularity. Again, we have a red-blue edge-coloring
of KN . We let Vj,0 = V (KN ) for 1 ≤ j ≤ n. We try to greedily embed a monochromatic
red copy of H . At the end of step i we have already embedded f(1), . . . , f(i), and have
potential sets Vj,i of vertices to embed the future vertices j > i. We would like to keep the
property that |Vj,i| ≥ (8Δ)−dj,iN − i at each step i and every j > i. Note that |Vj,i+1| ≥
|Vj,i| − 1 if j is not a neighbor of i + 1 as f(i + 1) might be in Vj,i. If we can guarantee
that for each edge (i + 1, j) of H with j > i + 1 we have |Vj,i+1| ≥ 1

8Δ |Vj,i|, then we can
guarantee that each Vj,i will be large enough for the above property to hold. If we cannot
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find a vertex for f(i+1) at step i+1 to continue the embedding, the only reason is that there
is A ⊂ Vi+1,i with |A| ≥ 1

Δ |Vi+1,i| and B = Vj,i with j some neighbor of i + 1 such that
the red edge density between A and B is at most 1

8Δ . Thus, the blue edge density between
A and B is at least 1− 1

8Δ .
It would be helpful if instead of having two large subsets with large blue density between

them, we had one large subset U with large blue density inside. We could then greedily
embed a blue copy of H one vertex at a time. To obtain this, it would suffice to find 4Δ sets
of equal size for which blue is very dense between them, and let U be the union of these
sets. However, one can iterate the above argument within each subset to either obtain a red
copy of H or a pair of large subsets with blue density at least 1 − 1

8Δ between them. This
iteration loses roughly a factorΔ−Δ at each step in the size of the subsets. At each iteration,
we double the number of subsets, so we will be done in roughly log 4Δ iterations, leading
to the bound c(Δ) ≤ 2cΔ(logΔ)2 . A simple way to do this iteration process is done in [55],
leading to many further applications.

Note the asymmetry between the two colors in the above approach. We either find a
large set for which all pairs of large subsets have at least some constant density between
them in red, or there is a large subset which is almost complete in blue. In either case, we
can greedily embed a monochromatic copy of H .

In [24], Conlon, Sudakov, and the author develop an approach which is symmetric be-
tween the two colors and improves the bound on c(Δ) by removing one of the two logarith-
mic factors in the exponent.

4.3. Graph removal lemmas. The graph removal lemma is one of the most influential
applications of the regularity lemma; see the survey by Conlon and the author [21]. It says
that for each ε > 0 and graph H on h vertices there is δ = δ(ε,H) > 0 such that from every
graph on n vertices with at most δnh copies of H one can delete εn2 edges and remove
all copies of H . The graph removal lemma has many applications to extremal problems for
graphs and hypergraphs, additive combinatorics, discrete geometry, and theoretical computer
science. The only known proof used the regularity lemma, leading to weak bounds for the
graph removal lemma and its applications. Hence, finding a proof which yields better bounds
by avoiding the regularity lemma was a problem of considerable interest and was reiterated
by several authors, including Alon, Erdős, Gowers, and Tao.

The author gave a new proof of the graph removal lemma in [47] which gives a bound on
1/δ which is a tower of twos of height logarithmic in 1/ε. See also [21] for a shorter proof.
For comparison, any proof using Szemerédi’s regularity lemma would result in a bound
which is a tower of twos of height polynomial in 1/ε. However, there is still a very large
gap between our new upper bound for 1/δ and the best known lower bound, which is still
slightly superpolynomial in 1/ε and based on using the best known lower bound for Roth’s
theorem. A dramatic improvement of the upper bound would have major consequences in
number theory, extremal combinatorics, and computer science, and closing the gap remains
an exciting problem.

In certain potential applications of the regularity lemma, it would be helpful if all pairs
of parts are ε-regular. This is impossible, as the half graph is a simple example in which each
equitable partition into k parts yieldsΩ(k) irregular pairs. Gowers [61] posed the problem of
determining the number of irregular pairs in the regularity lemma. This problem was solved
by Conlon and the author [20], showing that there is an absolute constant ε > 0 such that for
each k there is a graph which requires Ω(k2/ log∗ k) irregular pairs (i.e., not ε-regular) in
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every equitable partition into k parts. Here log∗ is the iterated logarithm function. The proof
of the regularity lemma shows that this bound on the number of irregular pairs is tight up to
the constant factor.

The induced graph removal lemma is a result for which one cannot simply apply Sze-
merédi’s regularity lemma due to the possibility of irregular pairs. This result states that for
each ε > 0 and graph H on h vertices, there is δ′ = δ′(ε,H) such that every graph on n
vertices with at most δ′nh induced copies of H can be made induced H-free by adding or
deleting at most εn2 edges.

To get around the issue of irregular pairs, Alon, Fischer, Krivelevich, and Szegedy [1]
developed the strong regularity lemma, see Subsection 5.2. This gives a wowzer-type bound,
which is one level higher in the Ackermann hierarchy then the tower function, on 1/δ as a
function of 1/ε. As discussed in Subsection 5.2, such a wowzer bound is indeed necessary
for the strong regularity lemma. Addressing a question of Alon on improving this bound,
Conlon and the author [20] found a new proof of the induced graph removal lemma which
avoids using the strong regularity lemma and gives a tower-type bound. The induced graph
removal lemma was extended to the infinite induced removal lemma by Alon and Shapira
[4], giving a very general result in graph property testing that natural properties are testable.
The wowzer-type bounds were improved to tower-type in these results in graph property
testing by Conlon and the author, see [21].

5. Variants of the regularity lemma

In this section, we describe several variants of the regularity lemma and their applications.

5.1. Weak regularity lemmas. In an effort to obtain better bounds in applications, several
weak regularity lemmas have been established which are sufficient for certain applications
of the regularity method. These typically have single-exponential-type bounds as opposed
to the tower-type bound in Szemerédi’s regularity lemma, but have the drawback that they
have fewer applications.

The most well-known of the weak regularity lemmas is the Frieze-Kannan regularity
lemma [59]. It states that for each ε > 0 there is k(ε) such that every graph G has a vertex
partition V (G) = V1 ∪ . . . ∪ Vk into k ≤ k(ε) parts such that∣∣∣∣∣∣e(X,Y )−

∑
1≤i,j≤k

d(Vi, Vj)|X ∩ Vi||Y ∩ Vj |
∣∣∣∣∣∣ ≤ ε|V |2.

Unlike Szemerédi’s regularity lemma, the Frieze-Kannan regularity lemma does not give
us control on the edge density between subsets of parts, but only between large vertex sub-
sets of the graph. However, the Frieze-Kannan regularity lemma is still sufficient for some
applications, and the proof gives a bound of k(ε) = 2O(ε−2). It follows a similar iterative
procedure as done in the proof of Szemerédi’s regularity lemma discussed in Section 2, with
the mean square density increasing by Ω(ε−2) at each step. The gain comes from the fact
that the number of parts is at most a factor four in each step, as opposed to exponentiating the
number of parts in each step as in the proof of Szemerédi’s regularity lemma. Answering a
question of Lovász and Szegedy [92], Conlon and the author [20] gave a construction show-
ing that k(ε) = 2Ω(ε−2). The proof reverse engineers the upper bound proof and has some
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similarities to the lower bound construction for the regularity lemma discussed in Section 2.
Another regularity lemma, known as the cylinder regularity lemma, was developed by

Duke, Lefmann, Rödl [35]. A k-cylinder is a product of k vertex subsets. They show
that for any k-partite graph with parts V1, . . . , Vk, one can partition the complete cylinder
V1 × . . .×Vk into at most 2O(ε−5k2) subcylinders so that all but an ε-fraction of the k-tuples
are in subcylinders U1 × · · · × Uk for which each pair (Ui, Uj) is ε-regular. They use this
lemma to show that for each graph H on k vertices, one can determine the number of copies
of H in a graph on n vertices to within an additive approximation of εnk in running time
2(k/ε)

O(1)

nO(1). The running time was recently improved by Grinshpun, Lovász, Zhao, and
the author [48] to ε−O(k2)n2 using an algorithmic cut norm decomposition version of the
Frieze-Kannan weak regularity lemma [32].

For some applications of the regularity lemma, it suffices to find just a single ε-regular
pair, or even a pair of subsets in which each pair of large subsets have some lower bound
on the density. The bounds on the size of such a pair was determined by Peng, Rödl, and
Ruciński [99]. In other applications, it is sufficient to find a k-tuple of subsets which are pair-
wise regular, such a k-tuple can be found using the Duke-Lefmann-Rödl cylinder regularity
lemma discussed above.

The earliest weak regularity lemma was established by Szemerédi and was used in his
proof of Szemerédi’s theorem [122]. It states that for each ε there is �(ε) such that for every
bipartite graph with parts U and V , there is a partition U = U1 . . .∪. . . Uk, such that for each
Ui, there is a partition of V = Vi1 ∪ . . . ∪ Vi
i such that every pair (Ui, Vij) with 1 ≤ i ≤ k
and 1 ≤ j ≤ �i is ε-regular, where k, �i ≤ �(ε).

5.2. Strong regularity lemma. Alon, Fischer, Krivelevich, and Szegedy [1] developed the
strong regularity lemma in order to prove some results that do not follow from directly
applying Szemerédi’s regularity lemma. The strong regularity lemma is proved by repeated
application of Szemerédi’s regularity lemma and yields wowzer-type bounds on the number
of parts.

The strong regularity lemma states that for each ε > 0 and function f : N → (0, 1),
there is M = M(ε, f) such that every graph G has an equitable partition P and an equitable
refinement Q of P with at most M parts such that Q is f(|P |)-regular and mean square
densities of P and Q are within ε of each other, i.e., q(Q) ≤ q(P ) + ε. This last condition
essentially says that the edge density between almost all pairs of parts of Q is close to the
edge density between the pair of parts of P that they lie in. In [1] they use the strong
regularity lemma to prove the induced graph removal lemma. Later, the strong regularity
lemma was instrumental in proving very general results stating that natural graph properties
are testable; see Subsection 4.3.

Due to the iterated application of the regularity lemma, the number of parts in the strong
regularity lemma is of wowzer-type, which is one level higher in the Ackermann hierarchy
than the tower function. Conlon and the author [20] and independently Kalyanasundaram
and Shapira [76] proved that a wowzer-type bound is indeed necessary.

5.3. Hypergraph regularity method. The regularity method was extended to hypergraphs
by Gowers [64] and independently by Nagle, Rödl, Schacht, Skokan [96, 107]. As a con-
sequence, they proved the hypergraph removal lemma. It states that for each k-uniform
hypergraph H on h vertices, every k-uniform hypergraph on n vertices with o(nh) copies
of H can be made H-free by removing o(nk) edges. Szemerédi’s theorem and its mult-
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dimensional generalization by Furstenberg and Katznelson quickly follow from this result.
Many applications of the graph regularity lemma have now been extended to k-uniform hy-
pergraphs by applying the hypergraph regularity method, see [105].

5.4. Sparse regularity method and the primes. Some of the most exciting theoretical and
practical problems involve sparse graphs. However, one of the limitations of Szemerédi’s
regularity lemma is that it is only meaningful for dense graphs. In the 1990s, Kohayakawa
and Rödl (see [60, 78, 111]) proved an analogue of Szemerédi’s regularity lemma for sparse
graphs as part of a general program toward extending extremal results to sparse graphs.

The recent version of Scott [111] removes the assumption that there are no “dense spots”.
We next give its statement. In a graph with edge density p, a pair of subsets X,Y is (ε)-
regular if, for all X ′ ⊂ X and Y ′ ⊂ Y with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |, we have
|d(X ′, Y ′) − d(X,Y )| < εp. Note that the additional p factor gives a tighter regularity
condition than the usual condition for sparse graphs. A partition of the vertex set is (ε)-
regular if all but an ε-fraction of the pairs of parts are (ε)-regular. The sparse regularity
lemma then says that for each ε > 0 there is M = M(ε) such that every graph has an
(ε)-regular partition into at most M parts. The proof is similar to the usual proof of the
regularity lemma. The key difference is to use a different density function to increment.
Instead of using the mean square density, it uses the mean f -density, where f is a convex
function satisfying f(x) = x2 for x ≤ C, and f(x) is linear for x > C.

Many of the key applications of Szemerédi’s regularity lemma use an associated count-
ing lemma, which shows that the count of every small subgraph across parts is close to what
is expected if the edges go across pairs which are regular. In order to prove extensions of ap-
plications of the regularity method which applies to sparse graphs, it remained a well-known
open problem to prove a counting lemma in sparse graphs. For general graphs, counterexam-
ples are known. In random graphs, proving such an embedding lemma is a famous problem,
known as the KŁR conjecture [79], which has only been resolved very recently [6, 29, 110].

Establishing an analogous result in pseudorandom graphs has been a central problem in
this area. Roughly, a graph is pseudorandom if it satisfies certain properties that a random
graph of the same density typically satisfies. Certain partial results are known in this case
[81, 82], but it has remained an open problem to prove a counting lemma for embedding a
general fixed subgraph. This problem was recently resolved by Conlon, Zhao, and the author
[26]. As a consequence, many classical results in extremal combinatorics are extended to
sparse pseudorandom graphs.

For example, we have the following sparse graph removal lemma. The following is a
standard notion of pseudorandomness in graphs. A graph Γ is (p, β)-jumbled if for all vertex
subsets X,Y , we have |e(X,Y )− p|X||Y || ≤ β

√|X||Y |.
Theorem 5.1. [26] For each ε > 0, there is c > 0 and δ > 0 such that if β ≤ cpt+1n,
then any (p, β)-jumbled graph Γ has the following property. Any subgraph of Γ containing
at most δp(

t
2)nt copies of Kt can be made Kt-free by removing at most εpn2 edges.

The celebrated Green-Tao theorem [69] states that the primes contain arbitrarily long
arithmetic progressions. The proof of the Green-Tao theorem has two steps. The first step
is establishing a relative Szemerédi theorem, which states that any relatively dense subset of
a pseudorandom set of integers must contain arbitrarily long arithmetic progressions. The
second part is finding a pseudorandom set of “almost primes” which contains, but is not
much larger than, the primes. The research on the sparse counting lemma led Conlon, Zhao,
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and the author [27] to prove a new relative Szemerédi theorem that requires a substantially
weaker pseudorandomness condition. The proof develops the regularity method for sparse
hypergraphs. This simplifies the proof of the Green-Tao theorem, see [28] for a recent expo-
sition of the proof.

5.5. Arithmetic regularity lemma. Green [68] proved an arithmetic regularity lemma, and
deduced the following arithmetic removal lemma. For each ε > 0 and integer m ≥ 3, there
is δ > 0 such that if G is an abelian group of order N , and A1, . . . , Am are subsets of G
such that there are at most δNm−1 solutions to a1 + · · · + am = 0 with ai ∈ Ai for all i,
then it is possible to remove at most εN elements from each set Ai so as to obtain sets A′i
for which there are no solutions to a′1+ · · ·+a′m = 0 with a′i ∈ A′i for all i. Král, Serra, and
Vena [86] found a simple proof of this arithmetic removal lemma using the graph removal
lemma which extends to all groups. The author’s improvement on the bound in the graph
removal lemma yields a similar improvement for the arithmetic removal lemma (see [47]).

Using the hypergraph regularity method, Shapira [112] and independently Král, Serra,
and Vena [86] proved a conjecture of Green establishing a removal lemma for systems of
linear equations. Green and Tao [71] develop an arithmetic regularity method based on the
Gowers uniformity norm and deduce numerous consequences.

5.6. Semi-algebraic regularity lemma. A k-uniform semi-algebraic hypergraphH=(V,E)
consists of a vertex set of points V ⊂ R

d and an edge set E consisting of those k-tuples of
points in V which satisfy a particular Boolean combination of finite polynomial equations
and inequalities in kd real variables. The description complexity is the maximum of k, d,
the degrees of the polynomial equations and inequalities, and the number of these poly-
nomial equations and inequalities. Alon, Pach, Pinchasi, Radoičič, and Sharir [2] proved
a regularity lemma for semi-algebraic graphs (k = 2). This was later extended to hyper-
graphs by Gromov, Lafforgue, Naor, Pach, and the author [49]. This results states that for
each D and ε > 0, there is L = L(ε,D) such that every k-uniform semi-algebraic hyper-
graph H = (V,E) of description complexity at most D has an equitable vertex partition
V = V1∪ . . .∪V
 into � ≤ L parts so that all but an ε-fraction of the k-tuples Vi1 ×· · ·×Vik

are complete or empty, i.e. is a subset of E or disjoint from E. Recently, Pach, Suk, and the
author [54] proved that we may take the number of parts L in the semi-algebraic hypergraph
regularity lemma to be polynomial in 1/ε. These results have numerous consequences in
discrete geometry.
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[46] P. Erdős and E. Szemerédi, On a Ramsey type theorem, Period. Math. Hungar. 2 (1972)
295–299.

[47] J. Fox, A new proof of the graph removal lemma, Ann. of Math. 174 (2011), 561–579.

[48] J Fox, A. Grinshpun, L. M. Lovász, and Y. Zhao, On regularity lemmas and their
applications, in preparation.

[49] J. Fox, M. Gromov, V. Lafforgue, A. Naor, and J. Pach, Overlap properties of geomet-
ric expanders, J. Reine Angew. Math. 671 (2012), 49–83.

[50] J. Fox, C. Lee, and B. Sudakov, Chromatic number, clique subdivisions, and the con-
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Abstract. Positional games are a branch of combinatorics, researching a variety of two-player games,
ranging from popular recreational games such as Tic-Tac-Toe and Hex, to purely abstract games played
on graphs and hypergraphs. It is closely connected to many other combinatorial disciplines such as
Ramsey theory, extremal graph and set theory, probabilistic combinatorics, and to computer science.
We survey the basic notions of the field, its approaches and tools, as well as numerous recent advances,
standing open problems and promising research directions.
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1. Introductory words

Positional games are a combinatorial discipline, whose basic aim is to provide a mathemat-
ical foundation for analysis of two-player games, ranging from popular recreational games
such as Tic-Tac-Toe and Hex to purely abstract games played on graphs and hypergraphs.
Though the field has been in existence for several decades, motivated partly by its recre-
ational side, it advanced tremendously in the last few years, maturing into one of the central
branches of modern combinatorics. It has been enjoying mutual and fruitful interconnections
with other combinatorial disciplines such as Ramsey theory, extremal graph and set theory,
probabilistic combinatorics, as well as theoretical computer science.

The aim of this survey is two-fold. It is meant to provide a brief, yet gentle, introduction
to the subject to those with genuine interest and basic knowledge in combinatorics. At the
same time, we cover recent progress in the field, as well as its standing challenges and
open problems. We also put a special emphasis on connections between positional games
and other branches of combinatorics, in particular discussing the very surprising ubiquitous
role of probabilistic intuition and considerations in the analysis of (entirely deterministic)
positional games.

Due to obvious space limitations we will frequently be rather brief, omitting many of the
proofs or merely indicating their outlines. More details, examples and discussions can be
found in research monographs and papers on the subject.
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2. Basic setting and examples

Positional games involve two players alternately claiming unoccupied elements of a set X ,
the board of the game; the elements of X are called vertices. Usually X is assumed to be
finite, although of course there are exciting infinite games to analyze. The focus of players’
attention is a given family H = {A1, . . . , Ak} of subsets of X , called the hypergraph of the
game; sometimes the members of H are referred to as the winning sets of the game. In the
most general version there are two additional parameters— positive integers p and q: the first
player claims p unoccupied elements in each turn, the second player answers by claiming
q vertices. (If in the very end of the game there are less unclaimed elements to claim than
as prescribed by the turn of the current player, that player claims all remaining elements.)
The parameters p and q define the bias of the game. The most basic case p = q = 1
is the so called unbiased game. The game is specified completely by setting its outcome
(first player’s win/second player’s win/draw) for every final position of the game, or more
generally for every possible game scenario (an alternating sequence of legal moves of both
players). For every game scenario there is only one possible outcome. Of course, the above
definition is utterly incomplete and hence fairly vague. However, the accumulated research
experience has shown that this is the right setting for the field. Depending on concrete game
rules we get several game types, some of which are discussed later. For now let us state,
using the standard game theory terminology, that positional games are two-player perfect
information zero sum games with no chance moves.

Now we illustrate the above general setting by providing several examples.

Example 2.1 (Tic-Tac-Toe). This is of course the first game that should come to anyone’s
mind. In our terminology, the board of the game X is the 3-by-3 square. Two players,
sometimes called Crosses and Noughts, claim in their turns one unoccupied element of the
board each. The winning sets are three horizonal lines, three vertical lines, and two diago-
nals, all of size three; thus the game hypergraph H has eight sets of size three each, and is
thus 3-uniform. (A hypergraph is called r-uniform if all its edges are of size r). The player
completing a winning set first wins; if none of the lines is claimed by either player in the
end, the game is declared a draw. Assuming optimal strategies of both players, the game is a
draw, as everybody knows; here the case analysis is essentially the only way to prove it.

Example 2.2 (nd). This is a natural, yet extremely far reaching and challenging generaliza-
tion of the classical Tic-Tac-Toe game. Given positive integers d and n, the board X of nd

is the d-dimensional cube X = [n]d, and the winning sets are the so-called geometric lines
in X . A geometric line l is a family of n distinct points

(
a(1),a(2), . . . ,a(n)

)
of X , where

a(i) = (a
(i)
1 , . . . , a

(i)
d ), such that for each 1 ≤ j ≤ d the sequence of corresponding coor-

dinates (a(1)j , a
(2)
j , . . . , a

(n)
j ) is either (1, 2, . . . , n), or (n, n − 1, . . . , 1), or constant (and of

course at least one of the coordinates should be non-constant). The winner is the player who
occupies a whole line first, otherwise the game ends in a draw. The familiar Tic-Tac-Toe is
32 in this notation. Another recreationally known instance of this game is 43, marketed by
Parker Brothers under the name of Qubic.

This is a very complicated game, and resolving it for all pairs (d, n) appears to be well
out of reach. We can do it for the fairly simple two-dimensional case d = 2 (first player’s
win for n = 1, 2, and a draw for n ≥ 3), and also for the two extremes: n large compared to
d, and d large compared to n. For the former case, we have the following:
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Theorem 2.3. If n ≥ 3d − 1, then the nd game is a draw.

For the proof, one can argue that the maximum vertex degree in the game hypergraph of
nd is (3d − 1)/2 for odd n and is 2d − 1 for even n; then a straightforward application of
Hall’s theorem shows that one can assign to every geometric line l a pair of points B(l) ⊂ l
so that the assigned pairs are disjoint. Given such an assignment, either player can guarantee
that he will not lose by claiming at least one element from each pair. This is a good example
of the so called pairing strategy argument, frequently used to show the draw outcome in
games of this type.

The case of fixed n and large d is first player’s win. This is the famous Hales-Jewett
theorem, and we will discuss it soon.

Example 2.4 (Sim). This too is a well known recreational game, whose mathematical de-
scription is as follows. The board of the game is the edge set of the complete graph K6 on
six vertices. Two players claim alternately one unoccupied edge of the board each, and the
player completing a triangle of his edges first actually loses. Thus the game hypergraph H
consists of the edge sets of all triangles in K6, soH has

(
6
3

)
= 15 sets of size 3 each. This is

a reverse, or misére-type, game, the player completing a winning set first is the one to lose.
Due to the standard fact R(3, 3) = 6, where R(k, l) is the Ramsey number, the game cannot
end in a draw. Sim has been solved by a computer and was proven to be a second’s player
win, with a complicated winning strategy.

Example 2.5 (Hex). This game was invented by the Danish scientist Piet Hein in 1942 and
was played and researched by John Nash in his student years. It is played on a rhombus of
hexagons of size n×n (in recreational versions n is usually 11), where two players, say, Blue
and Red, take the two opposite sides of the board each, and then alternately mark unoccupied
hexagons of the board with their own color. Whoever connects his own opposite sides of the
board first wins the game.

There is a catch here — the game as described above does not fit our general scheme, as
the players’ winning sets are different. The problem can be cured by proving that a player
wins in Hex if and only if he prevents his opponent from winning, by blocking his winning
ways. This is the so-called Hex theorem, known to be equivalent to the Brouwer fixed point
theorem, see [37]. This allows to cast Hex in our general framework, by defining the winning
sets to be the connecting sets of hexagons for the first player and declaring him the winner if
he occupies one of them fully in the end; the second player’s goal is redefined by assigning
him instead the task of preventing the first player from claiming an entire winning set.

Example 2.6 (Connectivity game). The game is played on the edge set of a multigraph G.
The players, called Connector and Disconnector, take turns in claiming one unoccupied edge
of G each, with Disconnector moving first. Connector wins the game if in the end the set of
his edges contains a spanning tree ofG, Disconnector wins if he manages to leave Connector
with a non-connected graph. Observe the highly non-symmetric goals of the players here. In
our setting, the board is the set of edges of G, the winning sets are the edge sets of spanning
trees in G; Connector wins the game if in the end he claims fully one of the winning sets,
Disconnector wins otherwise. This game was treated by Lehman, who proved:

Theorem 2.7 ([60]). If a multigraph G has two edge-disjoint spanning trees, then Connector
wins the connectivity game played on G.

The proof is by induction on |V (G)|. For the induction step, assume that T1 and T2 are edge-
disjoint spanning trees of G. If Disconnector claims an edge e from, say, T1, this move cuts
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T1 into two connected parts. Connector responds by claiming an edge f of T2 connecting
these two parts, and then contracts f by identifying its two endpoints u and v. Then he
updates T1 and T2 accordingly and applies induction to G′. The case where Disconnector
claims an edge outside of T1 ∪ T2 can be treated similarly.

Frequently the board of the game is the edge set of the complete graph Kn, and the
players take turns in occupying its edges. Here is one such example.

Example 2.8 (Hamiltonicity game). This game is set up as follows. It is played by two
players, who take turns claiming unoccupied edges of Kn, one edge each turn. The first
player wins if by the end of the game he manages to make a Hamilton cycle (a cycle of
length n) from his edges, while the second player wins otherwise, i.e., if in the end he
manages to put his edge, or to break, into every Hamilton cycle. Here, the board is E(Kn),
and the winning sets are n-cycles; the first player wins if he claims an entire winning set by
the end of the game, and the second player wins otherwise. This game was introduced and
analyzed by Chvátal and Erdős in their seminal paper [19]; it turned out to be an easy win
for the cycle maker for all large enough n.

Example 2.9 (Row-column game). The board of the game is the n × n square, and two
players alternately claim its elements. The goal of the first player is to achieve a sizable
advantage in some row or column; the question is how large an advantage he can get playing
against a perfect opponent. We can place the game in our general framework as follows.
For a given parameter k, if the task is to decide whether the first player can reach at least
k elements in one of the 2n lines of the game, one can define the game hypergraph whose
board consists of the n2 cells of the square, and whose winning sets are all k-subsets of the
rows and columns.

If only rows (or only columns) are taken into account, then a simple pairing strategy
shows that the first player can achieve nothing for even n, or 1 for odd n. However, when
both rows and columns are important, the first player can reach something of substance:
Beck proved [9] that he has a strategy to end up with at least n/2 + 32

√
n elements in some

line. The upper bound is due to Székely, who showed [71] that the second player can restrict
his opponent to at most n/2+O(

√
n log n) elements in each line; the gap of c

√
log n in the

error term still stands.

There is a crucial difference between casual games, where more experienced or skillful
players have better chances to succeed, and formal games we consider here. We assume that
both players have unbounded computational power and therefore play perfectly, choosing
optimal moves each turn. Under this assumption, each positional game is determined and has
exactly one of the three possible mutually exclusive outcomes: the first player has a winning
strategy, the second player has a winning strategy, or both players have drawing strategies.
A formal proof of this statement is easy and uses De Morgan’s laws. Thus, solving a game
means establishing its deterministic outcome out of the set of three possibilities. In order to
do it formally, one can employ the fairly natural notion of a game tree. Given a positional
game, its game tree is a rooted directed tree, where each node corresponds to a sequence of
legal moves of both players, including the empty sequence — the root of the tree, and there
is an incoming edge to every legal sequence of moves from the sequence one move shorter.
The leaves are exactly the final positions of the game. In order to find the outcome of the
game, one can backtrack the game tree by labeling first its roots by the corresponding game
result, and then for each intermediate node marking it with the best possible move out of
this position. Although this simple procedure resolves every positional game, in reality it is
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usually extremely impractical, due to the huge size of the game tree. To illustrate this thesis,
let us mention that the 43 game, or the Qubic, is known to be first player’s win, but according
to Oren Patashnik, one of its solvers, the winning strategy fully spelled would be as thick
as a phone book. This leaves us — luckily, in fact — with the necessity to develop general
combinatorial tools for analyzing positional games.

Let us say a couple of words on where it all belongs mathematically. The term “posi-
tional games” can be somewhat misleading. Classical game theory is largely based on the
notions of uncertainty and lack of perfect information, giving rise to probabilistic arguments
and the key concept of a mixed strategy. Positional games, in contrast, are perfect informa-
tion games and as such can in principle be solved completely by an all-powerful computer
and hence are categorized as trivial in classical game theory. This is not the case of course,
due to the prohibitive complexity of the exhaustive search approach; this only stresses the
importance of accessible mathematical criteria for analyzing such games. A probably closer
relative is what is sometimes called “combinatorial game theory”, popularized by Conway
and others, which includes such games as Nim; they are frequently based on algebraic ar-
guments and notions of decomposition. Positional games are usually quite different and call
for combinatorial arguments of various sorts.

Now we wish to mention a few papers and researchers who were influential in the devel-
opment of the field. Of course, the choice below is rather subjective. The paper of Hales and
Jewett [43] has established a tight connection between positional games and Ramsey theory.
As is the case with many combinatorial disciplines, Paul Erdős was a pioneer here. First he
wrote the paper [27] with Selfridge, where potential functions were used for game analysis,
at the same time providing the first derandomization argument, a crucial notion in the theory
of algorithms. Then Chvátal and Erdős [19] introduced biased games. József Beck shaped
the field for the last three decades with his many papers that were instrumental in turning
positional games into a coherent combinatorial discipline.

We complete this introductory section with suggestions for further reading. The funda-
mental monograph [11] of Beck covers many facets of positional games. His more recent
book [12] contains a lot of material on games too. The new book [49] can serve as a gentle
introduction to the subject, at the same time covering recent important developments.

3. Strong games

Strong games are probably the most natural, at least from the layman perspective, type of
games. A strong game is played on a game hypergraph (X,H) by two players, called First
Player or FP, and Second Player, or SP, who take turns in occupying previously unclaimed
elements of X , one element each time; First Player starts. The winner is the first player to
occupy completely a winning set A ∈ H; if this has not happened till the end of the game, it
is declared a draw. Tic-Tac-Toe and nd are games of this type.

The childhood intuition suggesting it is beneficial to be the player to move first has a
solid mathematical basis:

Theorem 3.1. In a strong game played on (X,H), First Player can guarantee at least a
draw.

Proof. The proof applies the so-called strategy stealing principle, observed by Nash. As-
sume to the contrary that Second Player has a winning strategy S . The strategy is a complete
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recipe, prescribing SP how to respond to each move of his opponent, and to reach a win
eventually. Now, First Player “steals” S and adopts it as follows. He starts with an arbitrary
move and then pretends to be Second Player, by ignoring his first move. After each move of
SP, FP consults S and responds accordingly. If he is told to claim an element of X which
is still free, he does so; if this element has been taken by him as his previously ignored ar-
bitrary move, he takes another arbitrary move instead. Observe that an extra move can only
benefit First Player. Since S is a winning strategy, at some point FP claims fully a winning
set, even ignoring his extra move, before SP was able to do so. It follows that First Player
has a winning strategy, excluding the possibility that Second Player has a winning strategy
and thus providing the desired contradiction.

Thus, in any strong game there are only two possible outcomes: First Player’s win or a
draw. (Both of them happen indeed for particular games.) This is perhaps the single most
powerful result in positional games — it is valid for every strong game! At the same time,
it is rather useless, since due to the inexplicit nature of the proof it provides no concrete
directions for FP to reach at least a draw.

There are many games for which draw is impossible. This is usually a Ramsey-type
statement: if for any two-coloring of X (the colors are the moves of corresponding players)
there is a monochromatic winning set A ∈ H, then there is no final drawing position. We
have:

Corollary 3.2. If in a strong game played on (X,F) there is no final drawing position, then
First Player has a winning strategy.

For example, we conclude that the clique game (Kn,Kq) (the board is the edge set of the
complete graph Kn, the player completing a clique Kq first wins) is First Player’s win for
n ≥ R(q, q), since by the definition of Ramsey numbers, there is no final drawing position
here. Another example is the game of Hex; Nash, in a pioneering application of the strategy
stealing principle, observed that due to the board symmetry strategy stealing is applicable,
and the first player wins the game. Still, no clue as for how exactly the first player should
play to win in these cases...

The most inspiring instance of application of this pair (Strategy Stealing, Ramsey) is
probably for the nd game. Recall that we stated that this game is a draw for n large enough
compared to d (Theorem 2.3). In the opposite direction, Hales and Jewett, in one of the
cornerstone papers of modern Ramsey theory [43], proved:

Theorem 3.3. For every k and n there exists d0 = d0(k, n) such that for every d ≥ d0 every
k-coloring of X = [n]d contains a monochromatic geometric line.

(See [64, 67] for simpler proofs/better bounds on d0.) The Hales-Jewett theorem is of course
a Ramsey-type result, but it implies immediately the following nice corollary, which was
apparently the original motivation behind [43]:

Corollary 3.4. For every n there exists d0 = d0(n) such that for every d ≥ d0 the game nd

is First Player’s win.

To see this, simply apply Corollary 3.2 and Theorem 3.3 with k = 2.
Regretfully our story about strong games nearly ends here. The above two main tools

(strategy stealing, Ramsey-type arguments) exhaust our set of general tools available to han-
dle these games. In addition, strategy stealing is very inexplicit, while Ramsey-type state-
ments frequently provide astronomic bounds. So the situation leaves a lot to be desired. At
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the present state of knowledge we are unable to resolve even most basic games. The inherent
difficulty in analyzing strong games can be explained partially by the fact that they are not
hypergraph monotone. By this we mean the existence of examples (pretty easy ones in fact,
see, e.g., Ch. 9.4 of [12]) of game hypergraphs H which are wins for First Player, yet one
can add an extra set A to H to obtain a new hypergraph H′ which is a draw; this is what
Beck calls the extra set paradox, and it is indeed quite disturbing.

However not all is lost, and some very nice and surprising results about particular strong
games have been obtained recently. We will cover them later.

4. Maker-Breaker games

We have established that in strong games it is beneficial to be the first player to move – by
Theorem 3.1 he can guarantee at least a draw. If so, and perhaps thinking more practically,
the second player can lower his sights and play more defensively instead, aiming to prevent
his opponent from occupying fully a winning set, or putting it differently, to “break” into
every winning set. This leads naturally to the very important notion ofMaker-Breaker games.
Given a hypergraph (X,H), the Maker-Breaker game is defined as follows. There are two
players, called now Maker and Breaker, taking turns in occupying one element of X in each
turn. We assume that Maker moves first, unless said otherwise. Maker wins if in the end
of the game he has occupied fully a winning set A ∈ H, Breaker wins otherwise, i.e., if he
claims at least one element in every winning set.

Maker-Breaker games have certain similarities to strong games; Maker should probably
be compared to First Player, and Breaker to Second Player. Observe, for example, that if
Breaker wins against Maker on H, then Second Player draws in the corresponding strong
game, using the same strategy. However, these game types are more different than similar:
Maker, unlike First Player, needs to occupy a winning set eventually, and not necessarily
first, in order to win; there is no draw here. Sometimes Maker-Breaker games are also called
weak games, to contrast them with strong games.

Going back to our examples from Section 2, we can classify some of them now as Maker-
Breaker games. They are the connectivity game (Connector is our Maker—we assumed him
to move second, but this is a tiny detail), the Hamiltonicity game and the row-column game.
Moreover, as we explained there, Hex can be put into this framework too.

We remark that the following intuitive statement is correct: if Maker wins the game
played on H as the second player, then he also has a winning strategy as the first player; an
analogous statement is of course valid for Breaker as well.

Let us now concentrate on the prospects of each of the players, and on tools available to
argue for their corresponding sides. We start with Breaker. Breaker’s win is closely related
to the 2-colorability problem in hypergraphs (frequently also called Property B), popularized
by Erdős. Observe:

Proposition 4.1. If the Maker-Breaker game played on a hypergraph (X,H) is Breaker’s
win, then H is 2-colorable.

Proof. As we mentioned, Breaker’s win as the second player guarantees his win as the first
player as well. We can thus imagine the two-player game on H where both the first and the
second players think of themselves as Breaker and follow Breaker’s winning strategy for the
corresponding player. Thus each of them comes out as a winner, meaning that in the end
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each edge A of H will carry the marks (the colors) of both players. It follows that H is
2-colorable.

It is customary nowadays to use random coloring to argue that a hypergraph is 2-colorable.
It is perhaps much less standard to realize that there is a game theoretic way to look at this
problem. The following statement is easily proven through the usual random argument. Let
(X,H) be a hypergraph. If

∑
A∈H 2−|A| < 1/2, then H is 2-colorable. (Color each of

the vertices of X randomly and independently in red with probability 1/2 and in blue with
probability 1/2; for each edge A the bad event EA =“A is monochromatic” has probability
2−|A|+1, hence Prob[

⋃
A∈HEA] ≤

∑
A∈H 2−|A|+1 < 1, and thus there is a 2-coloring of

H.) Erdős and Selfridge [27] provided a game strengthening of this result:

Theorem 4.2. Let (X,H) be a hypergraph. If∑
A∈H

2−|A| < 1/2 , (4.1)

then H is Breaker’s win.

Proof. At any stage of the game the board X is split into three sets: the set M of vertices
claimed by Maker, the set B of vertices of Breaker, and the set F of currently free vertices.
Define the potential function Ψ =

∑
A∈H:A∩B=∅ 2

−|A\M |. Observe that if Maker occupies
at some point of the game a winning set A ∈ H fully, then Ψ ≥ 1 at that point. Thus, for
Breaker to win it is enough to maintain the value of Ψ below 1 during the game. The initial
value of the potential is less than 1/2 by the assumption of the theorem; after the first move
of Maker it increases by at most the factor of 2 and is thus less than 1, a good start. Hence it
is enough to prove that Breaker has a strategy to ensure that after each round (a round here is
Breaker’s move, followed by Maker’s move) the value of Ψ does not increase. Suppose we
are in the beginning of round i with partition X = Mi−1 ∪Bi−1 ∪Fi−1 and potential Ψi−1.
Breaker’s choice bi is natural: he chooses to claim the element bi maximizing the potential’s
decrease:

bi = argmax
b

∑
A∩Bi−1=∅

b∈A

2−|A\Mi−1| .

If Maker then claims an element mi, the updated value Ψi of the potential is:

Ψi = Ψi−1−
∑

A∩Bi−1=∅
bi∈A

2−|A\Mi−1|+
∑

A∩Bi−1=∅
mi∈A

2−|A\Mi−1|−
∑

A∩Bi−1=∅
bi,mi∈A

2−|A\Mi−1| ≤ Ψi−1 ,

due to the choice of bi.

The following construction shows that criterion (4.1) is tight. LetX = {c}∪{l1, . . . , lk}∪
{r1, . . . , rk}. Define H = {A ⊂ X : c ∈ A, |A ∩ {li, ri}| = 1, i = 1, . . . , k}. Maker wins
the game on H by first taking c, and then claiming the sibling of Breaker’s move (li for ri,
and ri for li).

The proof of the Erdős-Selfridge theorem is quite simple (not a bad thing in itself!), but
the result is truly remarkable for a variety of reasons. First, it provides a concrete and very
useful criterion for Breaker’s win. It also serves as an inspiring example of applying potential
functions in positional games. Another important feature of the proof is that it supplies
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a simple polynomial (in |X| + |H|) algorithm for Breaker to win. Essentially the same
argument can be used to derandomize the random 2-coloring argument given above. In fact,
this was the first instance of the method of conditional probabilities, an important general
approach to derandomizing randomized algorithms, one of the major topics in theoretical
computer science, see, e.g., [3, 61]. Thus, the field of positional games reaches well beyond
its immediate scope.

Here is an example of applying the Erdős-Selfridge criterion. In the Maker-Breaker
version of the clique game (Kn,Kq), Maker wins if in the end of the game he has claimed
a clique of size q. Let q(n) be the largest q for which Maker wins the game. We can argue
that q(n) ≤ 2 log2 n. Indeed, the game hypergraph H has

(
n
q

)
edges and is

(
q
2

)
-uniform.

Hence, by (4.1) if
(
n
q

)
2−(

q
2) < 1/2, Breaker wins. Solving this inequality for q = q(n)

gives the claimed bound. For the lower bound on q(n), recall that if n ≥ R(q, q), then First
Player wins in the corresponding strong game, and Maker can follow his footsteps. Plugging
in the standard upper bound R(q, q) < 4q we derive q(n) ≥ 1

2 log2 n. Beck discusses the
asymptotically tight lower bound q(n) ≥ (2− o(1)) log2 n in his book [11].

For Maker’s side, Beck proved [7] the following criterion.

Theorem 4.3. Let (X,H) be an r-uniform hypergraph. If |H| > 2r−3 ·Δ2(H) · |X|, where
Δ2(H) = max{deg(x, y) : x �= y ∈ X} and deg(x, y) = |{A ∈ H : x, y ∈ A}|, then H is
Maker’s win.

The proof is similar ideologically to that of Erdős and Selfridge and uses an appropriately
defined potential function. To illlustrate this criterion, consider the arithmetic progression
game W (n, s). This is a Maker-Breaker game, whose board is [n], and Maker wins if in
the end he claims an arithmetic progression of length s. Let s(n) be the largest s for which
Maker wins the game W (n, s). Since the number of arithmetic progressions of length s in n

is easily seen to exceed n2

4(s−1) , and each pair of elements x �= y ∈ [n] is contained together
is at most

(
s
2

)
arithmetic progressions, applying Theorem 4.3 gives s(n) ≥ (1−o(1)) log2 n.

An application of the Erdős-Selfridge bound for Breaker’s side gives s(n) < 2 log2 n + 1.
The right asymptotic answer here is actually s(n) = (1 + o(1)) log2 n [7].

5. Biased games, threshold bias

Many (unbiased) Maker-Breaker games are drastically in favor of Maker, and he wins them
easily. Here are few such examples, where the board is the edge set of Kn, we assume n to
be large enough. In the triangle game, where Maker wins if in the end he creates a copy of
the triangle K3, Maker is easily seen to win in 4 moves. For the connectivity game, Maker
wins as well, say, by Lehman’s Theorem 2.7. The non-planarity game, where Maker wins
if in the end his graph is non-planar, is a complete no-brainer: by Euler’s formula, a graph
on n vertices with more than 3n − 6 edges is non-planar, so Maker just waits to accumulate
3n − 5 edges to declare his victory. If so, it appears quite natural to change the rules of the
game to level the field and to increase Breaker’s chances to win. One obvious way to do it is
to introduce the game bias, as proposed in the pioneering paper of Chvátal and Erdős [19];
this is the subject of this section. Another possible approach is to sparsify the board of the
game, and we will discuss it later.

Here is a formal definition of a biased Maker-Breaker game. Let m and b be positive
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integers, and let (X,H) be a hypergraph. The biased (m : b) Maker-Breaker game (X,H)
is the same as the Maker-Breaker game (X,H), except that Maker claims m free board
elements per move and Breaker claims b elements. The numbers m and b are referred to as
the bias of Maker and Breaker, respectively. The most frequently considered case is that of
m = 1.

To illustrate the definition, consider the biased (1 : b) triangle game HK3,n, as was done
in [19]. For b ≤ √

2n − C for some C > 0 Maker wins by first accumulating enough
edges at a vertex u, and then by closing a triangle containing u. For b ≥ 2

√
n, the game is

Breaker’s win — in response to each move ei = (ui, vi) of Maker, Breaker claims free b/2
edges incident to ui and b/2 free edges incident to vi, also blocking all immediate threats of
Maker. The critical value of b = b(n) for this game is still unknown, Balogh and Samotij [6]
improved recently Breaker’s side to b ≥ (2− 1/24)

√
n.

If we are serious about biased Maker-Breaker games, we should probably start our sys-
tematic study from the simplest case where the winning sets of the game hypergraph are
pairwise disjoint. This is the famous Box Game introduced by Chvátal and Erdős [19]. In
a game Box(p, q; a1, . . . , an) the board of the game X is a union of pairwise disjoint sets
(boxes) A1, . . . , An of sizes a1, . . . , an, respectively, forming the game hypergraph. To pay
homage to this important game, and also with future games with identity changes in mind,
we call players BoxMaker and BoxBreaker. In each move BoxMaker removes p elements
from the boxes, and BoxBreaker destroys q boxes of his choice in return. BoxMaker wins if
in the end he manages to empty one of the boxes before it is destroyed by BoxBreaker. In
the case where all n boxes are of equal size s, we use the notation Box(p, q;n × s). This
game was analyzed by Chvátal and Erdős for the nearly uniform case, the analysis for the
general case was performed by Hamidoune and Las Vergnas [44].

Theorem 5.1 ([19]). If s ≤ (p − 1)
∑n−1

i=1 1/i, then BoxMaker, as the first or the second
player, wins Box(p, 1;n × s).

Proof. Follows from a bit more general statement we give now. Let a1 ≤ . . . an ≤ a1 + 1.
Define f(n, p) by the following recursion: f(1, p) = 0 and f(n, p) =

⌊
n(f(n−1,p)+p)

n−1

⌋
for

n ≥ 2. If
∑n

i=1 ai ≤ f(n, p), then BoxMaker, as the second player, wins Box(p,1; a1,. . . ,an).
The proof proceeds by induction, for the inductive step BoxMaker in his current turn re-
moves p elements to keep the surviving boxes leveled. One can easily show that f(n, p) ≥
(p − 1)n

∑n−1
i=1 1/i.

Theorem 5.2 ([19]). If s > p
∑n

i=1 1/i, then BoxBreaker wins Box(p, 1;n × s).

Proof. We give a proof from [49]. At any point of the game, denote the set of surviving boxes
by S. BoxBreaker always destroys a box i ∈ S of minimum size. Suppose by contradiction
that BoxMaker wins the game at move k, 1 ≤ k ≤ n. W.l.o.g. assume that BoxBreaker
destroys box i in his ith move, and in his kth move BoxMaker fully claims box k. Let ci
denote the remaining size of box i ∈ S ∩ {1, . . . , k}. Define now the potential function Ψ
by

Ψ(j) :=
1

k − j + 1

k∑
i=j

ci ,

the potential just before BoxMaker’s move j. Then Ψ(k) = ck ≤ p, as BoxMaker wins
the game at move k, while Ψ(1) = s. In his jth move BoxMaker decreases Ψ(j) by at
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most p/(k − j + 1); in his jth move BoxBreaker destroys the smallest surviving box. Thus
Ψ(j + 1) ≥ Ψ(j)− p/(k − j + 1). It follows that

Ψ(k) ≥ s −
(

p

k
+

p

k − 1
+ · · ·+ p

2

)
≥ s − p

(
n∑

i=1

1

i
− 1

)
> p ,

a contradiction.

We conclude that for the uniform Box Game Box(p, q;n × s), the game changes hands
around p = s/ lnn.

Returning to general biased Maker-Breaker games, let us state a criterion for Breaker’s
win due to Beck [8], sometimes called the biased Erdős-Selfridge criterion.

Theorem 5.3. Let X be a finite set, let H be a family of subsets of X , and let p and q be
positive integers. If ∑

A∈H
(1 + q)−|A|/p <

1

1 + q
, (5.1)

then Breaker has a winning strategy in the (p : q) game (X,H).

The proof, while certainly non-trivial, is similar to that of Theorem 4.2. There is an analog
of Theorem 4.3 for the biased case [8], but we will not state it here.

Maker-Breaker games are bias monotone. By this we mean the following formal state-
ment: if the (m : b)Maker-Breaker game (X,H) is Maker’s win, then so is the (m : (b−1))
game. Maker just adapts his winning strategy for the (m : (b − 1)) game, each time assign-
ing an arbitrary fictitious bth element to Breaker after Breaker’s move. This leads us to the
following very important definition.

Definition 5.4. Let (X,H) be a hypergraph such that min{|A| : A ∈ H} ≥ 2. The unique
positive integer bH such that Breaker wins the Maker-Breaker (1 : b) game (X,H) if and
only if b ≥ bH is called the threshold bias of (X,H).

Determining or estimating the threshold bias of a game is a central goal of the theory
of biased Maker-Breaker games, and is the main subject of this section. For the triangle
game HK3,n, it follows from our prior discussion that the threshold bias bH is of order

√
n;

determining its asymptotic value remains open.
Let us ask ourselves now: for natural biased games on the edge set of Kn, like positive

minimum degree, connectivity, Hamiltonicity, etc., what are the values of the threshold bias?
How do they compare between themselves? To the reader unexperienced in positional games
these questions must appear very challenging, and even making an intelligent guess should
be not so easy.

We start with Breaker’s side. This is achieved through the following theorem of Chvátal
and Erdős [19].

Theorem 5.5. For every ε > 0, all large enough n and b ≥ (1 + ε) n
lnn , Breaker can isolate

a vertex in the (1 : b) Maker-Breaker game, played on E(Kn).

Proof. Breaker first builds a clique C of size b/2 such that all vertices of C are isolated in
Maker’s graph. In his turn i he locates two isolated vertices ui, vi in Maker’s graph, claims
(ui, vi) and then joins them completely to the current C, claiming more edges if needed.
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Maker in his turn can touch only one vertex of the clique. At the second stage, Breaker’s
goal is to isolate one of the vertices of C. Observe that all edges inside C have already
been taken by Breaker, thus the only relevant edges are those between C and its complement
V \ C; moreover, the edge sets Ev = {(u, v) : v ∈ V \ C} , v ∈ C, are disjoint. Thus we
can appeal to the box game Box(b, 1; {Ev : v ∈ C}), where Breaker disguises himself as
BoxMaker. Applying Theorem 5.1 we derive that Breaker can claim all edges of some Ev ,
isolating v and winning the game.

We conclude that the threshold bias for all games onKn, where all winning sets of Maker
are spanning graphs of positive minimum degree, is at most (1 + o(1))n/ lnn. This might
appear as a rather humble beginning, but the truth is that for quite many of them this is a
tight estimate!

We now switch to Maker’s side. Consider first the connectivity game. Already Chvt́al
and Erdős showed, probably quite surprisingly, that the threshold bias for this game is of
asymptotic order n/ log n. Here we present an argument of Beck [8], providing also a better
multiplicative constant.

Theorem 5.6. The threshold bias bCn for the connectivity game Cn on Kn satisfies: bCn ≥
(1− o(1)) n

log2 n .

Proof. Let ε > 0, and fix b = b(n) = (1−ε)n/ log2 n. We prove that Maker wins Cn playing
against bias b. Observe that in order for Maker to win, it is sufficient (and also necessary) to
put an edge into every cut [S, S̄] for ∅ �= S �= [n]. So we see another change of roles here:
Maker plays as (Cut) Breaker in the cut game. The board of the cut game is E(Kn), and the
winning sets are exactly the cuts AS = [S, S̄]. Applying criterion (5.1), we need to verify
that ∑

S

2−|AS |/b =
n/2∑
k=1

(
n

k

)
2−k(n−k)/b <

1

2
,

which can be done through standard asymptotic manipulations, omitted here.

What is then the asymptotic value of the threshold bias for the connectivity game and
several related games? Which constant should we put in front of n/ lnn? Erdős, with an
amazing foresight, suggested the following very surprising solution. Suppose both Maker
and Breaker in their (1 : b) game on E(Kn), instead of being utterly clever and using
perfect strategies, play randomly. Then the resulting Maker’s graph is a random graph on
n vertices with m edges for m =

⌈(
n
2

)
/(b + 1)

⌉
, i.e., a graph drawn from the probability

distribution G(n,m). This puts us in the realm of random graphs, a very developed field
where the understanding was far ahead that of positional games. We do not dwell on the
background and known results in the theory of random graphs, referring the reader instead to
its standard sources [18, 53]. The relevant results are those about the thresholds for positive
minimum degree, connectedness, and Hamiltonicity in G(n,m). All three properties are
known to appear typically at m∗ = 1

2n lnn (much more precise statements are available).
This would translate to the threshold bias b∗ ≈ (n2)/m∗ = n/ lnn for the random game.
Now, the Erdős paradigm, or the random graph intuition, suggested that for some biased
Maker-Breaker games, like the connectivity game, the threshold bias for the perfectly played
games should be asymptotically the same as for the entirely different random games. This
approach bridges between two seemingly unrelated fields — positional games and random
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graphs, and indicates the very important role of probabilistic considerations in completely
deterministic games. A very bold conjecture — which has proven to be true!

Now we state three recent results that established asymptotically the threshold bias for
the connectivity game, the minimum degree c game, and the Hamiltonicity game. The first
two theorems are due to Gebauer and Szabó [41], the third is due to the author [57].

Theorem 5.7. For every fixed ε > 0 and all sufficiently large n, if b = (1 − ε) n
lnn , then

Maker wins the (1 : b) Maker-Breaker connectivity game Cn.

Theorem 5.8. For every fixed ε > 0 and every fixed positive integer c, for all large enough
n, if b = (1 − ε) n

lnn , then Maker can build a spanning graph of minimum degree at least c
in the (1 : b) Maker-Breaker game played on E(Kn).

Theorem 5.9. For every fixed ε > 0 and all sufficiently large n, if b = (1 − ε) n
lnn , then

Maker wins the (1 : b) Maker-Breaker Hamiltonicity game played on E(Kn).

Recalling Theorem 5.5, we conclude that the threshold bias for each of the three games
above is asymptotic to n/ lnn, completely in line with the Erdős paradigm!

We will not say much about the proofs of the above theorems, referring the reader instead
to the original papers. Let us mention that the proofs of the first two theorems go back to
basics — Maker reaches his goal directly, instead of using dual approaches and descriptions
as in the proof of Theorem 5.6. Cleverly devised potential functions are used in both of the
proofs. The third proof uses a modification of the second result and its proof. It turns out
that for the minimum degree c game, Maker has a strategy to reach degree c at any vertex
v before Breaker accumulates (1 − δ)n edges at v, for some δ = δ(ε) > 0. The strategy
of Maker, as given by [41], points Maker to a vertex v (specified by the current situation on
the board) and tells him to claim an arbitrary free edge incident to v. The crucial twist is to
use randomness here and to choose instead a random free edge at v, out of at least δn edges
available. One can argue that following this random strategy, with positive probability Maker
can create a pretty strong expander in linearly many moves. At this point the deterministic
nature of the game comes to our help — the game considered is of perfect information, and
thus winning with positive probability against a given strategy of Breaker means there is a
deterministic (but unspecified) strategy to win. Returning to the Hamiltonicity game, Maker
then quickly turns his expander into a connected graph and finally augments his connected
expander to a Hamiltonian graph in a linear number of moves; here the proof uses fairly
standard techniques from the theory of random graphs. Altogether, Maker wins the game in
at most 18n moves, when the board is still mostly empty.

Now we cite another important result about biased Maker-Breaker games, due to Bed-
narska and Łuczak [15]. For a given graph H , Maker wins the H-game played on the edges
of a host graph G if in the end he possesses a copy of H . For the case H = K3 and G = Kn

we get the above treated triangle game. Define now the maximum 2-density m2(H) of H , a
frequently used notation in random graphs, by

m2(H) = max
H0⊆H,|V (H0)|>2

|E(H0)| − 1

|V (H0)| − 2
.

Theorem 5.10. Let H be a graph with at least three non-isolated vertices. The threshold
bias for the Maker-Breaker H-game on E(Kn) satisfies: b = Θ

(
n1/m2(H)

)
.
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The proof of Maker’s side uses a random strategy again, this time in the simplest possible
form: Maker chooses each time a random edge to claim. This shows yet again that proba-
bilistic considerations and arguments are ubiquitous in positional games, quite a surprising
phenomenon.

Yet another connection between positional games and randomness was revealed in [34],
where Maker’s win in certain biased games was achieved through Maker creating a random
graph with few edges deleted at each vertex, and then invoking results about local resilience
of random graphs [69].

We conclude this section with a very entertaining argument of Beck [10], providing a
lower bound for the Ramsey number R(3, t) through biased Maker-Breaker games. The
bound obtained is superseded by the best possible bound R(3, t) = Ω(t2/ log t) of Kim [54]
(see recent [17, 35] for better constants), but it matches the best bound known for long 35
years, obtained through various approaches [25, 28, 56, 68].

Theorem 5.11. There exists a constant c > 0 such that R(3, t) ≥ ct2/ ln2 t.

Proof. Set b = 2
√

n. Imagine two players playing on the edges of Kn. The first player,
taking b edges at a time, thinks of himself as Breaker in the (1 : b) Maker-Breaker game,
whose goal is to prevent Maker from claiming a triangle. The second player, claiming one
edge per move, thinks of himself as Breaker in a different game, namely, the (b : 1) Maker-
Breaker game, whose goal is to claim an edge in every vertex subset of cardinality t =
C
√

n lnn. The first player wins his game by our analysis of the triangle game. The second
player is victorious too for large enough C — this can be derived by applying the biased
Erdős-Selfridge criterion (5.1) (the calculations are omitted). The result of the game, or
perhaps of the games, is hence a partition of E(Kn) into two graphs, where the first graph
is triangle-free, and the second graph does not have a clique of size t. It thus follows that
R(3, t) > n.

6. Avoider-Enforcer games

Recall the game of Sim described in Section 2. It has the interesting feature — the player
who occupies a winning set first actually loses. This is an example of reverse, or misére-
type, games. Games of this type are the subject of this section. Reverse games are certainly
interesting for their own sake, but for those who seek additional motivation to consider them,
we now give an example of a Maker-Breaker game, where Maker relies on a reverse game
to ensure his win.

Theorem 6.1 ([45]). For every fixed ε > 0 and all sufficiently large n, if b = ( 12 − ε)n, then
Maker wins the (1 : b) Maker-Breaker non-planarity game on E(Kn).

Proof. It follows from Euler’s formula that for k ≥ 3, if a graph G on n vertices has more
than k

k−2 (n − 2) edges and no cycles of length shorter than k, then G is non-planar. Let
α = ε

1−2ε , and let k be the smallest integer satisfying 1 + α > k
k−2 . In order the ensure

his final graph is non-planar, it suffices for Maker to avoid creating cycles shorter than k in
his first (1 + α)n moves. This is an easy task — the board will still have Θ(n2) free edges
after this number of moves, due to our choice of α. Maker always chooses his next edge so
as not to close a cycle of length less than k and not to create a vertex of degree at least n1/k;
showing this is a feasible strategy is an easy exercise.
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We now define Avoider-Enforcer games formally. Let a and b be positive integers, and
let (X,H) be a hypergraph. In the biased (a : b) Avoider-Enforcer game (X,H) the two
players are Avoider and Enforcer, with Avoider moving first and claiming exactly a free
elements in each turn, while Enforcer claims exactly b free elements in each turn. Enforcer
wins the game if he forces Avoider into claiming fully one of the sets A ∈ H, and Avoider
wins otherwise. The members A of the game hypergraph H are sometimes called losing
sets, to reflect the nature of the game.

Having seen the important role of the bias monotonicity and the threshold bias in Maker-
Breaker games, we can hope that Avoider-Enforcer games behave similarly. However, this
is pretty much not the case, as has been observed in [50]. Consider the following simple
example: the game hypergraphH consists of two disjoint sets of size 2 each. It is immediate
to check that for a = b = 1 Avoider is the winner, for a = 1, b = 2 Enforcer wins, and for
a = b = 2 Avoider wins again; the example can easily be generalized to larger sets and bias
numbers. This lack of monotonicity is a fairly disturbing feature, which prompted the authors
of [47] to adjust the definition in the following, rather natural, way: now Avoider claims at
least a elements in each turn, while Enforcer claims at least b elements. This version is easily
seen to be bias monotone, and for this reason we call this set of rules monotone rules, while
the former set of rules is called strict rules. Each monotone Avoider-Enforcer game H has
the threshold bias bmon

H , which is the largest non-negative integer b for which Enforcer wins
the corresponding (1 : b) game. For strict rules, we can define instead the lower threshold
bias b−H as the largest integer such that Enforcer wins the (1 : b) game for every b ≤ b−H, and
the upper threshold bias b+H as smallest integer such that Avoider wins the (1 : b) game for
every b > b+H.

Just like for Maker-Breaker games, determining or estimating the threshold bias(es) is
a central task for Avoider-Enforcer games, under both sets of rules. The difference is that
here the situation is frequently much more challenging, and our understanding of Avoider-
Enforcer games does not quite match that of their Maker-Breaker counterparts.

As a warm-up example, consider the gameHP2,n, where Avoider aims to avoid creating
a copy of the path P2 of two edges. The biases for this game are as follows [47]: b+HP2,n

=(
n
2

)− 2, b−HP2,n
= Θ
(
n3/2
)
and bmon

HP2,n
=
(
n
2

)− ⌊n2 ⌋− 1.
One may be tempted to think that for Avoider-Enforcer games on a game hypergraphH,

the monotone threshold bias bmon
H is always between the lower and the upper threshold biases

b−H and b+H. This is not the case as we will see shortly.
We now state several results obtained for both game rules. Let us start with the strict

rules.

Theorem 6.2 ([50]). For the Avoider-Enforcer connectivity game Cn on E(Kn), played
under strict rules, we have b−Cn = b+Cn =

⌊
n−1
2

⌋
.

This is a very unusual result in the sense that is provides the exact value of the threshold
biases. Avoider’s side b+Cn is trivial — if Avoider ends up with less than n− 1 edges, he just
cannot create a spanning tree and is thus guaranteed to win. Enforcer’s side uses the well-
known fact that Kn contains *n/2+ edge-disjoint spanning trees and the following theorem.

Theorem 6.3 ([50]). If G contains b+1 pairwise edge-disjoint spanning trees, then Enforcer
wins the (1 : b) Avoider-Enforcer connectivity game played on E(G) under strict rules.

This theorem can be considered to be the Avoider-Enforcer analog of Lehman’s Maker-
Breaker Theorem 2.7. Peculiarly enough, the biased Maker-Breaker version of Lehman does
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not go through: for any k one can construct an example of a graph G with k edge-disjoint
spanning trees, where Breaker wins the (1 : 2)-connectivity game. Theorem 6.3 also readily
implies the following result.

Theorem 6.4 ([50]). For the k-connectivity Avoider-Enforcer game Ck
n on Kn, k ≥ 2, one

has: n
2k ≤ b−Ck

n
≤ b+Ck

n
≤ n

k .

For the Hamiltonicity game we understand Enforcer’s side well under both rules:

Theorem 6.5 ([59]). If b ≤ (1 − o(1)) n
lnn , then Enforcer has a winning strategy in the

(1 : b) Hamiltonicity game on E(Kn), under either strict or monotone rules.

Moving on to the monotone rules, we have the following key result.

Theorem 6.6 ([47]). If b ≥ (1 + o(1)) n
lnn , then Avoider has a strategy to be left with an

isolated vertex in the monotone (1 : b) game on E(Kn).

Theorems 6.5 and 6.6 combined establish the threshold bias bmon of several important
games (connectivity, perfect matching, Hamiltonicity, etc.) to be asymptotically equal to
n/ lnn. Observe that for the strict connectivity game both threshold biases, which happen
to be equal by Theorem 6.2, are quite far from the threshold bias for the monotone version,
perhaps contrary to our intuition.

Finally, Clemens et al. [20] showed very recently:

Theorem 6.7. For n large enough and b ≥ 200n lnn, Avoider has a strategy to be left with a
graph with at most one cycle in the (1 : b) game on E(Kn), under either strict or monotone
rules.

It follows that the threshold biases under monotone rules, and the upper threshold biases
b+H under strict rules for the non-planarity and the non-k-colorability games with k ≥ 3 are
at most 200n lnn. Still, for these games we are quite far from nailing these biases.

For Avoider-Enforcer games with losing sets of constant size the situation is very far from
satisfactory — we know few sporadic results or bounds. For example, for the triangle game
HK3,n the monotone threshold bias is Θ(n3/2) [47], very far from the threshold bias for the
Maker-Breaker version; for the strict game we have: b−HK3,n

= Ω(n1/2), b+HK3,n
= O(n3/2)

[14]. A recent paper of Bednarska-Bzdȩga [14] contains several interesting results of this
sort.

As for general tools to tackle Avoider-Enforcer games, we are somewhat shorthanded
here. We have the following results:

Theorem 6.8 ([50]). If
∑

A∈H (1 + 1/a)
−|A|+a

< 1, then Avoider wins the biased (a : b)
game H, under both strict and monotone rules, for every b ≥ 1.

(Observe the lack of sensitivity to the value of b in the above criterion — an obvious draw-
back.)

Theorem 6.9 ([14]). Let (X,H) be a hypergraph with all sets A ∈ H of size at most r. If∑
A∈H (1 + b/(ar))

−|A|+a
< 1, then Avoider wins the biased (a : b) game H, under both

strict and monotone rules.

This criterion is handy for games with losing sets of small size.
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7. More boards, more games

Most of the concrete games we have considered so far are played on the complete graph Kn.
This does not have to be the case, and many games on sparser graphs are equally interesting.
Also, sparsifying the game board (rather than turning to biased games) can be seen as an
alternative approach to provide Breaker with higher chances to win standard graph games
against Maker.

A very typical setting is games on random graphs. In this scenario, for a given game
type, say Maker-Breaker Hamiltonicity, we first set up a probability space of graphs, say, the
binomial random graphs G(n, p), and then ask about the probability of generating a board
which is a win of each of the players.

Here is a representative result of this sort. Denote N =
(
n
2

)
. Consider the random graph

process G̃ = (Gi)
N
i=0 on n vertices, described as follows. Start with the empty graph G0

with vertex set [n], and then for 1 ≤ i ≤ N , form a graph Gi by adding to Gi−1 a random
missing edge. For a monotone graph property P and a (random) graph process G̃, we define
the hitting time τ(G̃, P ) as the minimal i such thatGi, the ith graph of the process, possesses
P . For a random graph process G̃, the hitting time τ(G̃, P ) becomes a random variable and
we can study its typical behavior. Consider now the unbiased Hamiltonicity game HAM
with Breaker moving first, and let MHAM be the property “Maker wins HAM on G”.
Breaker clearly wins for the empty graph G0, and by the classical Chvátal-Erdős result [19],
Maker is the winner for GN = Kn. So the hitting time τ(G̃, P ) lies somewhere in between.
Those familiar with the theory of random graphs can guess that the key to Maker’s win will
be the disappearance of vertices of small degree. Indeed, if δ(G) < 4, then Breaker, moving
first, wins the game by claiming all but at most one edge at a vertex of minimum degree in
G. Thus, τ(G̃,MHAM) ≥ τ(G̃, δ4), where δ4 is the property of having minimum degree at
least 4.

Theorem 7.1 ([16]). For a random graph process G̃ on n vertices, with high probability
τ(G̃,MHAM) = τ(G̃, δ4).

Thus, typically in the random graph process, Maker starts winning the Hamiltonicity
game exactly at the moment the last vertex of degree less than 4 disappears. From this
result one can derive, in a rather standard way, the corresponding result for G(n, p) — the
threshold probability for Maker’s win stands at p(n) = lnn+3 ln lnn

n . The same paper [16]
gets hitting time results also for the perfect matching and the k-connectivity Maker-Breaker
games. Biased Hamiltonicity games onG(n, p)were considered in [31], where it was shown
that for p 1 logn

n , the threshold bias bHAM satisfies typically bHAM = (1 + o(1)) np
logn .

This fits very well with the probabilistic intuition of Erdős, as was predicted by Stojaković
and Szabó [70] who initiated the study of positional games on random graphs.

The H-game, where Maker wins if he creates a copy of a fixed graph H , was considered
in its unbiased version for the case of random boards in [70], [62], [63]. In particular, Müller
and Stojaković proved in [62]:

Theorem 7.2. Let k ≥ 4 be fixed. There exists a constant c = c(k) > 0 such that for
p ≤ cn−

2
k+1 , a random graph G ∼ G(n, p) is with high probability such that Breaker wins

the unbiased Maker-Breaker Kk-game on G.

The matching result for starting Maker (if p ≥ Cn−
2

k+1 , then Maker typically wins
the Kk-game on G(n, p)) can be derived from the general Ramsey-type result of Rödl and
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Ruciński [65] and the strategy stealing argument, and it can be easily adapted for the case
where Breaker starts. The case k = 3 turns out to be different. There the threshold lies at
p = n−5/9 for a good local reason: Maker wins the triangle game on the graph K5 − e,
hence Maker wins no later than this graph appears in G(n, p) – which typically happens at
p = n−5/9. The paper [62] provides a hitting time version of this result.

Another sparsification-type approach asks for the minimal size of a game board, on
which Maker can create a prescribed structure. For example, [48] and [5] proved that a
graph G on n vertices on which Maker wins the positive minimum degree game has at least
about 10n/7 edges, and this estimate is tight. Gebauer, building partly on ideas from [29],
showed:

Theorem 7.3 ([40]). For every d > 0 there exists c = c(d) such that for every graph H on
n vertices of maximum degree at most d, there is a graph G with at most cn edges such that
Maker wins the unbiased H-game on G.

These problems can be viewed as game versions of size Ramsey numbers. For a graph
H , the size Ramsey number r̂(H) is the smallest M for which there exists a graph G with
M edges such that any red-blue coloring of the edges of G produces a monochromatic copy
of H (we say also that G arrows H). If G arrows H , then by the strategy stealing argument
(again!), Maker as the first player wins theH-game onG. Hence size Ramsey numbers upper
bound their game counterparts. The so obtained bounds are not always tight: for example,
Rödl and Szemerédi showed [66] the existence of a graph H on n vertices of maximum
degree 3 and size Ramsey number r̂(H) ≥ cn log

1
60 n, thus making it impossible to derive

Theorem 7.3 from general size Ramsey results.
In many games, the identity of the winner is easy to establish, and one can then ask how

long it takes him to win. For example, Lehman’s Theorem 2.7 and its proof show that if a
graph G on n vertices has two edge-disjoint spanning trees, then Maker, as the first or the
second player, wins the connectivity game on G in n − 1 moves; this is clearly optimal.
Define the move number move(H) of a weak (resp. strong) game H as the smallest t such
that Maker (respectively FP) has a strategy to winH within tmoves. If Breaker is the winner
(SP draws, resp.), we set move(H) = ∞. The move number for Avoider-Enforcer games
is defined accordingly. Here is a sample of results about this concept. [46] showed that for
sufficiently large n, playing on the edges of Kn, Maker can create a Hamilton path in n − 1
moves, and a perfect matching (assuming n is even) in n/2 + 1 moves. Hefetz and Stich
proved:

Theorem 7.4 ([52]). Let HAM denote the Maker-Breaker Hamiltonicity game played on
the edges of Kn. Then move(HAM) = n + 1, for all sufficiently large n.

For the Maker-Breaker clique game (Kn,Kq), the move number is known to be between
2

q
2 [10] and 2

2q
3 poly(q) [39], for all large enough n. For Avoider-Enforcer games, Anuradha

et al. [4] proved that Avoider can stay planar for as long as 3n − 26 turns when playing
against Enforcer in the unbiased game on Kn, a constant away from the trivial upper bound
of 3n − 6.

Fast wins are closely related to strong games. Observe that if in a game H all winning
sets have cardinality n, and in the weak game onH Maker has a strategy to win in n moves,
then in the strong game onH First Player wins in n moves. Thus for example we can derive
that FP wins the Hamilton path game on Kn. This scenario is quite rare though. Still, in a
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recent exciting development, Ferber and Hefetz were able to use fast winning strategies in
Maker-Breaker games to analyze much harder strong games.

Theorem 7.5 ([32, 33]). Let PM, HAM, Ck denote the perfect matching, Hamiltonicity
and spanning k-connectivity games, resp., played on the edges of Kn. The strong versions
of these games are First Player’s win, for large enough n. Also, move(PM) ≤ n

2 + 2,
move(HAM) ≤ n + 2, and move(Ck) =

⌊
kn
2

⌋
+ 1 for k ≥ 3.

The key to all these proofs is analysis of fast strategies for the corresponding Maker-
Breaker games and their adaptation for strong games. A natural outcome of this proof ap-
proach is explicit winning strategies for FP. These results provide a new lease of life for the
whole subject of strong games, notorious for its difficulty.

Discrepancy games can be viewed as a hybrid between Maker-Breaker and Avoider-
Enforcer games. In such games, the first player, called Balancer, aims to end up with the
correct proportion of elements in each winning set. For example, in the unbiased case Bal-
ancer strives to get about half of his elements (not much more, not much less) in every
winning set. These games have been considered in [2, 51], see also Chapters 16, 17 of [11].
[36] describes a strategy for Balancer to construct a pseudo-random graph; since pseudo-
random graphs are known to have many nice features [58], this result guarantees Maker’s
win in a variety of games.

There are also games involving directed/oriented graphs, or graph orientation. For exam-
ple, in the tournament game a tournament T on k vertices is given, and Maker and Breaker
take turns in claiming free edges of Kn, one edge each, with Maker also orienting his edges.
Maker wins the game if his graph contains in the end a copy of T . Clemens, Gebauer, and
Liebenau proved [21] that for k = (2 − o(1)) log2 n Maker can create a copy of any given
k-vertex tournament T . This is asymptotically optimal and resolves a problem posed by
Beck in [11].

Finally, let us describe yet another quite interesting class of games, not very well stud-
ied as of yet. In these games, the players are Picker and Chooser. Picker in his ith turn
picks two free elements vi, v

′
i of the board X and presents them to Chooser — who chooses

one of these elements, with the other one going to Picker. In the Chooser-Picker version of
the game, Chooser wins if in the end he completes a winning set A ∈ H, and Picker wins
otherwise; in the Picker-Chooser version Picker wins if he occupies a winning set. These
games, especially the Chooser-Picker variant, appear to be similar to Maker-Breaker ver-
sions, and it was even conjectured that if Breaker wins the game on H, then Picker, whose
job appears to be even easier, wins the Chooser-Picker game on H; however, this was dis-
proved in [55]. Still, Bednarska-Bzdȩga showed [13] that the Erdős-Selfridge criterion (4.1)
is also a winning criterion for Picker in Chooser-Picker games. Beck in [11] analyzed the
Picker-Chooser clique game (Kn,Kq) with an amazing degree of precision, proving in par-
ticular that Chooser starts winning at q = (1 − o(1))2 log2 n. One can also consider the
biased versions of both game types, where at each round Picker picks between 1 + p and
p + q free elements of the board, Chooser keeps p of them, and the rest goes to Picker. See
[11, 13, 22, 23] for more results.

8. Open problems and challenges

In this section we present a representative sample of open problems in the field, and also
indicate promising research directions.
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For strong games, there are still many more problems than answers, though the situation
is more hopeful now after the recent results stated in Theorem 7.5. One concrete example is
the following question:

Problem 8.1. Show that for every positive q there exist t and n0 such that for every n ≥ n0

First Player can win in at most t moves the strong clique game (Kn,Kq).

In other words, we are essentially asking for an explicit winning strategy for FP in the
clique game. As we stated before, for n ≥ R(q, q) First Player wins due to strategy stealing,
but this is highly inexplicit. The problem appears to be open even for the case q = 5.

For weak (Maker-Breaker) games, we are in a much better shape. Still there are many
nice problems to tackle. In the degree game, a graph G of minimum degree d is given,
and Maker aims to create a graph of highest possible minimum degree. Since the edges
will be split evenly between the players in the end, the best Maker can hope for is d/2.
Getting around d/4 is fairly easy, here is a sketch. Assume for simplicity all degrees in G
are divisible by 4. Using an Eulerian orientation, one can split the edges of G between its
vertices so that a vertex v gets a set Ev of d(v)/2 incident edges assigned to it. Maker then
plays a pairing game on the disjoint sets Ev , answering Breaker’s move e ∈ Ev by e′ ∈ Ev ,
and thus guaranteeing a quarter degree at every vertex. At present, d/4 is the best known
result, even improving it to (1/4 + ε)d would be quite nice. If we allow d to depend on the
number of vertices n = |V (G)|, then for d 1 log n we can get (1/2− o(1))d in the degree
game using known discrepancy results, say [2].

Here is a very cute problem due to Duffus, Łuczak, and Rödl [24].

Problem 8.2. Prove that for integers b ≥ 1 and r ≥ 3, there exists C = C(b, r) such that
for every graph G = (V,E) of chromatic number at least C, Maker has a strategy to create
a graph M of chromatic number at least r when playing the (1 : b) biased Maker-Breaker
game on E(G).

(Duffus et al. [24] asked actually the equally interesting vertex version of this problem, where
players claim vertices of G rather than edges; we state it in the edge version, more in line
with the prevailing setting of Maker-Breaker games.) The unbiased case b = 1 is easy – one
can take C = (r − 1)2 + 1, and the argument goes as follows. Recall first that for every
edge decomposition E(G) = E(M) ∪ E(B) one has χ(G) ≤ χ(M)χ(B), where χ(G)
denotes the chromatic number of G. Hence, if for a graph G with χ(G) > (r − 1)2 Breaker
has a strategy to prevent Maker from reaching χ(M) ≥ r, then that very strategy guarantees
Breaker a graph B with χ(B) ≥ r. Maker, who is assumed to move first, can then steal this
strategy and achieve χ(M) ≥ r. However, even the next case b = 2, r = 3 is open. Only
very partial results are available, see [1, 30].

The neighborhood conjecture is one of the most important problems in positional games,
with several ramifications in other combinatorial and computer science questions. Recall that
the Erdős-Selfridge criterion (4.1) guarantees that a k-uniform hypergraph H with less that
2k−1 edges is Breaker’s win, and is thus 2-colorable by Proposition 4.1. As we mentioned,
this is tight for games. The obvious drawback of this result is that it does not take into
account the local structure ofH, hence taking any non-empty Breaker’s winH and repeating
it enough times will eventually create a hypergraph violating the Erdős-Selfridge condition
(still Breaker’s win of course). A local version of Breaker’s winning criterion would be:

Problem 8.3. Determine

D(k) := min{d : ∃ k-uniform Maker’s win H with Δ(H) ≤ d} ,
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whereΔ(H) is the maximum degree ofH. The definition of D(k) implies in particular that
any k-uniform H with Δ(H) < D(k) is 2-colorable. The relation to the famous Lovász
Local Lemma [26] is apparent — a standard application of the Local Lemma gives that if
Δ(H) ≤ 2k−1

ek , then H is 2-colorable. The gap between known lower and upper bounds
for D(k) is truly astonishing. For the lower bound, we know the trivial D(k) ≥ k

2 + 1

(pairing strategy). Gebauer proved [38] that D(k) ≤ (1 + o(1)) 2
k

k , thus disproving the
original neighborhood conjecture, stated in Beck’s book [11]. This bound was improved
further to D(k) ≤ (1 + o(1)) 2

k

ek by Gebauer, Szabó and Tardos [42]. The same paper [42]
reveals exciting connections between the neighborhood conjecture, the Local Lemma, and
the satisfiabilty problem, most central in computer science.

Another problem about Maker-Breaker games due to Beck [11] is as follows.

Problem 8.4. For the (m : m) Maker-Breaker clique game on Kn, what is the largest clique
size q Maker is guaranteed to achieve?

For the unbiased case m = 1 the answer is q = (1 − o(1))2 log2 n, due to Beck [11].
This matches the probabilistic intuition very well, as the clique number of the random graph
G(n, 1/2) is typically equal to (1 − o(1))2 log2 n. If so, one can expect that for m > 1 the
answer should be similar. This is however not the case for m ≥ 6, as shown in [39].

For Avoider-Enforcer games, the current state of affairs does not quite match the situation
for their Maker-Breaker analogs. In particular, we do not know yet to resolve the strict
Hamiltonicity game:

Problem 8.5. What are the threshold biases b− and b+ for the (1 : b) Avoider-Enforcer
Hamiltonicity game on E(Kn), played under strict rules?

The gap between the lower bound b− ≥ (1 − o(1))n/ lnn from Theorem 6.5 and the
trivial upper bound b+ ≤ n/2 − 1 is quite annoying. It would be also very nice to develop
a general theory of Avoider-Enforcer H-games, for fixed H; so far these games have mostly
been attacked on a game-to-game basis.

Finally, we mention Chooser-Picker and Picker-Chooser games. They are largely an
uncharted territory, and natural and attractive problems abound there.
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Hamilton cycles in graphs and hypergraphs:
an extremal perspective
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Abstract. As one of the most fundamental and well-known NP-complete problems, the Hamilton
cycle problem has been the subject of intensive research. Recent developments in the area have high-
lighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and
other recent techniques have led to the solution of several long-standing problems in the area. New
aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hyper-
graphs. We survey these developments and highlight open problems, with an emphasis on extremal
and probabilistic approaches.
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1. Introduction

A Hamilton cycle in a graph G is a cycle that contains all the vertices of G. The decision
problem of whether a graph contains a Hamilton cycle is among Karp’s original list of NP-
complete problems [68]. Together with the satisfiability problem SAT and graph colouring,
it is probably one of the most well-studied NP-complete problems. The techniques and
insights developed for these fundamental problems have also found applications to many
more related and seemingly more complex questions.

The main approach to the Hamilton cycle problem has been to prove natural sufficient
conditions which are best possible in some sense. This is exemplified by Dirac’s classical
theorem [36]: every graph G on n ≥ 3 vertices whose minimum degree is at least n/2
contains a Hamilton cycle. More generally, one can ask the following ‘extremal’ question:
what value of some easily computable parameter (such as the minimum degree) ensures the
existence of a Hamilton cycle? The field has an enormous literature, so we concentrate
on recent developments: several long-standing conjectures have recently been solved and
new techniques have emerged. In particular, recent trends include the increasing role of
probabilistic techniques and viewpoints as well as approaches based on quasi-randomness.

Correspondingly, in this survey we will focus on the following topics: regular graphs
and expansion; optimal packings of Hamilton cycles and Hamilton decompositions; random
graphs; uniform hypergraphs; counting Hamilton cycles. Notable omissions include the fol-
lowing topics: Hamilton cycles with additional properties (e.g. k-ordered Hamilton cycles);
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pancyclicity; generalized degree conditions (e.g. Ore- and Fan-type conditions); structural
constraints (e.g. claw-free and planar graphs) as well as digraphs. Many results in these areas
are covered e.g. in the surveys by Gould [51, 52] and Bondy [22]. Digraphs are discussed
in [90], though some very recent results on digraphs are also included here.

2. Regular graphs and expansion

2.1. Dense regular graphs. The union of two cliques as well as the complete almost bal-
anced bipartite graph show that the minimum degree bound in Dirac’s theorem is best pos-
sible. The former graph is disconnected and the latter is not regular. This led Bollobás [16]
as well as Häggkvist (see [61]) to (independently) make the following conjecture: Every
t-connected d-regular graph G on n vertices with d ≥ n/(t + 1) is Hamiltonian. The case
t = 2 was settled in the affirmative by Jackson [61].

Theorem 2.1 ([61]). Every 2-connected d-regular graph on n vertices with d ≥ n/3 is
Hamiltonian.

However, Jung [67] and independently Jackson, Li and Zhu [63] gave a counterexample
to the conjecture for t ≥ 4. Until recently, the only remaining case t = 3 was wide open.
Kühn, Lo, Osthus and Staden [86, 87] proved this case for all large n.

Theorem 2.2 ([86, 87]). There exists an integer n0 such that every 3-connected d-regular
graph on n ≥ n0 vertices with d ≥ n/4 is Hamiltonian.

The theorem is best possible in the sense that the bound on d cannot be reduced and
3-connectivity cannot be replaced by 2-connectivity. The key to the proof is a structural par-
tition result for dense regular graphs which was proved recently by the same authors [86]:
the latter result gives a partition of an arbitrary dense regular graph into a small number of
‘robust components’, with very few edges between these components. Each robust com-
ponent is either a ‘robust expander’ or a ‘bipartite robust expander’. Here a graph G is a
robust expander if for every set S ⊆ V (G) of ‘reasonable size’, its neighbourhood N(S) is
significantly larger than S, even after some vertices and edges of G are deleted (the precise
definition is given in Section 3.4). [86] also contains further applications of this partition re-
sult. Similar ideas might also be useful to prove analogues of Theorem 2.1 (say) for directed
and oriented graphs (see [90] for such conjectured analogues).

Christofides, Hladký and Máthé [28] used an approach related to that in the proof of
Theorem 2.2 to prove the famous ‘Lovász conjecture’ in the case of dense graphs.

Conjecture 2.3. Every connected vertex-transitive graph has a Hamilton path.

In contrast to common belief, Lovász [99] in 1969 actually asked for the construction
of a connected vertex-transitive graph containing no Hamilton path. Traditionally however,
the Lovász conjecture is always stated in the positive. A related folklore conjecture is the
following:

Conjecture 2.4. Every connected Cayley graph on at least three vertices contains a Hamil-
ton cycle.

Here a Cayley graph is defined as follows: Let H be a finite group and let S ⊆ H be a
subset with S = S−1 such that S does not contain the identity. The corresponding Cayley
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graph G(H;S) has vertex set equal to H . Two vertices g, h ∈ H are joined by a edge if and
only if there exists s ∈ S such that g = sh. (So every Cayley graph is vertex-transitive.)

Marušic [101] proved Conjecture 2.4 in the case when H is abelian. Alspach [4] conjec-
tured that in this case one even obtains a decomposition of the set of edges of G(H;S) into
edge-disjoint Hamilton cycles and at most one perfect matching. For a survey of results on
these conjectures, see for example [97].

The following result of Christofides, Hladký and Máthé [28] confirms the ‘dense’ case
of both Conjecture 2.3 and 2.4.

Theorem 2.5 ([28]). For every ε > 0 there exists an integer n0 such that every connected
vertex-transitive graph on n ≥ n0 vertices of degree at least εn contains a Hamilton cycle.

To prove this result, Christofides, Hladký andMáthé define the notion of ‘iron-connected-
ness’ which is related to that of robust expansion and consider a partition of the given
vertex-transitive graph into ‘iron-connected’ components. It would be interesting to find
out whether such a partition-based approach can also be extended to sparser graphs.

2.2. Sparse graphs: Toughness and expansion. The extremal examples for Theorem 2.2
indicate that an obstacle to the existence of a Hamilton cycle is the fact that the graph is
‘easy to separate’ into several pieces. The examples also show that connectivity is not the
appropriate notion to use in this context. So a fruitful direction of research has been to study
notions which are stronger than connectivity.

One of the most famous conjectures in this direction is the toughness conjecture of Chvá-
tal [30]. It states that if a graph is ‘hard to separate’ into many pieces, then it contains a
Hamilton cycle.

Conjecture 2.6 ([30]). There is a constant t so that every t-tough graph has a Hamilton
cycle.

Here a graph is t-tough if, for every nonempty set S ⊆ V (G), the graph G − S has
at most |S|/t components. Trivially, every graph with a Hamilton cycle is 1-tough. Little
progress has been made on this conjecture – we only know that if the conjecture holds, then
we must have t ≥ 9/4 [11].

So instead of considering toughness, it has been more rewarding to consider the related
(and in some sense stronger) notions of expansion and quasi-randomness. By expansion,
we usually mean the following: every small set S of vertices has a neighbourhood N(S)
which is large compared to |S| (more formally, N(S) denotes the set of all those vertices
which are adjacent to at least one vertex in S). It is well known that expansion is closely
linked to eigenvalues of the adjacency matrix: a large eigenvalue gap is equivalent to good
expansion properties (in which case we often call such a graph quasi-random). In particular,
there is a conjecture of Krivelevich and Sudakov [81] on Hamilton cycles in regular graphs
which involves the ‘eigenvalue gap’. The conjecture itself would follow from the toughness
conjecture.

Conjecture 2.7 ([81]). There is a constant C such that whenever G is a d-regular graph
and the second largest (in absolute value) eigenvalue of the adjacency matrix of G is a most
d/C, then G has a Hamilton cycle.

The best result towards this was proved by Krivelevich and Sudakov [81].
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Theorem 2.8 ([81]). There exists an integer n0 such that the following holds for all n ≥ n0.
Suppose that G is a d-regular graph on n vertices and that the second largest (in absolute
value) eigenvalue λ of the adjacency matrix of G satisfies λ ≤ (log logn)2

1000 logn(log log logn)d. Then
G has a Hamilton cycle.

It is known that λ = Ω(d1/2) for d ≤ n/2. So the above result applies for example
to quasi-random graphs with λ = Θ(d1/2) whose density is polylogarithmic in n, i.e. for
quasi-random graphs which are quite sparse.

The proof of Theorem 2.8 makes crucial use of the fact that the eigenvalue condition
implies the following: small sets of vertices expand and there are edges between any two
large sets of vertices. Hefetz, Krivelevich and Szabó [57] proved the following general result
which goes beyond the class of regular graphs and makes explicit use of these conditions.

Theorem 2.9 ([57]). There exists an integer n0 such that the following holds for all integers
n, d with n ≥ n0 and 12 ≤ d ≤ e(logn)1/2 . Let m := n(log logn) log d

d logn log log logn . Suppose that G is a
graph on n vertices such that |N(S)| ≥ d|S| for every S ⊆ V (G) with |S| ≤ m. Moreover,
suppose that there is an edge in G between any two disjoint subsets A,B ∈ V (G) with
|A|, |B| ≥ m/4130. Then G has a Hamilton cycle.

The original motivation for this result was a problem on maker-breaker games, but the
result also has several other applications, see [57].

3. Packings of Hamilton cycles and decompositions

3.1. Optimal packings of Hamilton cycles in dense graphs. Nash-Williams [107] proved
a striking extension of Dirac’s theorem: every graph on n ≥ 3 vertices with minimum de-
gree at least n/2 contains not just one but at least 5n/224 edge-disjoint Hamilton cycles.
He conjectured [106, 107] that there should even be n/4 of these. This was disproved by
Babai (see [106]), who gave a construction showing that one cannot hope for more than
(roughly) n/8 edge-disjoint Hamilton cycles (see below for details). Nash-Williams subse-
quently raised the question of finding the best possible bound, which is answered in Corol-
lary 3.2 below.

Recently Csaba, Kühn, Lapinskas, Lo, Osthus and Treglown [31, 32, 82, 85] were able to
answer a more general form of this question: what is the maximum number of edge-disjoint
Hamilton cycles one can guarantee in a graph G of minimum degree δ?

A natural upper bound is obtained by considering the largest degree regeven(G) of an
even-regular spanning subgraph of G. Let

regeven(n, δ) := min{regeven(G) : |V (G)| = n, δ(G) = δ}.

Clearly, in general we cannot guarantee more than regeven(n, δ)/2 edge-disjoint Hamilton
cycles in a graph of order n and minimum degree δ. The next result of Csaba, Kühn, Lap-
inskas, Lo, Osthus and Treglown [31, 32, 82, 85] shows that this bound is best possible (if
δ < n/2, then regeven(n, δ) = 0).

Theorem 3.1 ([31, 32, 82, 85]). There exists an integer n0 such that every graph G on
n ≥ n0 vertices contains at least regeven(n, δ)/2 edge-disjoint Hamilton cycles.
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The main result in [82] proves Theorem 3.1 unless G is close to one of the two extremal
graphs for Dirac’s theorem. This allows us in [31, 32, 85] to restrict our attention to the latter
situation (i.e. when G is close to the complete balanced bipartite graph or close to the union
of two disjoint copies of a clique).

An approximate version of Theorem 3.1 for δ ≥ n/2 + εn was obtained earlier by
Christofides, Kühn and Osthus [29]. Hartke and Seacrest [56] gave a simpler argument with
improved error bounds.

The parameter regeven(n, δ) can be evaluated via Tutte’s theorem. It turns out that for
n/2 ≤ δ < n, we have

regeven(n, δ) ∼ δ +
√

n(2δ − n)

2
,

(see [29, 55]). In particular, if δ ≥ n/2 then regeven(n, δ) ≥ (n − 2)/4. So Theorem 3.1
implies the following explicit bound, which is best possible and answers the above question
of Nash-Williams [106, 107].

Corollary 3.2. There exists an integer n0 such that every graph G on n ≥ n0 vertices with
minimum degree δ(G) ≥ n/2 contains at least (n − 2)/8 edge-disjoint Hamilton cycles.

The following construction (which is based on a construction of Babai, see [106]) shows
that the bound in Corollary 3.2 is best possible for n = 8k + 2, where k ∈ N. Consider the
graph G consisting of one empty vertex class A of size 4k, one vertex class B of size 4k+2
containing a perfect matching and no other edges, and all possible edges between A and B.
Thus G has order n = 8k + 2 and minimum degree 4k + 1 = n/2. Any Hamilton cycle
in G must contain at least two edges of the perfect matching in B, so G contains at most
*|B|/4+ = k = (n − 2)/8 edge-disjoint Hamilton cycles.

A weaker version of Theorem 3.1 for digraphs was proved by Kühn and Osthus in [93].
Ferber, Krivelevich and Sudakov [42] asked whether one can also obtain such a result for
oriented graphs.

Recall that Theorem 3.1 is best possible for the class of graphs on n vertices with
minimum degree δ. The following conjecture of Kühn, Lapinskas and Osthus [82] would
strengthen this in the sense that it would be best possible for every single graph G.

Conjecture 3.3 ([82]). Suppose that G is a graph on n vertices with minimum degree
δ(G) ≥ n/2. Then G contains regeven(G)/2 edge-disjoint Hamilton cycles.

For δ ≥ (2−√
2 + ε)n, this conjecture was proved by Kühn and Osthus [93]. Recently,

Ferber, Krivelevich and Sudakov [42] were able to obtain an approximate version of Conjec-
ture 3.3, i.e. a set of (1−ε)regeven(G)/2 edge-disjoint Hamilton cycles under the assumption
that δ(G) ≥ (1 + ε)n/2.

Also, it seems that the following ‘dual’ version of the problem has not been investigated
yet.

Question 3.4. Given a graph G on n vertices with δ(G) > n/2, how many Hamilton cycles
are needed in order to cover all the edges of G?

A trivial lower bound would be given by 2Δ(G)/23. However, this cannot always be
achieved. Indeed, consider for example the graph G obtained from a complete graph on an
odd number n of vertices by deleting an edge xy. Let C be a collection of Hamilton cycles
covering all edges of G. Since both x and y have odd degree, at least one edge at each of x
and y has to lie in at least two Hamilton cycles from C. Thus |C| > (n − 1)/2 = Δ(G)/2.
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Moreover, it is easy to see that the condition that δ > n/2 in Question 3.4 is needed
to ensure that every edge lies in a Hamilton cycle (consider the balanced complete bipartite
graph with a single edge in one of the classes). More is known about the probabilistic version
of Question 3.4 (see Section 4).

Question 3.4 can be viewed as a restricted version of the following conjecture of Bondy
[21], where arbitrary cycle lengths are permitted:

Conjecture 3.5 ([21]). The edges of every 2-edge-connected graph on n vertices can be
covered by at most 2(n − 1)/3 cycles.

3.2. The Hamilton decomposition and 1-factorization conjectures. Theorem 3.1 shows
that for dense graphs the bottleneck for finding many edge-disjoint Hamilton cycles is the
densest even-regular spanning subgraph. This makes it natural to consider the class of dense
regular graphs. In fact, Nash-Williams [106] suggested that these should even have a Hamil-
ton decomposition.

Here a Hamilton decomposition of a graph G consists of a set of edge-disjoint Hamilton
cycles covering all edges of G. A natural extension of this to regular graphs G of odd degree
is to ask for a decomposition into Hamilton cycles and one perfect matching (i.e. one perfect
matchingM inG together with a Hamilton decomposition ofG−M ). The most basic result
in this direction is Walecki’s theorem (see [100]), which dates back to the 19th century:

Theorem 3.6 ([100]). If n is odd, then the complete graph Kn on n vertices has a Hamilton
decomposition. If n is even, then Kn has a decomposition into Hamilton cycles together
with a perfect matching.

The following result of Csaba, Kühn, Lo, Osthus and Treglown [31, 32, 84, 85] general-
izes Walecki’s theorem to arbitrary regular graphs which are sufficiently dense: it determines
the degree threshold for a regular graph to have a Hamilton decomposition. In particular, it
solves the above ‘Hamilton decomposition conjecture’ of Nash-Williams [106] for all large
graphs.

Theorem 3.7 ([31, 32, 84, 85]). There exists an integer n0 such that the following holds. Let
n, d ∈ N be such that n ≥ n0 and d ≥ *n/2+. Then every d-regular graph G on n vertices
has a decomposition into Hamilton cycles and at most one perfect matching.

The bound on the degree in Theorem 3.7 is best possible. Indeed, it is easy to see that
a smaller degree bound would not even ensure connectivity. Previous results include the
following: Nash-Williams [105] showed that the degree bound in Theorem 3.7 guarantees
a single Hamilton cycle. Jackson [60] showed that one can guarantee close to d/2 − n/6
edge-disjoint Hamilton cycles. Christofides, Kühn and Osthus [29] obtained an approximate
decomposition under the assumption that d ≥ n/2 + εn. Under the same assumption, Kühn
and Osthus [93] obtained an exact decomposition (as a consequence of Theorem 3.16 below).
Note that Conjecture 3.3 would ‘almost’ imply Theorem 3.7.

Theorem 3.7 is related to the so-called ‘1-factorization conjecture’. Recall that Vizing’s
theorem states that for any graph G of maximum degree Δ(G), the edge-chromatic number
χ′(G) of G is eitherΔ(G) orΔ(G)+1. For regular graphs G, χ′(G) = Δ(G) is equivalent
to the existence of a 1-factorization, i.e. of a set of edge-disjoint perfect matchings covering
all edges of G. The long-standing 1-factorization conjecture guarantees a 1-factorization in
every regular graph of sufficiently high degree. It was first stated explicitly by Chetwynd and
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Hilton [26, 27] (who also proved partial results). However, they state that according to Dirac,
it was already discussed in the 1950s. The following result of Csaba, Kühn, Lo, Osthus and
Treglown [31, 32, 84, 85] confirms this conjecture for sufficiently large graphs.

Theorem 3.8 ([31, 32, 84, 85]). There exists an n0 such that the following holds. Let n, d ∈
N be such that n ≥ n0 is even and d ≥ 22n/43 − 1. Then every d-regular graph G on n
vertices has a 1-factorization. Equivalently, χ′(G) = d.

The bound on the minimum degree in Theorem 3.8 is best possible. Indeed, a smaller
bound on d would not even ensure a single perfect matching. To see this, suppose for exam-
ple that n = 2 mod 4 and consider the graph which is the disjoint union of two cliques of
order n/2 (which is odd).

Note that Theorem 3.7 does not quite imply Theorem 3.8, as the degree threshold in
the former result is slightly higher. The 1-factorization conjecture is a special case of the
‘overfull subgraph’ conjecture. This would give an even wider class of graphs whose edge-
chromatic number equals the maximum degree (see e.g. the monograph [118]).

The best previous result towards the 1-factorization conjecture is due to Perkovic and
Reed [109], who proved an approximate version, i.e. they assumed that d ≥ n/2 + εn. This
was generalized by Vaughan [121] to multigraphs of bounded multiplicity.

The following ‘perfect 1-factorization conjecture’ was posed by Kotzig [77] more than
fifty years ago at the first international conference devoted to Graph Theory. It combines 1-
factorizations and Hamilton decompositions. First note that it is easy to see that the complete
graph K2n has a 1-factorization. The ‘perfect 1-factorization conjecture’ would provide a
far-reaching generalization of this fact.

Conjecture 3.9 ([77]). K2n has a perfect 1-factorization, i.e. a 1-factorization in which any
two 1-factors induce a Hamilton cycle.

The conjecture is known to hold if n or 2n−1 is a prime, and for several special values of
n, but beyond that very little is known. To approach the conjecture it would be interesting to
find 1-factorizations so that the number of pairs of 1-factors which induce Hamilton cycles
is as large as possible (see e.g. [123]).

Walecki’s theorem can also be generalized in another direction: Alspach conjectured that
one can decompose the complete graph Kn into cycles of arbitrary length. This was recently
confirmed by Bryant, Horsley and Pettersson [24].

Theorem 3.10. Kn has a decomposition into t cycles of specified lengths m1, . . . ,mt if and
only if n is odd, 3 ≤ mi ≤ n for i ≤ t, and m1 + · · ·+ mt =

(
n
2

)
.

Perhaps it might be possible to prove a probabilistic analogue of this or extend the result
to non-complete graphs.

As the final open problem in the area, we turn to a beautiful conjecture of Bermond
(see [5]) that the existence of a Hamilton decomposition in a graph is inherited by its line
graph (note that an Euler circuit in a graph corresponds to a Hamilton cycle in the line graph).

Conjecture 3.11 (see [5]). If G has a Hamilton decomposition, then the line graph L(G) of
G has a Hamilton decomposition as well.

Muthusamy and Paulraja [104] proved this conjecture in the case when the number of
Hamilton cycles in a Hamilton decomposition of G is even (i.e. when G is d-regular where
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4|d). They also came quite close to proving it in the remaining case: they showed that if
the number of Hamilton cycles in a Hamilton decomposition of G is odd, then L(G) can be
decomposed into Hamilton cycles and one 2-factor.

3.3. Kelly’s conjecture. Kelly’s conjecture (see e.g. [102]) dates back to 1968 and states
that every regular tournament has a Hamilton decomposition. So one could view this as an
oriented version of Walecki’s theorem. Kühn and Osthus [92] recently proved the following
result, which shows that Kelly’s conjecture is even true if one replaces the class of regular
tournaments by that of sufficiently dense regular oriented graphs. (An oriented graph G is a
directed graph without 2-cycles. G is d-regular if all the in- and outdegrees equal d.)

Theorem 3.12 ([92]). For every ε > 0 there exists an integer n0 such that every d-regular
oriented graph G on n ≥ n0 vertices with d ≥ 3n/8 + εn has a Hamilton decomposition.

In fact, Kühn and Osthus deduce this result from an even more general result, which
involves an expansion condition rather than a degree condition (see Theorem 3.16). It is not
clear whether the bound ‘3n/8’ is best possible. However, this bound is a natural barrier
since the minimum in- and outdegree threshold which guarantees a single Hamilton cycle in
an (not necessarily regular) oriented graph is (3n−4)/8. As mentioned above, Theorem 3.12
implies Kelly’s conjecture for all large tournaments.

Corollary 3.13. There exists an integer n0 such that every regular tournament on n ≥ n0

vertices has a Hamilton decomposition.

Kühn and Osthus [93] also used Theorem 3.12 to prove a conjecture of Erdős on optimal
packings of Hamilton cycles in random tournaments, which can be viewed as a probabilistic
version of Kelly’s conjecture:

Theorem 3.14 ([93]). Let T be a tournament on n vertices which is chosen uniformly at
random. Then a.a.s. T contains min{δ+(T ), δ−(T )} edge-disjoint Hamilton cycles.

(Here we write a.a.s. for ‘asymptotically almost surely’, see Section 4 for the definition.)
The bound is clearly best possible. A similar phenomenon has been shown to occur in the
random graph Gn,p (see Theorem 4.1).

Jackson [62] posed the following bipartite version of Kelly’s conjecture. Here a bipartite
tournament is an orientation of a complete bipartite graph.

Conjecture 3.15 ([62]). Every regular bipartite tournament has a Hamilton decomposition.

It is not even known whether there exists an approximate decomposition, i.e. a set of
Hamilton cycles covering almost all the edges of a regular bipartite tournament. Another
conjecture related to Kelly’s conjecture was posed by Thomassen. The idea is to force many
edge-disjoint Hamilton cycles by high connectivity rather than regularity: Thomassen [120]
conjectured that for every k there is an integer f(k) so that every strongly f(k)-connected
tournament contains k edge-disjoint Hamilton cycles. Kühn, Lapinskas, Osthus and Pa-
tel [83] proved this by showing that f(k) = O(k2(log k)2) and conjectured that f(k) =
O(k2).

3.4. Robust expansion. As we already indicated in Section 2, there is an intimate connec-
tion between expansion and Hamiltonicity. In what follows, we describe a relatively new
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‘dense’ notion of expansion, which has been extremely fruitful in studying not just Hamilton
cycles but also Hamilton decompositions and more general subgraph embeddings.

Roughly speaking, this notion of ‘robust expansion’ is defined as follows: for any set
S of vertices, its robust neighbourhood is the set of all those vertices which have many
neighbours in S. A graph is a robust expander if for every set S which is not too small and
not too large, its robust neighbourhood is at least a little larger than S itself.

More precisely, let 0 < ν ≤ τ < 1. Given any graph G on n vertices and S ⊆ V (G), the
ν-robust neighbourhood RNν,G(S) of S is the set of all those vertices x of G which have at
least νn neighbours in S. G is called a robust (ν, τ)-expander if

|RNν,G(S)| ≥ |S|+ νn for all S ⊆ V (G) with τn ≤ |S| ≤ (1− τ)n.

This notion was introduced (for digraphs) by Kühn, Osthus and Treglown [95], who showed
that every robustly expanding digraph of linear minimum in- and outdegree contains a Hamil-
ton cycle. Examples of robust expanders include graphs on n vertices with minimum degree
at least n/2 + εn as well as quasi-random graphs. Kühn and Osthus [92, 93] showed that
every sufficiently large regular robust expander of linear degree has a Hamilton decomposi-
tion.

Theorem 3.16 ([92, 93]). For every α > 0 there exists τ > 0 such that for all ν > 0
there exists an integer n0 = n0(α, ν, τ) for which the following holds. Suppose that G is a
d-regular graph on n ≥ n0 vertices, where d ≥ αn, and that G is a robust (ν, τ)-expander.
Then G has a Hamilton decomposition.

In [92] they actually proved a version of this for digraphs, which has several applications.
(The undirected version is derived in [93].) For example, this digraph version implies the
following result.

Theorem 3.17 ([92]). For every ε > 0 there exists an integer n0 such that every d-regular
digraph G on n ≥ n0 vertices with d ≥ (1/2 + ε)n has a Hamilton decomposition.

Theorem 3.17 is a far-reaching generalization of a result of Tillson, who proved a directed
version of Walecki’s theorem. Moreover, Theorem 3.17 (which is algorithmic) has an appli-
cation to finding good tours for the (asymmetric) Traveling Salesman Problem (see [92]).

The main original motivation for these results was to prove Kelly’s conjecture for large
tournaments: indeed the directed version of Theorem 3.16 easily implies Theorem 3.12.

Theorem 3.16 has numerous further applications apart from Theorems 3.17 and 3.12
(both immediate ones and ones for which it is used as a tool). For example, it is easy to see
that for dense graphs, robust expansion is a relaxation of the notion of quasi-randomness.
So in particular, Theorem 3.16 implies (for large n) a recent result of Alspach, Bryant and
Dyer [6] that every Paley graph has a Hamilton decomposition. Theorem 3.16 is also used
in the proof of the Hamilton decomposition conjecture and the 1-factorization conjecture
(Theorems 3.7 and 3.8).

The proof of Theorem 3.16 uses an ‘approximate’ version of the result, which was proved
by Osthus and Staden [108] and states that the conditions of the theorem imply the existence
of an ‘approximate decomposition’, i.e. the existence of a set of edge-disjoint Hamilton
cycles covering almost all edges of G. (This generalizes an earlier result of Kühn, Osthus
and Treglown [96] on approximate Hamilton decompositions of regular tournaments.)
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4. Random graphs

Probabilistic versions of the above Hamiltonicity questions have also been studied inten-
sively. As usual, Gn,p will denote a binomial random graph on n vertices where every edge
is present with probability p (independently from all other edges), and we say that a property
of a random graph on n vertices holds a.a.s. (asymptotically almost surely) if the probability
that it holds tends to 1 as n tends to infinity.

Improving on bounds by several authors, Bollobás [17]; Komlós and Szemerédi [75] as
well as Korshunov [76] determined the precise value of p which ensures a Hamilton cycle:
if pn ≥ log n + log log n + ω(n), where ω(n) → ∞ as n → ∞, then a.a.s. Gn,p contains
a Hamilton cycle. On the other hand, if pn ≤ log n + log log n − ω(n), then a.a.s. Gn,p

contains an isolated vertex.
One can even obtain a ‘hitting time’ version of this result in the evolutionary process

Gn,t. For this, let Gn,0 be the empty graph on n vertices. Consider a random ordering of
the edges of Kn. Let Gn,t be obtained from Gn,t−1 by adding the tth edge in the ordering.
Ajtai, Kómlos and Szemerédi [1] as well as Bollobás [18] showed that a.a.s. the time t at
which Gn,t attains minimum degree two is the same as the time at which it first contains a
Hamilton cycle.

There are many generalizations and related results. Recently, much attention has fo-
cused on optimal packings of edge-disjoint Hamilton cycles and on resilience and robust-
ness, which we will discuss below. However, many intriguing questions remain open.

4.1. Optimal packings of Hamilton cycles. Bollobás and Frieze [20] extended the above
hitting time result to packing edge-disjoint Hamilton cycles in random graphs of bounded
minimum degree. In particular, this implies the following: suppose that pn ≤ log n +
O(log log n). Then a.a.s. Gn,p has *δ(Gn,p)/2+ edge-disjoint Hamilton cycles. Frieze and
Krivelevich [46] made the striking conjecture that this extends to all p. This has recently
been confirmed in a sequence of papers by several teams of authors:

Theorem 4.1. For any p = p(n), a.a.s. Gn,p has *δ(Gn,p)/2+ edge-disjoint Hamilton cy-
cles.

We now summarize the results leading to a proof of Theorem 4.1. Here ‘exact’ refers to
a bound of *δ(Gn,p)/2+, ‘approx.’ refers to a bound of (1− ε)δ(Gn,p)/2, and ε is a positive
constant.

authors range of p
Ajtai, Komlós, Szemerédi [1]; Bollobás [18] δ(Gn,p) = 2 exact
Bollobás & Frieze [20] δ(Gn,p) bounded exact
Frieze & Krivelevich [45] p constant approx.
Frieze & Krivelevich [46] p = (1+o(1)) logn

n exact
Knox, Kühn & Osthus [72] p 1 logn

n approx.
Ben-Shimon, Krivelevich & Sudakov [12] (1+o(1)) logn

n ≤ p ≤ 1.02 logn
n exact

Knox, Kühn & Osthus [73] (logn)50

n ≤ p ≤ 1− n−1/5 exact
Krivelevich & Samotij [80] logn

n ≤ p ≤ n−1+ε exact
Kühn & Osthus [93] p ≥ 2/3 exact

In particular, the results in [20, 73, 80, 93] (of which [73, 80] cover the main range) together
imply Theorem 4.1.
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Glebov, Krivelevich and Szabó [50] were the first to consider the ‘dual’ version of this
problem: how many Hamilton cycles are needed to cover all the edges of Gn,p? Hefetz,
Kühn, Lapinskas and Osthus [58] solved this problem for all p that are not too small or too
large (based on the main lemma of [73]).

Theorem 4.2 ([58]). Suppose that (logn)117

n ≤ p ≤ 1−n−1/8. Then a.a.s. the edges of Gn,p

can be covered by 2Δ(Gn,p)/23 Hamilton cycles.

It would be interesting to know whether a ‘hitting time’ version of Theorem 4.2 holds.
For this, given a property P , let t(P) denote the hitting time of P , i.e. the smallest t so that
Gn,t has P .

Question 4.3 ([58]). Let C denote the property that an optimal covering of a graph G with
Hamilton cycles has size 2Δ(G)/23. Let H denote the property that a graph G has a Hamil-
ton cycle. Is it true that a.a.s. t(C) = t(H)?

Note that C is not monotone. In fact, it is not even the case that for all t > t(C), Gn,t

a.a.s. has C. Taking n ≥ 5 odd and t =
(
n
2

) − 1, Gn,t is the complete graph with one
edge removed – which, as noted at the end of Section 3.1, cannot be covered by (n − 1)/2
Hamilton cycles. It would be interesting to determine (approximately) the ranges of t such
that a.a.s. Gn,t has C.

Another natural model of random graphs is of course that of random regular graphs. In
this case it seems plausible that we can actually ask for a Hamilton decomposition (and thus
obtain an analogue of Theorem 3.7 for sparse random graphs). Indeed, for random regular
graphs of bounded degree this was proved by Kim andWormald [71] and for (quasi-)random
regular graphs of linear degree this was proved by Kühn and Osthus [93] (as a consequence
of Theorem 3.16). However, the intermediate range remains open:

Conjecture 4.4. Suppose that d = d(n) → ∞ and d = o(n). Then a.a.s. a random
d-regular graph on n vertices has a decomposition into Hamilton cycles and at most one
perfect matching.

So far, not even an approximate version of this is known. One might be able to deduce
this from the results in [73].

An analogue of the hitting time result of Bollobás and Frieze [20] for random geometric
graphs was proved by Müller, Perez-Gimenez and Wormald [103]. Here the model is that n
vertices are placed at random on the unit square and edges are sequentially added in increas-
ing order of edge-length. For fixed k ≥ 1, they prove that a.a.s. the first edge in the process
that creates minimum degree at least k also causes the graph to have *k/2+ edge-disjoint
Hamilton cycles. The hitting time result for the case k = 1 was proved slightly earlier by
Balogh, Bollobás, Krivelevich, Müller and Walters [9].

4.2. Resilience. Often one would like to know not just whether some graph G has a prop-
erty P , but ‘how strongly’ it has this property. In other words, does G still have property P
if we delete (or add) some edges? Implicitly, variants of this question have been studied for
many properties and many classes of graphs. Sudakov and Vu [119] recently initiated the
systematic study of this question. In particular, they introduced the notion of resilience of a
graph with respect to a property P (below, we assume that P is monotone increasing, i.e. that
P cannot be destroyed by adding edges): A graph has local resilience t with respect to P if
it still has P whenever one deletes a set of edges such that at each vertex less than t edges
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are deleted. A graph has global resilience t with respect to P if it still has P whenever one
deletes less than t edges. Which of these variants is the more natural one to study usually
depends on the property P: for ‘global’ properties such as Hamiltonicity and connectivity
the local resilience leads to more interesting results, whereas for ‘local’ properties such as
triangle containment, it makes more sense to study the global resilience. Resilience has been
studied intensively for various random graph models (mainlyGn,p), as it yields natural prob-
abilistic versions of ‘classical’ theorems. Lee and Sudakov [98] proved a resilience version
of Dirac’s theorem (which improved previous bounds by several authors):

Theorem 4.5 ([98]). For any ε > 0 there is a constant C so that the following holds. If
p ≥ C log n/n then a.a.s. every subgraph of Gn,p with minimum degree at least (1+ε)np/2
contains a Hamilton cycle.

It is natural to consider more general structures than Hamilton cycles. However, as ob-
served by Huang, Lee and Sudakov [59], there is a limit to what one can ask for in this
context: for every ε > 0 there exists p with 0 < p < 1 such that a.a.s. Gn,p contains a sub-
graphH with minimum degree at least (1−ε)np andΩ(1/p2) vertices that are not contained
in a triangle of H .

As an even more informative notion than local resilience, Lee and Sudakov [98] recently
suggested a generalization of local resilience which allows a different number of edges to be
deleted at different vertices. In other words, in this ‘degree sequence resilience’ the degree
sequence of the deleted graph has to be dominated by the given constraints. In particular,
they asked for a resilience version of Chvátal’s theorem on Hamilton cycles:

Problem 4.6 ([98]). Characterize all those sequences (k1, . . . , kn) for which G = Gn,p

a.a.s. has the following property: Let H ⊆ G be such that the degree sequence (d1, . . . , dn)
of H satisfies di ≤ ki for all i ≤ n. Then G − H has a Hamilton cycle.

Partial results on this problem were obtained by Ben-Shimon, Krivelevich and Sudakov [12].

4.3. Robust Hamiltonicity. An approach which can be viewed as ‘dual’ to resilience was
taken by Krivelevich, Lee and Sudakov [79]. They proved the following extension of Dirac’s
theorem, which one can view as a ‘robust’ version of the theorem.

Theorem 4.7 ([79]). There exists a constant C such that for p ≥ C log n/n and a graph G
on n vertices of minimum degree at least n/2, the random subgraph Gp obtained from G by
including each edge with probability p is a.a.s. Hamiltonian.

This theorem gives the correct order of magnitude of the threshold function since if p
is a little smaller than log n/n, then the graph Gp a.a.s. has isolated vertices. Also, since
there are graphs with minimum degree n/2− 1 which are not even connected, the minimum
degree condition cannot be improved. Note that the result can be viewed as an extension of
Dirac’s theorem since the case p = 1 is equivalent to Dirac’s theorem.

One can ask similar questions for other (families of) graphs which are known to be
Hamiltonian. In particular, a natural question that seems to have been unfairly neglected is
that of the Hamiltonicity threshold in random hypercubes. More precisely, given n and p,
the random subgraph Qn,p of the n-dimensional cube Qn is defined as follows: each edge
of Qn is included independently in Qn,p with probability p. Bollobás [19] proved that if
p > 1/2 is a constant, then a.a.s. Qn,p is connected and has a perfect matching (and actually
proved a hitting time version of this result). It seems plausible that a.a.s. Qn,p even contains
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a Hamilton cycle. There is no chance for this if p ≤ 1/2 as there is a significant probability
that Qn,p has an isolated vertex in that case.

Conjecture 4.8. Suppose that p > 1/2 is a constant. Then a.a.s. Qn,p has a Hamilton cycle.

As far as we are aware, the question is still open even if p is any constant close to one.
Since Qn is Hamiltonian, the above conjecture can be viewed as a ‘robust’ version of this
simple fact.

4.4. The Pósa-Seymour conjecture. Surprisingly, a probabilistic analogue of the Pósa-
Seymour conjecture is still open. This beautiful generalization of Dirac’s theorem states that
every graphG on n vertices with minimum degree at least kn/(k+1) contains the kth power
of a Hamilton cycle (which is obtained from a Hamilton cycle C by adding edges between
any vertices at distance at most k on C). The conjecture was proved for large graphs by
Komlós, Sárközy and Szemerédi [74]. For squares of Hamilton cycles (i.e. for k = 2) the
best current bound in this direction is due to Châu, DeBiasio and Kierstead [25], who proved
that in this case the conjecture holds for all graphs on at least 2 · 108 vertices.

A straightforward first moment argument indicates that the threshold for the square of a
Hamilton cycle in Gn,p should be close to p = n−1/2. Note that unlike the deterministic
version of the problem, this threshold would be significantly larger than the threshold for
a triangle-factor. The latter was determined to be n−2/3(log n)1/3 in a breakthrough by
Johansson, Kahn and Vu [66].

Conjecture 4.9 ([91]). If p 1 n−1/2, then a.a.s. Gn,p contains the square of a Hamilton
cycle.

When k ≥ 3, the threshold is n−1/k. This follows from a far more general theorem on
thresholds for spanning structures in Gn,p which was obtained by Riordan [110]. His proof
is based on the second moment method. In [91] Kühn and Osthus proved an ‘approximate’
version of the above conjecture: for any ε > 0, if p ≥ n−1/2+ε, then Gn,p a.a.s. contains
the square of a Hamilton cycle. Their proof is ‘combinatorial’ in the sense that it uses a
version of the absorbing method for random graphs rather than the second moment method.
A version of this for quasi-random graphs was proved by Allen, Böttcher, Hàn, Kohayakawa
and Person [2]. Their result also extends to kth powers of Hamilton cycles.

In the spirit of Theorem 4.7, one could also ask about a ‘robust’ version of Conjecture 4.9.

5. Hamilton cycles in uniform hypergraphs

Cycles in hypergraphs have been studied since the 1970s. The first notion of a hypergraph
cycle was introduced by Berge [13]. Recently, the much more structured notion of ‘�-cycles’
has become very popular and has led to very interesting results.

5.1. Dirac-type theorems. To obtain analogues of Dirac’s theorem for hypergraphs, we
first need to generalize the notions of a cycle and of minimum degree. There are several
natural notions available.

A k-uniform hypergraph G consists of a set V (G) of vertices and a set E(G) of edges
so that each edge of consists of k vertices. Given an integer � with 1 ≤ � < k, we say
that a k-uniform hypergraph C is an �-cycle if there exists a cyclic ordering of the vertices



394 Daniela Kühn and Deryk Osthus

of C such that every edge of C consists of k consecutive vertices and such that every pair of
consecutive edges (in the natural ordering of the edges) intersects in precisely � vertices. So
every �-cycle C has |V (C)|/(k−�) edges. In particular, k−� divides the number of vertices
in C. If � = k − 1, then C is called a tight cycle, and if � = 1, then C is called a loose cycle.
C is a Hamilton �-cycle of a k-uniform hypergraph G if V (C) = V (G) and E(C) ⊆ E(G).

More generally, a Berge cycle is an alternating sequence v1, e1, v2, . . . , vn, en of distinct
vertices vi and distinct edges ei so that each ei contains vi and vi+1. (Here vn+1 := v1, and
the edges ei are also allowed to contain vertices outside {v1, . . . , vn}.) Thus every �-cycle
is also a Berge cycle. A Berge cycle v1, e1, v2, . . . , vn, en is a Hamilton Berge cycle of a
hypergraph G if V (G) = {v1, . . . , vn} and ei ∈ E(G) for each i ≤ n. So a Hamilton Berge
cycle of G has |V (G)| edges. Moreover, every tight Hamilton cycle of G is also a Hamilton
Berge cycle of G (but this is not true for Hamilton �-cycles with � ≤ k − 2 as they have
|V (G)|/(k − �) edges).

We now introduce several notions of minimum degree for a k-uniform hypergraph G.
Given a set S of vertices of G, the degree dG(S) of S is the number of all those edges of G
which contain S as a subset. The minimum t-degree δt(G) of G is then the minimum value
of dG(S) taken over all sets S of t vertices ofG. When t = 1we refer to this as the minimum
vertex degree of G, and when t = k − 1 we refer to this as the minimum codegree.

A Dirac-type theorem for Berge cycles was proved by Bermond, Germa, Heydemann and
Sotteau [15]. A Dirac-type theorem for tight Hamilton cycles was proved by Rödl, Ruciński
and Szemerédi [113, 114]. (This improved an earlier bound by Katona and Kierstead [69].)
Together with the fact that if (k − �)|n then any tight cycle contains an �-cycle on the same
vertex set (consisting of every (k − �)th edge), this yields the following result.

Theorem 5.1 ([113, 114]). For all k ≥ 3, 1 ≤ � ≤ k − 1 and any ε > 0 there exists an
integer n0 so that if n ≥ n0 and (k − �)|n then any k-uniform hypergraph G on n vertices
with δk−1(G) ≥ ( 12 + ε

)
n contains a Hamilton �-cycle.

If (k − �)|k and k|n then the above result is asymptotically best possible. Indeed, to
see this, note that if the above divisibility conditions hold, then every �-cycle C contains
a perfect matching (consisting of every k/(k − �)th edge of C). On the other hand, it is
easy to see that the following parity based construction shows that a minimum codegree of
n/2 − k does not ensure a perfect matching: Given a set V of n vertices, let A ⊆ V be a
set of vertices such that |A| is odd and n/2 − 1 ≤ |A| ≤ n/2 + 1. Let G be the k-uniform
hypergraph whose edges consists of all those k-element subsets S of V for which |S ∩A| is
even.

For k = 3, Rödl, Ruciński and Szemerédi [115] were able to prove an exact version of
Theorem 5.1 (the threshold in this case is *n/2+). The following result of Kühn, Mycroft
and Osthus [88] deals with all those cases in which Theorem 5.1 is not asymptotically best
possible.

Theorem 5.2 ([88]). For all k ≥ 3, 1 ≤ � ≤ k − 1 with (k − �) � k and any ε > 0 there
exists an integer n0 so that if n ≥ n0 and (k − �)|n then any k-uniform hypergraph G on n
vertices with

δk−1(G) ≥
(

1

2 k
k−
3(k − �)

+ ε

)
n

contains a Hamilton �-cycle.
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Theorem 5.2 is asymptotically best possible. To see this, let t := n/(k − �) and s :=
2k/(k − �)3. Fix a set A of 2t/s3 − 1 vertices and consider the k-uniform hypergraph G on
n vertices whose hyperedges all have nonempty intersection with A. Then δk−1(G) = |A|.
However, an �-cycle on n vertices has t edges and every vertex on such a cycle lies in at
most s edges. So G does not contain an Hamilton �-cycle since A would be a vertex cover
for such a cycle and |A|s < t.

So the problem of which codegree forces a Hamilton �-cycle is asymptotically solved,
though exact versions covering all cases remain a challenging open problem. For k = 3 and
� = 1, Czygrinow and Molla [35] were able to prove such an exact version. The following
table describes the history of the results leading to the current state of the art.

authors k range of �
Rödl, Ruciński & Szemerédi [113] k = 3 � = 2 approx.
Kühn & Osthus [89] k = 3 � = 1 approx.
Rödl, Ruciński & Szemerédi [114] k ≥ 3 � = k − 1 approx.
Keevash, Kühn, Mycroft & Osthus [70] k ≥ 3 � = 1 approx.
Hàn & Schacht [53] k ≥ 3 1 ≤ � < k/2 approx.
Kühn, Mycroft & Osthus [88] k ≥ 3 1 ≤ � < k − 1, (k − �) � k approx.
Rödl, Ruciński & Szemerédi [115] k = 3 � = 2 exact
Czygrinow and Molla [35] k = 3 � = 1 exact

Proving corresponding results for vertex degrees seems to be considerably harder. The
following natural conjecture, which was implicitly posed by Rödl and Ruciński [111], is
wide open.

Conjecture 5.3 ([111]). For all integers k ≥ 3 and all ε > 0 there is an integer n0 so that
the following holds: if G is a k-uniform hypergraph on n ≥ n0 vertices with

δ1(G) ≥
(
1−
(
1− 1

k

)k−1

+ ε

)(
n

k − 1

)
,

then G contains a tight Hamilton cycle.

This would be asymptotically best possible. Indeed, if k|n then any tight Hamilton cycle
contains a perfect matching, and a minimum vertex degree which is slightly smaller than in
Conjecture 5.3 would not even guarantee a perfect matching. To see the latter, fix a set A of
n/k − 1 vertices and consider the k-uniform hypergraph G on n vertices whose hyperedges
all have nonempty intersection with A. Then δ1(G) ∼ (1− (1−1/k)k−1)

(
n

k−1

)
, but G does

not contain a perfect matching.
For general k, Conjecture 5.3 seems currently out of reach – it is even a major open

question to determine whether the above degree bound ensures a perfect matching of G.
However, it would also be interesting to obtain non-trivial bounds (see e.g. [111]). For
k = 3 the best current bound towards Conjecture 5.3 was proved by Rödl and Ruciński [112].
They showed that in this case the conjecture holds if 1 − (1 − 1/3)2 = 5/9 is replaced by
(5−√

5)/3.
For k = 3, Han and Zhao [54] were able to determine the minimum vertex degree which

guarantees a loose Hamilton cycle exactly.
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Theorem 5.4 ([54]). There exists an integer n0 so that the following holds. Suppose that G
is a 3-uniform hypergraph on n ≥ n0 vertices with δ1(G) ≥ (n2) − (3n/42

)
+ c, where n is

even, c = 2 if 4|n and c = 1 otherwise. Then G contains a loose Hamilton cycle.

The bound on the minimum vertex degree is tight: for n of the form 4t+2, fix a set A of
t vertices and consider the k-uniform hypergraph G on n vertices whose hyperedges all have
nonempty intersection with A. Buß, Han and Schacht [23] had earlier proved an asymptotic
version of this result.

5.2. Hamilton cycles in random hypergraphs. Similarly as in the graph case, it is natu-
ral to study Hamiltonicity questions in a probabilistic setting. Let H(k)

n,p denote the random
k-uniform hypergraph on n vertices where every edge is present with probability p, inde-
pendently of all other edges. The following result of Dudek, Frieze, Loh and Speiss [39]
determines the threshold for the existence of a loose Hamilton cycle in H

(k)
n,p. (In both Theo-

rems 5.5 and 5.6 we only consider those n which satisfy the trivial divisibility condition for
the existence of an �-cycle, i.e. that n is a multiple of k − �.)

Theorem 5.5 ([39]). Suppose that k ≥ 3. If p 1 (log n)/nk−1, then a.a.s. H(k)
n,p contains a

loose Hamilton cycle.

The logarithmic factor appears due to the ‘local’ obstruction that a.a.s. H(k)
n,p contains

isolated vertices below this threshold.
The proof of Theorem 5.5 is ‘combinatorial’ (in particular, it does not use the second mo-

ment method) and builds on earlier results by Frieze [44] as well as Dudek and Frieze [37],
which required additional divisibility assumptions. The argument in [39] also uses the cel-
ebrated result of Johansson, Kahn and Vu [66] on the threshold for perfect matchings in
hypergraphs.

Loose Hamilton cycles in random regular hypergraphs have been considered by Dudek,
Frieze, Ruciński and Šileikis [40]. The next result due to Dudek and Frieze [38] concerns
precisely those values of k and � not covered by Theorem 5.5. Thus together Theorems 5.5
and 5.6 determine the threshold for the existence of a Hamilton �-cycle in random k-uniform
hypergraphs for any given value of k and �.

Theorem 5.6 ([40]).

(i) For all integers k > � ≥ 2 and fixed ε > 0, if p = (1− ε)ek−
/nk−
, then a.a.s. H(k)
n,p

does not contain a Hamilton �-cycle.

(ii) If k > � ≥ 2 and p 1 1/nk−
, then a.a.s. H(k)
n,p contains a Hamilton �-cycle.

(iii) For all fixed ε > 0, if k ≥ 4 and p = (1 + ε)e/n, then a.a.s. H
(k)
n,p contains a tight

Hamilton cycle.

The proof of Theorem 5.6 is based on the second moment method (which seems to fail
for Theorem 5.5). An algorithmic proof of (iii) with a weaker threshold of p ≥ n−1+ε was
given by Allen, Böttcher, Kohayakawa and Person [3]. Note that, for k ≥ 4, (i) and (iii)
establish a sharp threshold for tight Hamilton cycles, i.e. when � = k − 1. It would be
interesting to obtain a sharp threshold for other cases besides those in (iii) and a hitting time
result for loose Hamilton cycles.
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5.3. Hamilton decompositions. Hypergraph generalisations of Walecki’s theorem (Theo-
rem 3.6) have also been investigated. This question was first studied for the notion of a
Berge cycle. Let K(k)

n denote the complete k-uniform hypergraph on n vertices. Since ev-
ery Hamilton Berge cycle of K

(k)
n has n edges, a necessary condition for the existence of a

decomposition of K(k)
n into Hamilton Berge cycles is that n divides

(
n
k

)
. Bermond, Germa,

Heydemann and Sotteau [15] conjectured that this condition is also sufficient. For k = 3,
this conjecture follows by combining the results of Bermond [14] and Verrall [122]. Kühn
and Osthus [94] showed that as long as n is not too small, the conjecture holds for k ≥ 4 as
well. So altogether this yields the following result.

Theorem 5.7 ([14, 94, 122]). Suppose that 3 ≤ k < n, that n divides
(
n
k

)
and, in the case

when k ≥ 4, that n ≥ 30. Then K
(k)
n has a decomposition into Hamilton Berge cycles.

The following conjecture of Kühn and Osthus [94] would be an analogue of Theorem 5.7
for Hamilton �-cycles.

Conjecture 5.8 ([94]). For all integers 1 ≤ � < k there exists an integer n0 such that the
following holds for all n ≥ n0. Suppose that k− � divides n and that n/(k− �) divides

(
n
k

)
.

Then K
(k)
n has a decomposition into Hamilton �-cycles.

To see that the divisibility conditions are necessary, recall that every �-cycle on n vertices
contains exactly n/(k − �) edges.

The ‘tight’ case � = k − 1 of Conjecture 5.8 was already formulated and investigated
by Bailey and Stevens [7]. Actually, if n and k are coprime, the case � = k − 1 already
corresponds to a conjecture made independently by Baranyai [10] and Katona concerning
‘wreath decompositions’. A k-partite version of the ‘tight’ case of Conjecture 5.8 was re-
cently proved by Schroeder [117].

Conjecture 5.8 is known to hold ‘approximately’ (with some additional divisibility con-
ditions on n), i.e. one can find a set of edge-disjoint Hamilton �-cycles which together cover
almost all the edges of K

(k)
n . This is a very special case of results in [8, 47, 48] which

together guarantee approximate decompositions of quasi-random uniform hypergraphs into
Hamilton �-cycles for 1 ≤ � < k (again, the proofs need n to satisfy additional divisibility
constraints).

For example, Frieze, Krivelevich and Loh [48] proved an approximate decomposition
result for tight Hamilton cycles in quasi-random 3-uniform hypergraphs, which implies the
following result about random hypergraphs.

Theorem 5.9 ([48]). Suppose that ε, p, n satisfy ε45np16 ≥ (log n)21. Then whenever 4|n,
a.a.s. there is a collection of edge-disjoint tight Hamilton cycles of H(3)

n,p which cover all but
at most an ε1/15-fraction of the edges of H(3)

n,p.

The proof proceeds via a reduction to an approximate decomposition result of quasi-
random digraphs into Hamilton cycles. This reduction is also the cause for the divisibility
requirement. It would be nice to be able to eliminate this requirement. It would also be
interesting to know whether the threshold for the existence of an approximate decomposition
into Hamilton �-cycles coincides with the threshold for a single Hamilton cycle.
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6. Counting Hamilton cycles

In Section 3.1 the aim was to strengthen Dirac’s theorem (and other results) by finding
many edge-disjoint Hamilton cycles. Similarly, it is natural to omit the condition of edge-
disjointness and ask for the total number of Hamilton cycles in a graph. For Dirac graphs
(i.e. for graphs on n vertices with minimum degree at least n/2), this problem was essen-
tially solved by Cuckler and Kahn [33, 34]. They gave a remarkably elegant formula which
asymptotically determines the logarithm of the number of Hamilton cycles.

To state their result, we need the following definitions. For a graphG and edge weighting
x : E(G) → R

+, set h(x) :=
∑

e∈E(G) xe log2(1/xe), where xe denotes the weight of the
edge e. This is related to the entropy function, except that

∑
e∈E(G) xe is not required to

equal 1. We call an edge weighting x a perfect fractional matching if
∑

e�v xe = 1 for
each vertex v of G. Finally, let h(G) (the ‘entropy’ of G) be the maximum of h(x) over all
fractional matchings x.

Theorem 6.1 ([33, 34]). Suppose that G is a graph on n vertices with δ(G) ≥ n/2. Then
the number of Hamilton cycles in G is

22h(G)−n log2 e−o(n). (6.1)

In particular, the number of Hamilton cycles in G is at least

(1− o(1))n
δ(G)n

nn
n! ≥ n!

(2 + o(1))n
. (6.2)

(6.2) answers a question of Sárközy, Selkow and Szemerédi [116]. The proof of the
lower bound in (6.1) proceeds by considering a random walk which embeds the Hamilton
cycles. (6.2) is a consequence of (6.1), but the derivation is nontrivial. (It is easy to derive
if G is d-regular, as then setting xe := 1/d for each edge e of G maximises h(x).) As a
general bound on the number of Hamilton cycles in Dirac graphs, (6.2) is best possible (up
to lower order terms) – consider for example the complete balanced bipartite graph. In fact,
it is an easy consequence of Bregman’s theorem on permanents that the first bound in (6.2)
is best possible for any regular graph.

h(G) can be computed in polynomial time, so one can efficiently obtain a rough estimate
for the number of Hamilton cycles in a given Dirac graph. The question of obtaining more
precise estimates via randomized algorithms was considered earlier by Dyer, Frieze and
Jerrum [41]. For graphs whose minimum degree is at least n/2 + εn, they obtained a fully
polynomial time randomized approximation scheme (FPRAS) for counting the number of
Hamilton cycles. (Roughly speaking, an FPRAS is a randomized polynomial time algorithm
which gives an answer to a counting problem to within a factor of 1 + o(1) with probability
1− o(1).) They asked whether this result can be extended to all Dirac graphs.

Question 6.2 ([41]). Let G denote the class of all Dirac graphs, i.e. of all graphs G with
minimum degree at least |V (G)|/2. Is there an FPRAS for counting the number of Hamilton
cycles for all graphs in G?

Ferber, Krivelevich and Sudakov [42] proved an analogue of (6.2) for oriented graphs
whose degree is slightly above the Hamiltonicity threshold.

Counting Hamilton cycles also yields interesting results in the random graph setting.
Note that the expected number of Hamilton cycles in Gn,p is pn(n − 1)!/2. Glebov and
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Krivelevich [49] showed that for any p above the Hamiltonicity threshold, a.a.s. the number
of Hamilton cycles in Gn,p is not too far from this.

Theorem 6.3 ([49]). Let p ≥ logn+log logn+ω(n)
n , where ω(n) tends to infinity with n. Then

a.a.s. the number of Hamilton cycles in Gn,p is (1− o(1))npnn!.

For p = Ω(n−1/2), this was already proved by Janson [64], who in fact determined the
asymptotic distribution of the number of Hamilton cycles in this range. Surprisingly, his
results imply that a.a.s. the number X of Hamilton cycles in Gn,p is concentrated below
the expected value, i.e. a.a.s. X/E(X) → 0 for p → 0 (on the other hand, in the Gn,m

model, X is concentrated at E(X) in the range when n3/2 ≤ m ≤ 0.99
(
n
2

)
). Glebov and

Krivelevich [49] also obtained a hitting time version of Theorem 6.3.

Theorem 6.4 ([49]). In the random graph process Gn,t, at the very moment the minimum
degree becomes two, a.a.s. the number of Hamilton cycles becomes (1− o(1))n(log n/e)n.

Note that at the hitting time t for minimum degree two a.a.s. the edge density p of Gn,t

is close to log n/n, and so the expression in Theorem 6.4 could also be written as (1 −
o(1))npnn!, which coincides with Theorem 6.3.

A related result of Janson [65] determines the asymptotic distribution of the number of
Hamilton cycles in random d-regular graphs for constant d ≥ 3. Frieze [43] proved a similar
formula to that in Theorem 6.3 for dense quasi-random graphs, which was extended to sparse
quasi-random graphs by Krivelevich [78].

It turns out that the number of Hamilton cycles in a graph is often closely connected to
the number of perfect matchings (indeed the former is always at most the square of the latter).
So most of the above papers also contain related results about counting perfect matchings.
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Abstract. We survey several results on the enumeration of planar graphs and on properties of random
planar graphs. This includes basic parameters, such as the number of edges and the number of con-
nected components, and extremal parameters such as the size of the largest component, the diameter
and the maximum degree. We discuss extensions to graphs on surfaces and to classes of graphs closed
under minors. Analytic methods provide very precise results for random planar graphs. The results for
general minor-closed classes are less precise but hold with wider generality.
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1. Introduction

The theory of random graphs, initiated by Erdős and Rényi [34] in the early 1960s, has
become one of the main areas of research in combinatorics [13, 46]. The model studied
originally was the class G(n,M) of graphs with n labelled vertices and M edges, equipped
with the uniform distribution. Closely related is the binomial model G(n, p), in which every
possible edge between two vertices is selected independently with probability p. The two
models are very similar if p

(
n
2

)
is close to M . The advantage of the G(n, p) model is the

key property of independence, which allows to compute probabilities of basic events exactly,
and to determine precise thresholds for basic properties such as being acyclic, connected or
Hamiltonian. For instance, the probability that three given vertices span a triangle is exactly
p3, and the probability that a given vertex is isolated is (1− p)n−1.

Things become more difficult if we want to analyze random graphs subject to a global
condition, such as being regular, planar or triangle-free. Consider the property of being
triangle-free: we cannot select edges independently of each other, since once some edges
are selected, other edges are forbidden because they would create triangles. How does one
proceed in these cases? Simplifying we can say that there are two ways for analyzing random
graphs from a constrained class of graphs: either finding a simpler model that is close enough
to the class, or counting graphs in the class, or a combination of both. The first method is
well exemplified by the class of regular graphs. In the pairing model for d-regular graphs
there are n vertices, each of them equipped with d half-edges. A random pairing of the dn
half-edges produces a random d-regular multigraph. Probabilities of elementary events can
be computed reasonably well, including the probability that the resulting graph is simple.
This allows to obtain precise estimates on the number of regular graphs and has led to a rich
theory of random regular graphs [74].
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Another example is the class of triangle-free graphs. It was proved in [33] that, as the
number of vertices goes to infinity, almost all triangle-free graph are bipartite. Random
bipartite graphs can be analyzed in a model very similar to the G(n, p) model, where again
we have independence, and this provides a suitable model for triangle-free graphs. More
generally, almost all graphs not containing the complete graph Kt as a subgraph are (t− 1)-
partite [49], and again we have a model similar to G(n, p). Even more generally, if H is
a graph with the property that there exists an edge e such that χ(H − e) < χ(H) (here χ
denotes the chromatic number) and t = χ(H) ≥ 3, then almost every graph not containing
H as a subgraph is (t − 1)-partite [67]. These are important examples of monotone classes.
A class of graphs is monotone if it is closed under taking subgraphs, and it is hereditary if
it is closed under taking induced subgraphs. Much work has been done on estimating the
growth rate of monotone and hereditary classes and on analyzing random graphs from these
classes. This is an active area of research closely related to extremal graph theory [14].

The foremost example of the second method for analyzing random graphs, based on
counting, is the class of trees. We know how to count trees very precisely (whether labelled
or unlabeled, rooted or unrooted) and we also know how to count trees, for instance, with
given degrees or with given height. Thus we can analyze random variables like the number
of leaves or the height in random trees. Trees are fundamental objects in computer science
and powerful methods have been developed for analyzing them. The main tools in this area
are generating functions and analytic methods for deriving asymptotic estimates. We enter
here the realm of analytic combinatorics, as developed by Flajolet and Sedgewick [35]; see
also [24] for many aspects of random trees.

The key property that allows us to count trees is that they admit a simple combinatorial
decomposition. A rooted tree can be decomposed uniquely into the root and a collection
(ordered or not) of subtrees attached to the root. This decomposition translates into equations
for the corresponding generating functions, and we are in a situation to apply the methods
of analytic combinatorics. Many other combinatorial objects can be decomposed according
to simple schemes. This includes the class of planar maps. A map is a connected planar
multigraph (loops and multiple edges allowed) with a fixed embedding in the plane. In the
1960s Tutte, motivated by the Four Colour Problem, created the theory of map enumeration.
He realized that maps admit recursive decompositions, implying algebraic equations for the
associated generating functions. He found exact formulas for the number of various classes
of rooted maps (to be defined later) with given number of edges. For instance, Tutte showed
[73] that the number of rooted maps with n edges equals

2 · 3n(2n)!
n!(n + 2)!

. (1.1)

This formula and similar ones were later explained more combinatorially, using bijections
with certain classes of enriched trees [70]. As we discuss later, these bijections have powerful
implications on the structure of random maps.

It took time to realize that the theory of map enumeration could be used to count planar
graphs without an embedding. This was done first for 2-connected planar graphs by Bender,
Gao and Wormald [9], using the enumeration of 3-connected planar maps and Whitney’s
theorem, namely that a 3-connected planar graph has a unique embedding in the sphere up
to homeomorphism. Soon after that the analysis was extended to arbitrary planar graphs
by Giménez and Noy [42]. They provided a precise estimate for the number Gn of planar
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graphs with n labelled vertices of the form

Gn ∼ c n−7/2γnn!, (1.2)

where γ ≈ 27.2269 is a well-defined constant, known as the growth constant of planar
graphs. This opened the way to the fine analysis of random planar graphs. In the same
work [42] it was proved that the number of connected components in a random planar graph
follows asymptotically a Poisson distribution plus 1 and that the number of edges is asymp-
totically Gaussian with linear mean and variance. This is developed in Section 3 for the
more basic parameters, and in Section 4 for more advanced extremal parameters, such as the
diameter, the maximum vertex degree or the size of the largest block.

The next step was to enumerate graphs that can be embedded in a fixed surface S, ori-
entable or not. McDiarmid [55] showed first that the growth constant for graphs embeddable
in a surface does not depend on the surface (a result already known for maps) and is equal
to γ. Soon after that the enumeration of graphs on surfaces was completed independently
in [7] and [18]. It was shown that the number of labelled graphs with n vertices that can be
embedded in the orientable surface of genus g is asymptotically

cg n5(g−1)/2−1γnn!. (1.3)

We see that only the subexponential term depend on the genus. It is worth remarking that,
unlike the planar case, the counting series of graphs in a surface is not computed exactly but
rather sandwiched coefficient-wise between two computable series with the same leading
asymptotic terms (more details in Section 5). In addition, it was shown [18] that basic
parameters, such as the number of components, the number of edges, or the sizes of the
largest component and the largest block, have the same asymptotic distribution as for planar
graphs. All these results hold as well for graphs on the non-orientable surface of genus h, in
which case the subexponential term in the asymptotics is n5(h−2)/4−1.

Graphs on surfaces are strongly related to graph minors. A graph H is a minor of G if
H can be obtained from a subgraph of G by contracting edges. A class of graphs is minor-
closed if it is closed under taking minors. A basic example is the class of planar graphs and,
more generally, the class of graphs embeddable in a fixed surface. Other interesting minor-
closed classes are series-parallel graphs,ΔY -reducible graphs and graphs with bounded tree-
width. Only in a few cases we have access to the counting generating functions, allowing for
a precise analysis as in the case of planar graphs or graphs on surfaces. However one can use
combinatorial arguments to prove relevant results on random graphs from a minor-closed
class. This program has been carried out mostly by McDiarmid and his coauthors. The
results are less precise than those obtained using generating functions and analytic methods,
but apply to more general situations. One example can illustrate this: the class K of graphs
not containing K5 as a minor is an interesting class (studied by Wagner, motivated by the
Four Colour Problem) containing the class of planar graphs. We do not know how to compute
the counting generating function for the class K, but from the results in [56] it follows that
the number of components converges to a Poisson law plus 1 and that the expected number
of vertices in the largest component is n − c for some constant c. These remarkable results
apply to any minor-closed class subject to mild hypothesis, as discussed in Section 6.

There is one general situation where analytic methods still apply, namely when the class
of graphs is subcritical. This is a technical condition defined in terms of the singularities of
the generating functions, but combinatorially it can be interpreted as the fact that the class
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contains ‘relatively few’ 3-connected graphs. This category includes forests, outerplanar
graphs, series-parallel graphs and related classes of graphs. Graphs in these classes have
typically a tree-like structure and in fact share several properties with trees. The analysis
of subcritical classes uses general tools from analytic combinatorics [25, 44] and will be
reviewed in Section 7.

We conclude the paper with some remarks and open problems. In the rest of the paper,
unless mentioned otherwise, all graphs are labelled and n denotes the number of vertices.
For the generating functions that will appear, variable x is associated to vertices and variable
y to edges. For maps, n denotes the number of edges and z is the variable associated to
edges.

2. Planar maps and graphs

Let us go back to Tutte and the enumeration of planar maps. Rooted trees are easier to enu-
merate than unrooted ones, since the root vertex gives a starting point for the combinatorial
decomposition. In the same way Tutte decided to root maps: an edge (not a vertex) is se-
lected and given an orientation. Let M be a planar map and let e be its root edge. Tutte’s
analysis distinguished two cases, depending on whetherM− e is connected or not. In order
to keep control of the decomposition, he had to consider the number Mn,k of maps with n
edges in which the root face (the one to the right of the oriented root edge) has degree k.
Analyzing the combinatorial decomposition of maps resulting by removing the root edge, he
showed that the generating function M(z, u) =

∑
n,k Mn,ku

kzn satisfies the equation

M(z, u) = 1 + zu2M(z, u)2 + uz
uM(z, u)− M(z, 1)

u − 1
. (2.1)

This is a quadratic equation in M(z, u), but we cannot solve it directly since it contains
the series M(z, 1), which is not independent of the unknown. In order to solve it, Tutte
devised what is now known as the quadratic method. This is similar to the well-known
kernel method, but applied to quadratic instead of linear equations. He proved that

M(z, 1) =
18z − 1 + (1− 12z)3/2

54z2
,

and from here the expression in (1.1) follows easily.
Additional techniques allowed Tutte to enumerate various classes of maps. For instance,

in order to count bipartite maps it is enough to restrict the degrees of the faces to be even.
Eulerian maps are then enumerated by duality. In his seminal paper [73], Tutte also counted
maps according to their connectivity. The unique decomposition of connected graphs into
2-connected and 3-connected components allows us to link the generating functions of maps
with given connectivity. If B(z) =

∑
Bnz

n and T (z) =
∑

Tnz
n are, respectively, the

generating functions of 2-connected and 3-connected maps (counted according to the number
of edges) then the recursive decomposition of a map into its blocks gives

M(z) = 1 + B(zM(z)2). (2.2)

If now h(z) is the functional inverse of (B(z) − 2z)/z then the decomposition of a 2-
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connected map into its 3-connected components gives

T (z) = z2 − 2z3

1 + z
− zh(z). (2.3)

These equations provide all the information needed. For instance, together with (1.1), it is
easy to derive the asymptotic estimates

Mn ∼ cMn−5/212n, Bn ∼ cBn−5/2

(
27

4

)n

, Tn ∼ cTn−5/24n,

for suitable constants cM , cB , cT .
The enumeration of 3-connected maps is particularly interesting since, by the classical

theorem of Steinitz (1922), they correspond precisely to the graphs of convex polytopes in
R

3. Another reason of interest is that 3-connected planar graphs have a unique embedding
in the sphere, a classical result due to Whitney (1933). It follows that there is a one-to-
one correspondence between 3-connected planar maps and 3-connected planar graphs. This
leads directly to the enumeration of 3-connected labelled planar graphs in which an edge is
distinguished and given a direction, corresponding to the root of the associated map. A key
feature is that rooted maps have no non-trivial automorphisms, so that all vertices, edges and
faces are distinguishable. We can then give them labels and turn a rooted map into a labelled
graph. This was first made explicit in [9]. Now, using again Tutte’s decomposition of 2-
connected graphs into 3-connected components, but in the reverse direction, it is possible to
enumerate 2-connected planar graphs. Let us explain how.

In what follows generating functions for graphs are of the exponential type (whereas for
maps are ordinary), and variable x marks vertices and y marks edges. Let T (x, y) be the
generating function of 3-connected maps, and B(x, y) that of 2-connected planar graphs.
Closely related to B(x, y) is the generating function D(x, y) of ‘networks’, which are 2-
connected graphs rooted at a directed edge (which may be deleted or not) and whose end-
points are not labelled. Then D(x, y) is related to B(x, y) through (see [43] for details)

2(1 + y)
∂B

∂y
(x, y) = x2(1 + D(x, y)), (2.4)

and D(x, y) satisfies the equation

D(x, y) = (1 + y) exp

(
xD(x, y)2

1 + xD(x, y)
+

2

x2

∂T

∂y
(x,D(x, y))

)
− 1. (2.5)

The former two equations are essentially the equivalent of (2.3) for graphs. They are more
involved because there are two variables and several derivatives, but it is just Tutte’s decom-
position applied in the reverse direction: from the knowledge of T we have access to D,
hence to B. From here it was shown [9] that the number of 2-connected planar graphs grows
like

cBn−7/2(γB)
nn!,

where γB ≈ 26.18. Observe that the polynomial growth is n−7/2 instead of n−5/2, the
reason being that maps are rooted and introduce an extra linear factor. This was a major step
since little was known on counting planar graphs, as opposed to the rich theory of counting
planar maps created by Tutte and greatly extended later on.
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It remained to count connected planar graphs using the decomposition of connected
graphs into 2-connected components, and then to count planar graphs in general. LetC(x, y)
and G(x, y) be the generating functions of connected and arbitrary planar graphs, and let
C•(x, y) = x∂C

∂x (x, y) be that of rooted connected graphs, where a vertex is distinguished
as the root. The recursive decomposition of a graph into its blocks implies the equation

C•(x, y) = exp

(
∂B

∂x
(xC•(x, y), y)

)
. (2.6)

The former equation is the analog for graphs of (2.2). And the decomposition of a connected
graph into its connected components implies

G(x, y) = eC(x,y), (2.7)

and equation that has no analog for maps since maps are connected by definition. Solving
(2.4), (2.5) and (2.6) explicitly is a non-trivial problem. It was done in [42] by finding an
explicit expression for B(x, y) in terms of D(x, y); it is worth remarking that the same
solution can be recovered in a more combinatorial way [19]. From this expression one
can determine C(x, y) as the solution of (2.6) and then G(x, y) from (2.7), thus solving
completely the problem of enumerating planar graphs. In particular, the estimate in (1.2) is
obtained. We will not go into the details, which are quite technical, but rather will explain
how the solution from [42] opened the way to the fine analysis of random planar graphs.

3. Random planar graphs

In addition to the enumerative theory of planar maps, a number of relevant results on ran-
dom maps where established by Bender, Gao, Richmond and Wormald, among others. A
central result in [6] is that a random map almost surely contains linearly many copies of any
given planar submap M . This was later refined by showing that the number of copies of
M is asymptotically normal [40]. These results extend to several classes of maps, such as
triangulations and quadrangulations. Another result is that the distribution of vertex degrees
follows asymptotically a discrete law with exponential tail; this already follows from Tutte’s
equations, and later it was shown that the limiting distribution is independent of the surface
[37]. A very precise result was obtained for the distribution of the maximum vertex degree
[39], proving that it is of order log6/5 n for maps with n edges. In another direction, it was
shown [38] that a randommap contains a unique 2-connected component of linear size, more
precisely of size n/3, a result that extends to more general kind of ‘components’ in different
classes of maps. The limiting distribution of the size of the largest component was obtained
in [3], showing that it is non-Gaussian. With respect to metric properties of maps, it was
first established in [21] that the typical distance between two vertices in a random quadran-
gulation is of order n1/4. As we discuss later this has led to a rich theory of scaling limits
of random maps. We will review several of these results when discussing random planar
graphs.

The first attempt to analyze random planar graphs (without and embedding) was made
by in [23]. The probabilistic model is given by the set Gn of (labelled) planar graphs with n
vertices equipped with the uniform distribution. The goal declared there was to understand
‘what does a random planar graph look like’ under this distribution. The authors proved a
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few preliminary results but it was not until the work of McDiarmid, Steger and Welsh [59]
that more significant results were obtained. Among other results, they proved that a random
planar graph has with high probability linearly many disjoint pendant copies of each fixed
connected planar graph H with a distinguished vertex v: a pendant copy of H is a subgraph
isomorphic to H joined to the rest of the graph through a single edge uv, and such that the
isomorphism respects the order of the labels (so that automorphisms are not considered).
This implies in particular that there are linearly many vertices of degree k, for each fixed
k ≥ 1. It also implies that a random planar graph has exponentially many automorphisms
(consider pendant copies of K1,2 rooted at the vertex of degree two), in sharp contrast with
arbitrary random graphs. Another property proved in [59] is that the limiting probability p
that a random planar graph is connected is bounded away from 0 and from 1. In particular,
it was proved that p ≥ e−1. At about the same time several authors studied the number of
edges in random planar graphs. Using various combinatorial arguments it was proved that
almost surely the number of edges is between 1.85n and 2.44n, but no concentration result
or limiting distribution was obtained.

The results in [42] allow for a much more precise description. Let Gn,m,k be the number
of planar graphs with n vertices, m edges, and k components. The key fact is that it is
possible to find an exact expression for the exponential generating function

G(x, y, u) =
∑

n,m,k≥0

Gn,m,k ymuk xn

n!
.

As we have seen before, exact does not mean simple. However the series G(x, y, u) can be
expressed in terms of the solution of the system of equations (2.4–2.7) involving only ele-
mentary functions and the generation function T (x, y) of 3-connected rooted maps counted
according to vertices and edges, which is algebraic of degree four. Everything is explicit and
computable with the help a computer algebra system; see [43] for a detailed survey.

Let Xn be the random variable equal to the number of edges in planar graphs with n
vertices. The distribution of Xn is completely encoded in the generating function A(x, y) =
G(x, y, 1), since the probability generating function of Xn is simply

pn(y) =
[xn]A(x, y)

[xn]A(x, 1)
,

where [xn] denotes the coefficient of xn. From the system of equations satisfied by G it is
possible to extract, using analytic methods, information on the rate of growth of its coeffi-
cients. In this case one proves that, for fixed y > 0, we have the estimate

[xn]A(x, y) ∼ c(y)n−7/2γ(y)nn!.

This already gives the estimate (1.2) with c = c(1) and γ = γ(1), but it gives more, namely

pn(y) =
c(y)

c(1)

(
γ(y)

γ(1)

)n

+ O

(
1

n

)
, (3.1)

where the error term comes from the method of singularity analysis used in deriving the es-
timates. The probability generating function is close to being an exact power and extensions
of the Central Limit Theorem imply a Gaussian limit law for Xn (see Section IX.5 in [35]).
Moreover, from (3.1) it follows that the expected value EXn = p′n(1) is asymptotically
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μn, were μ = (γ′(y)/γ(1)). The function γ(y) is analytic and computable and one obtains
μ ≈ 2.21. A similar computation gives Var(Xn) ≈ 0.43n. It is also possible to prove a Lo-
cal Limit Theorem and to show that P (|Xn − EXn| > εn) is exponentially small [42]. This
gives a very precise picture of the distribution of the number of edges, highly concentrated
around μn.

The analysis of the number of components is easier. We have

G(x, 1, u) = euC(x), (3.2)

where C(x) is the generating function of connected planar graphs, and the generating func-
tion of graphs with exactly k components is C(x)k/k!. One shows that

[xn]
1

k!
C(x)k

[xn]G(x)
∼ λk−1

(k − 1)!
e−λ,

where λ = C(γ−1) ≈ 0.037. It follows that the random variable equal to the number of
components in planar graphs with n vertices converges to 1 + Po(λ), a Poisson distribution
of parameter λ. In particular, the limiting probability of connectedness is p = e−λ ≈ 0.96.
As will be seen in the next section, the largest component contains almost all vertices: its
expected size is n − c, where c is a small constant. The small number of vertices not in the
largest component accounts for the fact that p < 1.

Another parameter of interest is the distribution of the vertex degrees. For fixed k ≥
1, let Xk,n be the number of vertices of degree k in planar graphs with n vertices. As
mentioned before, Xk,n is linear in n with high probability. It is natural then to except that
EXk,n ∼ pkn as n → ∞. However, much technical work is needed in order to prove this
result. It requires a very fine analysis of the generating function G•(x,w) of graphs with a
distinguished vertex (the root), where w marks the degree of the root. It is proved in [27] that
the pk indeed exist and that

∑
k≥1 pk = 1. This is equivalent to saying that the probability

that a random vertex in a planar graph has degree k tends to pk as n → ∞, and that the
degree distribution converges to a discrete law. The explicit expression for the probability
generating function is extremely involved but it is computable and one obtains the first values

p1 ≈ 0.037, p2 ≈ 0.16, p3 ≈ 0.24, p4 ≈ 0.19, p5 ≈ 0.13, p6 ≈ 0.09.

The distribution decays exponentially like pk ∼ qkk−1/2, where q ≈ 0.67 is an explicit
constant, suggesting that the maximum degree is asymptotically logq−1(n). This is indeed
the case as discussed in the next section.

It was proved using different methods [66] that the number of vertices of degree k is
concentrated around its expected value. It is thus natural to expect that Xk,n is asymptoti-
cally normal as n → ∞, but this is still an open problem. On the other hand, asymptotic
normality of the Xk,n has been established for simpler classes of graphs [26] as well as for
planar maps [30].

4. Extremal parameters

In this section we focus on several extremal parameters that have been successfully analyzed
for random planar graphs. Other extremal parameters will be discussed in the last section.
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Largest component. Let us start with an easy parameter, the size Ln of the largest con-
nected component. It has already been mentioned that Ln is almost equal to n, but we can
be more precise. Let Gn be the number of planar graphs and Cn the number of connected
planar graphs. The probability that Ln = n−k, for fixed k and n > 2k, is

(
n
k

)
Cn−kGk/Gn,

since there are
(
n
k

)
ways of choosing the labels of the vertices not in the largest component,

Cn−k ways of choosing the largest component, and Gk ways of choosing the complement.
Using the known estimates for Gn and Cn we arrive at

P(Ln = n − k) ∼ p · Gk
γ−k

k!
, (4.1)

where p is the limiting probability of connectivity. Because of (1.2), this quantity is of order
k−7/2 for large k. It follows that n − Ln has a limiting discrete distribution with constant
expectation and variance. The expected value is computable and E(n − Ln) ≈ 0.038.
Readers familiar with the giant component phenomenon in the G(n,M) model may wonder
about analogs for planar graphs; this will be discussed in the last section.

We can also find the limiting distribution of the fragment, the complement of the largest
component. The probability that the fragment is isomorphic to a given unlabelled graph H
with h vertices is, for n > h, (

n

h

)
h!

aut(H)

Cn−h

Gn
,

where aut(H) is the number of automorphisms of H and h!/aut(H) is the number of differ-
ent labellings of H . It follows as before that

P(fragment ∼= H) ∼ p
γ−k

aut(H)
. (4.2)

We will see in Section 6 that this result holds in a more general context.

Largest block. Because of the previous result, from now on we focus on connected planar
graphs. A connected graph decomposes into blocks, which are either single edges (isth-
muses) or maximal 2-connected subgraphs. It is natural to consider the size of the largest
block. This is a very interesting parameter that has a non-Gaussian continuous limit law. It
was first studied for random maps in [38], where it was proved that the largest block in a
random map with n edges has expected size ∼ n/3 and, moreover, the second largest block
is of order O(n2/3). This result is somehow comparable to the classical giant component
phenomenon, a random map has a unique block of linear size and the other blocks are small.
The limiting distribution for the sizeXn of the largest block in randommaps was determined
very precisely in [3], and it involves the density function g(x) of a stable law of parameter
3/2. The precise result is the following:

P(Xn = *n/3 + xn2/3+) ∼ g(x)n−2/3, (4.3)

uniformly for x in any bounded interval. That is, the largest block has expected size n/3
and fluctuations of order O(n2/3). It is worth remarking that the distribution has no second
moment and is asymmetric: the left tail (as x → −∞) decays polynomially while the right
tail (as x → +∞) decays exponentially. The proof is based on analyzing the size of the root-
block, that is, the block containing the root edge. Equation (2.2) is the basis of the analysis:
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the composition scheme B(zM(z)2) is critical, in the sense that the evaluation of zM(z)2

at its singularity 1/12 is precisely 4/27, which is the singularity of B(z). Everything boils
down then to estimating the coefficients of large powers of generating functions, which is
achieved by a delicate application of the saddle-point method.

Using the tools developed in [3], an analogous result was proved for random planar
graphs [44]. In this case the expected size of the largest block (now n is the number of
vertices) is ∼ αn, where α ≈ 0.96 (this value of α was obtained independently in [65]
using alternative methods). The limiting distribution is of the same kind as (4.3), but with
a different scaling of g(x). The results in [44] also give the limiting distribution for the
size of the largest 3-connected component in random connected planar graphs, which again
is of the same kind as (4.3), both in the number of vertices and in the number of edges.
The expected number of vertices in the largest 3-connected component is ∼ 0.73n, and the
expected number of edges is ∼ 1.79n.

A parameter related to the largest block is the following. The 2-core of a graph G is
the maximum subgraph C with minimum degree at least two. The 2-core C is obtained
from G by repeatedly removing vertices of degree one and, conversely, G is obtained by
attaching rooted trees at the vertices of C. It is proved in [64] that the size of the 2-core of
a random planar graph is asymptotically Gaussian with expectation ∼ 0.962n (the value of
the constant was previously found in [57]). The constant is a bit larger than the value 0.96
for the largest block; this is consistent since the 2-core clearly contains the largest block. It
is also proved in [64] that the size of the largest tree attached to the 2-core is of order c log n
where c ≈ 0.43.

Maximum degree. Let Δn be the maximum degree in random planar graphs. A simple
and elegant argument by McDiarmid and Reed [58] based on double counting and elemen-
tary properties of random planar graphs shows that with high probability

c1 log n ≤ Δn ≤ c2 log n,

for some positive constants c1 and c2. This already gives the right order of magnitude.
Analytic methods are needed in order to obtain a more precise result. From the previ-
ous section we know that there is a limiting degree distribution {pk}k≥1 with tail of order
qkk−1/2. Using the first moment method and analytic properties of the generating function
G•(x,w) mentioned in the previous section, one can show that Δn ≤ (1 + o(1))c log n,
where c = 1/ log(q−1) ≈ 2.53. In principle a matching lower bound could be proved using
the second moment method, by rooting at a secondary vertex in addition to the root vertex.
This is done in [28] for simpler classes of graphs, which is already very demanding. How-
ever, the technical difficulties with this approach for planar graphs appear insurmountable,
since the equations defining the associated generating functions are just too complicated.

In order to obtain a lower bound one can use Boltzmann samplers, introduced in [31] for
the random generation of combinatorial objects. IfA is a class of combinatorial objects with
generating function A(x), and x0 is such that A(x0) is convergent, then an object α ∈ A of
size n is assigned probability xn

0/A(x0). The objects generated fluctuate in size, but all the
objects of size n have the same probability.

This framework has been applied successfully since then, in particular to the efficient
generation of random planar graphs [36]. One can use Boltzmann samplers not only for
random generation but also for the analysis of random combinatorial objects. This approach
has proved useful in particular for random planar graphs [65, 66]. This is also the case here,
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using the fact that there is a unique block of linear size: a typical random planar graph G can
be thought of as a large block B together with small planar graphs attached to its vertices. If
we later condition on the total size of G being n, we may start with the graphs attached to
B being drawn independently from the set of all connected planar graphs. In this way one
recovers the power of independent samples allowing to use techniques closer to the classical
theory of random graphs. This program has been carried out in [29], showing that with high
probability

|Δn − c log n| = O(log log n),

and
E(Δn) = (1 + o(1)) c log n.

Diameter. Let Dn denote the diameter of a random connected planar graph. This is a
difficult parameter to analyze, even for relatively simple classes of graphs, such as trees. The
starting point is the analysis of metric properties of random planar maps, by now a rich and
deep theory with connections to physics and other areas. Let Qn be a random embedded
quadrangulation (all faces of degree four) with n faces and let rn be the radius (maximum
graph distance) in Qn with respect to a fixed base point. In the pioneering work [21] it was
shown that rn is of order n1/4, in fact, much more was proved: rn/n

1/4 converges in law
to a continuous distribution related to Brownian motion. Notice that the diameter of Qn is
between rn and 2rn. The proof in [21] is based on a bijection between quadrangulations and
plane trees enriched with labels that keep track of the distances in Qn. The typical height
of a tree is of order

√
n, and the labels behave like a random walk along the branches of the

tree. This implies that the maximum distance is of order (
√

n)1/2, explaining the exponent
1/4. These results were later extended to other classes of random maps and, more recently,
even deeper results have been established. If one consider Qn as a metric space with the
graph distance dn, then (Qn, dnn

−1/4) converges in a precise technical sense to a certain
random compact metric space, known as the Brownian map [52, 61].

One can use the former results to analyze the diameter Dn in random planar graphs.
This is done in [17] starting from the result on quadrangulations and then moving to maps
with increasing connectivity. Once a result is established for 3-connected maps, it can be
transferred to 3-connected planar graphs and then to connected planar graphs. One uses in
an essential way the existence of a giant block and 3-connected component, both in maps
and graphs. The price to pay in this scheme for transferring the results from maps to graphs
is a loss in precision. The result proved in [17] is that for ε > 0 small enough and n large
enough,

P(Dn ∈ (n1/4−ε, n1/4+ε)) ≥ 1− exp(−ncε).

It is natural to conjecture that the radius rn of connected planar graphs scaled by n−1/4

converges to the same law as for quadrangulations and other classes of maps, but much more
precise results are needed in order to prove such a statement.

Summary of results. From this and the previous section we can conclude that we have
now a rather complete picture of ‘what a random planar graph looks like’. We summarize
the main properties in the following list. All the results are understood to hold asymptotically
almost surely when n → ∞. All the constants are explicit and computable to any desired
precision. The values given are approximations.
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1. The number of edges is Gaussian with expectation 2.21n and linear variance.

2. The number of connected components is 1 + Po(0.037). The probability of being
connected is 0.96.

3. If Ln denotes the size of the largest component, then n − Ln follows a discrete law.
The expected value of n − Ln is 0.38.

4. For each fixed connected planar graph H rooted at a distinguished vertex, the number
of pendant copies of H is Gaussian with expectation (γ−h/h!)n and linear variance.

5. The chromatic number is four. This follows from the Four Colour Theorem and the
fact that it contains K4 as a subgraph.

6. The number of automorphisms is exponential in n.

7. The number of blocks is Gaussian with expectation 0.039n. The number of cut vertices
is Gaussian with expectation 0.038n. In both cases the variance is linear.

8. For each fixed 2-connected planar graph L, the number of blocks isomorphic to L is
Gaussian with linear expectation and variance.

9. For each k ≥ 1, the expected number of vertices of degree k is pkn, where the pk are
computable and

∑
pk = 1.

10. The maximum degree satisfies |Δn − c log n| = O(log log n), where c = 2.53, and
EΔn ∼ c log n.

11. The size of the largest block has expected value 0.96n and follows a stable law of
parameter 3/2. The remaining blocks are of size O(n2/3). The same holds for the
size of the largest 3-connected component, with expectation 0.73n.

12. The size of the 2-core is Gaussian with expectation 0.962n and linear variance.

13. The diameter Dn is in (n1/4−ε, n1/4+ε) with high probability.

5. Graphs on surfaces

The theory of map enumeration extends to maps on surfaces. A map on a surface S is a 2-cell
embedding (all faces must be homeomorphic to disks) of a connected graph in S. It is worth
remarking that a map on an orientable surface can be encoded in a purely combinatorial
way by means of a rotation system, which consists of giving a cyclic ordering of the edges
around each vertex. By giving appropriate signs to the edges the encoding also works for
non-orientable surfaces, but for conciseness we only discuss the orientable case [62]. Let
Mg

n be the number of maps with n edges on the orientable surface of genus g. As opposed to
the planar case, there is no closed formula for Mg

n , but one can use Tutte’s methodology of
removing the root edge to find the associated generating function Mg(z). Using induction
on the genus, it was proved by Bender and Canfield [4] that Mg(z) is a rational function in√
1− 12z. The explicit expression is quite involved but it can be used to prove the estimate

Mg
n ∼ cgn

5(g−1)/212n. (5.1)

Notice that the genus only affects the subexponential term and not the exponential growth.
The surprising exponent 5(g − 1)/2 was later explained more combinatorially in [20].
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Suppose one wishes, as for planar graphs, to use the enumeration of maps on S for count-
ing graphs (without an embedding) on S. There are two main obstacles for this program:
1) no degree of connectivity guarantees a unique embedding, and 2) the class of graphs em-
beddable in S is not close under taking connected components or blocks, so that the basic
equations among generating functions, such as (3.2) no longer hold. The road to the solution,
found independently in [18] and [7], is the following. The face-width of a map M in S is the
minimum number of intersections of M with a simple non-contractible curve C on S. It is
easy to see that this minimum is achieved when C meets M only at vertices. Face-width is
in some sense a measure of local planarity, if the face-width is large then the embedding is
locally planar in large balls. The face-width of a graph G is the maximum face-width among
all the embeddings of G.

The key result is that a 3-connected graph with large enough face-width has a unique
embedding [62]. It turns out that the generating series of 3-connected maps of any fixed
face-width has a negligible contribution in the asymptotic analysis [8]. Therefore, the enu-
meration of 3-connected graphs in a surface S can be reduced, up to negligible terms, to the
enumeration of 3-connected maps in S. There is one technical difficulty, which is to enumer-
ate maps according to edges and a suitable weight on the vertices. This is achieved starting
with the enumeration of all maps in S and then, using Tutte’s approach based on substitu-
tion, going to 2-connected and then to 3-connected maps in S. It is important to remark that,
since maps with small face-width are discarded, one does not work with the exact counting
series. Instead, if f(x) is the series of interest, one finds computable series f1(x) and f2(x)
such that f1(x) % f(x) % f2(x) (where%means coefficient-wise inequality) and f1(x) and
f2(x) have the same leading asymptotic estimates.

For the second obstacle one can use a result from [69]: if a connected graph G of genus
g has face-width at least two, then G has a unique block of genus g and the remaining blocks
are planar. A similar result holds for 2-connected graphs and 3-connected components. Since
for planar graphs we have exact expressions for all the generating functions involved, starting
from the (asymptotic) enumeration of 3-connected graphs of genus g we can achieve the
enumeration of all graphs of genus g. Let us make more precise one of the steps in the
analysis. Let Gg(x) and Cg(x) be the generating functions of graphs and connected graphs
of genus at most g, respectively. The usual relation Gg(x) = exp(Cg(x)) does not hold,
since the union of graphs of genus g will have larger genus if g > 0. Instead, we have

Gg(x) ∼ Cg(x)eC
0(x),

where the symbol ∼ must be understood as the fact that the two functions have the same
dominant terms in their singular expansions. Similarly, the relation between Cg(x) and the
generating function Bg(x) of 2-connected graphs of genus g is not an exact equation as in
the planar case, since genus is also additive in blocks, but rather an approximate version.
The technical details are involved but the essence is to discard maps and graphs with small
face-width.

In addition, the former approach allows one to analyze parameters of a random graph
embeddable in the surface Sg of genus g. All the main parameters behave as in the planar
case: number of edges is Gaussian with the same moments, number of components is 1
plus a Poisson law with the same parameter, the size of the largest component follows the
same law as in (4.1), and the size of the largest 2-connected and 3-connected components
obey stable laws with the same expectations. In addition, a random graph embeddable in Sg

almost surely does not embed in a simpler surface. Thus we have a clear picture of what a
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random graph embeddable in Sg looks like. It has a unique largest component C of genus
g and the remaining components are planar. Within C there is a unique block B of linear
size that has genus g and the remaining blocks are planar. Finally, B has a unique linear 3-
connected component T of genus g, and the remaining 3-connected components are planar.
Moreover, the graph T has a unique embedding in Sg . Extremal parameters like the diameter
or the maximum degree behave likely as in the planar case, but the analysis is yet to be done.

We conclude this section with a short comment. Given a connected planar graph H , a
random graph in Sg contains linearly many pendant copies of H , the proof being the same
as for planar graphs. But if H is non-planar then a random graph in Sg does not contain H
as a subgraph almost surely, because all the balls of radius R are planar for each fixed R.
Taking R larger than the diameter of H we would reach a contradiction.

6. Minor-closed classes of graphs

We recall that a class of graphs G is minor-closed if whenever G is in G and H is a minor
of G, then H is also in G. The theory of graph minors is one of the main achievements in
modern combinatorics, culminating with the great theorem of Robertson and Seymour: every
minor-closed class of graphs is defined in terms of a finite number of excluded minors; see
[53] for a quick overview. The basic example is Kuratowski’s theorem, which identifies K5

and K3,3 as the excluded minors for planar graphs. There are several important properties
that have been established for proper (excluding at least one graph) minor-closed classes of
graphs. To begin with they are sparse: the number of edges is at most αn for some constant
α depending only on the class. This is easy to prove with α = 2t, where t is the size of an
excluded minor, although the correct order of magnitude of α is t

√
log t [72]. Secondly, they

are small: the number Gn of graphs in the class with n vertices is bounded as

Gn ≤ cnn!,

for some constant c > 0. This implies in particular that the generating function G(x) =∑
Gnx

n/n! has positive radius of convergence and defines an analytic function near 0. This
was first proved in [63] and then in [32] in a more general context. Additional properties
are, for example, the existence of separators of size O(

√
n) and the fact that the tree-width

is O(
√

n) [2].
The systematic study of random graphs from a minor-closed class is more recent. Let

G be a proper minor-closed class which is addable. This means that 1) a graph G is in G
if and only the connected components of G are in G; 2) for each graph G in G, if u and v
are vertices in different components of G, the graph obtained by adding an edge joining u
and v is also in G. This is equivalent to the condition that all the excluded minors of G are
2-connected. Planar graphs form an addable class, but graphs embeddable in a surface other
than the sphere do not, since genus is additive on disjoint unions. Addable minor-closed
classes are analyzed by McDiarmid in [56]. The first property, already proved in [60], is the
existence of a growth constant γ, which is the limit

γ = lim
n→∞

(
Gn

n!

)1/n

. (6.1)
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In fact, more is true. The class G is called smooth if

lim
n→∞

Gn

nGn−1
= γ. (6.2)

Of course, if the former limit exists it must equal γ, but condition (6.2) is stronger than (6.1).
It is shown in [56] that addable minor-closed classes are smooth. This is proved using the
2-core discussed before and applying a technique from [5].

From now on G is an addable minor-closed class and Rn is a random graph from G with
n vertices under the uniform distribution. Several basic properties have been established for
Rn. If was already proved in [60] that Rn contains a linear number of pendant copies of
every fixed connected graph H in G. Using the smoothness condition this is strengthened in
[56], as follows. If Xn is the number of pendant copies of H in Rn, then

Xn

n
→ γ−h

h!
in probability, (6.3)

where h is the number of vertices in H . In the case of planar graphs a stronger result
is shown in [42] using analytic methods, namely that Xn is asymptotically Gaussian with
expectation (γ−h/h!)n. The great interest of the less precise result (6.3) is that it holds
for every addable minor-closed class, where generating functions are seldom available. In
particular, we deduce that for each k ≥ 1 there is a linear number of vertices of degree k,
and that the number of automorphisms is exponential.

The more precise results from [56] are on the structure and number of connected compo-
nents. Let ρ = γ−1, which is the radius of convergence of the counting generating function
G(x). We have 0 < ρ ≤ 1/e. The first inequality because G is small, and the second one
because G contains the class of forests, which grows exponentially like enn!. It also holds
that G(ρ) is finite [56]. Let now C be the set of connected graphs in G, and let C(x) be
the associated generating function. From general enumerative principles [35] we have the
relation G(x) = expC(x), and it follows that C(ρ) is finite too. Denote by Ln the size
of the largest component. We can now describe the main results from [56]. As before, all
statements hold asymptotically almost surely. For a given graph H , we denote the number
of vertices by |H|.

1. The number of components is distributed like 1 + Po(C(ρ)). In particular, the proba-
bility of connectedness is e−C(ρ).

2. For distinct unlabelled connected graphsH1, . . . , Hk in G, the numbers of components
Xi isomorphic to Hi are asymptotically independent with distribution Po(λi), with
λi = ρ|Hi|/aut(Hi).

3. n − Ln follows a discrete law. For each fixed k,

P(n − Ln = k) → 1

G(ρ)

Gkρ
k

k!
.

4. Given a fixed graphH , the probability that the fragment (the complement of the largest
component) is isomorphic to H tends to

ρ|H|

aut(H)G(ρ)
.
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Notice that item 3 corresponds exactly to equation (4.1), since ρ = γ−1 and 1/G(ρ) =
e−C(ρ) is the probability of being connected. The same applies to item 4 with respect to
(4.2). Which values are possible for the limiting probability of connectivity e−C(ρ)? It was
conjectured in [60] that, among all addable classes, this probability is minimized for the class
of forests, in which case it is e−1/2. This conjecture has been proved independently in [1]
and [48].

For other parameters of interest, like the number of edges, there are no general results
available. The number of edges is linear by the general bound on minor-closed classes, but
we do not know hot to prove, for instance, any concentration result. The same goes for the
number of vertices of given degree and other basic parameters. Adapting the techniques from
[58], it is proved in [41] that for addable classes whose excluded minors are all 3-connected,
the maximum degree Δn is at least c log n for some constant c > 0 (this does not apply,
for instance, to the class of forests, where Δn ∼ log n/ log log n). For any addable minor-
closed class it is conjectured that Δn ≤ c′ log n, but the proof of the upper bound for planar
graphs in [58] does not extend to the general case.

For non-addable classes there are few general results, but some very interesting exam-
ples. Let Gk be the class of graphs containing at most k disjoint cycles. This class is minor-
closed but not addable. Let Fk be the class of graphs G such that removing k vertices from
G the graph becomes a forest. In other words, graphs in Fk are obtained from a forest F
by adding k new vertices and connecting them in any way to F . Clearly Fk ⊂ Gk. It is
proved in [50] that almost every graph in Gk is in Fk, as n → ∞. This gives in particular the
asymptotic growth of Gk, since it can be shown that the number of graphs in Fk grows like

ck2
knfn,

where fn is the number of forests and ck is an explicit constant. The simple structure of
graphs in Fk also gives access to properties of random graphs from Gk. This approach has
been generalized to other classes excluding disjoint copies of a given family of graphs [51].

Another example of a non-addable class is the class A of graphs whose components are
caterpillars; a caterpillar is a tree obtained from a path by adding leaves. This class and
related classes can be analyzed using generating functions [16]. It is proved, for instance,
that the number of components in A follows a Gaussian law with expectation of order

√
n,

a very different behaviour from what we have seen in addable classes.
To conclude this section, we mention a recent result on logical limit laws [45]. Consider

a graph property expressible in first order (FO) logic, for example the existence of a trian-
gle or the existence of an isolated vertex. Given a class of graphs G, we are interested in
the limiting probability p(φ), as n → ∞, that a FO formula φ is satisfied in G, provided
this limit exists. This problem has been much studied for the random graph G(n, p). One
of the earliest results is that for constant p (in particular p = 1/2, the uniform model on
labelled graphs), for every first order property φ we have either p(φ) = 0 or p(φ) = 1. This
is called a zero-one law (see [71] for much more in this area). Zero-one laws have been
studied for other combinatorial structures, such as permutations or partitions [22], and also
for maps on surfaces [6]. More recently, a zero-one law was proved for random labelled
trees [54]. Moreover, it holds for properties expressible in the richer monadic second or-
der (MSO) logic, in which we are allowed to quantify over sets of vertices, in addition to
quantifying over vertices. Properties such as connectivity or k-colorability can be expressed
in MSO but not in FO. It is proved in [45] that for every addable minor-closed class G and
every MSO formula φ, the limiting probability p(φ) exists. Moreover, if we restrict to con-
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nected graphs in G, then a zero-one law holds. It is also proved that the closure of the set
{p(φ) |φ MSO formula} of limiting probabilities is a finite union of at least two intervals in
[0, 1]. For the class of planar graphs, the set of intervals is completely determined.

7. Subcritical classes

For the next definition we need a bit more on generating functions. Let G be a class of graphs
which is block-stable, that is, a graph G is in G if and only if each of the blocks of G is in
G. This is the case, for instance, for addable minor-closed classes defined in the previous
section. In this situation, as we saw in Section 2, the generating functions C(x) and B(x) of
connected and 2-connected graphs in G satisfy

C•(x) = xeB
′(C•(x)), (7.1)

where C•(x) = xC ′(x) is the generating function of connected graphs rooted at a vertex.
Let ρC and ρB be, respectively, the radius of convergence of C(x) and B(x). We say that G
is subcritical if

C•(ρ) < ρB .

This implies that the singular behaviour of C(x) is dictated by the existence of a critical
point when solving (7.1), and not by the singular behaviour of B(x) at ρB . In fact, the
critical point is the solution of xB′′(x) = 1. The class of planar graphs is critical, since
in this case C•(ρ) = ρB . It is clear that this is a delicate condition, since it depends on
whether a certain evaluation of an analytic function is smaller than or equal than another
value. Unless we have access to the generating functions, it seems that we cannot prove
whether a given class is subcritical or not.

A basic example of a subcritical class is the class of series-parallel graphs; they can be
characterized in several ways, among them as the graphs not containing K4 as a minor. This
class is subcritical, as shown first in [11]. Other examples are outerplanar graphs, acyclic
graphs (forests), and cacti graphs (graphs whose blocks are cycles). As shown in [44], the
class of graphs not containing H as a minor is subcritical in several other cases, including
H = K5 − e (the complete graph K5 minus an edge). A general framework was intro-
duced in [44] for analyzing block-stable classes of graphs whose 3-connected components
are predefined. A fundamental dichotomy was found (see also [65]) between critical and
subcritical classes. As we have seen, a random planar graph has a block of linear size. In
contrast to this, a random graph from a subcritical class has blocks of size O(log n) and the
block size follows a discrete distribution. In a sense, subcritical classes are close to trees: a
typical graph is made of a linear number of small blocks forming a tree whose height is of
order

√
n. We discuss further this dichotomy in the last section.

With respect to other parameters such as the number of edges or the number of compo-
nents, the behaviour is the same for critical and subcritical classes. It is worth remarking
that the only examples we know of critical classes are planar graphs and classes very close
to them, such as graphs not containing K3,3 as a minor [44]. A systematic study of subcrit-
ical classes was done in [25]. It is shown that the asymptotic growth is always of the form
c ·n−5/2γnn! for computable constants c and γ. Remarkably, this is also proved for the cor-
responding unlabelled classes, where symmetries have to taken into account and cycle-index
sums are needed; the estimate in this case is of the form cun

−5/2γn
u . In addition, the number
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of edges and other linear parameters are asymptotically Gaussian with linear expectation and
variance.

8. Concluding remarks

In this section we discuss additional aspects of random planar graphs and related classes,
and several open problems. So far we have discussed random planar graphs according to the
number of vertices, but it is also interesting to consider the number Gn,m of planar graphs
with n vertices and m edges. There are two different situations. First, when m = αn for
α ∈ (1, 3). This was addressed in [42], and it was shown that

Gn,�αn� ∼ c(α)n−4γ(α)nn!,

where c(α) and γ(α) are analytic functions of α. The function γ(α) has a strict maximum
at μ ≈ 2.21, where μn is the expected number of edges. This proves in particular the large
deviations result for the number of edges. It turns out that the typical behaviour of random
graphs with αn edges is qualitatively the same for each α ∈ (1, 3), that is, there is no critical
value of α. The matter changes if one considers m ≤ n. As shown in [47], there are
two critical periods in the ‘evolution’ of planar graphs with n vertices and m vertices. The
first one is analogous to the phase transition observed in the standard G(n,M) model and
takes place for M = n/2 + O(n2/3), when the largest complex component is formed. A
second critical period appears at n + O(n3/5), when the complex components cover nearly
all vertices.

So far we have worked with labelled graphs, but all our problems make sense for unla-
belled graphs as well. Let Un be the number of unlabelled planar graphs with n vertices.
We do not have yet a precise estimate for Un, we do not even know the unlabelled growth
constant γu = lim(Un)

1/n. Since the number of automorphisms of a random labelled pla-
nar graph is exponential, we must have γu > γ = 27.23. On the other hand, the best
upper bound available is γu < 30.06, proved in [15]. Using Pólya’s theory of counting,
unlabelled graphs can be enumerated for subcritical classes [25]. In principle this could be
doable for planar graphs starting at 3-connected planar graphs, but the analysis of symme-
tries appears too involved. In any case, one should expect an asymptotic estimate of the
form Un ∼ cn−7/2(γu)

n. Also, random unlabelled planar graphs should share the same
properties as their labelled counterpart.

Another open problem we address is the possible dichotomy discussed in the previous
section between critical and subcritical classes. Let Ex(H1, . . . , Hk) be the class of graphs
not containing any of the Hi as a minor. For instance, Ex(K5,K3,3) is the class of planar
graphs and Ex(K4) is the class of series-parallel graphs. In all cases where analytic methods
are available, one observes that the class is subcritical if and only if at least one of the
excluded minors is planar. A central result in the graph minors program [68], says that the
tree-width of graphs in Ex(H1, . . . , Hk) is bounded if and only if at least one of the Hi is
planar. The tree-width is a measure of how close is a graph to being tree-like. If we recall
that graphs from subcritical classes are typically tree-like, the following conjecture seems
reasonable, restricted to addable classes, where the basic equation (7.1) holds.

Conjecture. The class Ex(H1, . . . , Hk) is subcritical if and only if at least one of the Hi is
planar, which is equivalent to having bounded tree-width.
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In particular, it would be very interesting to prove this conjecture for the class Gk of
graphs with tree-width at most k. G1 is the class of forests and G2 is the class of series-
parallel graphs, which are subcritical. But already for G3 we do not know. We know which
are the edge-maximal graphs in Gk, the so-called k-trees. They certainly have a tree-like
structure (almost by definition) but it is not clear how to infer results for random graphs in
Gk from the maximal ones.

Another topic for future research is to analyze additional extremal parameters. The fol-
lowing questions refer to almost sure properties of random planar graphs.

• Cores. The k-core of a graph is the maximum subgraph with minimum degree at leat
k. We have already discussed the 2-core, which is of linear size for random planar
graphs. The 3-core is not necessarily connected, but it is conjectured [64] that the
3-core contains a component of linear size, and that the components of the 4-core are
all sublinear.

• Tree-width. It is known that a planar graph with diameter D has tree-width O(D). It
follows that the tree-width is at most O(n1/4+ε). Is this the right order of magnitude?
We remark that there are planar graphs (grids) with tree-width

√
n.

• Longest cycle. We conjecture the existence of cycle of length cn for some c > 0.
Because of the results on the largest 3-connected component, it would be enough to
prove it for random 3-connected planar graphs. In contrast, it is easy to see that there
is always a matching of linear size (consider pendant copies of a single edge).

On the enumerative side, we mention the problem of counting 4-regular planar graphs.
Cubic planar graphs can be enumerated adapting Tutte’s decomposition into 3-connected
components [12], but this approach does not seem to work for higher degree. In the same
way, planar graphs with minimum degree three can be enumerated [64], but the same ob-
stacle appears for minimum degree four. Another problem is to enumerate bipartite planar
graphs. The real difficulty is to keep control of the bipartite character in the decomposition
of 2-connected graphs into 3-connected components.

Concerning minor-closed classes of graphs, a main open problem is to show that the
growth constant always exists (as conjectured in [10]). More of a metaproblem is to analyze
additive parameters like the number of edges or extremal parameters like the size of the
largest block in general minor-closed classes. It is not at all clear that there is a way of
attacking them without precise enumerative results. One case particularly appealing is the
class Ex(K5). Wagner’s theorem tells us how is the structure of graphs in Ex(K5), but so
far we are not able to obtain precise enumerative information from it.

Acknowledgements. The author is partially supported by Grants MTM2011-24097 and
DGR2009-SGR1040. The author wishes to thank Michael Drmota and Colin McDiarmid
for helpful comments.

References

[1] L. Addario-Berry, C. McDiarmid, and B. Reed, Connectivity for bridge-addable mono-
tone graph classes, Combin. Probab. Comput. 21 (2012), 803–815.



426 Marc Noy

[2] N. Alon, P. Seymour, and R. Thomas, A separator theorem for nonplanar graphs, J.
Amer. Math. Soc. 3 (1990), 801–808.

[3] C. Banderier, P. Flajolet, G. Schaeffer, and M. Soria, Random Maps, Coalescing Sad-
dles, Singularity Analysis, and Airy Phenomena, Random Strucures Algorithms 19
(2001), 194–246.

[4] E. A. Bender and E. R. Canfield, The asymptotic number of rooted maps on a surface,
J. Combin. Theory Ser. A 43 (1986), 244–257.

[5] E. A. Bender, E. R. Canfield, and L. B. Richmond, Coefficients of functional composi-
tions often grow smoothly, Electron. J. Combin. 15 #21.

[6] E. A. Bender, Z. C. Gao, and L. B. Richmond, Submaps of maps I: General 0-1 laws,
J. Combin. Theory Ser. B 55 (1992), 104–117.

[7] E. A. Bender, Z. Gao, Asymptotic enumeration of labelled graphs by genus, Electron.
J. Combin. 18(1) (2011), #13.

[8] E. A. Bender, Z. Gao, L. B. Richmond, and N. Wormald, Asymptotic properties of
rooted 3-connected maps on surfaces, J. Austral. Math. Soc., Series A 60 (1996), 31–
41.

[9] E. A. Bender, Z. Gao, and N. C. Wormald, The number of 2-connected labelled planar
graphs, Electron. J. Combin. 9 (2002), #43.

[10] O. Bernardi, M. Noy, and D. Welsh, Growth constants of minor-closed classes of
graphs, J. Combin. Theory Ser. B 100 (2010), 468–484.

[11] M. Bodirsky, O. Giménez, M. Kang, and M. Noy, Enumeration and limit laws for
series-parallel graphs, European J. Combin. 28 (2007), 2091–2105.

[12] M. Bodirsky, M. Kang, M. Löffler, C. McDiarmid, Random cubic planar graphs, Ran-
dom Structures Algorithms 30 (2007), 78–94.

[13] B. Bollobás, Random Graphs, Academic Press, London, 1985.

[14] , Hereditary and monotone properties of combinatorial structures, Surveys in
combinatorics 2007, Cambridge Univ. Press, Cambridge, 2007, pp. 1–39.

[15] N. Bonichon, C. Gavoille, N. Hanusse, D. Poulalhon, and G. Schaeffer, Planar Graphs,
via Well-Orderly Maps and Trees, Graphs Combin. 22 (2006), 185–202.

[16] M. Bousquet-Mélou, K. Weller, Asymptotic properties of some minor-closed classes of
graphs, Combin. Probab. Comput. (to appear).

[17] G. Chapuy, E. Fusy, O. Giménez, and M. Noy, The diameter of random planar graphs,
Combin. Probab. Comput. (to appear).

[18] G. Chapuy, E. Fusy, O. Giménez, B. Mohar, and M. Noy, Asymptotic enumeration and
limit laws for graphs of fixed genus, J. Combin. Theory Ser. A 118 (2011), 748–777.



Random planar graphs and beyond 427

[19] G. Chapuy, É. Fusy, M. Kang, and B. Shoilekova, A complete grammar for decom-
posing a family of graphs into 3-connected components, Electron. J. Combin. 15(1)
(2008), #148.

[20] G. Chapuy, M. Marcus, and G. Schaeffer, A bijection for rooted maps on orientable
surfaces, SIAM J. Discrete Math. 23 (2009), 1587–1611.

[21] P. Chassaing and G. Schaeffer, Random planar lattices and integrated superBrownian
excursion, Probab. Theory Relat. Fields 128 (2004), 161–212.

[22] K. J. Compton, A logical approach to asymptotic combinatorics. I. First order proper-
ties, Adv. Math. 65 (1987), 65–96.

[23] A. Denise, M. Vasconcellos, and D. J. A. Welsh, The random planar graph, Congr.
Numer. 113 (1996), 61–79.

[24] M. Drmota, Random trees. Springer, 2009.

[25] M. Drmota, É. Fusy, M. Kang, V. Kraus, and J. Rué, Asymptotic Study of Subcritical
Graph Classes, SIAM J. Discrete Math. 25 (2011), 1615–1651.

[26] M. Drmota, O. Giménez, and M. Noy, Vertices of given degree in series-parallel
graphs, Random Structures Algorithms 36 (2010), 273–314.

[27] , Degree distribution in random planar graphs, J. Combin. Theory Ser. A 118
(2011), 2102–2130.

[28] , The maximum degree of series-parallel graphs, Combin. Probab. Comput. 20
(2011), 529–570.

[29] M. Drmota, O. Giménez, M. Noy, K. Panagiotou, and A. Steger, The maximum degree
of planar graphs, Proc. London Math. Soc. (to appear).

[30] M. Drmota and K. Panagiotou, A central limit theorem for the number of degree-k
vertices in random maps, Algorithmica 66 (2013), 741–761.

[31] P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer, Boltzmann samplers for the
random generation of combinatorial structures, Combin. Probab. Comput. 13 (2004),
577–625.
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The Gelfand-Tsetlin graph and Markov processes

Grigori Olshanski

Abstract. The goal of the paper is to describe new connections between representation theory and
algebraic combinatorics on one side, and probability theory on the other side.

The central result is a construction, by essentially algebraic tools, of a family of Markov processes.
The common state space of these processes is an infinite dimensional (but locally compact) space Ω.
It arises in representation theory as the space of indecomposable characters of the infinite-dimensional
unitary group U(∞).

Alternatively, Ω can be defined in combinatorial terms as the boundary of the Gelfand-Tsetlin graph -
an infinite graded graph that encodes the classical branching rule for characters of the compact unitary
groups U(N).

We also discuss two other topics concerning the Gelfand-Tsetlin graph:

(1) Computation of the number of trapezoidal Gelfand-Tsetlin schemes (one could also say, the number
of integral points in a truncated Gelfand-Tsetlin polytope). The formula we obtain is well suited for
asymptotic analysis.

(2) A degeneration procedure relating the Gelfand-Tsetlin graph to the Young graph by means of a new
combinatorial object, the Young bouquet.

At the end we discuss a few related works and further developments.

Mathematics Subject Classification (2010). 05E05, 05E10, 60J27, 60J35.

Keywords. Asymptotic representation theory, representation ring, symmetric functions, Gelfand-
Tsetlin graph, Young graph, Feller Markov processes, infinitesimal generators.

1. Introduction

The present paper is devoted to combinatorial and probabilistic aspects of the asymptotic
representation theory. The adjective “asymptotic” means that we are interested in the limiting
behavior of representations of growing groups

G(1) ⊂ G(2) ⊂ G(3) ⊂ . . .

and their relationship with representations of the limiting group G(∞), which is defined as
the union of G(N)’s. Here there is a remarkable analogy with limit transitions in models of
statistical physics and random matrix theory.

The model examples of the “big groups” G(∞) are the infinite symmetric group S(∞)
and the infinite-dimensional unitary group U(∞). There is a striking parallelism between
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the theories for these two groups that we substantially exploit. In our exposition, we focus
on the more difficult case of U(∞) and only briefly mention the parallel results concerning
S(∞).

The main references are the recent joint papers [11–13] by Alexei Borodin and myself,
and my paper Olshanski [47]. These works originated from our previous study of the prob-
lem of harmonic analysis on S(∞) and U(∞) (Borodin-Olshanski [8–10]).

1.1. Relative dimension in the Gelfand-Tsetlin graph. All our considerations are inti-
mately connected with the Gelfand-Tsetlin graph. We recall its definition in Section 3. As
was already mentioned in the abstract, the Gelfand-Tsetlin graph encodes the branching of
irreducible characters for the compact groups

U(1) ⊂ U(2) ⊂ U(3) ⊂ . . . . (1.1)

A fundamental result in the asymptotic representation theory is the Edrei-Voiculescu
theorem on the classification of indecomposable characters of the group U(∞) (Edrei [19],
Voiculescu [54]). In combinatorial terms, the Edrei-Voiculescu theorem describes the bound-
ary of the Gelfand-Tsetlin graph (see Section 3 for the precise definitions).

In Borodin-Olshanski [11] we propose a novel approach to this old theorem, based on
the study of the relative dimension

Fκ(ν) :=
DimK,N (κ, ν)

DimN ν
. (1.2)

Here κ and ν are two vertices of the Gelfand-Tsetlin graph, on levels K and N , respectively
(K < N ); the numerator is the number of monotone paths in the graph connecting κ to ν;
finally, the denominator is the number of all monotone paths ending at ν (this is the same
as the dimension of the irreducible character of U(N) corresponding to ν). The notation in
(1.2) emphasizes that we regard the ratio on the right-hand side as a function in variable ν
with κ being a fixed parameter.

We show that Fκ(ν) is a rather “regular” function, which shares some properties of the
classic Schur functions like the examples in Macdonald [35]. What is especially important
for our purposes, we obtain a good contour integral representation for Fκ(ν), which makes
it possible to find its asymptotics as ν goes to infinity.

These results are reviewed in Section 3.

1.2. The zw-measures and related Markov processes. One of the most beautiful hyper-
geometric identities is classic Dougall’s formula (1907) which can be written as

∑
n∈Z

1

Γ(z − n + 1)Γ(z′ − n + 1)Γ(w + n + 1)Γ(w′ + n + 1)

=
Γ(z + w + z′ + w′ + 1)

Γ(z + w + 1)Γ(z + w′ + 1)Γ(z′ + w + 1)Γ(z′ + w′ + 1)
,

(1.3)

see Dougall [17], Erdelyi [20]. Here z, z′, w, w′ are complex parameters such that
4(z + z′ + w + w′) > −1 and Γ( · ) is Euler’s Γ-function. Let Mz,z′,w,w′(n) denote the
nth summand on the left-hand side divided by the quantity on the right-hand side. It is easy
to find conditions under which all the summands on the left-hand side are real and positive.
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Then the quantities Mz,z′,w,w′(n), n ∈ Z, define a probability measure Mz,z′,w,w′ on Z. We
call it the zw-measure.

The zw-measures also arise in a probabilistic context. Recall that a birth-death process
is a continuous time Markov chain (or random walk) on Z+ such that the only possible tran-
sitions from a state n ∈ Z+, in an infinitesimal time interval (t, t + dt), are the neighboring
states n ± 1. Such a process is determined by specifying the jump rates a±(n); then the
infinitesimal generator of the process is the difference operator Dz,z′,w,w′ on Z+ acting on a
test function f by

(Df)(n) = a+(n)[f(n + 1)− f(n)] + a−(n)[f(n − 1)− f(n)], n ∈ Z+.

The birth-death processes are well-studied objects which have many applications.
Let us now ask what could be the simplest bilateral analog of birth-death processes,

living on the whole lattice Z and possessing a stationary distribution (in other words, an
invariant probability measure). The generator of a bilateral process still has the same form,
only the jump rates a±(n) are required to be strictly positive for all n ∈ Z.

If the quantities a±(n) are constants, then there is no finite invariant measure. If a±(n)
depends on n linearly, it changes the sign, which is inadmissible. But if we require a±(n) to
be quadratic functions of n, then the processes with desired properties exist, they depend on
four parameters, and the corresponding invariant measures are just the zw-measures.

Thus the zw-measures appear as the stationary distributions of certain natural Markov
processes on Z. Each of them is uniquely determined by its generator, which is the difference
operator

(Dz,z′,w,w′f)(n) = (z − n)(z′ − n)(f(n + 1)− f(n))

+ (w + n)(w′ + n)(f(n − 1)− f(n)). (1.4)

Here n ranges over Z and the parameters are subject to constraints stated in the beginning of
Section 4 below.

Observe now that Z is the Pontryagin dual group to the unit circle

T := {u ∈ C : |u| = 1},
which is a commutative group isomorphic to U(1). In Sections 4–6 we explain how to
construct analogs of the zw-measures, the related Markov processes, and the generators
Dz,z′,w,w′ when Z is replaced by the dual objects to noncommutative groups U(N) (N =
2, 3, . . . ) and (which is our final goal) by the dual object to the group U(∞).

ForN = 2, 3, . . . , the dual object Û(N), like Û(1) = Z, is a countable set; it is naturally
identified with a subset SN ⊂ Z

N (the highest weights of the group U(N)). The dual object
Û(∞), on the contrary, is a continuous infinite-dimensional space: its points depend on
infinitely many continuous parameters. Thus our construction leads to a four-parameter
family of Markov processes on this infinite-dimensional space.

The generators of these processes are explicitly computed: they are implemented by
certain infinite-variate second order partial differential operators Dz,z′,w,w′ (see Section 6
below). Initially, Dz,z′,w,w′ is defined on a certain algebra RU — the representation ring
of the family {U(N);N = 1, 2, 3 . . . }. As is well known, the representation ring for the
family of symmetric groups is isomorphic to Sym, the algebra of symmetric functions. We
regard the algebra RU as a reasonable substitute of the algebra Sym even though RU seems
to be more sophisticated as compared to Sym.
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1.3. The Young bouquet. There exists a great similarity between the representation the-
ories of the two basic big groups, U(∞) and S(∞). It is striking when comparing the
description of the dual objects (cf. Voiculescu [54] and Thoma [51]) or the construction of
the generalized regular representations which are the subject of harmonic analysis (cf. Ol-
shanski [42] and Kerov-Olshanski-Vershik [27], [28]). The study of the relative dimension
(1.2) in the Gelfand-Tsetlin graph has been inspired by earlier results (Okounkov-Olshanski
[39]) on the relative dimension in the Young graph — the counterpart of the Gelfand-Tsetlin
graph in the symmetric group case. The zw-measures and related Markov processes also
have counterparts in the symmetric group case (Borodin-Olshanski [14]).

This parallelism is in sharp contrast to the fact that the groups U(∞) and S(∞), as
well as U(N) and S(N), look quite differently. In Borodin-Olshanski [13] we suggest an
explanation of this phenomenon. The idea is that one can establish a connection between the
Gelfand-Tsetlin and Young graphs by making use of a certain poset with continuous grading.
We call this poset the Young bouquet.

By the very definition, the Young bouquet is a close relative of the Young graph. On
the other hand, we show that the Young bouquet can be obtained from the Gelfand-Tsetlin
graph by a limit transition turning the discrete grading into a continuous one. Moreover,
the limit transition leads to a reasonable degeneration of various objects that are structurally
connected with the Gelfand-Tsetlin graph.

We discuss the Young bouquet in Section 7. Note that the results of [13] are substan-
tially used in the construction of Markov processes in the symmetric group case (Borodin-
Olshanski [14]).

2. Dual objects and stochastic links

According to the conventional definition, the dual object Ĝ to a (topological) group G is the
set of equivalence classes of irreducible unitary representations of G.

For a finite or compact group, all irreducible representations have finite dimension and
the dual object can be identified with the set of irreducible characters.

Let G be a compact group. For π ∈ Ĝ, denote the dimension of π by Dimπ. Given
a closed subgroup H ⊂ K and ρ ∈ Ĥ , denote by Dim(ρ, π) the multiplicity of ρ in the
decomposition of π

∣∣
H
. Counting the dimensions we get the identity

Dimπ =
∑
ρ∈Ĥ

Dim ρDim(ρ, π).

Let us form the matrix ΛG
H whose rows are indexed by elements π ∈ Ĝ, the columns are

indexed by the elements ρ ∈ Ĥ , and the entries are given by

ΛG
H(π, ρ) =

Dim ρDim(ρ, π)

Dimπ
.

In other words, ΛG
H(π, ρ) is the relative dimension of the ρ-isotypic component in the de-

composition of π
∣∣
H
.

Evidently, the matrix entries are nonnegative numbers, and (by virtue of the above iden-
tity) all row sums are equal to 1, so that ΛG

H is a stochastic matrix. We call it a stochastic link



The Gelfand-Tsetlin graph and Markov processes 435

and denote by the dashed arrow, ΛG
H : Ĝ ��	 Ĥ . Informally, we regard ΛG

H as a “generalized
map” from Ĝ to Ĥ , dual to the inclusion map H → G.

Let us return to the unitary groups U(N), which are the model example of compact
Lie groups. As is well known, the irreducible characters of U(N), viewed as symmetric
functions in the matrix eigenvalues u1, . . . , uN , have the form

χν(u1, . . . , uN ) =
det
[
u
νj+N−j
i

]N
i,j=1

N∏
i,j=1

(ui − uj)

,

where the subscript ν is anN -tuple of integers ν1 ≥ · · · ≥ νN called a signature of lengthN

(Weyl [55], Zhelobenko [57]). Thus, the dual object Û(N) is in one-to-one correspondence
with the set SN ⊂ Z

N formed by the signatures of length N .
Two signatures ν ∈ SN and λ ∈ SN−1 are said to be interlaced if their coordinates

satisfy the inequalities νi ≥ λi ≥ νi+1 for every i = 1, . . . , N − 1; then we write λ ≺ ν.
Let πν denote the irreducible representation with character χν . The classic Gelfand-

Tsetlin branching rule (Gelfand-Tsetlin [22], Zhelobenko [57]) says that

πν

∣∣
U(N−1)

=
⊕

λ:λ≺ν

πλ,

which is equivalent to the character relation

χν(u1, . . . , uN−1, 1) =
∑

λ:λ≺ν

χλ(u1, . . . , uN−1).

Recall that the dimension of πν , which we denote byDimN ν, is given by the well-known
Weyl’s dimension formula

DimN ν =
∏

1≤i<j≤N

νi − νj − i + j

j − i
.

It follows that the stochastic link Û(N) ��	 ̂U(N − 1) has the following form

ΛN
N−1(ν, λ) =

⎧⎨
⎩

DimN−1 λ

DimN ν
, if λ ≺ ν,

0, otherwise.
.

We explain now how we understand the dual object to the group U(∞). This group
is wild (= not type I, see Kirillov [29, Section 8.4]), so the conventional definition of the
dual object is inappropriate as it leads to a huge pathological space. For the purpose of the
present work it is reasonable to adopt the following definition, which can be formulated in a
few different but equivalent ways. Namely, the dual object Û(∞) is:

Version 1. The set of quasi-equivalence classes of finite factor representations of U(∞).
This formulation follows the approach of Thoma [51] and Voiculescu [54]. Finite fac-

tor representations are uniquely (within quasi-equivalence) determined by their normal-
ized traces, which can be characterized as indecomposable positive definite class functions
χ : U(∞) → C normalized by χ(e) = 1.
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Version 2. The set of functions χ : U(∞) → C which can be approximated by the normal-
ized irreducible characters

χ̃ν :=
χν

χν(e)
=

χν

DimN ν
,

where we assume that ν ∈ SN varies together with N as N goes to infinity.
The idea of this approach is due to Vershik and Kerov [52], [53]. For more detail, see

Okounkov-Olshanski [40].

Version 3. The set of positive definite class functions χ : U(∞) → C such that χ(e) = 1
and for arbitrary g, h ∈ U(∞) one has

lim
N→∞

∫
k∈U(N)

χ(gkhk−1)dk = χ(g)χ(h),

where integration is taken with respect to the normalized Haar measure on U(N).
For more detail, see Olshanski [41]. The above limit relation is an analog of the classic

functional equation for the normalized irreducible characters of compact groups.

Version 4. The categorical projective limit of the sequence of stochastic links

Û(1) 
�� Û(2) 
�� Û(3) 
�� . . .

For more detail, see Borodin-Olshanski [12], [13], Olshanski [46].
As seen from the third version above, Û(∞) can be identified with a set of positive

definite class functions on U(∞). These functions are called the indecomposable or extreme
characters of U(∞). Here is their precise description.

First, notice that every element of the group U(∞) is represented by an infinite unitary
matrix g = [gij ]

∞
i,j=1 such that gij = δij when i or j is large enough. Write u1, u2, . . . for

the eigenvalues of g; these numbers lie on the unit circle T and only finitely many of them
are distinct from 1. Any class function χ on U(∞) depends on the eigenvalues only, and we
write it as χ(u1, u2, . . . ).

Next, we need to introduce some notation. Let R+ ⊂ R denote the set of nonnegative
real numbers, R∞+ denote the product of countably many copies of R+, and set

R
4∞+2
+ = R

∞
+ × R

∞
+ × R

∞
+ × R

∞
+ × R+ × R+.

Let Ω ⊂ R
4∞+2
+ be the subset of sextuples

ω = (α+, β+;α−, β−; δ+, δ−)

such that

α± = (α±1 ≥ α±2 ≥ · · · ≥ 0) ∈ R
∞
+ , β± = (β±1 ≥ β±2 ≥ · · · ≥ 0) ∈ R

∞
+ ,

∞∑
i=1

(α±i + β±i ) ≤ δ±, β+
1 + β−1 ≤ 1.

Equip R
4∞+2
+ with the product topology. An important fact is that, in the induced topology,

Ω is a locally compact space.
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Set

γ± = δ± −
∞∑
i=1

(α±i + β±i )

and note that γ+, γ− are nonnegative. For u ∈ C
∗ and ω ∈ Ω set

Φ(u;ω) = eγ
+(u−1)+γ−(u−1−1)

∞∏
i=1

(1 + β+
i (u − 1))(1 + β−i (u−1 − 1))

(1− α+
i (u − 1))(1− α−i (u−1 − 1))

. (2.1)

For any fixed ω, this is a meromorphic function in variable u ∈ C
∗ with possible poles

on (0, 1) ∪ (1,+∞). The poles do not accumulate to 1, so that the function is holomorphic
in a neighborhood of T.

Theorem 2.1. The dual object Û(∞) as defined above can be identified with the space Ω.
More precisely, the extreme characters of the group U(∞) are the functions

χω(u1, u2, . . . ) :=
∞∏
k=1

Φ(uk;ω),

where ω ranges over Ω.

This is a deep result with a long history. See Voiculescu [54] and many references in
Borodin-Olshanski [11, Section 1.1].

3. Relative dimension in the Gelfand-Tsetlin graph

The Gelfand-Tsetlin graph has the vertex set S1 7 S2 7 . . . consisting of all signatures, and
the edges formed by the couples (λ, ν) such that λ ≺ ν. This is a graded graph with the N th
level formed by SN .

By a path between two vertices κ ∈ SK and ν ∈ SN , K < N , we mean a sequence

κ = λ(K) ≺ λ(K+1) ≺ · · · ≺ λ(N) = ν ∈ SN .

Such a path can be viewed as an array of numbers

{
λ
(j)
i

}
, K ≤ j ≤ N, 1 ≤ i ≤ j,

satisfying the inequalities λ
(j+1)
i ≥ λ

(j)
i ≥ λ

(j+1)
i+1 . It is called a Gelfand–Tsetlin scheme. If

K = 1, the scheme has triangular form and if K > 1, it has trapezoidal form.
The triangular schemes with a fixed top level λ(N) = ν parameterize the vectors of

the Gelfand-Tsetlin basis in πν ∈ Û(N), see Gelfand-Tsetlin [22], Zhelobenko [57]. The
number of such schemes is equal to DimN ν.

The number of paths between κ and ν (or trapezoidal schemes with top ν and bottom κ)
will be denoted by DimK,N (κ, ν). It is equal to the quantity Dim(πκ , πν) introduced in the
preceding section.

Both DimN ν and DimK,N (κ, ν) count the lattice points in some bounded convex poly-
topes.
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Adding to the vertex set an additional 0th level formed by a singleton ∅, which is joined
by edges with all vertices of level 1, one may write DimN ν as Dim0,N (∅, ν).

Note that the matrix ΛN
K of format SN × SK that represents the link Û(N) ��	 Û(K)

coincides with the matrix product ΛN
N−1 . . .ΛK+1

K , and its entries are given by

ΛN
K(ν,κ) =

DimK κ DimK,N (κ, ν)

DimN ν
.

A sequence of vertices {λ(N) ∈ SN} is said to be a regular escape to infinity if for every
fixed vertex κ ∈ SK there exists a limit limN→∞ ΛN

K(λ(N),κ), and two regular escapes are
called equivalent if the corresponding limits coincide for every κ. The set of equivalence
classes of regular escapes to infinity is called the boundary of the Gelfand-Tsetlin graph and
denoted by ∂GT. This is nothing else than one more, this time combinatorial, interpretation
of the dual object Û(∞).

Likewise, one can define the boundary ∂Y of the Young graph. That graph encodes the
Young branching rule of the symmetric group characters, and ∂Y parameterizes the extreme
characters of the infinite symmetric group.

In the symmetric group case, the stochastic links have the form

Λl
m(λ, μ) =

⎧⎨
⎩

dimμ dimλ/μ

dimλ
, if μ ⊂ λ,

0, otherwise.

where λ and μ are Young diagrams with l and m boxes, respectively (l > m), and dim( · )
denotes the number of standard Young tableaux of a given (possibly skew) shape.

As shown in Okounkov-Olshanski [39],

l(l − 1) . . . (l − m + 1)
dimλ/μ

dimλ
= s∗μ(λ1, λ2, . . . ), (3.1)

where s∗μ is the so-called shifted Schur function. Informally, the meaning of this result is that
the quantity in the left-hand side behaves as a “regular” function in variable λ. Formula (3.1)
is well suited for asymptotic analysis and makes it possible to quickly find the boundary
∂Y, thus obtaining a proof of Thoma’s theorem about the characters of the infinite symmet-
ric group (Thoma [51]), see Kerov-Okounkov-Olshanski [26] and Borodin-Olshanski [13,
Section 3.3].

By analogy, one can ask what can be said about the function

Fκ(ν) :=
DimK,N (κ, ν)

DimN ν
.

This problem was investigated in our recent paper Borodin-Olshanski [11]. To give a flavor
of what we get, I will formulate one of the results in the simplest (but nontrivial!) case when
K = 1.

Theorem 3.1. Let κ = k range over S1 = Z, ν range over SN , and write Fk(ν) instead of
Fκ(ν). Set

H∗(t; ν) =
N∏
j=1

t + j

t + j − νj
,
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where t is a formal variable.
Then the following identity holds

H∗(t; ν) =
∑
k∈Z

Fk(ν)
(t + 1) . . . (t + N)

(t + 1− k) . . . (t + N − k)
. (3.2)

This is a kind of generating series for Fk(ν) fromwhich one can extract a contour integral
representation for Fk(ν).

Let ϕn(ω) denote the coefficients of the Laurent expansion of the function u �→ Φ(u;ω)
on T:

Φ(u;ω) =
∑
n∈Z

ϕn(ω)u
n. (3.3)

The identity (3.2) mimics the Laurent expansion (3.3), and in a limit transition, (3.2) turns
into (3.3).

I briefly list further results of [11].
There is an extension of (3.2) to arbitrary K = 1, 2, . . . and κ ∈ SK :

K∏
i=1

H∗(ti; ν) =
∑

κ∈GTK

Fκ(ν)Sκ|N (t1, . . . , tK), (3.4)

where Sκ|N (t1, . . . , tK) is a certain “Schur-type” rational symmetric function in variables
t1, . . . , tK :

Sκ|N (t1, . . . , tK) = const
det[Gκj+K−j|N (ti)]

N
i,j=1∏

1≤i<j≤N

(ti − tj)

(here Gk|N (t) are certain univariate rational functions).
We show that Fκ(ν) also has a similarity with the Schur function. Namely, there is an

analog of the Jacobi-Trudi formula:

Fκ(ν) = det[F
(j)
κi−i+j(ν)]

K
i,j=1,

where F
(j)
k (ν), k ∈ Z, is a certain modification of Fk(ν). Note that a similar modified

Jacobi-Trudi identity holds for the shifted Schur functions (Okounkov-Olshanski [39]) as
well as for other analogs of Schur functions (Macdonald [35], Nakagawa-Noumi-Shirakawa-
Yamada [36], Sergeev-Veselov [50]).

As both functions on the right-hand side of (3.4) are similar to the Schur functions, this
relation may be viewed as a kind of the Cauchy identity.

From (3.2) one can derive a closed formula for Fk(ν) (in the form of a contour integral
representation), and the same can be done for the modified functions F

(j)
k (ν). Like (3.1),

the resulting formula is well adapted to asymptotic analysis, which enables us to re-derive
Theorem 2.1 in a way very similar to that used in Kerov-Okounkov-Olshanski [26] for the
infinite symmetric group S(∞).

Note that Petrov [49] found a different approach to the results of [11] together with a
q-version of them.

Finally note that the results of [11] can also be extended to symplectic and orthogonal
groups (work in progress).
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4. The zw-measures

Let the symbol P(X) denote the set of probability measures on a space X . Given a mea-
sure M ∈ P(SN ) with weights M(ν), its composition with the link ΛN

N−1 is a measure
MΛN

N−1 ∈ P(SN−1) defined by

(MΛN
N−1)(λ) =

∑
ν∈SN

M(ν)ΛN
N−1(ν, λ), λ ∈ SN−1.

A family of measures {MN ∈ P(SN ) : N = 1, 2, . . . } is said to be coherent if the
measures are consistent with the links in the sense thatMNΛN

N−1 = MN−1 for everyN ≥ 2.
For ω ∈ Ω and ν ∈ SN we denote by Λ∞N (ω, ν) the coefficients in the expansion of the

N -fold product Φ(u1;ω) . . .Φ(uN ;ω) on the normalized irreducible characters:

Φ(u1;ω) . . .Φ(uN ;ω) =
∑
ν∈SN

Λ∞N (ω, ν)χ̃ν(u1, . . . , uN )

=
∑
ν∈SN

Λ∞N (ω, ν)
χν(u1, . . . , uN )

DimN ν
.

One readily shows that

Λ∞N (ω, ν) = DimN ν · det[ϕνi−i+j(ω)]
N
i,j=1. (4.1)

Note that Λ∞N is a Markov kernel meaning that for ω fixed, Λ∞N (ω, · ) is a probability
measure on SN . We regard Λ∞N as a “link” Ω ��	 SN .

There is a natural one-to-one correspondence {MN} ↔ M∞ between the coherent fam-
ilies {MN} and the measures M∞ ∈ P(Ω) given by

MN = M∞Λ∞N , N = 1, 2, 3, . . . .

Let us say that a quadruple z, z′, w, w′ of complex parameters is admissible if the fol-
lowing conditions hold: firstly, for every integer k, one has (z + k)(z′ + k) > 0 and
(w + k)(w′ + k) > 0; secondly, 4(z + z′ + w + w′) > −1. As readily seen, the first
condition is equivalent to saying that each of pairs (z, z′) and (w,w′) belongs to the subset
Z ⊂ C

2 defined by

Z := {(ζ, ζ ′) ∈ (C \ Z)2 | ζ ′ = ζ̄}
∪ {(ζ, ζ ′) ∈ (R \ Z)2 | m < ζ, ζ ′ < m + 1 for some m ∈ Z}. (4.2)

For N = 1, 2, . . . and ν ∈ SN set

M ′
z,z′,w,w′|N (ν) =

N∏
i=1

(
1

Γ(z − νi + i)Γ(z′ − νi + i)

× 1

Γ(w + N + 1 + νi − i)Γ(w′ + N + 1 + νi − i)

)
· (DimN ν)2.

If (z, z′, w, w′) is admissible, then M ′
z,z′,w,w′|N (ν) > 0, the series∑

ν∈SN
M ′

z,z′,w,w′|N (ν)
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is convergent, and its sum equals

Cz,z′,w,w′|N :=

N∏
i=1

Γ(z + z′ + w + w′ + i)

Γ(z + w + i)Γ(z + w′ + i)Γ(z′ + w + i)Γ(z′ + w′ + i)Γ(i)
.

This is a multivariate version of Dougall’s formula (1.3) we started with.
Consequently, the quantities

Mz,z′,w,w′|N (ν) := M ′
z,z′,w,w′|N (ν)/Cz,z′,w,w′|N , ν ∈ SN ,

determine a probability measure on SN . For N = 1 this measure coincides with the measure
Mz,z′,w,w′ on Z introduced in the very beginning.

The measures Mz,z′,w,w′|N are a special case of the orthogonal polynomial ensembles
(about this notion see König [30]).

Namely, let us associate with ν ∈ SN a collection (n1, . . . , nN ) of pairwise distinct
integers by setting

ni := νi + N − i, i = 1, . . . , N. (4.3)

Under the correspondence ν �→ (n1, . . . , nN ), the measure Mz,z′,w,w′|N determines an en-
semble of randomN -point configurations onZ, and it is the orthogonal polynomial ensemble
related to the family of polynomials orthogonal with respect to weightMz+N−1,z′+N−1,w,w′ .
These curious orthogonal polynomials were discovered by Askey [1] and later investigated
by Lesky [31, 32]. They are relatives of the classical Hahn polynomials. For more detail, see
Borodin-Olshanski [12].

Theorem 4.1. Fix a quadruple (z, z′, w, w′) of admissible parameters and let N range over
{1, 2, . . . }. The family {Mz,z′,w,w′|N (ν)} just defined is a coherent family.

Different proofs are given in Olshanski [42, 43]. The latter paper actually contains a
more general result (the links and the measures depend on an additional parameter — the
“Jack parameter”). In Olshanski-Osinenko [48], the theorem is extended to other branching
graphs including those related to the orthogonal and symplectic groups.

Corollary 4.2. For every admissible quadruple (z, z′, w, w′) there exists a probability mea-
sure Mz,z′,w,w′|∞ on the space Ω, uniquely determined by the property that

Mz,z′,w,w′|∞Λ∞N = Mz,z′,w,w′|N , N = 1, 2, . . . .

Both Mz,z′,w,w′|N and Mz,z′,w,w′|∞ are called the zw-measures. They are analogs of
the z-measures which arise in the context of the symmetric groups (see Borodin-Olshanski
[8], the recent survey Olshanski [44], and also Section 7 below). A common feature of all
these measures is that they serve as the laws of determinantal point processes (about those,
see Borodin [4] and references therein).

It is worth noting that the zw-measures on SN are introduced by an explicit formula
while our definition of the zw-measures on Ω is indirect: Corollary 4.2 only provides the
explicit values for the expectation of certain functionals.

Our interest in the zw-measures on Ω is motivated by the fact that they arise in the
problem of harmonic analysis on the infinite-dimensional unitary group (Olshanski [42],
Borodin-Olshanski [9, 10]).
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5. Markov processes

We need a few basic notions from the theory of Markov processes (see Liggett [33], Ethier-
Kurtz [21]).

Let X be a locally compact space and C0(X) denote the space of real-valued continuous
functions onX vanishing at infinity; C0(X) is a Banach space with respect to the supremum
norm. A Feller semigroup onX is a strongly continuous semigroup P (t), t ≥ 0, of operators
on C0(X) which are given by Markov kernels. This means that

(P (t)f) =

∫
X

P (t;x, dy)f(y), x ∈ X, f ∈ C0(X),

where P (t;x, · ) ∈ P(X) for every t ≥ 0 and x ∈ X . A well-known abstract theorem
says that a Feller semigroup gives rise to a Markov process on X with transition function
P (t;x, dy). The processes derived from Feller semigroups are called Feller processes; they
form a particularly nice subclass of general Markov processes.

A Feller semigroup P (t) is uniquely determined by its infinitesimal generator. This is a
(typically, unbounded) closed operator A on C0(X) given by

Af = lim
t→+0

P (t)f − f

t
.

The domain of A, denoted by DomA, is the (algebraic) subspace formed by those functions
f ∈ C0(X) for which the above limit exists; DomA is always a dense subspace. A core of
A is a subspace F ⊂ DomA such that A is the closure of A

∣∣
F . One can say that a core is an

“essential domain” for A. The full domain is often difficult to describe explicitly, and then
one is satisfied by exhibiting a core with the action of A on it.

The Markov chain on X = Z mentioned in Section 1 is an example of a Feller process.
Now we are going to define its multidimensional analog with X = SN .

First we need to introduce some notation. It is convenient to use the correspondence (4.3)
to pass from SN to the subset ΩN ⊂ Z

N formed by the N -tuples ñ = (n1 > · · · > nN ).
Let

V (ñ) :=
∏

1≤i<j≤N

(ni − nj)

and εk denote the kth basis vector in ZN ⊂ R
N .

We introduce a partial difference operator Dz,z′,w,w′|N on ΩN depending on an admis-
sible quadruple (z, z′, w, w′), as follows

(Dz,z′,w,w′|Nf)(ñ)

=

N∑
k=1

(
V (ñ + εk)

V (ñ)
(z + N − 1− nk)(z

′ + N − 1− nk)(f(ñ + εk)− f(ñ))

+
V (ñ − εk)

V (ñ)
(w + nk)(w

′ + nk)(f(ñ − εk)− f(ñ))

)
+ const, (5.1)

where the constant term is chosen so that the operator annihilates the constant functions.
This difference operator is well defined onΩN , because if ñ+εk /∈ ΩN , or ñ−εk /∈ ΩN ,

then V (ñ + εk) or, respectively, V (ñ − εk) vanishes.
In the case N = 1 the operator reduces to the ordinary difference operator Dz,z′,w,w′

defined in (1.4).
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Theorem 5.1. Let (z, z′, w, w′) be an admissible quadruple of parameters. For every N =
1, 2, . . . there exists a Feller semigroup on ΩN ⊂ Z

N whose generator is given by the partial
difference operator (5.1) with domain

{f ∈ C0(ΩN ) : Dz,z′,w,w′|Nf ∈ C0(ΩN )}.

See Borodin-Olshanski [12, Section 5].
As pointed out in [12, Subsection 1.3], the Feller process provided by Theorem 5.1 can

be viewed as the Doob h-transform of a collection of N independent Markov chains on Z,
with h equal to the Vandermonde V (ñ).

Using the bijection (4.3) between SN and ΩN we may interpret the semigroup of Theo-
rem 5.1 as a Feller semigroup on C0(SN ). Let us denote it by Pz,z′,w,w′|N (t).

Theorem 5.2. The measure Mz,z′,w,w′|N on SN serves as the stationary distribution for the
Feller process defined by the semigroup Pz,z′,w,w′|N (t).

See Borodin-Olshanski [12, Section 7].

Theorem 5.3. Let (z, z′, w, w′) be a fixed admissible quadruple and N range over {1, 2, . . . }.
The links ΛN

N−1 intertwine the semigroups Pz,z′,w,w′|N (t).

See Borodin-Olshanski [12, Section 6]. Let us comment on this result. The link ΛN
N−1

determines an operator f �→ ΛN
N−1f transforming bounded functions on SN−1 into bounded

functions on SN by
(ΛN

N−1f)(ν) =
∑

λ∈SN−1

ΛN
N−1(ν, λ)f(λ).

One proves that ΛN
N−1 is “Feller” in the sense that it maps C0(SN−1) into C0(SN ), and the

claim of the theorem means that the following commutativity relations hold

Pz,z′,w,w′|N (t)ΛN
N−1 = ΛN

N−1Pz,z′,w,w′|N−1(t), N = 2, 3, . . . , t ≥ 0.

One also proves the Feller property for the link Λ∞N meaning that Λ∞N maps C0(SN ) into
C0(Ω). (Because of (4.1), this amounts to the fact that the functions ϕn(ω) lie in C0(Ω).)
Then, using a very simple argument, one derives from the above theorems the following
result:

Theorem 5.4.
(i) For every admissible quadruple (z, z′, w, w′), there exists a unique Feller semigroup

Pz,z′,w,w′|∞(t) on C0(Ω) such that

Pz,z′,w,w′|∞(t)Λ∞N = Λ∞N Pz,z′,w,w′|N (t), N = 1, 2, 3, . . . , t ≥ 0.

(ii) The measure Mz,z′,w,w′|∞ on Ω serves as the stationary distribution for the corre-
sponding Feller process.

This is one of the main results of Borodin-Olshanski [12] (see also the expository paper
Olshanski [46]).
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6. The representation ring and the generator

In this section I briefly review the recent results from my paper [47].
Let RS denote the graded representation ring of all symmetric groups S(n) collected to-

gether, with the multiplication determined by the operation of induction IndS(m+n)
S(m)×S(n) from

Young subgroups: see Macdonald [34, Chapter I, Section 7]. As is clearly shown there, the
original Frobenius’ approach to the classification of the symmetric group characters essen-
tially relies on the canonical isomorphism between RS and the ring of symmetric functions
(see also Zelevinsky [56]).

One can ask if there is a reasonable analog of the ring RS for the unitary groups (as well
as for other families of classical compact groups). The answer is yes, but it is necessary
to take into account the fact that the operation of induction Ind

U(M+N)
U(M)×U(N) leads to infinite

sums of irreducible representations.
LetC[[. . . , ϕ−1, ϕ0, ϕ1, . . . ]] be theC-algebra of formal power series in countably many

indeterminates ϕn, n ∈ Z, and let

C[[. . . , ϕ−1, ϕ0, ϕ1, . . . ]]bounded ⊂ C[[. . . , ϕ−1, ϕ0, ϕ1, . . . ]]

be the subalgebra of series with bounded degree. This subalgebra is a graded algebra: its
N th homogeneous component is formed by the homogeneous series of degree N .

According to our definition, the representation ring for the family of unitary groups,
denoted by RU , can be identified with C[[. . . , ϕ−1, ϕ0, ϕ1, . . . ]]bounded.

The algebraRU contains all the irreducible characters χν (where ν ∈ SN ,N = 1, 2, . . . ):
namely we identify

χν = det[ϕνi−i+j ]
N
i,j=1. (6.1)

We introduce an “adic” topology in RU . With respect to it, both the monomials in the
indeterminates ϕn and the characters χν (together with the unity element 1) are “topological
bases”.

Now let us fix an arbitrary quadruple (z, z′, w, w′) of complex parameters and introduce
the following formal differential operator in countably many indeterminates {ϕn : n ∈ Z}

Dz,z′,w,w′ =
∑
n∈Z

Ann
∂2

∂ϕ2
n

+ 2
∑

n1,n2∈Z
n1>n2

An1n2

∂2

∂ϕn1∂ϕn2

+
∑
n∈Z

Bn
∂

∂ϕn
,

where, for any indices n1 ≥ n2,

An1n2
=

∞∑
p=0

(n1 − n2 + 2p + 1)(ϕn1+p+1ϕn2−p + ϕn1+pϕn2−p−1)

−(n1 − n2)ϕn1ϕn2 − 2

∞∑
p=1

(n1 − n2 + 2p)ϕn1+pϕn2−p

and, for any n ∈ Z,

Bn = (n + w + 1)(n + w′ + 1)ϕn+1 + (n − z − 1)(n − z′ − 1)ϕn−1

−((n − z)(n − z′) + (n + w)(n + w′)
)
ϕn.
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The operator Dz,z′,w,w′ correctly defines a linear map RU → RU . Notice that only the
coefficients Bn depend on the parameters (z, z′, w, w′).

Our aim is to interpret Dz,z′,w,w′ as an operator acting on a certain linear subspace F ⊂
C0(Ω).

First, we define F as the algebraic linear span of all the elements χν ∈ RU (where
ν ∈ SN , N = 1, 2, . . . ).

Proposition 6.1. The subspace F is invariant under the action of operator Dz,z′,w,w′ .

Next, we embed F into C0(Ω). To this end we identify every formal indeterminate ϕn

with the function ϕn(ω) on Ω introduced in (3.3). (We have already mentioned that these
functions lie in C0(Ω).) Then, by virtue of (6.1), all elements χν ∈ RR are turned into
functions χν(ω) belonging to C0(Ω). In this way F becomes a subspace of C0(Ω).

In the next theorem we use the notion of a core defined in the beginning of Section 5.

Theorem 6.2. Assume (z, z′, w, w′) is admissible and let Az,z′,w,w′ denote the generator of
the Feller semigroup Pz,z′,w,w′|∞(t) from Theorem 5.4.

The subspace F ⊂ C0(Ω) is an invariant core for the generator Az,z′,w,w′ , and its action
on F is implemented by the operator Dz,z′,w,w′ .

Our construction of the Feller processes onΩ is rather abstract and indirect, but Theorem
6.2 provides a piece of concrete information about them.

7. The Young bouquet

Here I review the results of Borodin-Olshanski [13].
Consider the infinite chain of finite symmetric groups with natural embeddings

S(1) ⊂ S(2) ⊂ S(3) ⊂ . . . (7.1)

and let S(∞) denote the union of all these groups. In other words, S(∞) is the group of
finitary permutations of the set {1, 2, 3, . . . }. The characters of both the symmetric and
unitary groups are related to the Schur symmetric functions. The similarity between the
characters of the inductive limit groups S(∞) and U(∞) is even more apparent. On the
other hand, the groups themselves are structurally very different. We suggest an explanation
of this phenomenon.

As we tried to demonstrate in Section 3, the combinatorial base of the character theory
of U(∞) is the Gelfand-Tsetlin graph. Its counterpart in the symmetric group case is the
Young graph, also called the Young lattice. The vertex set of the Young graph is the set of
all Young diagrams, and two diagrams are joined by an edge if they differ by a single box.
The graph is graded: its nth level (n = 0, 1, 2, . . . ) consists of the diagrams with n boxes.
The Young graph encodes the branching of the irreducible characters of the chain (7.1), just
as the Gelfand-Tsetlin graph does for the chain (1.1) (Vershik-Kerov [52]).

The description of the extreme characters of S(∞) was given by Thoma [51]. It can be
reformulated as the description of the boundary of the Young graph. For various proofs of the
fundamental Thoma’s theorem, see Vershik-Kerov [52], Okounkov [37], Kerov-Okounkov-
Olshanski [26].

In [13] we introduce and study a new object which occupies an intermediate position
between the Gelfand-Tsetlin graph and the Young graph, and makes it possible to see a clear
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connection between them. This new object is called the Young bouquet and denoted as YB.
It is not an ordinary graph. However, YB is a graded poset, similarly to the Gelfand-Tsetlin
and Young graphs.

One new feature is that the grading in YB is not discrete but continuous: the grading
level is marked by a positive real number. By definition, the elements of YB of a given level
r > 0 are pairs (λ, r), where λ is an arbitrary Young diagram. The partial order in YB is
defined as follows: (μ, r) < (λ, r′) if r < r′ and diagram μ is contained in diagram λ (or
coincides with it).

From the definition of the Young bouquet one sees that it is closely related to the Young
graph. We explain in [13] how various notions related to the Young graph are modified in
the context of the Young bouquet. In particular, we are led to consider Young tableaux with
continuous entries as a counterpart of the conventional tableaux.

Let YBr stand for the rth level of the poset YB; this is simply a copy of the set Y of all
Young diagrams. For every couple of positive reals r′ > r we define a link YBΛr′

r : YBr′ ��	
YBr, which is a stochastic matrix of format Y× Y that depends only of the ratio r′ : r. The
links satisfy the compatibility relation

YBΛr′′
r′

YBΛr′
r = YBΛr′′

r , r′′ > r′ > r > 0,

which enables us to define the boundary of the Young bouquet in the spirit of the fourth
version of the definition given in Section 2.

The boundary of YB and the boundary of the Young graph are directly connected: the
former is the cone whose base is the latter. Namely, the boundary of YB, called the Thoma
cone, can be identified with the subset in R

∞
+ × R

∞
+ × R+ formed by the triples (α, β, δ)

such that

α = (α1 ≥ α2 ≥ · · · ≥ 0), β = (β1 ≥ β2 ≥ · · · ≥ 0), δ ≥ 0

and ∞∑
i=1

(αi + βi) ≤ δ,

while the boundary of the Young graph, called the Thoma simplex, can be identified with the
section δ = 1 of the Thoma cone.

On the other hand, we explain how the Young bouquetYB is connected with the Gelfand-
Tsetlin graph. We consider the subgraph GT

+ of the Gelfand-Tsetlin graph spanned by the
signatures with nonnegative coordinates. The N th level vertices of GT

+ can be viewed as
pairs (λ,N), where λ is a Young diagram with at most N nonzero rows.

We show (Theorem 4.4.1 in [13]) that YB is a degeneration of GT
+ in the following

sense.

Theorem 7.1. Fix arbitrary positive numbers r′ > r > 0 and arbitrary two Young diagrams
λ and μ such that μ ⊆ λ. Let two positive integers N ′ > N go to infinity in such a way that
N ′/N → r′/r. Then

limΛN ′
N ((λ,N ′), (μ,N)) = YBΛr′

r (λ, μ). (7.2)

We also exhibit a limit procedure turning the boundary of GT
+ (which is a subset of Ω)

into the boundary of YB, the Thoma cone (Theorem 4.5.1 in [13]).
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Next, we show that along the degeneration GT
+ → YB, some degenerate versions of

zw-measures on the levels of the Gelfand-Tsetlin graph turn into the z-measures on the set
Y.

The z-measures on Y are a distinguished particular case of Okounkov’s Schur measures
(Okounkov [38], Borodin-Okounkov [7]). For the first time, the z-measures appeared in
Borodin-Olshanski [8] in connection with the problem of harmonic analysis on the infinite
symmetric group stated in Kerov-Olshanski-Vershik[27] (see also the detailed paper [28]).

The z-measures depend on a pair (z, z′) ∈ Z of parameters (see (4.2)) and the additional
parameter r > 0 indexing the level of YB. The measures are consistent with the links
YBΛr′

r and give rise to certain probability measuresMz,z′|∞ on the Thoma cone, in complete
similarity with the case of Gelfand-Tsetlin graph (see Corollary 4.2 above).

The parallelism between the Young bouquet and the Gelfand-Tsetlin graph also extends
to the theory outlined in Section 5. In Borodin-Olshanski [14] we show that using the same
approach, one can construct a family of Feller Markov processes on the Thoma cone.

8. Notes and complements

8.1. In connection with the material of Section 3 see also Olshanski [45].

8.2. There exist other values of parameters (z, z′, w, w′) for which coherent families
{Mz,z′,w,w′|N ;N = 1, 2, . . . } are still well defined and give rise to certain probability mea-
sures Mz,z′,w,w′|∞ on the boundary Ω. Only these measures are degenerate meaning that
the support of Mz,z′,w,w′|N is a proper subset of SN .

For instance, one can take

z = m, z′ = m + a, w = 0, w′ = b,

where m is a positive integer, a > −1, and b > −1. Then the corresponding measure on Ω
is concentrated on the subset

{ω : δ+ = β+
1 + · · ·+ β+

m, 1 ≥ β+
1 ≥ · · · ≥ β+

m ≥ 0,

all other coordinates equal 0} ⊂ Ω

and takes the form

(normalizing constant) ·
m∏
i=1

tbi (1− ti)
a ·

∏
1≤i<j≤m

(ti − tj)
2 ·

m∏
i=1

dti, (8.1)

where we use the notation

(t1, . . . , tm) := (1− β+
m, . . . , 1− β+

1 ).

The measure (8.1) is a multidimensional version of the Euler Beta distribution of the type
appearing in Selberg’s integral, and the coherency property of the degenerate zw-measures
is related to a generalized Selberg integral (Olshanski [43, Section 5]).
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8.3. In the case of degenerate measures, the construction of Section 6 produces a diffusion
Markov process on the m-dimensional simplex

{(t1, . . . , tm) : 1 ≥ t1 ≥ · · · ≥ tm ≥ 0}
whose generator is the m-variate Jacobi differential operator

D(a,b)
m :=

1

Vm
◦
(

m∑
i=1

(
ti(1− ti)

∂2

∂t2i
+ [b + 1− (a + b + 2)ti]

∂

∂ti

))
◦ Vm + const

=

m∑
i=1

⎛
⎝ti(1− ti)

∂2

∂t2i
+

⎡
⎣b + 1− (a + b + 2)ti +

∑
j: j �=i

2ti(1− ti)

ti − tj

⎤
⎦ ∂

∂ti

⎞
⎠ ,

where Vm denotes the Vandermonde,

Vm :=
∏

1≤i<j≤m

(ti − tj),

and

const =
m−1∑
k=0

k(k + a + b + 1).

This fact is substantially exploited in the proof of Theorem 6.2.
The same diffusion process also arises in a different context, see Gorin [23].

8.4. Gorin [25] considered the “q-Gelfand-Tsetlin graph” (which amounts to introducing
a q-deformation of the links ΛN

N−1 : SN ��	 SN−1) and found the corresponding bound-
ary. Under this deformation, the α-parameters disappear while the β-parameters survive but
become discrete.

For the “q-Gelfand-Tsetlin graph”, analogs of zw-measures and related processes are
unknown. However, Borodin and Gorin [6] applied the approach outlined in Section 6 above
to constructing Feller processes of a different kind.

8.5. Let T stand for the space of infinite monotone paths in the Gelfand-Tsetlin graph,
which are the same as infinite Gelfand-Tsetlin schemes. The path space T plays an important
role in our theory.

There exists a one-to-one correspondence P(Ω) ↔ Pcentral(T ) between probability
measures on Ω and some kind of Gibbs measures (or central measures, in Vershik-Kerov’s
terminology) on T (Olshanski [42, Proposition 10.3]).

Using this correspondence, Gorin [24] proved that the zw-measures on Ω are pairwise
mutually singular.

Via this correspondence, the semigroup Pz,z′,w,w′|∞(t) defines an evolution of central
measures. It is natural to ask if there exists a Markov process on T that agrees with that
evolution when restricted to the central measures. In Borodin-Olshanski [12] we construct
one such process (for every admissible (z, z′, w, w′)).

In Borodin-Olshanski [15] we present arguments in favor of the conjecture that a similar
construction can be carried out for the Young bouquet. (Then the path space consists of in-
finite Young tableaux with continuous entries.) The conjectural process should be piecewise
deterministic meaning that it is a combination of a dynamical system with a jump Markov
process.
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8.6. Note that in the literature one can find a number of examples of “Markov intertwiners”
(that is, Markov kernels intertwining two Markov processes); see, e.g. Biane [2], [3], Dubé-
dat [18], Carmona-Petit-Yor[16]. However, the use of Markov intertwiners for constructing
infinite-dimensional Markov processes seems to be new.

8.7. In the ICM lecture [5], Borodin demonstrates how intertwined Markov processes of the
type considered above are applied to analyzing the large time behavior of certain interacting
particle systems and random growth models.

Acknowledgements. The author was partially supported by the Simons Foundation and the
RFBR grant 13-01-12449.
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Geometric intersection patterns and the theory of
topological graphs

János Pach

Abstract. The intersection graph of a set system S is a graph on the vertex set S, in which two
vertices are connected by an edge if and only if the corresponding sets have nonempty intersection. It
was shown by Tietze (1905) that every finite graph is the intersection graph of 3-dimensional convex
polytopes. The analogous statement is false in any fixed dimension if the polytopes are allowed to have
only a bounded number of faces or are replaced by simple geometric objects that can be described in
terms of a bounded number of real parameters. Intersection graphs of various classes of geometric
objects, even in the plane, have interesting structural and extremal properties.

We survey problems and results on geometric intersection graphs and, more generally, intersection pat-
terns. Many of the questions discussed were originally raised by Berge, Erdős, Grünbaum, Hadwiger,
Turán, and others in the context of classical topology, graph theory, and combinatorics (related, e.g., to
Helly’s theorem, Ramsey theory, perfect graphs). The rapid development of computational geometry
and graph drawing algorithms in the last couple of decades gave further impetus to research in this
field. A topological graph is a graph drawn in the plane so that its vertices are represented by points
and its edges by possibly intersecting simple continuous curves connecting the corresponding point
pairs. We give applications of the results concerning intersection patterns in the theory of topological
graphs.

Mathematics Subject Classification (2010). Primary 05C35; Secondary 05C62, 52C10.

Keywords. intersection graph, topological graph, geometric graph, Ramsey theory, semialgebraic set,
separator, partial order.

1. From topological graphs to intersection graphs

A topological graph is a graph G drawn in the plane with possibly intersecting curvilinear
edges. More precisely, the vertices of G are points in the plane and the edges are simple
continuous curves connecting the corresponding point pairs and not passing through any
other point representing a vertex. These curves are allowed to cross, but we assume for
simplicity that any two intersect only in a finite number of points, no two are tangent to each
other, and no three share an interior point. In the special case when the edges are straight-line
segments, G is called a geometric graph. In notation and terminology, we do not distinguish
between the vertices (edges) of a topological graph and the vertices (edges) of the underlying
abstract graph.

In the past few decades, the theory of topological and geometric graphs has become a
fast growing separate field of combinatorial geometry with interesting applications in graph

Proceedings of the International Congress of Mathematicians, Seoul, 2014



456 János Pach

drawing, in combinatorial and computational geometry, in additive number theory, and else-
where. See, e.g., [5, 29, 75, 109, 114]. Many related contributions can be found in the
proceedings of the annual Graph Drawing symposia, published in Springer’s Lecture Notes
series in Computer Science and in two collections of papers [87, 88]. For surveys, see Chap-
ter 14 in [89], Chapter 10 in [61], and Chapters 1 and 3 in [37].

In this section, we would like to illustrate by an example how questions about topological
graphs lead to the study of intersection graphs of geometric objects.

Definition 1.1. Two edges, e and f , of a topological graph are said to cross if they share an
interior point at which e passes from one side of f to the other side. A topological graph is
simple if any pair of its edges have at most one point in common, which is either an endpoint
or an interior point at which they cross.

A topological graph is called k-quasiplanar for some integer k ≥ 2 if no k of its edges
are pairwise crossing.

Using this terminology, a planar graph is 2-quasiplanar.

Conjecture 1.2. For any fixed k ≥ 2, the number of edges of every k-quasiplanar topologi-
cal graph with n vertices is O(n).

For k = 2, this follows from Euler’s polyhedral formula. For k = 3, for simple topologi-
cal graphs, Conjecture 1.2 was proved in [4]. Without the simplicity condition, the statement
was first proved in [92]. The best known upper bound of roughly 8n was established by
Ackerman and Tardos [3]. For k = 4, the conjecture has been verified by Ackerman [1].

For larger values of k, Conjecture 1.2 is still open. The upper bound n(log n)O(k) for
the number of edges of a simple k-quasiplanar topological graph was first proved in [93],
and then for all k-quasiplanar topological graphs in [92]. This was further improved to
n(log n)O(log k) by Fox and Pach [44]. For k-quasiplanar geometric graphs and, more gen-
erally, for simple topological graphs whose edges are represented by x-monotone arcs (that
is, curves in the plane such that every vertical line intersects them in at most one point), Valtr
[120, 121] showed that the number of edges cannot exceed ckn log n. Extending Valtr’s
ideas, Fox, Pach, and Suk [47] (see also [104]) proved the following.

Theorem 1.3 ([47]). The number of edges of every k-quasiplanar topological graph of n
vertices with all edges represented by x-monotone arcs is at most 2ck

6

n log n, for a suitable
absolute constant c.

Using similar ideas, Suk and Walczak [113] established another generalization of Valtr’s
result: the number of edges of any simple k-quasiplanar topological graph with n vertices is
also Ok(n log n).

For convex geometric graphs, that is, for geometric graphs whose vertices form a convex
n-gon, the Conjecture 1.2 was proved by Capoyleas and Pach [23].

Theorem 1.4 ([23]). The maximum number of edges that a k-quasiplanar convex geometric
graph with n vertices can have is 2(k − 1)n − (2k−1

2

)
, provided that n ≥ 2k − 1.

The intersection graph of a set system S is a graph on the vertex set S , in which two
vertices are connected by an edge if and only if the corresponding sets have nonempty inter-
section.

A natural attempt to prove Conjecture 1.2, at least for geometric graphs, is the following.
Let Kk denote a clique (complete graph) on k vertices.
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Problem 1.5. Given two integers k,m > 2, determine the smallest number α = αk(m)
with the property that the intersection graph of any system of m segments in the plane which
contains no Kk as a subgraph has at least α independent vertices. The same problem can
be raised for intersection graphs of continuous curves.

Assume for a moment that for some k there exists εk > 0 such that αk(m) > εkm.
This would immediately imply Conjecture 1.2 for geometric graphs. To see this, let G be
a k-quasiplanar geometric graph with vertex set V (G) and edge set E(G). By definition,
the intersection graph of the open segments representing the edges of G contains no Kk as
a subgraph. By our assumption, G has an independent set of size at least εk|E(G)|. The
corresponding segments induce a planar subgraph of G. Therefore, we obtain εk|E(G)| ≤
3n − 6, implying that |E(G)| < (3/εk)|V (G)|, as required.

However, generalizing a construction of Pawlik et al. [100], Walczak [122] proved that
α3(m) = O(m/ log logm). Hence, the above attempt to verify Conjecture 1.2 fails. The
best known lower bound on α3(m) is m over a polynomial in logm (see [44]). On the other
hand, every Kk-free intersection graph of m unit segments in the plane has an independent
set of size at least εkm, for a suitable constant εk > 0. Moreover, Suk [111] proved that
for a fixed k, the chromatic numbers of these graphs are bounded by an absolute constant.
In [113], a similar statement was proved for intersection graphs of continuous curves, each
intersecting the x-axis in precisely one point.

Due to space limitations and personal preferences, many classical topics concerning geo-
metric intersection patterns and graph representations will be suppressed or not mentioned at
all in this survey. These include Helly-type results [123], geometric transversal theory [27],
approximate embeddings of graphs into normed spaces [83], orthogonal and other geometric
graph representations [78], [80], epsilon-nets and VC-dimension [107].

2. Forbidden subgraphs of intersection graphs

In combinatorics and computer science, several natural classes of geometric intersection
graphs have been considered. In one dimension, the most frequently studied objects are
interval graphs: intersection graphs of intervals. They serve as simple examples of perfect
graphs, that is, graphs in which the chromatic number of every induced subgraph is the same
as its clique number (the size of the largest clique). We know good characterizations of
interval graphs [57, 58] in terms of forbidden subgraphs, and simple linear time algorithms
for their recognition [19].

There are various natural generalizations of interval graphs in the plane: intersection
graphs of (1) segments, (2) convex sets, (3) arcwise connected sets, etc. The first class is
contained in the second, the second class in the third. It is easy to verify that class (3)
coincides with the class of string graphs.

Definition 2.1. An intersection graph of simple continuous curves (“strings”) in the plane is
called a string graph.

The rank of a string graph G is the smallest integer r such that the vertices of G can
be represented by continuous curves in the plane, any two of which intersect in at most r
points, so that two vertices of G are connected by an edge if and only if the corresponding
arcs intersect.
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The investigation of string graphs was initiated by Benzer [16] and Sinden [108], in
connection with genetic structures and printed electrical circuits.

Sinden [108] showed that the graph of fifteen vertices depicted below is not a string
graph, therefore, it does not belong to any of the classes (1)-(3). Ten years later Ehrlich,
Even, and Tarjan [28] constructed a string graph which is not a segment intersection graph,
that is, it belongs to class (3), but not to class (1).

Thus, a string graph cannot contain this 15-vertex graph as an induced subgraph. How-
ever, we cannot hope that string graphs have a good characterization in terms of forbidden
subgraphs, unless P=NP: it was shown by Kratochvíl [69] that recognizing string graphs is
NP-hard, and by Schaefer, Sedgwick, and Štefankovič [106] that it belongs to NP. The prob-
lem of recognizing whether a graph is an intersection graph of segments is also known to be
NP-hard (in fact, equivalent to the existential theory of reals [70, 105]). Even for relatively
simple graphs, it may be a formidable task to decide whether they allow such a represen-
tation by segments. For example, it was a longstanding conjecture that every finite planar
graph is an intersection graph of segments. It was finally verified by Chalopin and Gonçalves
in 2009 [24].

Definition 2.2. A graph property P is called hereditary if every induced subgraph of a graph
with property P also has property P . The property thatG is a string graph obviously satisfies
this condition.

The total number of graphs on n labeled vertices is 2(
n
2). Since most of them contain

an induced subgraph isomorphic to the fifteen-vertex graph depicted above, most graphs are
not string graphs. Using the extremal theory of graphs with some hereditary property, devel-
oped in [18, 32, 103], Pach and Tóth [97] established the following more precise asymptotic
results.

Theorem 2.3 ([97]). The number of string graphs on n labeled vertices is 2(
3
4+o(1))(n2).

Theorem 2.4 ([97]). For any fixed positive k, the number of string graphs of rank k on n
labeled vertices is 2o(n

2).

Every graph which is an intersection graph of segments is a string graph of rank 1.
For intersection graphs of segments, we have a much better result, which can be deduced
using a theorem of Oleı̆nik and Petrovsky [101], Milnor [86], and Thom [117] from real
algebraic geometry (see also [15]). The number of n-vertex intersection graphs of segments
is 2O(n logn), and the order of magnitude of the exponent is correct [94]. Fox (personal
communication) has recently proved the asymptotically tight bound 2(4+o(1))n logn. The
best known upper bound, 2O(n3/2 logn), for the number of n-vertex string graphs of rank 1 is
due to Kynčl [73]. The structure of a “typical” string graph was studied in [62].
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The above results can be applied to estimate the number of combinatorially different
ways a complete graph on n vertices can be drawn in the plane so that any pair of its edges
cross at most r times, where r is a fixed positive integer [97], [73].

3. Ramsey-type properties of intersection graphs

By the quantitative form of Ramsey’s theorem, established by Erdős and Szekeres [35], every
graph of n vertices has a clique or an independent set of size at least 1

2 log2 n. In a seminal
paper written in 1989, Erdős and Hajnal [33] showed that the family of all graphs that do not
contain a fixed forbidden graph G as an induced subgraph, have much stronger Ramsey-type
properties than the family of all graphs. More precisely, they proved the following.

Theorem 3.1 ([33]). For any graph G, there exists a constant c = c(G) > 0 such that
every graph of n vertices that does not contain G as an induced subgraph has a clique or an
independent set of size at least ec

√
logn.

They raised the question whether one can always find a complete or empty induced
subgraph of size nc. This remains one of the most challenging open problems in Ramsey
theory.

A complete bipartite graph with 2n/23 vertices in one class and *n/2+ vertices in the
other is called a bi-clique of size n. Erdős, Hajnal, and Pach [34] proved a bipartite variant.

Theorem 3.2 ([34]). For any graph G, there is a constant c = c(G) > 0 such that every
graph on n vertices that does not contain G as an induced subgraph has a bi-clique of size
nc or the complement of such a bi-clique.

See [51] for a strengthening of this result.
Obviously, the last two theorems remain true for all hereditary families of graphs, that is,

for any family other than the family of all finite graphs that is closed under taking induced
subgraphs. The family of string graphs (intersection graphs of continuous curves or arcwise
connected sets in the plane) and, hence, the families of all graphs that can be obtained as
intersection graphs of segments, convex sets, etc. belong to this category.

In [40], we introduced the following terminology.

Definition 3.3. A family F of graphs has the

1. (Weak) Erdős-Hajnal property if there is a constant c(F) > 0 such that every graph in
F on n vertices contains a clique or an independent set of size nc(F);

2. Strong Erdős-Hajnal property if there is a constant b(F) > 0 such that for every graph
G in F on n vertices contains a bi-clique of size b(F)n or the complement of such a
bi-clique.

It was shown in [6] that if a hereditary family of graphs has the strong Erdős-Hajnal
property, then it also has the Erdős-Hajnal property. The converse is false, as is shown, e.g.,
by the family of triangle-free graphs. The first nontrivial result showing that a geometric
intersection graph has the Erdős-Hajnal property was found by Larman et al. [74].

Theorem 3.4 ([74]). The intersection graph of n convex sets in the plane has a clique or an
independent set of size at least n1/5.
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It is enough to assume here that every set of the family is vertically convex, that is, a con-
nected set with the property that every vertical line meeting it intersects it in an interval or in
a point. It is an interesting open problem to improve the exponent 1/5 in the theorem. The
best known upper bound, due to Kynčl [72], is log 8/ log 169 ≈ .405 (cf. [63]), so there is
plenty of room for improvement.

The family of intersection graphs of convex sets in the plane also has the strong Erdős-
Hajnal property [50]. However, the family of intersection graphs of vertically convex sets
does not [96]. By definition, any x-monotone curve, that is, any continuous curve in the
plane such that every vertical line intersects it in at most one point, is vertically convex.

Theorem 3.5 ([96]). For every n, there is an n-member family of x-monotone curves in the
plane such that neither their intersection graph, nor its complement contains a bi-clique of
size at least cn/ log n. Here c is an absolute constant.

In the other direction, it is known that every string graph with n vertices or its comple-
ment contains a bi-clique of size at least c′n/ log n (cf. [45]).

If we put an upper bound r on the number of times two curves are allowed to meet, then
the corresponding intersection graphs, string graphs of rank r (see Definition 2.1) behave
much nicer.

Theorem 3.6 ([49]). The family of string graphs of rank r has the strong Erdős-Hajnal
property.

One of the most challenging unsolved problems in this area is to decide whether the
family of all string graphs has the (weak) Erdős-Hajnal property. The best known result in
this direction was established in [46]: Every string graph with n vertices has a clique or an
independent set of size at least nc/ log logn.

4. Intersection graphs of semialgebraic sets

According to Tietze’s theorem [118] cited in the abstract, every finite graph can be obtained
as the intersection graph of 3-dimensional convex bodies. This may suggest that there is no
hope to generalize the results in the previous section to higher dimensions. Actually, this
is not the case. The proof method of Pach-Solymosi [94], where it was first shown that the
family of intersection graphs of segments in the plane has the strong Erdős-Hajnal property,
can be extended as follows.

Definition 4.1 ([15]). A semialgebraic set S in R
d is the locus of all points that satisfy

a given finite Boolean combination of at most d polynomial equations and inequalities of
degree at most d in the d coordinates. (Without loss of generality, these three parameters are
bounded by the same integer d.) The description complexity of S is the smallest integer d
for which S has such a representation.

Every element S of a family F of semialgebraic sets of constant description complex-
ity d can be represented by a point S∗ of a d∗-dimensional Euclidean space (in which
the coordinates are, say, the coefficients of the monomials in the polynomials that define
S). A graph (binary relation) R ⊂ F × F is semialgebraic if the corresponding set
{(S∗, T ∗) ∈ R

2d∗ | S, T ∈ F , (S, T ) ∈ R} is semialgebraic. Semialgebraic hypergraphs
(relations of h variables, h-ary relations) can be defined analogously.
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Theorem 4.2 ([6]). For any d, the family of all graphs that are associated with a semi-
algebraic binary relation of description complexity at most d has the strong Erdős-Hajnal
property.

The relation that two semialgebraic sets, S, T ∈ F , with description complexity d have
nonempty intersection is semialgebraic. Thus, we have the following.

Corollary 4.3 ([6]). Any family of intersection graphs of (real) semialgebraic sets of con-
stant description complexity has the strong (and, therefore, the weak) Erdős-Hajnal property.

Basu [14] extended this result for a broader class of algebraically defined sets (o-minimal
sets).

An n-vertex graph is called t-Ramsey if it contains no clique and no independent set
of size at least t. A probabilistic construction of Erdős [31] shows that almost all n-vertex
graphs are 2 log2 n-Ramsey, but it is a formidable task to find comparably good efficient
constructions. The best known polynomial time deterministic algorithm, due to Barak et
al. [11], produces only 2(logn)

o(1)

-Ramsey graphs. The previous record was held by Frankl
and Wilson [52]. Theorem 4.2 above shows that no no(1)-Ramsey graphs can be defined
using semialgebraic relations of constant description complexity. This settles a conjecture of
Babai [10].

Fox, Gromov, Lafforgue, Naor, and Pach [39] proved the following far-reaching gener-
alization of Theorem 4.2.

Theorem 4.4 ([39]). Let α > 0, let F1, . . . ,Fh be finite families of semialgebraic sets
of constant description complexity, and let R be a fixed semialgebraic h-ary relation on
F1 × · · · × Fh such that the number of h-tuples that are related (resp. unrelated) with
respect to R is at least α

∏h
i=1 |Fi|. Then there exists a constant c′ > 0, which depends on

α, h and on the maximum description complexity d of the sets in Fi (1 ≤ i ≤ h) and R, and
there exist subfamilies F ′

i ⊆ Fi with |F ′
i | ≥ c′|Fi| (1 ≤ i ≤ h) such that F ′

1×· · ·×F ′
h ⊆ R

(resp. (F ′
1×· · ·×F ′

h)∩R = ∅). Moreover, each subset F ′
i consists of exactly those elements

of Fi that satisfy a certain semialgebraic relation of constant description complexity.

Apart from the fact that the last statement also handles semialgebraic hypergraphs (h-ary
relations), it also strengthens Theorem 4.2 in another direction. It is not just a Ramsey-type
theorem, which guarantees that at least one of two or several possibilities will occur. It is
a so-called “density theorem,” which tells us that if sufficiently many h-tuples are related
by the relation R (that is, the h-uniform semialgebraic hypergraph R has sufficiently many
hyperedges), then there are h large subsets F ′

i ⊆ Fi (1 ≤ i ≤ h) such that no matter how
we pick an element from each, the resulting h-tuple is related (is a hyperedge of R). The
constant c′ in Theorem 4.4 can be taken to a polynomial in α (see [48]).

By repeated application of this statement, one can obtain an even stronger Szemerédi-
type partition theorem. An equipartition of a finite set P is a partition P = P1 ∪ . . . ∪ Pk

into almost equal parts. That is, |Pi| = *|P |/k+ or 2|P |/k3 for every i.

Theorem 4.5 ([39]). For any h, d and for any ε > 0, there exists K = K(ε, h, d) satisfying
the following condition. For any k ≥ K, for any semialgebraic relation R on h-tuples
of points in a Euclidean space R

d with description complexity at most d, every finite set
P ⊆ R

d has an equipartition P = P1∪ . . .∪Pk such that all but at most an ε-fraction of the
h-tuples (Pi1 , . . . , Pih) have the property that either all r-tuples of points with one element
in each Pij are related with respect to R or none of them are.
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It was shown in [48] that the constant K in Theorem 4.5 can be bounded from above by
a polynomial of 1/ε.

The investigation of semialgebraic versions of Ramsey’s theorem for h-ary relations was
initiated in [25]. Let Nd

h(n) be the smallest integer N such that for any semialgebraic re-
lation R on h-tuples of N points in R

d with description complexity at most d, there is a
homogeneous subset of size n, that is, a subset with the property that either all of its h-tuples
belong to R or none of them does. It was shown that the function Nd

h(n) grows in n as a
tower of height h − 1, and that in some sense this result is optimal. This is one exponential
better than the behavior of the general Ramsey function for arbitrary h-ary relations.

For some related results and geometric applications, see [12, 13, 20, 30, 39, 112].

5. Intersection graphs and partially ordered sets

Given a partially ordered set (P,<), its incomparability graph is the graph with vertex set
P , in which two elements are adjacent if and only if they are incomparable. Incomparability
graphs are fairly well understood. In 1950, Dilworth [26] proved that every incomparability
graph is a perfect graph, so the chromatic number of an incomparability graph is equal to
its clique number. Gallai [57] gave a characterization of incomparability graphs in terms of
minimal forbidden induced subgraphs, and there exist polynomial time algorithms to recog-
nize them [59].

There is a curious relation between incomparability graphs and string graphs (Defini-
tion 2.1), which was first observed by Golumbic, Rotem, and Urrutia [60] and, indepen-
dently, by Lovász [77].

Theorem 5.1 ([60, 77]). Every incomparability graph is a string graph.

The converse is obviously not true. For example, a cycle of length five is a string
graph, but it is not perfect, therefore, it cannot be an incomparability graph. Kleitman and
Rothschild [65] showed that the number of incomparability graphs on n vertices is only
2(1/2+o(1))(n2), which is much smaller then the number of string graphs, asymptotically given
in Theorem 2.3.

Nevertheless, it was shown by Fox and Pach [45] that most string graphs contain huge
subgraphs that are incomparability graphs. The geometric conditions somehow seem to
enforce a partial order on the curves.

Theorem 5.2. For every ε > 0 there exists δ > 0 with the property that if F is a family
of curves whose string graph has at least ε|F|2 edges, then one can select a subcurve γ′ of
each γ ∈ F such that the string graph of the family {γ′ : γ ∈ F} has at least δ|F|2 edges
and is an incomparability graph.

This implies that every dense string graph contains a dense spanning subgraph (i.e., a
dense subgraph on the same vertex set) which is an incomparability graph. However, it
is not true that every dense string graph contains a dense induced subgraph with a linear
number of vertices that is an incomparability graph. Indeed, since every incomparability
graph is perfect, this would imply that every string graph has a clique or an independent set
of size at least constant times

√
n. This is certainly false, e.g., for the construction of Kynčl,

mentioned after Theorem 3.4.
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Fox [38] proved that incomparability graphs “almost” have the strong Erdős-Hajnal prop-
erty.

Theorem 5.3 ([38]). If n is large enough, the incomparability graph of every n-element
partially ordered set, or its complement, the comparability graph, has a bi-clique of size at
least n

4 log2 n . This bound is tight up to a constant factor.

The second part of this statement, combined with Theorem 5.1, immediately implies
that the family of string graphs does not have the strong Erdős-Hajnal property (which was
Theorem 3.5).

In [42], Theorem 5.3 was generalized to several partial orders. Note that the proof of
Theorem 3.4 is based on the fact that on any family of (vertically) convex sets in the plane,
we can define four partial orders so that two sets have nonempty intersection if and only if
they are incomparable by all of them. Using the generalized version of Theorem 5.3, we
obtain that the intersection graphs of (vertically) convex sets in the plane also “almost” have
the strong Erdős-Hajnal property. As was mentioned in Section 3, for convex sets a stronger
statement is true (which does not hold under the weaker assumption of vertical convexity).

Theorem 5.4 ([50]). The family of intersection graphs of finitely many convex sets in the
plane has the strong Erdős-Hajnal property.

The dimension of a partially ordered set (P,>) is the minimum number of linear exten-
sions of the relation “>” such that their intersection is “>”. For the proof of Theorem 5.4,
one has to consider a new type of extremal problem for incomparability graphs: What is
the maximum number of edges that an n-vertex incomparability graph of a partial order of
dimension d can have if it does not contain, say, a complete bipartite subgraph Kr,r, for a
fixed r? The same question can be asked about comparability graphs and also for the case
where the condition on the dimension is dropped.

In the same paper, a stronger form of Theorem 5.3 was proved for dense graphs.

Theorem 5.5 ([50]). For every ε > 0, there exists δ > 0 such that every incomparability
graph with n vertices and at least εn2 edges contains a bi-clique of size δn/ log n.

Combining this result with Theorem 5.1, we obtain

Corollary 5.6. For every ε > 0, there exists δ > 0 such that every string graph with n
vertices and at least εn2 edges contains a bi-clique of size δn/ log n.

The formulation of Theorem 5.3 may suggest a certain kind of symmetry between in-
comparability and comparability graphs. However, Theorem 5.1 has no analogue for com-
parability graphs. The following strengthening of Theorem 5.3 is also slightly asymmetric.

Theorem 5.7 ([50]). There is constant c > 0 such that the incomparability graph of every
n-element partially ordered set has a bi-clique of size at least cn/ log n, or its complement,
the comparability graph, has a bi-clique of size at least cn.

It was conjectured in [40] that every perfect graph on n vertices or its complement con-
tains a bi-clique of size at least n1−o(1).



464 János Pach

6. Intersection graphs and planar separators

Given a family of continuous curves (strings) in the plane, introducing a vertex at each
intersection point and each endpoint of the curves, we obtain a planar graph. Under some
fairly natural conditions, there are few strings that connect far-away parts of this planar
graph. In such cases, there is a good chance that we can use the Lipton-Tarjan separator
theorem for planar graphs [76].

A separator for a graphG = (V,E) is a subset V0 ⊂ V such that there is a partition V =
V0 ∪ V1 ∪ V2 with |V1|, |V2| ≤ 2

3 |V | and no vertex in V1 is adjacent to any vertex in V2. The
Lipton-Tarjan separator theorem states that every planar graph with n vertices has a separator
of size O(

√
n). By a classical theorem of Koebe [66], every planar graph can be represented

as the intersection graph of closed disks in the plane with disjoint interiors. Miller, Teng,
Thurston, and Vavasis [85] found a generalization of the Lipton-Tarjan separator theorem to
higher dimensions. They proved that the intersection graph of any family of n balls in R

d

such that no k of them have a point in common has a separator of size O(dk1/dn1−1/d).
Fox and Pach [41] established the following common generalization of the separator

theorems of Lipton and Tarjan and of Miller et al. in the plane.

Theorem 6.1 ([41]). If F is a finite family of Jordan regions with a total of m boundary
crossings, then the intersection graph of F has a separator of size O(

√
m).

Corollary 6.2 ([41]). If F is a finite family of curves in the plane with a total of m crossings,
then the intersection graph (string graph) of F has a separator of size O(

√
m).

Using Theorem 6.1 and Theorem 1.4, one can deduce the following.

Theorem 6.3 ([41]). Every Kk-free intersection graph of convex bodies in the plane with m
edges has a separator of size O(

√
km).

Notice that in this statement, the size of the separator is bounded in terms of the number
of edges of the intersection graph, rather than the number of vertices. Nevertheless, since
planar graphs are K5-free and (by Koebe’s theorem) can be obtained as intersection graphs
of convex bodies, Theorem 6.3 also implies the Lipton-Tarjan separator theorem.

Fox and Pach [43] made the following conjecture, much stronger than Corollary 6.2.

Conjecture 6.4 ([43]). Every string graph with m edges has a separator of size O(
√

m).

In [43], a weaker bound, O(m3/4
√
logm), was established. This bound was used to

deduce the following interesting property of string graphs. Let Kk,k denote the complete
bipartite graph with k vertices in each of its classes (that is, a bi-clique of size 2k).

Theorem 6.5 ([43]). For any positive integer k, there is a constant c(k) such that every
Kk,k-free string graph with n vertices has at most c(k)n edges.

This is in sharp contrast with the general behavior of graphs. According to the Kővári-
Sós-Turán theorem [68], for a fixed k, every Kk,k-free graph with n vertices has at most
O(n2−1/k) edges. For k > 2, this bound is not known to be optimal, but the right exponent
is definitely at least 2− 2/k > 1 (see, e.g., [17]). It is a rich and active subfield of extremal
graph theory to estimate the maximum number of edges of a B-free graph of n vertices, for
a given bipartite graph B. Theorem 6.5 shows that for string graphs there is no such theory:
no matter what B is, the maximum is O(n).
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Matoušek [84] came close to proving Conjecture 6.4. He adapted some powerful tech-
niques developed by Feige, Hajiaghayi, and Lee [36], who used the framework of multicom-
modity flows to design efficient approximation algorithms for finding small separators. See
also [67].

Theorem 6.6 ([84]). Every string graph with m edges has a separator of size at most
O(

√
m logm).

In [46], the last theorem was utilized to deduce that Theorem 6.5 is true with c(k) =
k(log k)O(1), which is not far from being optimal. It is conjectured that the best possible
value of c(k) for which the theorem still holds satisfies c(k) = O(k log k).

7. The theory of topological graphs

It was probably Erdős who first suggested in the 1960s that some of the basic questions in
extremal graph theory have natural analogues for geometric or topological graphs. For in-
stance, what is the maximum number of edges that a geometric graph of n vertices can have
without containing a fixed “forbidden” configuration, that is, a set of edges such that their
intersection pattern is specified. The first such result, in which the forbidden configuration
consisted of 2 disjoint edges (that cannot have any endpoints or internal points in common)
was published by Avital and by Erdős’s close friend, Hanani [9]. The answer is n. Thirteen
years later, in his master’s thesis [71], Kupitz started to explore these questions systemati-
cally. Alon and Erdős [7] proved that every geometric graph with no 3 disjoint edges has
O(n) edges. The first general bound was established in [99] and uses partial orders.

Theorem 7.1 ([99]). For any integer k ≥ 2, the maximum number of edges of a geometric
graph with n vertices that contains no k disjoint edges is Ok(n).

The best known value of the constant hidden in the Ok-notation is O(k2) (see [119]). It
is perfectly possible that this bound can be improved to O(k), which would be best possible.

It is conjectured that Theorem 7.1 remains true for simple topological graphs, i.e., for
topological graphs in which every pair of edges intersect in at most one point (Definition 1.1).
For the case k = 2, Conway made the following stronger conjecture, which has become
known as the “thrackle conjecture”.

Conjecture 7.2 ([124]). Every simple topological graph with n ≥ 3 vertices that contains
no 2 disjoint edges has at most n edges.

It is known that every such graph has a linear number of edges in n (see [21, 53, 79]).
The thrackle conjecture has been verified for simple topological graphs with x-monotone
edges ([95], cf. Theorem 3.5) and in the case where all vertices lie on a circle and all edges
in its interior [22].

We do not know whether the analogue of Theorem 7.1 is true for simple topological
graphs, when k ≥ 3. All we know is that, according to [98], the maximum number of
edges of a simple topological graph with n vertices that contains no k disjoint edges is
n(log n)O(k). In the most optimistic scenario, this bound could be improved to O(kn).
Suppose that this is the case. This would imply that a complete simple topological graph
with n vertices (and

(
n
2

)
edges) must have at least cn disjoint edges, for a suitable constant

c > 0. Suk [110] proved a weaker bound.
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Theorem 7.3 ([110]). Every complete simple topological graph with n vertices must have
at least cn1/3 disjoint edges, for a suitable constant c > 0.

An alternative proof of this theorem was found by Fulek and Ruiz-Vargas [54]. Ruiz-Vargas
has recently announced the improved bound cn1/2−ε, for every ε > 0. Both proofs break
down if we want to extend Theorem 7.3 to all dense simple topological graphs, that is, to
graphs with at least δn2 edges for some δ > 0. We cannot generalize this statement even for
complete bipartite simple topological graphs.

In Section 1, we considered the “dual” problem, where the forbidden configuration con-
sists of k pairwise crossing edges. Recall that topological graphs with no k pairwise crossing
edges are called k-quasiplanar (see Definition 1.1). What is the maximum number of edges
that a k-quasiplanar topological graph of n vertices can have? The conjectured answer is
Ok(n) (or perhaps even O(kn); cf. Conjecture 1.2). As was mentioned in Section 1, this is
known to be true only for k ≤ 4. Presently, the best upper bound is n(log n)O(log k).

If the stronger conjecture was true, i.e., every k-quasiplanar graph of n vertices had at
mostO(kn) edges, it would follow that every complete topological graph of n vertices has at
least cn pairwise crossing edges, for a suitable constant c > 0. For geometric graphs, Aronov
et al. [8] established a weaker statement, dual to Theorem 7.3: Every complete geometric
graph with n vertices must have at least cn1/2 pairwise crossing edges, for a suitable constant
c > 0. A similar statement holds for all reasonably dense topological graphs, in which any
pair of edges intersect at most a bounded number of times.

Theorem 7.4 ([44]). For every ε > 0 and for every integer t > 0, there exists δ = δ(ε, t) > 0
with the following property. Every topological graph with n vertices, in which no two edges
intersect in more than t points, has at least nδ pairwise crossing edges.

It follows from the results in [46] that if we drop the assumption in the last theorem that
every pair of edges intersect in at most t points, then we can guarantee the existence of only
nδ/ log logn pairwise crossing edges.

More complicated forbidden configurations have also been considered. For instance, let
k be a positive integer and let G be a geometric graph with n vertices that contains no two
sets of edges, E1, E2 ⊂ E(G), each consisting of k pairwise crossing edges, such that every
edge in E1 is disjoint from every edge in E2. Fulek and Suk [55] proved that then G has at
most Ok(n log n) edges, and they conjectured that the correct order of magnitude is linear
for every fixed k.

Let k and l be fixed positive integers. A (k, l)-grid in a topological graph is a pair of
subsets, E1, E2 ⊂ E(G), with |E1| = k, |E2| = l such that every edge in E1 crosses every
edge inE2. If, in addition, eachEi consists of disjoint edges, the (k, l)-grid is called natural.
It is known that every n-vertex topological graph with no (k, l)-grid has Ok,l(n) edges [90],
[116].

Conjecture 7.5 ([2]). For any positive integers k and l, there exists a constant ck,l such that
every simple topological graph on n vertices with no natural (k, l)-grid has at most ck,ln
edges.

This conjecture would immediately imply that Theorem 7.1 generalizes to simple topo-
logical graphs. It would also imply that every simple topological graph on n vertices which
contains no (k, l)-grid such that all 2(k + l) endpoints of its edges are distinct, has at most
Ok,l(n) edges. We cannot even verify this weaker conjecture. We can prove only the fol-
lowing.
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Theorem 7.6 ([2]). For every positive integer k, there is a constant ck such that every
topological graph on n vertices that contains no (k, k)-grid with distinct vertices has at
most ckn log∗ n edges, where log∗ denotes the iterated logarithm function.

It was already pointed out by Klazar and Marcus [64], in a slightly different formulation,
that the proof of the Marcus-Tardos theorem [81] can be easily modified to prove that Con-
jecture 7.5 is true for convex geometric graphs, that is, for geometric graphs whose vertices
form the vertex set of a convex n-gon.

The above mentioned results and conjectures might suggest that for every nontrivial for-
bidden configuration F of a fixed size, the maximum number of edges that an F -free geo-
metric or topological graph with n vertices can have is linear in n. However, this is not the
case. It was shown in [91] that the maximum number of edges of a geometric graph with
n vertices, containing no self-intersecting path of length 3, is at most cn log n for a suitable
constant c, and that the order of magnitude of this bound cannot be improved. This result
was extended by Tardos [115]: for every k ≥ 3, he constructed geometric graphs with a su-
perlinear number of edges that contain no self-intersecting path of length k. As a corollary,
one can obtain a simple characterization of all abstract graphs G, for which all geometric
graphs with n vertices that contain no self-intersecting subgraph isomorphic to G have O(n)
edges: these graphs are forests with at least two components that are not isolated vertices.

Note that there exist arbitrarily large (abstract) graphs with a superlinear number of edges
that contain no cycle of a fixed length k. For example, it is well known that for k = 4,
there are C4-free graphs with n vertices and ( 12 + o(1))n3/2 edges (see [17, 56]). On the
other hand, improving an argument of Pinchasi and Radoičić [102], Marcus and Tardos [82]
obtained the following almost tight result.

Theorem 7.7 ([82]). Every topological graph on n vertices that contains no self-intersecting
cycle of length 4 has at most O(n3/2 log n) edges.

Acknowledgements. The author is supported by OTKA grant NN-102029 under EuroGIGA
projects GraDR and ComPoSe, and by Swiss National Science Foundation Grants 200020-
144531 and 200021-137574.

References

[1] Ackerman, E., On the maximum number of edges in topological graphs with no four
pairwise crossing edges, Discrete Comput. Geom. 41 (2009), 365–375.

[2] Ackerman, E., Fox, J., Pach, J., and Suk, A., On grids in topological graphs, in: 25th
Symp. Comput. Geometry (SoCG 2009), ACM Press, New York, 2009, 403–412.

[3] Ackerman, E. and Tardos, G., On the maximum number of edges in quasi-planar
graphs, J. Combin. Theory, Ser. A 114 (2007), 563–571.

[4] Agarwal, P. K., Aronov, B., Pach, J., Pollack, R., and Sharir, M., Quasi-planar graphs
have a linear number of edges, Combinatorica 17 (1997), 1–9.

[5] Ajtai, M., Chvátal, V., Newborn, M., and Szemerédi, E., Crossing free graphs, Ann.
Discrete Math. 12 (1982) 9–12.



468 János Pach

[6] Alon, N., Pach, J., Pinchasi, R., Radoičić, R., and Sharir, M., Crossing patterns of
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[92] Pach, J., Radoičić, R., and Tóth, G., Relaxing planarity for topological graphs, in:
Discrete and Computational Geometry, Lecture Notes in Comput. Sci. 2866, Springer,
Berlin, 2003, 221–232.

[93] Pach, J., Shahrokhi, F., and Szegedy, M., Applications of the crossing number, Algo-
rithmica 16 (1996), 111–117.

[94] Pach, J. and Solymosi, J., Crossing patterns of segments, J. Combin. Theory, Ser. A
96 (2001), 316–325.

[95] Pach, J. and Sterling, E., Conway’s conjecture for monotone thrackles, Amer. Math.
Monthly 118 (2011), 544–548.



Geometric intersection patterns and the theory of topological graphs 473

[96] Pach, J. and Tóth, G., Comment on Fox news, Geombinatorics 15 (2006), no. 3, 150–
154.

[97] , How many ways can one draw a graph?, Combinatorica 26 (2006), no. 5,
559–576.

[98] , Disjoint edges in topological graphs, J. Comb. 1 (2010), 335–344.
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Abstract. Many areas of science, most notably statistical physics, rely on the use of probability theory
to explain key phenomena. The aim of this article is to explore the role of probability in combinatorics.
More precisely, our aim is to cover a wide range of topics that illustrate the various roles that probability
plays within combinatorics: from just providing intuition for deterministic statements, like Szemerédi’s
regularity lemma or the recent container theorems, over statements about random graphs with structural
side constraints and average case analysis of combinatorial algorithms, all the way to neuroscience.
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1. Introduction

Probability theory and probabilistic arguments play an important role in many branches of
science. The flavor of the probabilistic arguments, however, is often quite different. In
statistical physics, for example, a mean field approximation is often the method of choice.
Risk and portfolio management aim at modeling the probability distribution of market prices
that stem from a badly understood ground truth, while biology relies on the application of
statistical methods for designing and interpreting experiments with small sample sizes. In
combinatorics, the topic of the present article, the use of probabilistic arguments is again
different. Here we are interested in large structures that nevertheless have finite size. And
we often use probabilistic arguments (or just intuitions) to derive deterministic or almost
deterministic statements. The goal of this article is to provide a variety of such examples
that outline a wide range of different uses of probabilistic arguments in combinatorics. We
do not aim at being complete, instead we restrict our focus to applications that we will cover
in our talk.

We start with two examples. The so-called probabilistic method is a nonconstructive
method pioneered by Paul Erdős for providing a proof of the existence of certain objects.
The methods works by defining an appropriate probability space and then showing that if
one chooses a random object from this space, the probability that the result is of the pre-
defined kind is non-zero. As an illustration consider the so-called Ramsey problem: for
given k we denote by R(k) the minimal integer n with the property that every 2-coloring
of the edges of the complete graph on n vertices contains a monochromatic clique on k ver-
tices. F.P. Ramsey showed that R(k) is finite and Erdős-Szekeres showed inductively that
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R(k) ≤ (2k−2
k−1

)
. To show that R(k) is larger than some integer n we need to construct a

2-coloring of Kn without a monochromatic Kk. As it turns out this is a hard problem - at
least if we want to describe (construct) the 2-coloring explicitly. Proving the existence is
much easier. Consider a random 2-coloring in which we color each edge red (blue) with
probability 1/2 independently of the other edges. Then the expected number of monochro-
matic cliques is

(
n
k

) · 2 · 2−(k2). Clearly, if this value is less than 1, there has to exist a
2-coloring without monochromatic clique. Straightforward calculations show that this im-
plies R(k) ≥ 2(k−1)/2. This simple bound is essentially (i.e., up to constant factors) still the
best lower bound known.

As a second example consider the so-called Erdős-Rényi random graph model Gn,p.
Here we construct a random graph on n vertices by inserting an edge between any two
vertices independently with (edge-)probability p. Clearly, the expected number of edges is(
n
2

)
p and Chernoff bounds imply that with high probability the actual number of edges is

with high probability close to the expected value. The area of random graph theory studies
properties of random graph Gn,p. As it turns out for all reasonable graph properties P there
exists a threshold property p0(P) such that

Prob[Gn,p has property P] =

{
1− o(1) if p 5 p0(P)

o(1) if p 1 p0(P)

(or vice versa). That is, the behavior of a random graph Gn,p with respect to property P is
essentially determined by a single parameter, the edge probability p. In this article we will
see several examples of such phenomena.

Outline of the paper. In Section 2 we consider classical problems in extremal graph theory
and enumerative combinatorics. In particular, we introduce two theorems that contributed
dramatically to the progress over the last decades: Szemerédi’s regularity lemma at the end
of the last century and, more recently, the hypergraph container theorems. Both theorems
are deterministic statements. However, they can easily be explained by considering random
graphs. Here random graph theory thus provides the intuition for what we aim at. In Sec-
tion 3 we will use the insights obtained in the first previous section in order to show that
and why random instances are often not a good measurement for the algorithmic difficulty
of a problem. In Section 4 we move on to extending the classical Erdős-Rényi random graph
model to a more sophisticated model of random graphs: that of random planar graphs. Over
the last decade planar graphs served as one of the role models for studying graph classes
where the independence assumption of the edges, as assumed by the Erdős-Rényi random
graph model, is not given. Here we will show that the concept of Boltzmann samplers allows
to bring in the independence assumption over a ‘back door’ and we thus can again obtain
Chernoff type bounds for many properties. In the last section we will then move on to an
application of random graph theory in neuroscience: it is known from empirical observations
that locally the brain looks like a random graph.

2. Extremal graph theory and asymptotic counting

One of the very first roots of extremal graph theory, grown long before graph theory per
se existed, is the solution to a problem raised by the Dutch mathematician Willem Mantel:
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how many edges can a graph have if it does not contain a triangle (that is, a complete graph
K3 on three vertices) as a subgraph? The answer, given by several people, including Mantel
himself, shows that the complete bipartite graph with parts as equal as possible is the (unique)
extremal graph. The proof of this result is in fact straightforward: consider a triangle-free
graph G and let v be a vertex of maximum degree in G. By joining all non-neighbors
of v to the neighborhood of v (instead of their current neighbors) we obtain a complete
bipartite graph with at least as many edges as G. The result follows. Generalizing Mantel’s
observation, Paul Turán, a Hungarian mathematician best known for his work in analytic
number theory and real and complex analysis, characterized in 1941 the extremal graphs
which do not contain the complete graphK
 on � vertices as a subgraph. Turán’s result, then,
provided stimulation for a variety of problems and results, launching extremal graph theory.
His theorem became the most important paradigm for one of the quintessential questions in
extremal graph theory: what does an extremal F -free look like? To fix some notation, we
denote by ex(n, F ) the maximum number of edges that an F -free graph on n vertices can
contain. For F = K3 Mantel’s theorem tells us

ex(n,K3) = *n
2
+ · 2n

2
3,

while for K
 we deduce from Turán’s theorem that

ex(n,K
) =

(
1− 1

� − 1

)
n2

2
+ O(n),

where the O(n) term takes care of divisibility issues. In general it turns out that the order of
magnitude of ex(n, F ) is always governed by the chromatic number of F . Erdős, Stone [27]
and Erdős, Simonovits [28] showed that

ex(n, F ) =

(
1− 1

χ(F )− 1
+ o(1)

)
n2

2
.

There are various ways for proving the Erdős, Stone, Simonovits result. A by now state of
the art approach uses Szemerédi’s regularity lemma. Here we just give a short sketch of the
main idea. A typical property of a random graph is that, with high probability, it has the same
density everywhere. The regularity lemma uses this idea and transfers it into a deterministic
setting: it is shown that every (dense) graph can be partitioned into a finite number of parts so
that almost all of the induced bipartite graphs are ‘regular’, where the definition of ‘regular’
captures the features that we know from random graphs: the density should be ‘similar’
on all sufficiently large subsets. In order to prove the Erdős, Stone, Simonovits result one
considers the so-called cluster graph in which every class of the partition is replaced by a
vertex and two of these vertices are connected by an edge if the corresponding bipartite graph
is regular and sufficiently dense. It is then straightforward to show that the cluster graph has
to be Kχ(F )-free, which together with Turán’s theorem implies the desired bound on the
number of edges.

Let f(n, F ) denote the number of (labeled) F -free graphs on n vertices. As every sub-
graph of an F -free graph is also F -free, we trivially have f(n, F ) ≥ 2ex(n,F ). Erdős, Kleit-
man and Rothschild [26] showed that in the case of cliques, i.e., for F = K
, this lower
bound actually provides the correct order of magnitude of the exponent. Erdős, Frankl and
Rödl [25] later showed that a similar result holds for all graphs F of chromatic number
χ(F ) ≥ 3:

f(n, F ) = 2(1+o(1))ex(n,F ). (2.1)
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Note that these results provide the correct asymptotics of log2(f(n, F )). Extending an ear-
lier result from [26] for triangles, Kolaitis, Prömel and Rothschild [38] determined the typical
structure of K
-free graphs by showing that almost all of them are (� − 1)-colorable. Thus,

f(n,K
) = (1 + o(1)) · col(n, � − 1), (2.2)

where col(n, �) denotes the number of (labeled) �-colorable graphs on n vertices. An asymp-
totic for col(n, �) is given in [52]. In the next section we show that this result in fact implies
that graph coloring is typically easy in expectation.

Over the last decades the above results were extended in various directions. For example,
Prömel and Steger [49] generalized the Kolaitis, Prömel, Rothschild to all graphs with a
color-critical edge (an edge is color-critical if its removal reduces the chromatic number of
the graph) and Balogh et al [4, 5] improved the error bound in the Erdős, Frankl and Rödl
result and provided structural results of a typical F -free graph. In an additional line of
research the above results were carried over to the induced case and to hereditary properties
in general, see [1, 6, 8, 13, 48, 51] and the references therein. There are, however, two
areas where only little progress was made: the case of forbidden bipartite graphs and the
case of forbidden graphs of growing size. Here the situation changed only recently with the
breakthrough papers of Balogh and Samotij [10, 11] that essentially solved the problem for
complete bipartite graphs. In addition, the methods from this paper opened up the way to
the development of a general method (nowadays called hypergraph container theorems) that
allowed to settle many more important open problems and conjectures.

The plan for the remainder of this section is to outline the recent development on hyper-
graph container results of Balogh, Morris, Samotij [9] and Saxton and Thomason [53] and to
show that they allow to extend the Erdős, Kleitman, Rothschild result to cliques of growing
size [44].

We start by outlining the connection of the study of F -free graphs to hypergraph contain-
ers. Assume we want to study F -free graphs on vertex set [n]. We build an e(F )-uniform
hypergraph H as follows. The vertex set of H consists of all edges of the complete graph on
[n], while the edge set consists of all copies of F in the complete graph. That is

V (H) =

(
[n]

2

)
and E(H) = {X ⊂

(
[n]

2

)
: |X| = e(F ) and X ∼= F}.

Observe that independent sets inH correspond exactly to F -free graphs on vertex set [n] and
vice versa. So here is the plan for counting F -free graphs: we apply a container theorem. A
container theorem for a hypergraph H is a statement of the following type: there exists a set
C of containers (where a container simply denotes a subset of the vertex set of H) such that
three properties are satisfied (for an arbitrary but fixed constant ε > 0):

(i) ∀I ⊂ V (H) s.t. I is independent: ∃C ∈ C s.t. I ⊂ C; i.e., every independent set in
H is contained in some container.

(ii) ∀C ∈ C : |E(H[C])| ≤ ε|E(H)|; i.e., the subgraph induced by a container contains
at most an ε-fraction of all edges of H .

(iii) |C| is “small”.

Note that the set of all independent sets in H satisfyes the first two constraints, even with
ε = 0. Condition (iii) is thus there to enforce non-trivial results. Indeed, in the context of
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counting F -free graphs a few moments of thought show that we trivially have

f(n, F ) ≤
∑
C∈C

2|C|.

That is, bounds on |C| and onmaxC∈C |C| immediately transfer into a bound on the number
of F -free graphs. By the definition of the hypergraph H and property (ii) the later condition
is equivalent to bounding the number of edges in a graph that contains at most ε

(
n

v(F )

)
copies

of F . It is well known that this number is bounded by ex(n, F ) + δn2, for an appropriate
constant δ that can be made small by making ε small. (This follows, for example, from the
proof of the Erdős, Stone, Simonovits result that we sketched above.) In order to reprove the
Erdős, Frankl and Rödl result we thus just need to get a bound for |C| in the order of 2o(n

2)

– and the container theorems of Balogh, Morris, Samotij [9] and Saxton and Thomason [53]
in fact provide much better bounds.

To get some feeling for which bounds on |C| are possible we first look at graphs only. A
container theorem for random graphs Gn,p is easily obtained as follows: consider all vertex
sets T of size c/p, where c = c(ε) is an appropriate constant, and set

C = {T ∪ ([n] \ Γ(T )) : T ⊂ [n], |T | = c/p}, (2.3)

where [n] = {1, . . . , n} denotes the vertex set of the graph and Γ(T ) := {v ∈ [n] \ T :
∃w ∈ T s.t. {v, w} ∈ E} denotes the neighborhood of the set T . One easily checks that
C indeed provides a container for every independent set and that |C| ≤ nc/p is “small”. It
remains to bound the number of edges in a container. Straightforward calculation show that
a.a.s. every container C ∈ C satisfies |C| ≤ εn which easily implies (ii).

For general graphs we have to be more careful: we cannot take all subsets T of a certain
size, as [n] \ Γ(T ) may be too large resp. may contain too many edges. The main idea is to
use for an independent set I not an arbitrary subset T , but to argue that there exists a ‘clever
choice’ whose neighborhood Γ(T ) is large. Indeed, following an approach from [37] we
choose the vertices of T iteratively, in each iteration choosing one that adds as many vertices
as possible to the set Γ(T ). Then we know that after we have chosen t = |T | vertices there
exists a d such that Γ(T ) contains at least td vertices and the graph induced by [n]\Γ(T ) has
maximum degree at most d. If we thus assume that the graph G satisfies some local density
constraint like ‘every not too small set is not too sparse’, then this immediately implies a
container theorem.

Now consider k-uniform hypergraphs. Again one easily obtains a container theorem for
random hypergraphs by taking a similar approach as in (2.3). It is, however, more enlighten-
ing to observe what happens if we fix a set Tk ⊆ [n] and consider the induced (k−1)-uniform
hypergraph given by the edges that contain at least one vertex from Tk. In this hypergraph
we then choose a set Tk−1 and consider the induced (k − 2)-uniform hypergraph, and so on
until we reach a 2-uniform hypergraph, that is, a graph, where we can proceed as indicated
above. For random k-uniform hypergraphs Hn,p one easily checks that the density of the
(k − i)-uniform hypergraphs changes in exactly such a way that in all of these hypergraphs
we should choose sets T of size c/p1/(k−1). We then obtain a container as the union of the
sets Ti plus the complement of the neighborhood of the last set. In order to move from ran-
dom hypergraphs to arbitrary ones the main idea is similar: we have to choose the sets Ti in
some ‘clever’ way and make some assumptions on the hypergraph under consideration that
allow this approach to work. We refer the reader to the original articles by Balogh, Morris,
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Samotij [9] and Saxton and Thomason [53] for details and instead just state the consequence
that one obtains in the context of clique-free graphs, cf. [44]:

Theorem 2.1. For every constant δ > 0 the following holds for all large enough n ∈ N: for
every 3 ≤ � ≤ (log n)1/4/2 there exists a collection G of graphs of order n such that

(1) every K
-free graph of order n is a subgraph of some G ∈ G,

(2) every G ∈ G contains at most δ
(
n



)
/e
 copies of K
, and

(3) the number |G| of graphs in the collection satisfies log |G| ≤ δn2/�.

For graphs that satisfy the second property we can use a theorem of Lovász and Si-
monovits [40] on the number of cliques in a graph with a given number of edges in order
to deduce that the graph cannot contain too many edges. Straightforward calculations then
give [44] that for any sequence (�n)n∈N of positive integers such that 3 ≤ �n ≤ (log n)1/4/2
we have

log2 f(n,K
n) =

(
1− 1

�n − 1

)(
n

2

)
+ o(n2/�n). (2.4)

To the best of our knowledge this is the first non-trivial bound on the number of graphs for
a forbidden subgraph of growing order and chromatic number. The paper [44] has already
stimulated further research. For example, in [7] Balogh et al determine the typical structure
of such graphs. But many problems are still wide open. The upper bound on �n in (2.4) is
just an artifact of the proof. In fact, it is not unconceivable that a similar statement should
hold up to the size of a maximal clique in the random graph Gn,1/2 which is known to be
(2 + o(1)) log2 n. It also seems natural that similar results should hold for all forbidden
graphs F whose size and chromatic number is bounded by an appropriate function of n.

3. Graph coloring and average case analysis

The graph coloring problem is defined as follows: given a graph G, we search for a proper
coloring which uses as few colors as possible. That is, we want to determine χ(G) and find
a coloring of G with exactly χ(G) colors.

The problem of coloring a graph using a minimum number of colors is one of the central
problems of combinatorial optimization. Many application problems, such as register allo-
cation, scheduling problems and pattern matching, can be expressed as special instances of
a graph coloring problem. Unfortunately, we know since the seminal work of Karp [36] that
graph coloring is a hard problem. More precisely, Karp showed that for any k ≥ 3 it isNP-
complete to decide whether a given graph G is colorable with k colors. More recent results
from approximation theory show that it is even quite hard to just approximate the chromatic
number. In particular, Feige and Kilian [29] proved that for every ε > 0 the existence of a
polynomial time approximation algorithm which approximates the chromatic number within
a factor of n1−ε implies that coRP = NP (which is believed to be false).

Even restricting the input instances to special cases of graphs often leaves the coloring
problem surprisingly hard. For example, if we restrict the input to 3-colorable graphs (that
is, the input is a graph for which a coloring with 3 colors is known to exist, but no such
coloring is given), then the best known polynomial-time algorithm for this problem needs
roughly O(n0.2111) colors [2].
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In the light of these difficulties of finding algorithms that are efficient in the worst case it
seems natural to hunt for algorithms that are at least fast ‘on average’. In his 1984 paper [54]
Wilf did just this – in an extremely surprising way. He showed that for every given natural
number k ≥ 3 there exists an expected polynomial-time algorithm which decides for every
graph G = (V,E) whether χ(G) ≤ k holds and, if so, colors the graph with χ(G) colors.
The surprising fact is that the expected running time of this algorithm is in fact constant if
one assumes uniform distribution on the set of all graphs. That is, the algorithm decides
k-colorability (correctly!) in an expected running time that is not even sufficient to just read
a nontrivial part of the graph!

So surprising and unlikely this result may sound at first sight, it is actually an almost
trivial consequence of the properties of random graphs. For simplicity we just consider the
case k = 3. Recall that we get uniform distribution on the set of all graphs by considering
the random graph Gn,1/2. The expected number of K4’s in Gn,1/2 is

(
n
4

)
2−6 = Θ(n4). As

a copy of a K4 is a proof that the graph is not 3-colorable, we can thus design an algorithm
as follows: consider the vertices v1, . . . , vn sequentially, in every step checking whether
vi forms a K4 with the vertices v1, . . . , vi−1. If we find a K4 we stop and answer ‘no’,
otherwise we check all possible 3-colorings. From (2.1) we know that the probability that
the algorithm proceeds to the i-th vertex is bounded by f(i,K3) · 2−(

i
2) = 2−Θ(i2), which

immediately implies that the expected running time is constant.
Wilf’s result is due to the fact that most graphs contain lots of certificates for the fact that

the graph is not 3-colorable. However, we can also turn this around: Prömel and Steger [50]
showed that there exists a coloring algorithm A whose expected running time with respect
to the uniform distribution on the class of all K
+1-free graphs on n vertices is bounded by
O(n2). Note that in this case we know from the Kolaitis, Prömel, Rothschild result [38] that
almost all inputs are �-colorable. Here is a sketch of the algorithm. From [38] we know
that with high probability a K
+1-free graphs is typically a random subgraph of the �-partite
Turán graph, which implies that for 2 ≤ s < � every Ks-clique can be extended to a Ks+1-
clique. The coloring algorithm thus works as follows: start with an arbitrary edge and obtain
in linear time an �-clique K
. Now use the ‘randomness’ property to deduce that there exist
many vertices that are connected to � − 1 vertices of the clique. Observe that if the graph
is �-colorable, the coloring of these vertices is determined. In a second round we use the
‘randomness’ property again to argue that once we have ‘many’ vertices in each color then
this determines with high probability the color of all remaining vertices.

From a mathematical point one may view these kind of results as elegant or significant.
Unfortunately, from a practical point of view their value is very limited. Essentially, results
of this kind just mean that random instances often do not capture the hardness of a prob-
lem appropriately. Within computer science a structural theory of average case complexity
was introduced by Levin [39]. We refer the interested reader to the enlightening article of
Impagliazzo [31] for a detailed discussion of this topic from a computer science point of
view.

We close this section with some remark on the recent progress, cf. [43, 55] and the
references therein, on the structure of the solution space of the coloring problem in sparse
random graphs. Consider the problem of k-coloring a random graph Gn,p where p = c/n.
If c is small enough there exist ‘many’ k-colorings, while for c large there will be none with
high probability. In order to study this transition one considers the structure of the so-called
solution space: the set of all proper k-colorings. We call two solutions close or connected
if they can be obtained by changing the coloring of just a constant number of vertices. This
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notion of connectedness thus provides a structure on the solution space and we can study
how it changes if we increase the average degree of the underlying random graph. As it
turns out, first all solutions are in a single cluster. Then clusters of solutions appear but
the single giant cluster still exists and dominates. At the so-called clustering transition, the
solution space then splits into an exponential number of clusters. A bit later the freezing
transition takes place. Here the dominating clusters (that cover almost all proper colorings)
start to contain frozen vertices, i.e. vertices that have the same color in all the colorings of
the cluster. Understanding (and locating) theses thresholds may well also provide a proof
that and why instances ‘on the threshold’ are computationally hard.

4. Random planar graphs and Boltzmann samplers

The random graph model introduced by Erdős and Rényi gave rise to a beautiful theory with
deep theorems and challenging problems whose solution required the development of many
new methods and techniques. Unfortunately, intensive studies of real world networks led
to the conclusion that the Erdős-Rényi random graph model is often not very well suited.
To study real world phenomena one needs more sophisticated models, cf. e.g. the excellent
book by Easley and Kleinberg [23] for more information. From a mathematical point of view
this calls for the development of new techniques that allow the analysis of random structures
that come from a class where the independence assumption between the edges is not given.
A typical class with such a property are planar graphs. Clearly, here we have a strong (and
non-local) dependence between the presence of edges.

The study of random planar graphs was initiated by Denise, Vasconcellos, andWelsh [18].
In subsequent work McDiarmid, Steger, and Welsh [42] showed that a random planar graph
Pn (a graph drawn uniformly at random from the class of all labelled planar graphs on n
vertices) in fact has some properties that are very different from the behavior of a classical
random graph in the Erdős-Rényi model. In particular, they showed that the probability that
Pn is connected is, for n tending to infinity, bounded away from 0 and from 1. This shows
that the model of random planar graphs indeed exhibit a behavior that differentiates them
strongly from the classical Erdős-Rényi model that has a 0-1-law.

Over the last years two research groups independently developed completely different
sets of methods and techniques for attacking this problem. On the one hand a group around
Drmota and Noy extended the methods from [30] to develop a framework using techniques
from analytic combinatorics. On the other hand Panagiotou and Steger extended the con-
cept of Boltzmann samplers (originally introduced by Duchon et al. [22] for the uniform
generation of objects), so that it can be used for analysing the structure of random planar
graphs.

The concept of Boltzmann samplers is algorithmic in nature, but differs from the clas-
sical algorithmic approach in that it does not provide an object of a given size but instead
provides an object of some size. The Galton-Watson trees are a typical example. Here we
start with a root and recursively add descendants according to independent Poisson distri-
butions. To generalize from trees to more general graph classes one can proceed similarly
in spirit, but one has to differentiate between the connectivity of the objects under consid-
eration, which adds considerable technical challenges. More precisely, in order to generate
connected objects we start with a root and then recursively add for every vertex a certain
number of 2-connected objects (blocks) according to independent Poisson distributions. For
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the generation of the 2-connected objects we can again use this approach and generate them
recursively out of 3-connected objects. The details, however, get much more complicated,
as we have to glue along edges instead of vertices.

As it turned out, the block structure of a typical member of a given graph class can be
very different [45]. For certain graph classes, like outerplanar and series-parallel graphs, all
blocks have only logarithmic size, while for other graphs, like for example planar graphs,
there exists one block of linear size, a few blocks of size nα for some 0 < α < 1 and the
remaining blocks are again of logarithmic size. With this understanding at hand we see that at
least for graph classes of the first type we should be able to get very precise statements about
their structure: essentially we just have to understand ‘small’ blocks and then use Chernoff
bounds to collect the asymptotic properties of a large collection of (randomly generated)
blocks. In this way we get, for example, the degree distribution within these classes [12], cf.
also [19].

To extend these results to random planar graphs requires additional efforts, as one also
has to understand the structure of the one block of linear size. In [46] a general framework is
given for obtaining the degree-sequence for random connected objects from that of a random
2-connected object, and, similarly, for a random 2-connected object from that of a random
3-connected object. Applied to the class of planar graphs, and using the fact that high proba-
bility bounds on the degree sequence of a random 3-connected planar graph were known, see
[33], this allows to obtain Chernoff like bounds on the degree sequence of a random planar
graph. See also [20] for similar results.

In [21] the two groups mentioned above combined their forces (and techniques) to de-
termine the value of the maximum degree in a random planar graph. Extending a previous
result of Reed and McDiarmid [41] they showed that the maximum degree of a random
planar graph is c log n + o(log n) for a constant c > 0 that is computed explicitly.

The concept of Boltzmann samplers allows to obtain a variety of Chernoff type results
for local properties. For the study of global properties methods from analytic combinatorics,
i.e. counting, are still the method of choice. Here we just mention [17, 35] as two examples
for some of the recent progress.

5. Percolation theory and neuroscience

How does our brain work? Why can young children perform tasks that renown computer
scientists can only dream of to realize? So far, neuroscientists have no answers to these
questions. In particular, they do not know how the brain ‘computes’. But, of course, they do
have a vast knowledge on the physical structure of the brain. One such fact is that, locally,
the brain looks like an Erdős-Rényi random graph [34]. Another, known feature of the
brain is that information is represented by patterns of activity occurring over populations of
neurons [47]. However, so far, there is little understanding how this joint activity of groups of
neurons can happen. Experimental observations show that there exists a phenomenon called
input normalization (cf. [15] for a review): external input to a local ensemble of neurons (for
example from sensory nerves) initially leads only to a small level of activity, which is then
boosted by local connectivity. Nevertheless, the total activity never surpasses a certain level.
The actual realization of input normalization in the brain is an important topic of research.
In this section we argue that percolation theory together with the randomness property of the
brain may well provide an answer.
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Percolation theory goes back to the pioneering work of Broadbent and Hammersley [14]
and has been studied intensively by mathematicians and physicists ever since. A classical
and well-studied framework for information spreading is a process known as bootstrap per-
colation. One starts with an initial set of informed or active vertices. The process then
proceeds in rounds, and further vertices become active as soon as they have at least k active
neighbors, where k ∈ N is a parameter of the process. This process was first studied in
1979 on the grid by Chalupa and Leath [16] and recently a complete solution for an arbitrary
number of dimensions was presented by Balogh, Bollobás, Duminil-Copin and Morris [3].
Janson et al [32] analysed it for the Erdős-Rényi random graph model Gn,p. A recurring
phenomenon in bootstrap percolation theory is a threshold behavior: if the size of the start-
ing set is smaller than some threshold value, we see essentially no percolation at all. If on
the other hand the starting set is only slightly above the threshold value we percolate almost
completely.

For many percolation processes in physics and material sciences such total percolation
is desired and consistent with observations in nature. Not so in neurobiology. Here we have
input normalization – and inhibitory neurons that are believed to realize this. In order to
obtain a theoretical model for input normalization we extend in [24] the classical bootstrap
percolation process in an Erdős-Rényi random graph model Gn,p by adding inhibitory ver-
tices. That is, for some constant τ ≥ 0 each vertex will be inhibitory with probability τ
independently of all others. Otherwise the vertex is called excitatory. In each round a pre-
viously inactive vertex turns active if the number of active excitatory neighbors exceeds the
number of active inhibitory neighbors by at least k.

Unfortunately, it turns out [24] that inhibition has basically no effect on percolation until
(possibly) the very end of the process. More precisely, inhibition does not affect the perco-
lation threshold, and it does not prevent (or even slow down) percolation up to an active set
of size of Ω(1/p), a point from which the model without inhibition needs at most two more
rounds to activate everything. The reason is that while o(1/p) vertices are active, the typical
vertex does not have active inhibitory neighbors, and thus it is not affected by inhibition.
On the other hand, if the size of the active set is ω(1/p), then the behavior of the process
depends on the number of inhibitory vertices, i.e. the probability τ . If τ < 1/2 then the pro-
cess percolates completely, with the same speed as it does without inhibition. Otherwise the
process is chaotic: tiny variations of the size of the initially active set can have an enormous
effect on the size of the final active set. Such a round-based model of percolation can thus
not explain the desired phenomenon. In contrast, if we move to a continuous time model in
which every edge draws its transmission time randomly, then normalization is an automatic
and intrinsic property of the process that holds with very high probability.
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1. Introduction

The theory of random matrices is a very rich topic in mathematics. Beside being interesting
in its own right, random matrices play a fundamental role in various areas such as statistics,
mathematical physics, combinatorics, theoretical computer science, etc.

In this survey, we focus on problems of a combinatorial nature. These problems are
most interesting when the matrix is sampled from a discrete distribution. The most popular
models are:

• (Bernoulli) Mn: random matrix of size n whose entries are i.i.d. Bernoulli random
variables (taking values±1 with probability 1/2). This is sometimes referred to as the
random sign matrix.

• (Symmetric Bernoulli) Msym
n : random symmetric matrix of size n whose (upper tri-

angular) entries are i.i.d. Bernoulli random variables.

• Adjacency matrix of a random graph. This matrix is symmetric and at position ij we
write 1 if ij is an edge and zero otherwise.

• Laplacian of a random graph.

Model of random graphs. We consider two models: Erdös-Rényi and random regular
graphs. For more information about these models, see [6, 37].

• (Erdös-Rényi) We denote by G(n, p) a random graph on n vertices, generated by
drawing an edge between any two vertices with probability p, independently.

• (Random regular graph) A random regular graph on n vertices with degree d is ob-
tained by sampling uniformly over the set of all simple d-regular graphs on the vertex
set {1, . . . , n}. We denote this graph by Gn,d.
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It is important to notice that the edges of Gn,d are not independent. Because of this, this
model is usually harder to study, compared to G(n, p).

We denote by A(n, p) (L(n, p)) the adjacency (laplacian) matrix of the Erdös-Rényi
random graph G(n, p) and by An,d (Ln,d) the adjacency (laplacian) matrix of Gn,d, respec-
tively.

Notation. In the whole paper, we assume that n is large. The asymptotic notation such
as o,O,Θ is used under the assumption that n → ∞. We write A 5 B if A = o(B). c
denotes a universal constant. All logarithms have natural base, if not specified otherwise.

2. The singular probability

The most famous combinatorial problem concerning random matrices is perhaps the “singu-
larity” problem. Let pn be the probability that Mn is singular. Trivially,

pn ≥ 2−n,

as the RHS is the probability that the first two rows are equal.
By choosing any two rows (columns) and also replacing equal by equal up to sign, one

can have a slightly better lower bound

pn ≥ (4− o(1))

(
n

2

)
2−n = (

1

2
+ o(1))n. (2.1)

It has been conjectured, for quite sometime, that

Conjecture 2.1 (Singularity Conjecture). pn = ( 12 + o(1))n.

Conjecture 2.1 is still open, but one can formulate even more precise conjectures (see
[4]), based on the following belief

Phenomenon I. The dominating reason for singularity is the dependency between a few
rows/columns.

It is already non-trivial to prove that pn = o(1). This was first done by Komlós [40] in
1967 and in Section 3, we will give a short proof of this fact. Later, Komlós (see [6]) found
a new proof which gave quantitative bound pn = O(n−1/2). In an important paper, Kahn,
Komlós and Szemrédi [39] proved the first exponential bound.

Theorem 2.2. p(n) ≤ .999n.

Their arguments were simplified by Tao and Vu in 2004 [69], resulting in a slightly better
bound O(.958n). Shortly afterwards, these authors [70] combined the approach from [39]
with the idea of inverse theorems (see [74, Chapter 7] or [55] for surveys) to obtained a more
significant improvement

Theorem 2.3. p(n) ≤ (3/4 + o(1))n.

With an additional twist, Bourgain, Vu and Wood [9] improved the bound further

Theorem 2.4. p(n) ≤ ( 1√
2
+ o(1))n.
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The method from [9, 70] enables one to deduce bounds on pn directly from simple
trigonometrical estimates. For instance, the 3/4-bound comes from the fact that

| cosx| ≤ 3

4
+

1

4
cos 2x,

while the 1/
√
2 bound come from

| cosx|2 =
1

2
+

1

2
cos 2x.

[9, Theorem 2.2] provides a formal connection between singularity estimates and trigono-
metric estimates of this type, which, while not yet solving the Singularity Conjecture, does
lead to sharp bounds in other situations, such as the singularity of random matrices with
(0,±1) entries.

To conclude this section, let us mention a very useful tool, the Littlewood-Offord-Erdös
theorem. Let v = {v1, . . . , vn} be a set of n non-zero real numbers and ξ1, . . . , ξn be
i.i.d random Bernoulli variables. Define S :=

∑n
i=1 ξivi and pv(a) = P(S = a) and

pv = supa∈Z pv(a).
The problem of estimating pv came from a paper of Littlewood and Offord in the 1940s

[47], as a key technical ingredient in their study of real roots of random polynomials. Erdös,
improving a result of Littlewood and Offord, proved the following theorem, which we will
refer to as the Erdös-Littlewood-Offord small ball inequality; see [55] for an explanation of
this name.

Theorem 2.5 (Small ball inequality). Let v1, . . . , vn be non-zero numbers and ξi be i.i.d
Bernoulli random variables. Then

pv ≤
(

n
�n/2�
)

2n
= O(n−1/2).

Theorem 2.5 is a classical result in combinatorics and has many non-trivial extensions
with far reaching consequences (see [7, 36, 55], [74, Chapter 7] and the references therein).

To give the reader a feeling about how small ball estimates can be useful in estimating
pn, let us expose the rows of Mn one by one from top to bottom. Assume that the first
n − 1 rows are independent and form a hyperplane with normal vector v = (v1, . . . , vn).
Conditioned on these rows, the probability that Mn is singular is

P(X · v = 0) = P(ξ1v1 + · · ·+ ξnvn = 0),

where X = (ξ1, . . . , ξn) is the last row.
In Section 3, the reader will see an application of Theorem 2.5 that leads to Komlós’

original result pn = o(1). In order to obtain the stronger estimates in Theorems 2.3 and
2.4, one needs to ebstablish Inverse (or structural) Littlewood-Offord theorems, based on the
following general principle

Phenomenon II. If P(X · v = 0) is relatively large, then the coefficients v1, . . . , vn posses
a strong additive structure.

These theorems are motivated by inverse theorems of Freiman type in Additive Combi-
natorics, the discussion of which is beyond the scope of this survey. The interested reader is
referred to [55] for a detailed discussion.
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3. A simple proof of Komlós’ Theorem

Let us start with a simple fact. Here and later, Bernoulli vectors mean vectors with coordi-
nates ±1.

Fact 3.1. Let H be a subspace of dimension 1 ≤ d ≤ n. Then H contains at most 2d

Bernoulli vectors.

To see this, notice that in a subspace of dimension d, there is a set of d coordinates which
determine the others. This fact implies

pn ≤
n−1∑
i=1

P(Xi+1 ∈ Hi) ≤
n−1∑
i=1

2i−n ≤ 1− 2

2n
,

where Hi is the subspace spanned by the first i vectors.
While this bound is quite the opposite of what we want to proof, notice that the loss

comes at the end. Thus, to obtain the desired upper bound o(1), it suffices to show that the
sum of the last (say) log log n terms contribute at most (say) 1

log1/3 n
. To do this, we will

exploit the fact that the Hi are spanned by random vectors. The following lemma implies
the theorem via the union bound.

Lemma 3.2. Let H be the subspace spanned by d random vectors, where d ≥ n− log log n.
Then with probability at least 1− 1

n , H contains at most 2n

log1/3 n
Bernoulli vectors.

We say that a set S of d vectors is k-universal if for any set of k different indices 1 ≤
i1, . . . , ik ≤ n and any set of signs ε1, . . . , εn (εi = ±1), there is a vector v in S such that
the sign of the ij th coordinate of v matches εj , for all 1 ≤ j ≤ k.

Fact 3.3. If d ≥ n/2, then with probability at least 1 − 1
n , a set of d random vectors is

k-universal, for k := log n/10.

To prove this, notice that the failure probability is, by the union bound, at most(
n

k

)
(1− 1

2k
)d ≤ nk(1− 1

2k
)n/2 ≤ n−1.

If S is k-universal, then any non-zero vector v in the orthogonal complement of the
subspace spanned by S should have more than k non-zero coordinates (otherwise, there
would be a vector in S having positive inner product with v). If we fix such v and let X be
a random Bernoulli vector, then by Theorem 2.5,

P(X ∈ Span(S)) ≤ P(X · v = 0) = O(
1

k1/2
) ≤ 1

log1/3 n
,

proving Lemma 3.2 and the theorem.

4. The singular probability: symmetric case

As an analogue, it is natural to estimate psymn , the probability that the symmetric matrix
Msym

n singular.
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This problem was mentioned to the author by G. Kalai and N. Linial (personal conversa-
tions) around 2004. To our surprise, at that point, even the analogue of Komĺos’ 1967 result
was not known. According to Kalai and Linial, the following conjecture was circulated by
B. Weiss in the 1980s, although it is quite possible that Komlós had thought about it earlier.

Conjecture 4.1. psymn = o(1).

The main difficulty concerning Msym
n is that its rows are no longer independent. In

particular, the last row is almost determined by the previous ones. Thus, the row exposing
procedure considered in the non-symmetric case is no longer useful.

In [18], Costello, Tao and Vu found a way to circumvent the dependency. It turns out that
the right way to build the symmetric matrix Msym

n is not row by row (as for Mn), but corner
to corner. In step k, one considers the top left sub matrix of size k. The strategy, following
an idea of Komlós [40] is to show that with high probability, the co-rank of this matrix, as
k increases, behaves like the end point of a biased random walk on non-negative integers
which has a strong tendency to go to the left whenever possible. This leads to a confirmation
of Weiss’ conjecture.

Theorem 4.2. psymn = o(1).

The key technical tool in the proof of Theorem 4.2 is the following (quadratic) variant of
Theorem 2.5.

Theorem 4.3. (Quadratic Littlewood-Offord) Let aij be non-zero real numbers and ξi,
1 ≤ i, j ≤ n be i.i.d Bernoulli random variables. Let Q be the quadratic form Q :=∑

1≤i,j≤n aijξiξj .. Then for any value a

P(Q = a) = O(n−1/4).

Let us consider the last step in the process when the (n− 1)× (n− 1) submatrix Msym
n−1

has been built. To obtain Msym
n , we add a random row X = (ξ1, . . . , ξn) and its transpose.

Conditioning on Msym
n−1 , the determinant of the resulting n × n matrix is∑

1≤i,j≤n−1

aijξiξj + detMn−1,

where aij (up to the signs) are the cofactors of Mn−1. If Msym
n is singular, then its determi-

nant is 0, which implies

Q :=
∑

1≤i,j≤n−1

aijξiξj = − detMn−1,

which gives ground for an application of Theorem 4.3.
Motivated by the non-symmetric case, it is natural to conjecture

Conjecture 4.4. psymn = (1/2 + o(1))n.

The concrete bound from [18] is n−1/8, which can be easily improved to n−1/4. Costello
[15] improved the bound to n−1/2+ε and Nguyen [54] pushed it further to n−ω(1). The best
current bound is exp(−nc), for some small constant c > 0, due to Vershynin [79]. The
proofs of the last three results, among others, made sophisticated use of Inverse Littlewood-
Offord type results; see [55] for a survey.
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5. Ranks and co-ranks

The singular probability is the probability that the random matrix has co-rank at least one.
What about larger co-ranks? Let us use pn,k to denote the probability that Mn has co-rank
at least k. It is easy to show that

pn,k ≥ (
1

2
+ o(1))kn. (5.1)

It is tempting to conjecture that this bound is sharp for constants k. In [39], Kahn,
Komlós and Szemerédi showed

Theorem 5.1. There is a function ε(k) tending to zero with k such that

pn,k ≤ εn.

In Bourgain et. al. [9], the authors consider a variant of Mn where the first l rows are
fixed and the next n − l are random. Let L be the submatrix defined by the first l row and
denote the model by Mn(L). It is clear that corankMn(L) ≥ corankL. The authors of [9]
showed ([9, Theorem 1.4])

Theorem 5.2. There is a positive constant c such that

P(corankMn(L) > corankL) ≤ (1− c)n.

Let us go back to the symmetric modelMsym
n and view it from this new angle, exploiting

a connection to Erdös-Rényi random graph G(n, 1/2). One can see that

Msym
n = 2A(n, 1/2)− Jn,

where Jn is the all-one matrix of size n. (Here we allow G(n, 1/2) to have loops, so the
diagonal entries ofA(n, 1/2) can be one. If we fix all diagonal entries to be zero, the analysis
does not change essentially.) Since Jn has rank one, it follows from Theorem 4.2 that with
probablity 1− o(1), A(n, 1/2) has corank at most one.

One can reduce the co-rank to zero by a slightly trickier argument. Consider Msym
n+1 in-

stead of Msym
n and normalize so that its first row and column are all- negative one. Adding

this matrix with Jn+1, we obtain a matrix of the form(
0 0
0 Msym

n + Jn

)
Thus we conclude

Corollary 5.3. With probability 1− o(1), corankA(n, 1/2) = 0.

From the random graph point of view, it is natural to ask if this statement holds for
a different density p. It is clear that the answer is negative if p is very small. Indeed, if
p < (1 − ε) log n/n, then G(n, p) has, with high probability, isolated vertices (see [6, 37])
which means that its adjacency matrix has all zero rows and so is singular. Costello and Vu
[16] proved that log n/n is the right threshold.

Theorem 5.4. For any constant ε > 0, with probability 1− o(1),

corankA(n, (1 + ε) log n/n) = 0.
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For p < log n/n, the co-rank of A(n, p) is no longer zero as mentioned above. The
behavior of this random variable is not entirely understood. For the case when p = c log n/n
for some constant 0 < c < 1, Costello et. al. [17] showed that with probability 1 − o(1),
the co-rank is determined by small subgraphs, which is consistent with Phenomenon I. For
example,

Theorem 5.5. For any constant ε > 0 and (1/2 + ε) log n/n < p < (1 − ε) log n/n, with
probability 1− o(1), corankA(n, (1 + p) equals the number of isolated vertices in G(n, p).

For other ranges of p, one needs to take into account the number of cherries ( a cherry
is a pair of vertices of degree one with a common neighbor) and the numbers of other small
subgraphs. The main result of [17] gives a precise formula for the co-rank in terms of these
parameters.

When p = c/n, c > 1, G(n, p) consists of a giant component and many small compo-
nents. It makes sense to focus on the giant one which we denote by Giant(n, p). Since
Giant(n, p) has cherries , the adjacency matrix of Giant(n, p) is singular (with high prob-
ability). However, if we look at the k-core of Giant(n, p), for k ≥ 3, it seems plausible that
this subgraph has full rank.

Conjecture 5.6. Let k be a fixed integer at least 3. With probability 1− o(1), the adjacency
matrix of the k-core of Giant(n, p) is non-singular.

Bordenave, Lelarge and Salez [8] proved the following related result

Theorem 5.7. Consider G(n, c/n) for some constant c > 0. Then with probability (1 −
o(1)),

rank(A(n, c/n)) = (2− q − e−cq − cqe−cq + o(1))n,

where 0 < q < 1 is the smallest solution of q = exp(−c exp−cq).

To conclude this section, let us consider the random regular graph Gn,d. For d = 2, Gn,d

is just the union of disjoint circles. It is not hard to show that with probability 1 − o(1),
one of these circles has length divisible by 4, and thus its adjacency matrix is non-singular
(in fact, the corank will by Θ(n) as the number of circles of length divisible by 4 is of this
order). The following conjecture is open

Conjecture 5.8. For any 3 ≤ d ≤ n/2, with probability 1− o(1) An,d is non-singular.

In a recent paper, Cook [14] proved a variant of this conjecture for random d-regular
directed graph with large d (d = Θ(n)).

6. Determinant and Permanent

Let us start with a basic question

How big is the determinant of Mn?

This was actually the real motivation of Komlós’ original study, as the titles of [40, 41]
suggest. However, his results (and other theorems in Section 2) do not give any non-trivial
estimate on | detMn|, except that | detMn| > 0 with high probability.
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As all rows of Mn have length
√

n, Hadamard’s inequality implies that | detMn| ≤
nn/2. It has been conjectured that with probability close to 1, | detMn| is close to this upper
bound.

Conjecture 6.1. Almost surely | detMn| = n(1/2−o(1))n.

This conjecture is supported by a well-known observation of Turán.

Fact 6.2.
E((detMn)

2) = n!.

To verify this, notice that

(detMn)
2 =

∑
π,σ∈Sn

(−1) signπ+ signσ
n∏

i=1

ξiπ(i)ξiσ(i).

By linearity of expectation and the fact that E(ξi) = 0, we have

E(detMn)
2 =
∑
π∈Sn

1 = n!.

It follows immediately by Markov’s bound that for any function ω(n) tending to infinity with
n,

| detMn| ≤ ω(n)
√

n!,

with probability tending to 1.
A statement of Girko (the main result of [32, 33]) implies that | detMn| is typically close

to
√

n!. However, his proof appears to contain some gaps (see [56] for details).
In [69], Tao and Vu established the matching lower bound, confirming Conjecture 6.1.

Theorem 6.3. With probability 1− o(1),

| detMn| ≥
√

n! exp(−29
√

n log n).

We sketch the proof very briefly as it contains a useful lemma.
First view | detMn| as the volume of the parallelepiped spanned by n random {−1, 1}

vectors. This volume is the product of the distances from the (d+1)st vector to the subspace
spanned by the first d vectors, where d runs from 0 to n − 1. We are able to obtain a very
tight control on this distance (as a random variable), thanks to the following lemma, which
can be proved using a powerful concentration inequality by Talagrand [69, 82].

Lemma 6.4. Let W be a fixed subspace of dimension 1 ≤ d ≤ n − 4 and X a random ±1
vector. For any t > 0

P(|dist(X,W )−√
n − d| ≥ t + 1) ≤ 4 exp(−t2/16). (6.1)

The lemma, however, is not applicable when d is very close to n. In this case, we need
to make use of the fact that W is random, in a fashion similar to the proof in Section 3.

Lemma 6.4 appears handy in many other studies and can be used to derive other concen-
tration inequalities (such as Hanson-Wright type inequalities for concentration of random
quadratic forms); see [82] for more details.
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Another natural way to estimate | detMn| is to view it as the product of the singular
values of Mn. By the Marcheko-Pastur law [5], one knows (asymptotically) most singular
values. The main obstacle is that the last few can be very small. Thus, the problem basically
boils down to bounding the least singular value from below. This problem was first raised
by Goldstine and von Neumann in the 1940s [35] and has been investigated in [22, 57, 59,
70, 76] (see also [48, 61] and the references therein for other works concerning rectangular
matrices). In particular, Rudelson and Vershynin [59] proved

Theorem 6.5. There are constants C, ε > 0 such that

P(
√

nσmin(Mn) ≤ t) ≤ Ct

for all t ≤ (1− ε)n, where σmin denotes the least singular value.

Theorem 6.5 can be seen as a strengthening of Theorem 2.2; see [55, 58] for more dis-
cussion. The bound is sharp, up to the constant C. In [76] the limiting distribution of√

nσmin(Mn) was determined, yielding the exact value of C in a smaller range of t and
settling a conjecture of Edelman and partially a conjecture by Spielman and Teng [63, Con-
jecutre 2].

Nowwe turn to the symmetricmodelMsym
n . Again, byHadamard’s inequality |detMsym

n | ≤
nn/2.

Conjecture 6.6. With probability 1− o(1)

|detMsym
n | = n(1/2−o(1))n.

Turán’s identity no longer holds because of a correlation caused by symmetry. However,
one can still show

E(detMsym
n )2 = n(1+o(1))n.

On the other hand, proving a lower bound for |detMn| was more difficult. The problem
of bounding the least singular value from belowwas solved only recently by Nguyen [53] and
Vershynin [79], although, unlike the non-symmetric case, we still do not know the limiting
distribution of this parameter. The results by Nguyen and Vershynin, combined with the
Wigner semi-circle law, confirm Conjecture 6.6

Theorem 6.7. With probability 1− o(1)

|detMsym
n | = n(1/2−o(1))n.

Let us now turn to the related notion of permanent. Recall the formal definition of the
determinant of a matrix M (with entries mij,1 ≤ i, j ≤ n)

detM :=
∑
π∈Sn

(−1) signπ
n∏

i=1

miπ(i).

The permanent of M is defined as

PerM :=
∑
π∈Sn

n∏
i=1

miπ(i). (6.2)
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It is easy to see that Turán’s identity still holds, namely

E( PerMn)
2 = n!.

It suggested that | PerMn| is typically n(1/2−o(1))n. However, this was much harder to
prove. The following conjecture, which can be seen as the permanent variant of Komlós
classical result pn = o(1), was open for quite some time

Conjecture 6.8. P( PerMn = 0) = o(1).

The source of difficulties here is that the permanent, unlike the determinant, does not
admit any good geometric or linear algebraic interpretation.

In 2007, Tao and Vu found an entirely combinatorial approach to treat the permanent
problem [72], relying on the formal definition (6.2) and making heavy use of martingale
techniques from probabilistic combinatorics. They proved

Theorem 6.9. With probability 1− o(1)

| PerMn| = n(1/2−o(1))n.

The still missing (final) piece of the picture is the symmetric counterpart of Theorem 6.9.

Conjecture 6.10. With probability 1− o(1)

| PerMsym
n | = n(1/2−o(1))n.

Motivated by the singularity problem, it is also interesting to find a strong estimate for
the probability that the permanent is zero. The current bound is only polynomial in n.

There are further studies concerning the distributions of log |detMn| and log |detMsym
n |;

see [32, 33, 56, 65] and the references therein.

7. Graph expansion and the second eigenvalue

Let G be a connected graph on n points and A its adjacency matrix with eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn. If G is d-regular then λ1 = d and by Perron-Frobenius theorem no
eigenvalue has larger absolute. A parameter of fundamental interest is

λ(G) := max
|λi|<d

|λi|.

One can derive many interesting properties of the graph from the value this parameter.
The general phenomenon here is

Phenomenon III. If λ(G) is significantly less than d, then the edges of G distribute like in
a random graph with edge density d/n.

This leads to the important notion of pseudo- or quasi-randomness [12] [2]. A represen-
tative fact is the following [3]. LetA,B be sets of vertices andE(A,B) the number of edges
with one end point in A and the other in B, then

|E(A,B)− d

n
|A||B|| ≤ λ(G)

√
|A||B|. (7.1)
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Notice that the term d
n |A||B| is the expectation of the number of edges between A and

B if G is random (in the Erdös-Rényi sense) with edge density d/n. Graphs with small λ
are often called pseudo-random [12, 42].

One can use this information about edge distribution to derive various properties of the
graph (see [42] for many results of this kind). The whole concept can be generalized for
non-regular graphs, using the Laplacian rather than the adjacency matrix (see, for example,
[13]).

From (7.1), it is clear that the smaller λ is, the more “random” G is. But how small can
λ be ?

Alon and Boppana [1] proved that if d is fixed and n tends to infinity, then

λ(G) ≥ 2
√

d − 1− o(1).

Graphs which satisfy λ(G) < 2
√

d − 1 are called Ramanujan graphs. It is difficult to con-
struct such graphs, and all known constructions, such as those by Lubotzky-Phillip-Sarnak
[43] and Margulis [44], rely heavily on number theoretic results, which apply only to spe-
cific values of d. A more combinatorial approach was found recently by Markus, Spielman,
and Snivastava [49]. Their method (at least in the bipartite case) works for all d, but the
construction is not explicit.

Theorem 7.1. A bipartite Ramanujan graph exists for all fixed degrees d ≥ 3 and sufficiently
large n.

While showing the existence of Ramanujan graphs is already highly non-trivial, the real
question, in our opinion, is to compute the limiting distribution of λ(Gn,d)− 2

√
d − 1 after

a proper normalization, which would lead to the exact probability of a random regular graph
being Ramanujan. Motivated by studies from Random matrix theory, it seems plausible to
conjecture that n2/3(λ(G(n,d))√

d−1
− 2) tends to the Tracy-Widom distribution.

A weaker conjecture, by Alon [1] asserts that for any fixed d, with probability 1− o(1)

λ2(Gn,d) = 2
√

d − 1 + o(1).

Friedman [28] and Kahn and Szemerédi [38] showed that if d is fixed and n tends to infinity,
then with probability 1 − o(1), λ(Gn,d) = O(

√
d). About 10 years ago, Friedman, in a

highly technical paper [29], used the moment method to prove Alon’s conjecture (see also
[30] for a recent genearlization)

Theorem 7.2 ([29]). For any fixed d and n tends to infinity, with probability 1− o(1)

λ(Gn,d) = 2
√

d − 1 + o(1).

What happens if d tends to infinity with n? To start, it is not hard to show that λ(G(n, p)),
where G(n, p) is the Erdös-Réyi random graph, is (2 + o(1))

√
np(1− p) for sufficiently

large p (e.g., p ≥ n−1+ε for any fixed 0 < ε < 1). This motivates

Conjecture 7.3. Assume that d ≤ n/2 and both d and n tend to infinity. Then with proba-
bility 1− o(1),

λ(Gn,d) = (2 + o(1))
√

d(1− d/n).
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Nilli [51] showed that for any d-regular graph G having two edges with distance at least
2k + 2 between them, λ2(G) ≥ 2

√
d − 1 − 2

√
d − 1/(k + 1). Any d regular graph with

d = no(1) has diameter ω(1). In this range of d

λ(Gn,d) ≥ λ2(Gn,d) ≥ (2 + o(1))
√

d

with probability one. This proves the lower bound in Conjecture 7.3. For a general d, it
is easy to show (by computing the trace of the square of the adjacency matrix) that any
d-regular graph G on n vertices satisfies

λ(G) ≥
√

d(n − d)/(n − 1) ≈
√

d(1− d/n).

(We would like to thank N. Alon for pointing out this bound.)
Let us now turn to the upper bound. For d = o(n1/2), one can follow the Kahn-

Szemerédi approach to show that λ(Gn,d) = O(
√

d) with high probability. However, we do
not know this for larger d. For instance, the following is open

Conjecture 7.4. With probability 1− o(1), λ(Gn,n/2) = O(
√

n).

8. Eigenvectors

IfM is symmetric, then its (unit) eigenvectors form an orthonormal basis. Works concerning
random eigenvectors are generally motivated by

Phenomenon IV. Random eigenvectors should behave like a random vector sampled uni-
formly from the unit sphere .

One parameter which has been looked at a lot is the infinite norm, as it plays a big role
in recent studies on universality (see [27, 75] for surveys). Following earlier results [26, 67],
recently Vu and Wang [82] proved

Theorem 8.1. With probability 1− o(1),

max ‖v‖∞ ≤ C

√
log n

n
,

where the maximum is taken over the“bulk” eigenvectors of Msym
n . If one also considers

the “edge” eigenvectors, the bound becomes C logn√
n

, where C is a constant.

Notice that a vector sampled uniformly from the unit sphere does have a coordinate of

magnitude Θ(
√

logn
n ), we believe that the bound O(

√
logn
n ) is best possible. Similar, but

weaker, results (with higher powers of log n) hold for the non-symmetric model Mn, with
respect to both singular vectors and eigenvectors [60, 68].

The situation with the adjacency matrix of a random graph is somewhat more compli-
cated. Consider A(n, p) with p = Θ(1). The sum of any rows is close to np. It suggests that
the largest eigenvalue λ1 of A(n, p) is approximately np and its corresponding eigenvector
v1 is close to 1√

n
v0, where v0 is the all-one vector. This intuition was confirmed by Komlós

and Füredi [31], and strengthened by Mitra [46].
In [19], Dekel, Lee and Linial, motivated by the study of nodal domains, raised the

following question.
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Question 8.2. Is it true that every eigenvector u of G(n, p) has ||u||∞ = n−1/2+o(1) with
high probability ?

For many related results, we refer to [24, 25, 78]. Another question motivated by Phe-
nomenon IV is the following.

Conjecture 8.3. Assume p ≥ (1+ε) logn
n for some constant ε > 0. Let v be a random

unit vector whose distribution is uniform in the n-dimensional unit sphere. Let u be a unit
eigenvector (not corresponding to the largest eigenvalue) of G(n, p). Then for any fixed
δ > 0 and unit vector w

P(|w · u − w · v| > δ) = o(1).

For related results, see [10, 77].
Let us now consider random regular graphs. Recently Dimitriu and Pal [20] proved the

following result. Let d = logγ n for a constant 0 < γ < 1, and set ηn := 6(log d)1+σ

√
logn

where
σ > 0 is a constant. A unit vector v = (v1, . . . , vn) is (T, ε)-localized if there is a set X of
size T such that

∑
i∈X v2i ≥ ε.

Theorem 8.4. For any fixed ε > 0, with probability 1 − o(1), no eigenvector of A(n, d) is
(o(η−1

n ), ε)-localized.

A more recent result of Brooks and Lindenstrauss [11] showed

Theorem 8.5. Let d, ε be constants. Then there is a constant δ = δ(d, ε) > 0 such that the
following holds. With probability 1− o(1), no eigenvector of A(n, d) is (nδ, ε) localized.

In fact, Brooks and Lindenstrauss’ result holds for deterministic graphs, under a con-
dition on short cycles, which holds with high probability for regular random graphs with
constant degree.

Problem 8.6. Can we replace the (nδ, ε) -localization in Theorem 8.5 by (δn, ε)-localization?

9. Random regular graphs: Mc Kay law and Wigner law

We briefly discuss the spectral distribution of regular random graphs. In 1950s, Wigner
[80] discovered the famous semi-circle law for the limiting distribution of the eigenvalues of
random matrices. His proof extends, without difficulty, to the adjacency matrix of G(n, p),
given that np → ∞ with n.

Theorem 9.1. For p = ω( 1n ), the empirical spectral distribution (ESD) of the matrix
1√
nσ

An converges in distribution to the semicircle law which has a density ρsc(x) with
support on [−2, 2],

ρsc(x) :=
1

2π

√
4− x2.

If np = O(1), the semicircle law no longer holds. In this case, the graph almost surely
has Θ(n) isolated vertices, so in the limit, the origin has a positive constant mass.

The case of random regular graph, Gn,d, was considered by McKay [45] about 30 years
ago. He proved, using the trace method, that if d is fixed, and n → ∞, then the limiting
density function is
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fd(x) =

⎧⎪⎨
⎪⎩

d
√

4(d−1)−x2

2π(d2−x2) , if |x| ≤ 2
√

d − 1;

0 otherwise.

This is usually referred to as McKay or Kesten-McKay law. It is easy to verify that
as d → ∞, if we normalize the variable x by

√
d − 1, the above density converges to the

semicircle law on [−2, 2]. It is thus natural to conjecture that Theorem 9.1 holds for Gn,d

with d → ∞. Define
M ′

n,d :=
1√
d
(An,d − d

n
J).

Conjecture 9.2. If d → ∞ then the ESD of 1√
n
M ′

n,d converges to the semicircle law.

Dimitriu and Pal [20] showed that the conjecture holds for d tending to infinity very
slowly, d = no(1). Their proof which used the trace method does not work for larger d as
it relies on the tree-like local structure of the graph, which no longer holds if d = nc for
any constant c > 0. Very recently, Tran, Vu and Wang [78] proved Conjecture 9.2 in full
generality, using a completely different method using a sharp concentration result from [34].

Theorem 9.3. If d tends to infinity as n goes to infinity, then the empirical spectral distribu-
tion of 1√

n
M ′

n converges in distribution to the semicircle distribution.

10. Miscellany

About 15 years ago, Krivelevich asked the following question: Is it true that (with probability
1− o(1)), A(n, 1/2) does not have any multiple eigenvalues ?

In a more recent conversation, L. Babai mentioned that he came up with the same ques-
tion much earlier. We strongly believe that the answer to this question is affirmative, and the
same must hold for other models of random matrices.

Conjecture 10.1. With probability 1− o(1),

• A(n, 1/2) does not have multiple eigenvalues.

• Mn does not have multiple eigenvalues.

• Mn does not have multiple singular values.

• Msym
n does not have multiple eigenvalues.

• Msym
n does not have multiple singular values.

Another interesting (and seemingly very hard) conjecture is the following, which came
up in the conversation between the author and P. Wood in 2009. Recently, L. Babai informed
us that he made the same conjecture (unpublished) in the 1970s.

Conjecture 10.2. With probability 1 − o(1), the characteristic polynomial of Mn is irre-
ducible.

Here is another conjecture
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Conjecture 10.3. A ±1 matrix is determined by its spectrum if no other ±1 matrix has the
same spectrum. Prove that almost all ±1 matrices are determined by their spectrum (not
counting trivial permutations).

The following conjecture is motivated by our joint work with Tao in [73]

Conjecture 10.4. Mn has, with high probability, Θ(
√

n) real eigenvalues.

Edelman, Kostlan and Shub [21] obtained a formula for the expectation of the number
of real eigenvalues for a gaussian matrix (which is or order Θ(

√
n)). In [73], Tao and Vu

proved that the same formula holds (in the asymptotic sense) for certain random matrices
with entries (0,±1). However, we do not know anything for Mn. As a matter of fact, even
the following “first step” looks non-trivial.

Problem 10.5. Prove that Mn has, with high probability, at least 2 real eigenvalues.

The next problem bears some resemblance to the famous “rigidity” problem in computer
science. Given {−1, 1} matrix M , we denote by Res(M) the minimum number of entries
we need to switch (from 1 to −1 and vice versa) in order to make M singular. If M is a
sample of Mn, it is easy to show that Res(M) is, with high probability, at most (1/2 +
o(1))n, We conjecture that this is the best one can do.

Conjecture 10.6. With probability 1− o(1), Res(Mn) = (1/2 + o(1))n.

A closely related question (motivated by the notion of local resilience from [64]) is the
following. Call a {−1, 1} (n by n) matrix M good if all matrices obtained by switching
(from 1 to −1 and vice versa) the diagonal entries of M are non-singular (there are 2n such
matrices).

Conjecture 10.7. With probability 1− o(1), Mn is good.

Finally, let us list a few recent papers concerning groups defined over random matrices
with entries from a finite field [50, 83]. This direction is new and these works need an
elaborate introduction, which will appear elsewhere.

Acknowledgements. The author would like to thank NSF and AFORS for their generous
support and K. Luh for his careful proofreading.
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I: Local semicircle law, Ann. Probab. 41 (2013).

[25] L. Erdös, A. Knowles, H-T. Yau, and J. Yin, Spectral statistics of Erdős-Rényi graphs
II: Eigenvalue spacing and the extreme eigenvalues, Comm. Math. Phys. 314 (2012),
no. 3, 587–640.

[26] L. Erdös, B. Schlein, and H-T. Yau, Wegner estimate and level repulsion for Wigner
random matrices, Int. Math. Res. Not. IMRN 2010, no. 3, 436–479.

[27] L. Erdös and H-T. Yau, Universality of local spectral statistics of random matrices,
Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 3, 377–414.

[28] J. Friedman. On the second eigenvalue and random walks in random d-regular graphs,
Technical Report CX-TR-172-88, Princeton University, August 1988.

[29] , A proof of Alon’s second eigenvalue conjecture and related problems, (English
summary)Mem. Amer. Math. Soc. 195 (2008), no. 910, viii+100 pp.

[30] J. Friedman and D-E. Kohler, The Relativized Second Eigenvalue Conjecture of Alon,
preprint.

[31] Z. Füredi and J. Komlós, The eigenvalues of random symmetric matri-
ces,Combinatorica 1 (1981), no. 3, 233–241.

[32] V. L. Girko, A refinement of the central limit theorem for random determinants, (Rus-
sian) Teor. Veroyatnost. i Primenen. 42 (1997), no. 1, 63–73; translation in Theory
Probab. Appl. 42 (1997), no. 1, 121–129 (1998)

[33] , A central limit theorem for random determinants, Teor. Veroyatnost. i Mat.
Statist. 21 (1979), 35–39, 164.

[34] A. Guionnet and O. Zeitouni, Concentration of the spectral measure for large matrices,
Electron. Comm. Probab. 5 (2000), 119–136.

[35] H. Golstein and J. von Neumman, Numerical inverting of matrices of high order, Bull.
Amer. Math. Soc. 53 (1947), 1021–1099.

[36] G. Halász, Estimates for the concentration function of combinatorial number theory
and probability, Period. Math. Hungar. 8 (1977), no. 3-4, 197–211.

[37] S. Janson, T. Luczak, and A. Rucinski, Random Graphs, Wiley-Interscience (2000)

[38] J. Kahn and E. Szemerédi, STOC 1989.

[39] J. Kahn, J. Komlós, E. Szemerédi, On the probability that a random ±1 matrix is
singular, J. Amer. Math. Soc. 8 (1995), 223–240.

[40] J. Komlós, On the determinant of (0, 1) matrices, Studia Sci. Math. Hungar. 2 (1967)
7–22.



506 Van H. Vu

[41] , On the determinant of random matrices, Studia Sci. Math. Hungar. 3 (1968)
387–399.

[42] M. Krivelevich and B. Sudakov, Pseudo-random graphs, More sets, graphs and num-
bers, 199–262, Bolyai Soc. Math. Stud., 15, Springer, Berlin, 2006.

[43] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica, 8(3)
(1998), 261–277.

[44] G.A. Margulis, Explicit group-theoretical constructions of combinatorial schemes and
their application to the design of expanders and superconcentrators [in Russian], Prob-
lemy Peredachi Informatsii 24 (1988), 51–60.

[45] B.D. McKay, The expected eigenvalue distribution of a large regular graph, Linear
Algebra and its Applications, 40 (1981), 203–216.

[46] P. Mitra, Entrywise bounds for eigenvectors of random graphs, Electron. J. Combin.
16 (2009), no. 1, Research Paper 131,

[47] J. E. Littlewood and A. C. Offord, On the number of real roots of a random algebraic
equation. III, Rec. Math. [Mat. Sbornik] N.S. 12 (1943), 277–286.

[48] A. Litvak, A. Pajor, M. Rudelson, and N. Tomczak-Jaegermann, Smallest singular
value of random matrices and geometry of random polytopes, Adv. Math. 195 (2005),
no. 2, 491–523.

[49] A. Marcus, D. Spielman, and N. Srivastava, Interlacing Families I: Bipartite Ramanu-
jan Graphs of All Degrees, preprint.

[50] K. Maples, Symmetric random matrices over finite fields announcement, April 15,
2013, preprint.

[51] A. Nilli, On the second eigenvalue of a graph, Discrete Mathematics 91 (1991), 207–
210.

[52] , Tight estimates for eigenvalues of regular graphs, Electronic J. Combinatorics
11 (2004), N9, 4pp.

[53] H. Nguyen, On the least singular value of random symmetric matrices, Electron. J.
Probab. 17 (2012), no. 53.

[54] , Inverse Littlewood-Offord problems and the singularity of random symmetric
matrices, Duke Math. J. 161 (2012), no. 4, 545–586.

[55] H. Nguyen and V. Vu, Small probability, inverse theorems, and applications, Erdos’
100th Anniversary Proceeding, Bolyai Society Mathematical Studies, Vol. 25 (2013).

[56] , Random matrices: Law of the determinant, Annals of Probability (2014),
Vol. 42, No. 1, 146–167.

[57] M. Rudelson, Invertibility of random matrices: norm of the inverse, Ann. of Math. (2)
168 (2008), no. 2, 575–600.



Combinatorial problems in random matrix theory 507

[58] , Lecture notes on non-aymptotic random matrix theory, notes from the AMS
Short Course on Random Matrices, 2013.

[59] M. Rudelson and R. Vershynin, The Littlewood-Offord problem and invertibility of ran-
dom matrices, Adv. Math. 218 (2008), no. 2, 600–633.

[60] M. Rudelson and R. Vershynin, Delocalization of eigenvectors of random matrices with
independent entries, preprint.

[61] O. N. Feldheim and S. Sodin, A universality result for the smallest eigenvalues of cer-
tain sample covariance matrices, Geom. Funct. Anal. 20 (2010), no. 1, 88–123.

[62] A. Sárközy and E. Szemerédi, Uber ein Problem von Erdös und Moser, Acta Arith-
metica, 11 (1965) 205–208.

[63] D. Spielman and S-H. Teng, D. Spielman, and S.-H. Teng, Smoothed analysis of algo-
rithms, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing,
2002), 597–606, Higher Ed. Press, Beijing, 2002.

[64] B. Sudakov and V. Vu, Local resilience of graphs, Random Structures Algorithms 33
(2008), no. 4, 409–433.

[65] T. Tao and V. Vu, A central limit theorem for the determinant of a Wigner matrix, Adv.
Math. 231 (2012), no. 1, 74–101.

[66] , Random matrices: universal properties of eigenvectors, Random Matrices
Theory Appl. 1 (2012), no. 1.

[67] , Random matrices: Universality of the local eigenvalues statistics pdf file,
Acta Math. 206 (2011), no. 1, 127–204.

[68] , Random covariance matrices: universality of local statistics of eigenvalues,
Ann. Probab. 40 (2012), no. 3, 1285–1315.

[69] , On random ±1 matrices: Singularity Determinant, Random Structures Algo-
rithms 28 (2006), no. 1, 1–23.

[70] , On the singularity probability of random Bernoulli matrices, J. Amer. Math.
Soc. 20 (2007), no. 3, 603–628.

[71] , Inverse Littlewood-Offord theorems and the condition number of random ma-
trices, Annals of Math. 169 (2009), 595-632

[72] , On the permanent of random Bernoulli matrices,Advances in Mathematics
220 (2009), 657-669.

[73] , Random matrices: Universality of local spectral statistics of non-Hermitian
matrices, to appear in Annals of Probability.

[74] , Additive Combinatorics, Cambridge Univ. Press, 2006.

[75] , Random matrices: The Universality phenomenon for Wigner ensembles,
preprint, to appear in AMS lecture notes on Random Matrices, 2013.



508 Van H. Vu

[76] , Random matrices: the distribution of the smallest singular values, Geom.
Funct. Anal. 20 (2010), no. 1, 260-297.

[77] , Random matrices: universal properties of eigenvectors, Random Matrices
Theory Appl. 1 (2012), no. 1.

[78] L. Tran, V. Vu and K. Wang, Sparse random graphs: Eigenvalues and Eigenvectors,
Random Structures Algorithms 42 (2013), no. 1, 110–134.

[79] R. Vershynin, Invertibility of symmetric random matrices, Random Structures and Al-
gorithms 44 (2014), 135–182

[80] E.P. Wigner, On the distribution of the roots of certain symmetric matrices, Annals of
Mathematics, 67(2):325-327, 1958.

[81] N.C. Wormald, Models of random regular graphs, In Surveys in Combinatorics, 1999,
J.D. Lamb and D.A. Preece, eds, pp. 239-298.

[82] V. Vu and K. Wang, Random projection, random quadratic forms, and random eigen-
vectors, to appear in Random Structures and Algorithms.

[83] M. Wood, The distribution of sandpile groups of random graphs, preprint.

Department of Mathematics, Yale University, New Haven, CT, USA
E-mail: van.vu@yale.edu



����	����	�
�	������������
�����������
����





Sum-of-squares proofs and the quest toward
optimal algorithms

Boaz Barak and David Steurer

Abstract. In order to obtain the best-known guarantees, algorithms are traditionally tailored to the
particular problem we want to solve. Two recent developments, the Unique Games Conjecture (UGC)
and the Sum-of-Squares (SOS) method, surprisingly suggest that this tailoring is not necessary and that a
single efficient algorithm could achieve best possible guarantees for a wide range of different problems.
The Unique Games Conjecture (UGC) is a tantalizing conjecture in computational complexity, which, if
true, will shed light on the complexity of a great many problems. In particular this conjecture predicts
that a single concrete algorithm provides optimal guarantees among all efficient algorithms for a large
class of computational problems. The Sum-of-Squares (SOS) method is a general approach for solving
systems of polynomial constraints. This approach is studied in several scientific disciplines, including
real algebraic geometry, proof complexity, control theory, and mathematical programming, and has
found applications in fields as diverse as quantum information theory, formal verification, game theory
and many others. We survey some connections that were recently uncovered between the Unique Games
Conjecture and the Sum-of-Squares method. In particular, we discuss new tools to rigorously bound the
running time of the SOS method for obtaining approximate solutions to hard optimization problems,
and how these tools give the potential for the sum-of-squares method to provide new guarantees for
many problems of interest, and possibly to even refute the UGC.

Mathematics Subject Classification (2010). Primary 68Q25; Secondary 90C22.

Keywords. Sum of squares, semidefinite programming, unique games conjecture, small-set expansion.

1. Introduction

A central mission of theoretical computer science is to understand which computational
problems can be solved efficiently, which ones cannot, and what it is about a problem that
makes it easy or hard. To illustrate these kind of questions, let us consider the following
parameters of an undirected d-regular graph1 G = (V,E):

• The smallest connected component of G is the size of the smallest non-empty set
S ⊆ V such that E(S, V \ S) = ∅.

• The independent-set number of G is the size of the largest set S ⊆ V such that
E(S, S) = ∅.

• The (edge) expansion2 of G, denoted φG, is the minimum expansion φG(S) of a vertex
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set S ⊆ V with size 1 ≤ |S| ≤ |V |/2, where

φG(S) =
|E(S, V \ S)|

d|S| .

The expansion φG(S) measures the probability that a step of the random walk on G
leaves S conditioned on starting in S.

All these parameters capture different notions of well-connectedness of the graph G.
Computing these can be very useful in many of the settings in which we use graphs to model
data, whether it is communication links between servers, social connections between people,
genes that are co-expressed together, or transitions between states of a system.

The computational complexity of the first two parameters is fairly well understood. The
smallest connected component is easy to compute in time linear in the number n = |V |
of vertices by using, for example, breadth-first search from every vertex in the graph. The
independent-set number is NP-hard to compute, which means that, assuming the widely
believed conjecture that P �= NP, it cannot be computed in time polynomial in n. In fact,
under stronger (but still widely believed) quantitative versions of the P �= NP conjecture, for
every k it is infeasible to decide whether or not the maximum independent set is larger than k
in time no(k) [18, 23] and hence we cannot significantly beat the trivial O(nk)-time algorithm
for this problem. Similarly, while we can approximate the independent-set number trivially
within a factor of n, assuming such conjectures, there is no polynomial-time algorithm to
approximate it within a factor of n1−ε(n) where ε(n) is some function tending to zero as n
grows [29, 30].

So, connectivity is an easy problem and independent set a hard one, but what about
expansion? Here the situation is more complicated. We know that we can’t efficiently compute
φG exactly, and we can’t even get an arbitrarily good approximation [4], but we actually do
have efficient algorithms with non-trivial approximation guarantees for φG. Discrete versions
of Cheeger’s inequality [2, 3, 17, 21] yield such an estimate, namely

d−λ2

2d ≤ φG ≤ 2
√

d−λ2

2d , (1.1)

where λ2(G) denotes the (efficiently computable) second largest eigenvalue of the G’s
adjacency matrix.3 In particular, we can use (1.1) to efficiently distinguish between graphs
with φG close to 0 and graphs with φG bounded away from 0. But can we do better? For
example, could we efficiently compute a quantity cG such that cG ≤ φG ≤ O(c0.51G )? We
simply don’t know.4

2 An undirected d-regular graph G = (V,E) consists of a set of vertices V , which we sometimes identify with
the set [n] = {1, . . . , n} for some integer n, and a set of edges E, which are 2-element subsets of V , such that every
vertex is part of exactly d edges. The assumption that G is regular is not important and made chiefly for notational
simplicity. For vertex sets S, T ⊆ V , we let E(S, T ) denote the set of edges {s, t} ∈ E with s ∈ S and t ∈ T .

2 The expansion of a graph is closely related to other quantities, known as isoperimetric constant, conductance or
sparsest cut. These quantities are not identical but are the same up to scaling and a multiplicative factor of at most 2.
Hence, they are computationally equivalent for our purposes. We also remark that expansion is often not normalized
by the degree. However for our purposes this normalization is useful.

3The adjacency matrix of a graph G is the |V | × |V | matrix A with 0/1 entries such that Au,v = 1 iff
{u, v} ∈ E.

4As we will mention later, there are algorithms to approximate φG up to factors depending on the number n of
vertices, which give better guarantees than (1.1) for graphs where φG is sufficiently small as a function of n.
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This is not an isolated example, but a pattern that keeps repeating. Over the years,
computer scientists have developed sophisticated tools to come up with algorithms on one
hand, and hardness proofs showing the limits of efficient algorithms on the other hand. But
those two rarely match up. Moreover, the cases where we do have tight hardness results
are typically in settings, such as the independent set problem, where there is no way to
significantly beat the trivial algorithm. In contrast, as a rule, for problems such as computing
expansion, where we already know of an algorithm giving non-trivial guarantees, we have no
proof that this algorithm is optimal. In other words, the following is a common theme:

If you already know an algorithm with non-trivial approximation guarantees for
a problem, it’s very hard to rule out that cleverer algorithms couldn’t get even
better guarantees.

In 2002, Subhash Khot formulated a conjecture, known as the Unique Games Conjecture
(UGC) [31]. A large body of follow up works has shown that this conjecture (whose descrip-
tion is deferred to Section 1.1 below) implies many hardness results that overcome the above
challenge and match the best-known algorithms even in cases when they achieve non-trivial
guarantees. In fact, beyond just resolving particular questions, this line of works obtained
far-reaching complementary meta algorithmic and meta hardness results. By this we mean
results that give an efficient meta algorithm A (i.e., an algorithm that can be applied to a
family of problems, and not just a single one) that is optimal within a broad domain C, in the
sense that (assuming the UGC) there is no polynomial-time algorithm that performs better
than A on any problem in C. It is this aspect of the Unique Games Conjecture result that
we find most exciting, and that shows promise of going beyond the current state where the
individual algorithmic and hardness results form “isolated islands of knowledge surrounded
by a sea of ignorance”5 into a more unified theory of complexity.

The meta-algorithm that the UGC predicts to be optimal is based on semidefinite pro-
gramming and it uses this technique in a very particular and quite restricted way. (In many
settings, this meta-algorithm can be implemented in near-linear time [58].) We will refer
to this algorithm as the UGC meta-algorithm. It can be viewed as a common generaliza-
tion of several well known algorithms, including those that underlie Cheeger’s Inequality,
Grothendieck’s Inequality [28], the Goemans–Williamson Max Cut algorithm [24], and the
Lovász ϑ function [40]. As we’ve seen for the example of Cheeger’s Inequality, in many of
those settings this meta-algorithm gives non-trivial approximation guarantees which are the
best known, but there are no hardness results ruling out the existence of better algorithms.
The works on the UGC has shown that this conjecture (and related ones) imply that this meta-
algorithm is optimal for a vast number of problems, including all those examples above. For
example, a beautiful result of Raghavendra [46] showed that for every constraint-satisfaction
problem (a large class of problems that includes many problems of interest such as Max
k-SAT, k-Coloring, and Max-Cut), the UGC meta-algorithm gives the best estimate on the
maximum possible fraction of constraints one can satisfy. Similarly, the UGC (or closely
related variants) imply there are no efficient algorithms that give a better estimate for the
sparsest cut of a graph than the one implied by Cheeger’s Inequality [51] and no better efficient
estimate for the maximum correlation of a matrix with ±1-valued vectors than the one given
by Grothendieck’s Inequality.6 To summarize:

5paraphrasing John Wheeler
6See [48] for the precise statement of Grothendieck’s Inequality and this result. Curiously, the UGC implies

that Grothendieck’s Inequality yields the best efficient approximation factor for the correlation of a matrix with
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If true, the Unique Games Conjecture tells us not only which problems in a large
class are easy and which are hard, but also why this is the case. There is a single
unifying reason, captured by a concrete meta-algorithm, that explains all the
easy problem in this class. Moreover, in many cases where this meta-algorithm
already gives non-trivial guarantees, the UGC implies that no further efficient
improvements are possible.

All this means that the Unique Games Conjecture is certainly a very attractive proposition,
but the big question still remains unanswered—is this conjecture actually true? While
some initial results supported the UGC, more recent works, although still falling short of
disproving the conjecture, have called it into question. In this survey we discuss the most
promising current approach to refute the UGC, which is based on the Sum of Squares (SOS)
method [37, 42, 45, 55]. The SOS method could potentially refute the Unique Games
Conjecture by beating the guarantees of the UGC meta-algorithm on problems on which the
conjecture implies the latter’s optimality. This of course is interesting beyond the UGC, as
it means we would be able to improve the known guarantees for many problems of interest.
Alas, analyzing the guarantees of the SOS method is a very challenging problem, and we
still have relatively few tools to do so. However, as we will see, we already know that at
least in some contexts, the SOS method can yield better results than what was known before.
The SOS method is itself a meta algorithm, so even if it turns out to refute the UGC, this
does not mean we need to give up on the notion of explaining the complexity of wide swaths
of problems via a single algorithm; we may just need to consider a different algorithm. To
summarize, regardless of whether it refutes the UGC or not, understanding the power of the
SOS method is an exciting research direction that could advance us further towards the goal
of a unified understanding of computational complexity.

1.1. The UGC and SSEH conjectures. Instead of the Unique Games Conjecture, in this
survey we focus on a related conjecture known as the Small-Set Expansion Hypothesis
(SSEH) [49]. The SSEH implies the UGC [49], and while there is no known implication in
the other direction, there are several results suggesting that these two conjectures are probably
equivalent [5, 12, 47, 49, 50]. At any rate, most (though not all) of what we say in this survey
applies equally well to both conjectures, but the SSEH is, at least in our minds, a somewhat
more natural and simpler-to-state conjecture.

Recall that for a d-regular graph G = (V,E) and a vertex set S ⊆ V , we defined its
expansion as φG(S) = |E(S, V \ S)|/(d|S|). By Cheeger’s inequality (1.1), the second
largest eigenvalue yields a non-trivial approximation for the minimum expansion φG =
min1≤|S|≤|V |/2 φG(S), but it turns out that eigenvalues and similar methods do not work
well for the problem of approximating the minimum expansion of smaller sets. The Small-Set
Expansion Hypothesis conjectures that this problem is inherently difficult.

Conjecture 1.1 (Small-Set Expansion Hypothesis [49]). For every ε > 0 there exists δ > 0
such that given any graph G = (V,E), it is NP-hard to distinguish between the case (i)
that there exists a subset S ⊆ V with |S| = δ|V | such that φG(S) ≤ ε and the case (ii) that
φG(S) ≥ 1− ε for every S with |S| ≤ δ|V |.

As mentioned above, the SSEH implies that (1.1) yields an optimal approximation for φG.

±1-valued vectors even though we don’t actually know the numerical value of this factor (known as Grothendieck’s
constant).
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More formally, assuming the SSEH, there is some absolute constant c > 0 such that for every
φ ≥ 0, it isNP-hard to distinguish between the case that a given graphG satisfies φG ≤ φ and
the case that φG ≥ c

√
φ [51]. Given that the SSEH conjectures the difficulty of approximating

expansion, the reader might not be so impressed that it also implies the optimality of Cheeger’s
Inequality. However, we should note that the SSEH merely conjectures that the problem
becomes harder as δ becomes smaller, without postulating any quantitative relation between
δ and ε, and so it is actually surprising (and requires a highly non-trivial proof) that it implies
such quantitatively tight bounds. Even more surprising is that (through its connection with the
UGC) the SSEH implies tight hardness result for a host of other problems, including every
constraint satisfaction problem, Grothendieck’s problem, and many others, which a priori
seem to have nothing to do with graph expansion.

Remark 1.2. While we will stick to the SSEH in this survey, for completeness we present
here the definition of the Unique Games Conjecture. We will not use this definition in the
proceeding and so the reader can feel free to skip this remark. The UGC can be thought of as
a more structured variant of the SSEH where we restrict to graphs and sets that satisfy some
particular properties. Because we restrict both the graphs and the sets, a priori it is not clear
which of these conjectures should be stronger. However it turns out that the SSEH implies
the UGC [49]. It is an open problem whether the two conjectures are equivalent, though the
authors personally suspect that this is the case.

We say that an n-vertex graph G = (V,E) is δ-structured if there is a partition of V
into δn sets V1, . . . , Vδn each of size 1/δ, such that for every i �= j, either E(Vi, Vj) = ∅
or E(Vi, Vj) is a matching (namely for every u ∈ Vi there is exactly one v ∈ Vj such that
{u, v} ∈ E). We say a set S ⊆ V is δ-structured if |S ∩ Vi| = 1 for all i (and so in particular,
|S| = δn). The Unique Games Conjecture states that for every ε > 0 there exists a δ > 0
such that it is NP hard, given a δ-structured G, to distinguish between the case (i) that there
exists a δ-structured S such that φG(S) ≤ ε and the case (ii) that every δ-structured S satisfies
φG(S) ≥ 1− ε. The conjecture can also be described in the form of so-called “two prover
one round games” (hence its name); see Khot’s surveys [32, 33].

1.2. Organization of this survey and further reading. In the rest of this survey we de-
scribe the Sum of squares algorithm, some of its applications, and its relation to the Unique
Games and Small-Set Expansion Conjectures. We start by defining the Sum of Squares
algorithm, and how it relates to classical questions such as Hilbert 17th problem. We will
demonstrate how the SOS algorithm is used, and its connection to the UGC/SSEH, by pre-
senting Cheeger’s Inequality (1.1) as an instance of this algorithm. The SSEH implies that the
SOS algorithm cannot yield better estimates to φG than those obtained by (1.1). While we do
not know yet whether this is true or false, we present two different applications where the SOS
does beat prior works— finding a planted sparse vector in a random subspace, and sparse
coding— learning a set of vectors A given samples of random sparse linear combinations of
vectors in A. We then discuss some of the evidence for the UGC/SSEH, how this evidence is
challenged by the SOS algorithm and the relation between the UGC/SSEH and the problem of
(approximately) finding sparse vectors in arbitrary (not necessarily random) subspaces. Much
of our discussion is based on the papers [5, 12–15]. See also [9–11] for informal overviews
of some of these issues.

For the reader interested in learning more about the Unique Games Conjecture, there are
three excellent surveys on this topic. Khot’s CCC survey [33] gives a fairly comprehensive
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overview of the state of knowledge on the UGC circa 2010, while his ICM survey [32]
focuses on some of the techniques and connections that arose in the works around the UGC.
Trevisan [59] gives a wonderfully accessible introduction to the UGC, using the Max-Cut
problem as a running example to explain in detail the UGC’s connection to semidefinite
programming. As a sign of how rapidly research in this area is progressing, this survey is
almost entirely disjoint from [32, 33, 59]. While the former surveys mostly described the
implications of the UGC for obtaining very strong hardness and “meta hardness” results, the
current manuscript is focused on the question of whether the UGC is actually true, and more
generally understanding the power of the SOS algorithm to go beyond the basic LP and SDP
relaxations.

Our description of the SOS algorithm barely scratches the surface of this fascinating
topic, which has a great many applications that have nothing to do with the UGC or even
approximation algorithms at large. The volume [16] and the monograph [39] are good sources
for some of these topics. The SOS algorithm was developed in slightly different forms by
several researchers, including Shor [55], Nesterov [42], Parrilo [45], and Lasserre [37]. It can
be viewed as a strengthening of other “meta-algorithms” proposed by [41, 54] (also known
as linear and semi-definite programming hierarchies).7 Our description of the SOS meta
algorithm follows Parrilo’s, while the description of the dual algorithm follows Lasserre,
although we use the pseudoexpectation notation introduced in [12] instead of Lasserre’s
notion of “moment matrices”. The Positivstellensatz/SOS proof system was first studied
by Grigoriev and Vorobjov [27] and Grigoriev [26] proved some degree lower bounds for
it, that were later rediscovered and expanded upon by [53, 60]. All these are motivated by
the works in real geometry related to Hilbert’s 17th problem; see Reznick’s survey [52] for
more on this research area. One difference between our focus here and much of the other
literature on the SOS algorithm is that we are content with proving that the algorithm supplies
an approximation to the true quantity, rather than exact convergence, but on the other hand are
much more stringent about using only very low degree (preferably constant or polylogarithmic
in the number of variables).

2. Sums of squares proofs and algorithms

One of the most common ways of proving that a quantity is non-negative is by expressing it as
a Sum of Squares (SOS). For example, we can prove the Arithmetic-Mean Geometric-Mean
inequality ab ≤ a2/2 + b2/2 by the identity a2 + b2 − 2ab = (a − b)2. Thus a natural
question, raised in the late 19th century, was whether any non-negative (possibly multivariate)
polynomial can be written as a sum of squares of polynomials. This was answered negatively
by Hilbert in 1888, who went on to ask as his 17th problem whether any such polynomial
can be written as a sum of squares of rational functions. A positive answer was given by
Artin [8], and considerably strengthened by Krivine and Stengle. In particular, the following
theorem is a corollary of their results, which captures much of the general case.

Theorem 2.1 (Corollary of the Positivstellensatz [36, 57]). Let P1, . . . , Pm ∈ R[x] =
R[x1, . . . , xn] be multivariate polynomials. Then, the system of polynomials equations
E = {P1 = 0, . . . , Pm = 0} has no solution over Rn if and only if, there exists polynomials

7See [38] for a comparison.
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Q1, . . . , Qm ∈ R[x] such that S ∈ R[x] is a sum of squares of polynomials and

− 1 = S +
∑

Qi · Pi . (2.1)

We say that the polynomials S,Q1, . . . , Qm in the conclusion of the theorem form an
SOS proof refuting the system of polynomial equations8 E . Clearly the existence of such
polynomials implies that E is unsatisfiable—the interesting part of Theorem 2.1 is the other
direction. We say that a SOS refutation S1, Q1, ..., Qm has degree � if the maximum degree
of the polynomials QiPi involved in the proof is at most � [27]. By writing down the
coefficients of these polynomials, we see that a degree-� SOS proof can be written using
mnO(
) numbers.9

In the following lemma, we will prove a special case of Theorem 2.1, where the solution
set of E is a subset of the hypercube {±1}n. Here, the degree of SOS refutations is bounded
by 2n. (This bound is not meaningful computationally because the size of degree-Ω(n)
refutations is comparable to the number of points in {±1}.)
Lemma 2.2. Let E = {P0 = 0, x2

1 − 1 = 0, . . . , x2
n − 1 = 0} for some P0 ∈ R[x]. Then,

either the system E is satisfiable or it has a degree-2n SOS refutation.

Proof. Suppose the system is not satisfiable, which means that P0(x) �= 0 for all x ∈ {±1}n
Since {±1}n is a finite set, we may assume P 2

0 ≥ 1 over {±1}n. Now interpolate the
real-valued function

√
P 2
0 − 1 on {±1}2 as a multilinear polynomial R ∈ R[x]. Then,

P 2
0 − 1−R2 is a polynomial of degree at most 2n that vanishes over {±1}, which means that

we can write it in the form
∑n

i=1 Qi · (x2
i − 1) for polynomials Qi with Qi ≤ deg 2n − 2.

(This fact can be verified either directly or by using that x2
1− 1, . . . , x2

n− 1 is a Gröbner basis
for {±1}n.) Putting things together, we see that−1 = R2+(−P0) ·P0+

∑n
i=1 Qi · (x2

i −1),
which is a SOS refutation for E of the form in Theorem 2.1.

2.1. From proofs to algorithms. The Sum of Squares algorithm is based on the following
theorem, which was discovered in different forms by several researchers:

Theorem 2.3 (SOS Theorem [37, 42, 45, 55], informally stated). If there is a degree-� SOS
proof refuting E = {P1 = 0, . . . , Pm = 0}, then such a proof can be found in mnO(
) time.

Proof sketch. We can view a degree-� SOS refutation −1 = S +
∑

i QiPi for E as a system
of linear equations in mnO(
) variables corresponding to the coefficients of the unknown
polynomials S,Q1, . . . , Qm. We only need to incorporate the non-linear constraint that S is
a sum of squares. But it is not hard to see that a degree-� polynomial S is a sum of squares if
and only if there exists a positive-semidefinite matrix M such that S =

∑
α,α′ Mα,α′xαxα′

,
where α and α′ range over all monomials xα and xα′

of degree at most �/2. Thus, the

8 In this survey we restrict attention to polynomial equalities as opposed to inequalities, which turns out to be
without loss of generality for our purposes. If we have a system of polynomial inequalities {P1 ≥ 0, . . . , Pm ≥ 0}
for Pi ∈ R[x], the Positivstellensatz certificates of infeasibility take the form −1 =

∑
α⊆[n] QαPα, where each

Qα ∈ R[X] is a sum of squares and Pα =
∏

i∈α Pi. However, we can transform inequalities {Pi ≥ 0} to
equivalent equalities {P ′i = Pi − y2i = 0}, where y1, . . . , ym are fresh variables. This transformation makes
it only easier to find certificates, because

∑
α⊆[n] QαPα = S′ +

∑
i Q
′
iP
′
i for S′ =

∑
α⊆[n] Qαy2α, where

yα =
∏

i∈α yi. It also follows that the transformation can only reduce the degree of SOS refutations.
9It can be shown that the decomposition of S into sums of squares will not require more than n
 terms; also in all

the settings we consider, there are no issues of accuracy in representing real numbers, and so a degree �-proof can be
written down usingmnO(
) bits.
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task of finding a degree-� SOS refutation reduces to the task of solving linear systems of
equations with the additional constraint that matrix formed by some of the variables is positive-
semidefinite. Semidefinite programming solves precisely this task and is computationally
efficient.10

Remark 2.4 (What does “efficient” mean?). In the applications we are interested in, the
number of variables n corresponds to our “input size”. The equation systems E we consider
can always be solved via a “brute force” algorithm running in exp(O(n)) time, and so degree-
� SOS proofs become interesting when � is much smaller than n. Ideally we would want
� = O(1), though � = polylog(n) or even, say, � =

√
n, is still interesting.

Theorem 2.3 yields the following meta algorithm that can be applied on any problem of
the form

min
x∈Rn : P1(x)=···=Pm(x)=0

P0(x) (2.2)

where P0, P1, . . . , Pm ∈ R[x] are polynomials. The algorithm is parameterized by a number
� called its degree and operates as follows:

The degree-� Sum-of-Squares Algorithm
Input: Polynomials P0, . . . , Pm ∈ R[x]
Goal: Estimate minP0(x) over all x ∈ Rn such that P1(x) = . . . = Pm(x) = 0
Operation: Output the smallest value ϕ(
) such that there does not exist a degree-�
SOS proof refuting the system,

{P0 = ϕ(
), P1 = 0, . . . , Pm(x) = 0} .11

We call ϕ(
) the degree-� SOS estimate for (2.2), and by Theorem 2.3 it can be computed
in nO(
) time. For the actual minimum value ϕ of (2.2), the corresponding system of equations
{P0 = ϕ, P1 = 0, . . . , Pm = 0} is satisfiable, and hence in particular cannot be refuted by
an SOS proof. Thus, ϕ(
) ≤ ϕ for any �. Since higher degree proofs are more powerful (in
the sense that they can refute more equations), it holds that

ϕ(2) ≤ ϕ(4) ≤ ϕ(6) ≤ · · · ≤ min
x∈Rn : P1(x)=···=Pm(x)=0

P0(x) .

(We can assume degrees of SOS proofs to be even.) As we’ve seen in Lemma 2.2, for the
typical domains we are interested in Computer Science, such as when the set of solutions
of {P1 = 0, . . . , Pm = 0} is equal to {±1}n, this sequence is finite in the sense that
ϕ(2n) = minx∈{±1}n P0(x).

The SOS algorithm uses semidefinite programming in a much more general way than
many previous algorithms such as [24, 40]. In fact, the UGC meta-algorithm is the same as
the base case (i.e., � = 2) of the SOS algorithm.

10 In this survey we ignore issues of numerical accuracy which turn out to be easily handled in our setting.
11As in other cases, we are ignoring here issues of numerical accuracy. Also, we note that when actually executing

this algorithm, we will not need to check all the (uncountably many) values ϕ(
) ∈ R, but it suffices to enumerate
over a sufficiently fine discretization of the interval [−M,+M ] for some number M depending on the polynomials
P0, . . . , Pm. This step can be carried out in polynomial time in all the settings we consider.
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Recall that the UGC and SSEH imply that in many settings, one cannot improve on the
approximation guarantees of the UGC meta-algorithm without using exp(nΩ(1)) time. Thus
in particular, if those conjectures are true then in those settings, using the SOS meta algorithm
with degree, say, � = 10 (or even � = polylog(n) or � = no(1)) will not yield significantly
better guarantees than � = 2.

Remark 2.5 (Comparison with local-search based algorithms). Another approach to optimize
over non-linear problems such as (2.2) is to use local-search algorithms such as gradient
descent that make local improvement steps, e.g., in the direction of the gradient, until a
local optimum is reached. One difference between such local search algorithms and the SOS
algorithm is that the latter sometimes succeeds in optimizing highly non-convex problems
that have exponential number of local optima. As an illustration, consider the polynomial
P (x) = n4

∑n
i=1(x

2
i − xi)

2 + (
∑n

i=1 xi)
2.

Its unique global minimum is the point x = 0, but it is not hard to see that it has an
exponential number of local minima (for every x ∈ {0, 1}n, P (x) < P (y) for every y with
‖y − x‖ ∈ [1/n, 2/n], and so there must be a local minima in the ball of radius 1/n around
x). Hence, gradient descent or other such algorithms are extremely likely to get stuck in one
of these suboptimal local minima. However, since P is in fact a sum of squares with constant
term 0, the degree-4 SOS algorithm will output P ’s correct global minimum value.

2.2. Pseudodistributions and pseudoexpectations. Suppose we want to show that the
level-� SOS meta-algorithm achieves a good approximation of the minimum value of P0 over
the set Z = {x ∈ Rn | P1(x) = · · · = Pm(x) = 0} for a particular kind of polynomials
P0, P1, . . . , Pm ∈ R[x]. Since the estimate ϕ(
) always lower bounds this quantity, we are to
show that

min
Z

P0 ≤ f(ϕ(
)) (2.3)

for some particular function f (satisfying f(ϕ) ≥ ϕ) which captures our approximation
guarantee. (E.g., a factor c approximation corresponds to the function f(ϕ) = cϕ.)

If we expand out the definition of ϕ(
), we see that to prove Equation (2.3) we need to
show that for every ϕ if there does not exists a degree-� proof that P0(x) �= ϕ for all x ∈ Z ,
then there exists an x ∈ Z such that P0(x) ≤ f(ϕ). So, to prove a result of this form, we
need to find ways to use the non-existence of a proof. Here, duality is useful.

Pseudodistributions are the dual object to SOS refutations, and hence the non-
existence of a refutation implies the existence of a pseudodistribution.

We now elaborate on this, and explain both the definition and intuition behind pseudodis-
tributions. In Section 3 we will give a concrete example, by showing how one can prove
that degree-2 SOS proofs capture Cheeger’s Inequality using such an argument. Results
such as the analysis of the Goemans-Williamson Max Cut algorithm [24], and the proof of
Grothendieck’s Inequality [28] can be derived using similar methods.

Definition 2.6. Let R[x]
 denote the set of polynomials in R[x] of degree at most �. A
degree-� pseudoexpectation operator for R[x] is a linear operator L that maps polynomials in
R[x]
 into R and satisfies that L(1) = 1 and L(P 2) ≥ 0 for every polynomial P of degree at
most �/2.

The term pseudoexpectation stems from the fact that for every distribution D over Rn,
we can obtain such an operator by choosing L(P ) = ED P for all P ∈ R[x]. Moreover, the
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properties L(1) = 1 and L(P 2) ≥ 0 turn out to capture to a surprising extent the properties
of distributions and their expectations that we tend to use in proofs. Therefore, we will use
a notation and terminology for such pseudoexpectation operators that parallels the notation
we use for distributions. In fact, all of our notation can be understood by making the thought
experiment that there exists a distribution as above and expressing all quantities in terms
of low-degree moments of that distribution (so that they also make sense if we only have a
pseudoexpectation operator that doesn’t necessarily correspond to a distribution).

In the following, we present the formal definition of our notation. We denote pseudoex-
pectation operators as ẼD, where D acts as index to distinguish different operators. If ẼD is a
degree-� pseudoexpectation operator for R[x], we say that D is a degree-� pseudodistribution
for the indeterminates x. In order to emphasize or change indeterminates, we use the notation
Ẽy∼DP (y). In case we have only one pseudodistribution D for indeterminates x, we denote
it by {x}. In that case, we also often drop the subscript for the pseudoexpectation and write
ẼP for Ẽ{x}P .

We say that a degree-� pseudodistribution {x} satisfies a system of polynomial equations
{P1 = 0, . . . , Pm = 0} if ẼQ · Pi = 0 for all i ∈ [m] and all polynomials Q ∈ R[x] with
degQ · Pi ≤ �. We also say that {x} satisfies the constraint {P (x) ≥ 0} if there exists
some sum-of-squares polynomial S ∈ R[x] such that {x} satisfies the polynomial equation
{P = S}. It is not hard to see that if {x} was an actual distribution, then these definitions
imply that all points in the support of the distribution satisfy the constraints. We write P � 0
to denote that P is a sum of squares of polynomials, and similarly we write P � Q to denote
P − Q � 0.

The duality between SOS proofs and pseudoexpectations is expressed in the following
theorem. We say that a system E of polynomial equations is explicitly bounded if there exists
a linear combination of the constraints in E that has the form {∑i x

2
i + S = M} for M ∈ R

and S ∈ R[x] a sum-of-squares polynomial. (Note that in this case, every solution x ∈ Rn of
the system E satisfies

∑
i x

2
i ≤ M .)

Theorem 2.7. Let E = {P1 = 0, . . . , Pm = 0} be a set of polynomial equations with
Pi ∈ R[x]. Assume that E is explicitly bounded in the sense above. Then, exactly one of the
following two statements holds: (a) there exists a degree-� SOS proof refuting E , or (b) there
exists a degree-� pseudodistribution {x} that satisfies E .

Proof. First, suppose there exists a degree-� refutation of the system E , i.e., there exists
polynomials Q1, . . . , Qm ∈ R[x] and a sum-of-squares polynomial R ∈ R[x] so that
−1 = R +

∑
i QiPi and degQiPi ≤ �. Let {x} be any pseudodistribution. We are to show

that {x} does not satisfy E . Indeed, Ẽ∑i QiPi = −Ẽ1 − ẼR ≤ −1, which means that
ẼQiPi �= 0 for at least one i ∈ [m]. Therefore, {x} does not satisfy E .

Next, suppose there does not exist a degree-� refutation of the system E . We are to show
that there exists a pseudodistribution that satisfies E . Let C be the cone of all polynomials of
the form R +

∑
i QiPi for sum-of-squares R and polynomials Qi with degQiPi ≤ �. Since

E does not have a degree-� refutation, the constant polynomial −1 is not contained in C. We
claim that from our assumption that the system E is explicitly bounded it follows that −1 also
cannot lie on the boundary of C. Assuming this claim, the hyperplane separation theorem
implies that there exists a linear form L such that L(−1) < 0 but L(P ) ≥ 0 for all P ∈ C.
By rescaling, we may assume that L(1) = 1. Now this linear form satisfies all conditions of a
pseudoexpectation operator for the system E .
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Proof of claim. We will show that if −1 lies on the boundary of C, then also −1 ∈ C. If −1 is
on the boundary of C, then there exists a polynomial P ∈ R[X]
 such that −1 + εP ∈ C for
all ε > 0 (using the convexity of C). Since E is explicitly bounded, for every polynomial P ∈
R[X]
, the cone C contains a polynomial of form N − P − R for a sum-of-square R and
a number N . (Here, the polynomial N − P − R ∈ C is a certificate that P ≤ N over the
solution set of E . Such a certificate is easy to obtain when E is explicitly bounded. We
are omitting the details.) At this point, we see that −1 is a nonnegative combination of
the polynomials −1 + εP , N − P − R, and R for ε < 1/N . Since these polynomials are
contained in C, their nonnegative combination −1 is also contained in the cone C.

Recipe for using pseudoexpectations algorithmically. In many applications we will use
the following dual form of the SOS algorithm:

The degree-� Sum-of-Squares Algorithm (dual form)
Input: Polynomials P0, . . . , Pm ∈ R[x]
Goal: Estimate minP0(x) over all x with P1(x) = . . . = Pm(x) = 0
Operation: Output the smallest value ϕ(
) such that there is a degree-� pseudodistri-
bution {x} satisfying the system,

{P0 = ϕ(
), P1 = 0, . . . , Pm(x) = 0} .

Theorem 2.7 shows that in the cases we are interested in, both variants of the SOS
algorithm will output the same answer. Regardless, a similar proof to that of Theorem 2.3
shows that the dual form of the SOS algorithm can also be computed in time nO(
). Thus, when
using the SOS meta-algorithm, instead of trying to argue from the non-existence of a proof,
we will use the existence of a pseudodistribution. Specifically, to show that the algorithm
provides an f(·) approximation in the sense of (2.3), what we need to show is that given a
degree-� pseudodistribution {x} satisfying the system {P = ϕ, P1 = 0, . . . , Pm = 0}, we
can find some particular x∗ that satisfies P (x∗) ≤ f(ϕ). Our approach to doing so (based on
the authors’ paper with Kelner [15]) can be summarized as follows:

Solve the problem pretending that {x} is an actual distribution over solutions,
and if all the steps you used have low-degree SOS proofs, the solution still works
even when {x} is a low-degree pseudodistribution.

It may seem that coming up with an algorithm for the actual distribution case is trivial,
as any element in the support of the distribution would be a good solution. However note
that even in the case of a real distribution, the algorithm does not get sampling access to
the distribution, but only access to its low-degree moments. Depending on the reader’s
temperament, the above description of the algorithm, which “pretends” pseudodistributions
are real ones, may sound tautological or just wrong. Hopefully it will be clearer after the
next two sections, where we use this approach to show how the SOS algorithm can match the
guarantee of Cheeger’s Inequality for computing the expansion, to find planted sparse vectors
in random subspaces, and to approximately recover sparsely used dictionaries.
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3. Approximating expansion via sums of squares

Recall that the expansion, φG, of a d-regular graph G = (V,E) is the minimum of φG(S) =
|E(S, V \ S)||/(d|S|) over all sets S of size at most |V |/2. Letting x = 1S be the character-
istic vector12 of the set S the expression |E(S, V \ S)| can be written as∑{i,j}∈E(xi − xj)

2

which is a quadratic polynomial in x. Therefore, for every k, computing the value
φG(k) = min|S|=k |E(S, V \ S)|/(dk) can be phrased as the question of minimizing a poly-
nomial P0 over the set of x’s satisfying the equations {x2

i − xi = 0}ni=1 and {
∑n

i=1 xi = k}.
Let φ(�)

G (k) be the degree-� SOS estimate for φG(k). We call φ(�)

G = mink≤n/2 φG(k) the
degree-� SOS estimate for φG. Note that φ

(�)

G can be computed in nO(
) time. For the case
� = 2, the following theorem describes the approximation guarantee of the estimate φ(�)

G .

Theorem 3.1. There exists an absolute constant c such that for every graph G

φG ≤ c

√
φ
(2)
G (3.1)

Before we prove Theorem 3.1, let us discuss its significance. Theorem 3.1 is essentially
a restatement of Cheeger’s Inequality in the SOS language—the degree 2-SOS algorithm
is the UGC meta algorithm which is essentially the same as the algorithm based on the
second-largest eigenvalue.13 There are examples showing that (3.1) is tight, and so we cannot
get better approximation using degree 2 proofs. But can we get a better estimate using degree
4 proofs? Or degree log n proofs? We don’t know the answer, but if the Small-Set Expansion
Hypothesis is true, then beating the estimate (3.1) is NP -hard, which means (under standard
assumptions) that to do so we will need to use proofs of degree at least nΩ(1).

This phenomenon repeats itself in other problems as well. For example, for both the
Grothendieck Inequality and the Max Cut problems, the SSEH (via the UGC) predicts that
beating the estimate obtained by degree-2 proofs will require degree � = nΩ(1). As in the case
of expansion, we have not been able to confirm or refute these predictions. However, we will
see some examples where using higher degree proofs does help, some of them suspiciously
close in nature to the expansion problem.

One such example comes from the beautiful work of Arora, Rao and Vazirani [7] who
showed that

φG ≤ O(
√
log n) · φ(6)

G ,

which is better than the guarantee of Theorem 3.1 for φG 5 1/ log n. However, this is not
known to contradict the SSEH or UGC, which apply to the case when φG is a small constant.

As we will see in Section 5, for the small set expansion problem of approximating φG(S)
for small sets S, we can beat the degree 2 bounds with degree � = nτ proofs where τ is a
parameter tending to zero with the parameter ε of the SSEH [5]. This yields a sub-exponential
algorithm for the small-set expansion problem (which can be extended to the Unique Games
problem as well) that “barely misses” refuting the SSEH and UGC. We will also see that
degree O(1) proofs have surprising power in other settings that are closely related to the
SSEH/UGC, but again at the moment still fall short of refuting those conjectures.

12The i-th coordinate of vector 1S is equal 1 if i ∈ S and equal 0 otherwise.
13 The second-largest eigenvalue is directly related to the minimum value of ϕ such that there exists a degree-2

pseudodistribution satisfying the more relaxed system {∑{ij}∈E(xi−xj)
2 = ϕ·dn/2,∑i xi = n/2,

∑
i x

2
i =

n/2}.
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3.1. Proof of theorem 3.1. This proof is largely a reformulation of the standard proof of a
discrete variant of Cheeger’s Inequality, phrased in the SOS language of pseudodistributions,
and hence is included here mainly to help clarify these notions, and to introduce a tool—
sampling from a distribution matching first two moments of a pseudodistribution— that will
be useful for us later on. By the dual formulation, to prove Theorem 3.1 we need to show that
given a pseudodistribution {x} over characteristic vectors of size-k sets S of size k ≤ n/2
with |E(S, V \ S)| = ϕdk, we can find a particular set S∗ of size at most n/2 such that
E(S∗, V \ S∗) ≤ O(

√
ϕ)d|S∗|. For simplicity, we consider the case k = n/2 (the other

cases can be proven in a very similar way). The distribution {x} satisfies the constraints
{∑xi = n/2}, {x2

i = xi} for all i, and {∑{i,j}∈E(xi − xj)
2 = ϕd

∑
i xi}. The algorithm

to find S∗ is quite simple:

1. Choose (y1, . . . , yn) from a random Gaussian distribution with the same quadratic
moments as {x} so that E yi = Ẽxi and E yiyj = Ẽxixj for all i, j ∈ [n]. (See details
below.)

2. Output the set S∗ = {i | yi ≥ 1/2} (which corresponds to the 0/1 vector closest to y).

We remark that the set produces by the algorithm might have cardinality larger than n/2, in
which case we will take the complement of S∗.

Sampling from a distribution matching two moments. We will first give a constructive
proof the well-known fact that for every distribution over Rn, there exists an n-dimensional
Gaussian distribution with the same quadratic moments. Given the moments of a distribution
{x} over Rn, we can sample a Gaussian distribution {y} matching the first two moments
of {x} as follows. First, we can assume Exi = 0 for all i by shifting variables if necessary.
Next, let v1, . . . , vn and λ1, . . . , λn be the eigenvectors and eigenvalues of the matrix Mi,j =
Exixj . (Note that M is positive semidefinite and so λ1, . . . , λn ≥ 0.) Choose i.i.d random
standard Gaussian variables w1, . . . , wn and define y =

∑
k

√
λkwkv

k. Since Ewkwk′

equals 1 if k = k′ and equals 0 otherwise,

E yiyj =
∑
k

λk(v
k)i(v

k)j = Mi,j .

One can verify that if {x} is a degree-2 pseudodistribution then the second moment matrix M
of the shifted version of x (such that Ẽxi = 0 for all i) is positive-semidefinite, and hence the
above can be carried for pseudodistributions of degree at least 2 as well. Concretely, if we let
x̄ = Ẽx be the mean of the pseudodistribution, then M = Ẽ(x− x̄)(x− x̄)�. This matrix is
positive semidefinite because every test vector z ∈ Rn satisfies z�Mz = Ẽ

(
z�(x− x̄)

)2≥ 0.

Analyzing the algorithm. The analysis is based on the following two claims: (i) the set
S∗ satisfies n/3 ≤ |S∗| ≤ 2n/3 with constant probability and (ii) in expectation |E(S∗, V \
S∗)| ≤ O(

√
ϕdn).

We will focus on two extreme cases that capture the heart of the arguments for the claims.
In the first case, all variables yi have very small variance so that E y2i ≈ (E yi)

2. In this
case, because our constraints imply that E y2i = E yi, every variable satisfies either E y2i ≈ 0
or E y2i ≈ 1, which means that the distribution of the set S∗ produced by the algorithm is
concentrated around a particular set, and it is easy to verify that this set satisfies the two
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claims. In the second, more interesting case, all variables yi have large variance, which means
E y2i = 1/2 in our setting.

In this case, each event {yi ≥ 1/2} has probability 1/2 and therefore E|S∗| = n/2.
Using that the quadratic moments of {y} satisfy E

∑
i yi = n/2 and E(

∑
i yi)

2 = (n/2)2,
one can show that these events cannot be completely correlated, which allows us to control
the probability of the event n/3 ≤ |S∗| ≤ 2n/3 and establishes (i). For the second claim,
it turns out that by convexity considerations it suffices to analyze the case that all edges
contribute equally to the term 1

|E|
∑
{i,j}∈E Ẽ(xi − xj)

2 = ϕ , so that Ẽ(xi − xj)
2 = ϕ

for all {i, j} ∈ E. So we see that {yi, yj} is a 2-dimensional Gaussian distribution with
mean ( 12 ,

1
2 ) and covariance 1

4

( 1 1−2ϕ
1−2ϕ 1

)
Thus, in order to bound the expected value of

|E(S∗, V \ S∗)| , we need to bound the probability of the event “yi ≥ 1/2 and yj < 1/2”
for this particular Gaussian distribution, which amounts to a not-too-difficult calculation that
indeed yields an upper bound of O(

√
ϕ) on this probability.

4. Machine learning with sum of squares

In this section, we illustrate the computational power of the sum-of-squares method with
applications to two basic problems in unsupervised learning. In these problems, we are given
samples of an unknown distribution from a fixed, parametrized family of distributions and
the goal is to recover the unknown parameters from these samples. Despite the average-case
nature of these problems, most of the analysis in these applications will be for deterministic
problems about polynomials that are interesting in their own right.

The first problem is sparse vector recovery. Here, we are given a random basis of a
d-dimensional linear subspace U ⊆ Rn of the form

U = Span{x()0, x()1, . . . , x()d} ,

where x()0 is a sparse vector and x(1), . . . , x()d are independent standard Gaussian vectors.
The goal is to reconstruct the vector x(0). This is a natural problem in its own right, and
is also a useful subroutine in various settings; see [20]. Demanet and Hand [20] gave an
algorithm (based on [56]) that recovers x(0) by searching for the vector x in U that maximizes
‖x‖∞/‖x‖1 (which can be done efficiently by n linear programs). It is not hard to show that
x(0) has to have less than |n|/√d coordinates for it to be maximize this ratio,14 and hence
this was a limitation of prior techniques. In contrast, as long as d is not too large (namely,
d = O(

√
n)), the SOS method can recover x(0) as long as it has less than εn coordinates for

some constant ε > 0 [15].
The second problem we consider is sparse dictionary learning, also known as sparse

coding. Here, we are given independent samples y()1, . . . , y()R ∈ Rn from an unknown
distribution of the form {y = Ax}, where A ∈ Rn×m is a matrix and x is a random m-
dimensional vector from a distribution over sparse vectors. This problem, initiated by the
work Olshausen and Field [44] in computational neuroscience, has found a variety of uses in
machine learning, computer vision, and image processing (see, e.g. [1] and the references
therein). The appeal of this problem is that intuitively data should be sparse in the “right”
representation (where every coordinate corresponds to a meaningful feature), and finding this

14See Lemma 5.2 below for a related statement
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representation can be a useful first step for further processing, just as representing sound or
image data in the Fourier or Wavelet bases is often a very useful primitive. While there are
many heuristics use to solve this problem, prior works giving rigorous recovery guarantees
such as [1, 6, 56] all required the vector x to be very sparse, namely less than

√
n nonzero

entries.15 In contrast, the SOS method can be used to approximately recover the dictionary
matrix A as long as x has o(n) nonzero (or more generally, significant) entries [14].

4.1. Sparse vector recovery. We say a vector x is μ-sparse if the 0/1 indicator 1supp x of
the support of x has norm-squared μ = ‖1supp x‖22. The ratio μ/‖1‖22 is the fraction of
non-zero coordinates in x.

Theorem 4.1. There exists a polynomial-time approximation algorithm for sparse vector re-
covery with the following guarantees: Suppose the input of the algorithm is an arbitrary basis
of a d + 1-dimensional linear subspace U ⊆ Rn of the form U = Span{x(0), x(1) . . . , x()d}
such that x()0 is a μ-sparse unit vector with μ ≤ ε · ‖1‖22 and x(1), . . . , x()d are standard
Gaussian vectors orthogonal to x()0 with d 5 √

n. Then, with probability close to 1, the
algorithm outputs a unit vector x that has correlation 〈x, x()0〉2 ≥ 1− O(ε) with x(0).

Our algorithm will follow the general recipe we described in Section 2.2:

Find a system of polynomial equations E that captures the intended solution x()0,
then pretend you are given a distribution {u} over solutions of E and show how
you could recover a single solution u∗ from the low order moments of {u}.

Specifically, we come up with a system E so that desired vector x()0 satisfies all equations,
and it is essentially the only solution to E . Then, using the SOS algorithm, we compute a
degree-4 pseudodistribution {u} that satisfies E . Finally, as in Section 3.1, we sample a vector
u∗ from a Gaussian distribution that has the same quadratic moments as the pseudodistribution
{u}.

How to encode this problem as a system of polynomial equations? By Cauchy–Schwarz,
any μ-sparse vector x satisfies ‖x‖22 ≤ ‖x‖22p · ‖1supp x‖q = ‖x‖22p · μ1−1/p for all p, q ≥ 1
with 1/p + 1/q = 1. In particular, for p = 2, such vectors satisfy ‖x‖44 ≥ ‖x‖42/μ. This fact
motivates our encoding of sparse vector recovery as a system of polynomial equations. If
the input specifies subspace U ⊆ Rn, then we compute the projector P into the subspace
U and choose the following polynomial equations: ‖u‖22 = 1 and ‖Pu‖44 = 1/μ0, where
μ0 = ‖x0‖42/‖x0‖44. (We assume here the algorithm is given μ0 ≤ μ as input, as we can
always guess a sufficiently close approximation to it.)

Why does the sum-of-squares method work? The analysis of algorithm has two ingredi-
ents. The first ingredient is a structural property about projectors of random subspaces.

Lemma 4.2. Let U ′ ⊆ Rn be a random d-dimensional subspace with d 5 √
n and let P ′ be

the projector into U ′. Then, with high probability, the following sum-of-squares relation over
R[u] holds for μ′ ≥ Ω(1) · ‖1‖22,

‖P ′u‖44 � ‖u‖42/μ′ .

15If the distribution x consists ofm independent random variables then better guarantees can be achieved using
Independent Component Analysis (ICA) [19]. See [25] for the current state of art in this setting. However we are
interested here in the more general case.
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Proof outline. We can write P ′ = B�B where B is a d × n matrix whose rows are an
orthogonal basis for the subspace U ′. Therefore, Pu = B�x where x = Bu, and so to
prove Lemma 4.2 it suffices to show that under these conditions, ‖B�x‖44 � O(‖x‖42/‖1‖42).
The matrix B� will be very close to having random independent Gaussian entries, and
hence, up to scaling, ‖B�x‖44 will be (up to scaling), close to Q(x) = 1

n

∑〈wi, x〉4 where
w1, . . . , wd ∈ Rd are chosen independently at random from the standard Gaussian distri-
bution. The expectation of 〈w, x〉4 is equal 3∑i,j x2

ix
2
j = 3‖x‖42. Therefore, to prove the

lemma, we need to show that for n 1 d2, the polynomial Q(x) is with high probability close
to its expectation, in the sense that the d2 × d2 matrix corresponding to Q’s coefficients is
close to its expectation in the spectral norm. This follows from standard matrix concentration
inequalities, see [12, Theorem 7.116]).

The following lemma is the second ingredient of the analysis of the algorithm.

Lemma 4.3. Let U ′ ⊆ Rn be a linear subspace and let P ′ be the projector into U ′. Let
x()0 ∈ Rn be a μ-sparse unit vector orthogonal to U ′ and let U = Span{x()0} ⊕ U ′

and P the projector on U . Let {u} be a degree-4 pseudodistribution that satisfies the
constraints {‖u‖22 = 1} and {‖Pu‖44 = 1/μ0}, where μ0 = ‖x()0‖42/‖x()0‖44 ≤ μ. Suppose
‖P ′u‖44 � ‖u‖42/μ′ is a sum-of-squares relation in R[u]. Then, {u} satisfies

Ẽ‖P ′u‖22 ≤ 4
(

μ
μ′
)1/4

.

Note that the conclusion of Lemma 4.3 implies that a vector u∗ sampled from a Gaussian
distribution with the same quadratic moments as the computed pseudodistribution also
satisfiesEu∗‖P ′u∗‖22 ≤ 4(μ/μ′)1/4 andE‖u∗‖22 = 1. ByMarkov inequality, ‖u∗−x()0‖22 ≤
16(μ/μ′)1/4 holds with probability at least 3/4. Since u∗ is Gaussian, it satisfies ‖u∗‖22 ≥ 1/4
with probability at least 1/2. If both events occur, which happens with probability at least
1/4, then 〈u∗, x()0〉2 ≥ (1− O(μ/μ′))‖u∗‖22, thus establishing Theorem 4.1.

Proof of lemma 4.3 There are many ways in which pseudodistributions behave like actual
distributions, as far as low degree polynomials are concerned. To prove Lemma 4.3, we need
to establish the following two such results:

Lemma 4.4 (Hölder’s inequality for pseudoexpectation norms). Suppose a and b are non-
negative integers that sum to a power of 2. Then, every degree-(a + b) pseudodistribution
{u, v} satisfies

Ẽ Ei u
a
i v

b
i ≤
(
Ẽ Ei u

a+b
i

)a/(a+b)

·
(
Ẽ Ei v

a+b
i

)b/(a+b)

.

Proof sketch. The proof of the general case follows from the case a = b = 2 by an inductive
argument. The proof for the case a = b = 1 follows from the fact that the polynomial
αEi u

2
i +βEi v

2
i −

√
αβEi uivi ∈ R[u, v] is a sum of squares for all α, β ≥ 0 and choosing

α = 1/Ẽ Ei u
2
i and β = 1/Ẽ Ei v

2
i

Lemma 4.5 (Triangle inequality for pseudodistribution �4 norm). Let {u, v} be a degree-4
pseudodistribution. Then,(

Ẽ‖u + v‖44
)1/4

≤
(
Ẽ‖u‖44

)1/4
+
(
Ẽ‖v‖44

)1/4
.

16The reference is for the arxiv version arXiv:1205.4484v2 of the paper.
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Proof. The inequality is invariant with respect to the measure used for the inner norm ‖·‖4.
For simplicity, suppose ‖x‖44 = Ex4

i . Then, ‖u + v‖44 = Ei u
4
i + 4Ei u

3
i vi + 6Ei uiv

3
i +

Ei v
4
i . Let A = Ẽ Ei u

4
i and B = Ẽ Ei v

4
i . Then, Lemma 4.5 allows us to bound the

pseudoexpectations of the terms Ei u
a
i v

b
i , so that as desired

Ẽ‖u + v‖44 ≤ A + 4A3/4B1/4 + 6A1/2B1/2 + 4A1/3B3/4 + B = (A1/4 + B1/4)4 .

We can now prove Lemma 4.1. Let α0 = 〈u, x0〉 ∈ R[u]. By construction, the poly-
nomial identity ‖Pu‖44 = ‖α0x0 + P ′u‖44 holds over R[u]. By the triangle inequality for
pseudodistribution �4 norm, for A = Ẽα4

0‖x0‖44 and B = Ẽ‖P ′u‖44(
1
μ0

)1/4
=
(
Ẽ‖Pu‖44

)1/4 ≤ A1/4 + B1/4

By the premises of the lemma, A = Ẽα4
0/μ0 and B ≤ 1/μ′. Together with the previous

bound, it follows that (Ẽα4
0)

1/4 ≥ 1 − (μ0/μ
′)1/4. Since α2

0 � ‖u‖22 and {u} satisfies
‖u‖22 = 1, we have Ẽα2

0 ≥ Ẽα4
0 ≥ 1−4(μ0/μ

′)1/4. Finally, using ‖u−x()0‖22 = ‖u‖22−α2
0,

we derive the desired bound Ẽ‖u − x(0)‖22 = 1 − Ẽα2
0 ≤ 4(μ0/μ

′)1/4 thus establishing
Lemma 4.5 and Theorem 4.1.

4.2. Sparse dictionary learning. A κ-overcomplete dictionary is a matrix A ∈ Rn×m with
κ = m/n ≥ 1 and isotropic unit vectors as columns (so that ‖A�u‖22 = κ‖u‖22). We say
a distribution {x} over Rm is (d, τ)-nice if it satisfies Ei x

d
i = 1 and Ei x

2
ix

2
j ≤ τ for all

i �= j ∈ [m], and it satisfies that non-square monomial degree-d moments vanish so that
Exα = 0 for all non-square degree-d monomials xα, where xα =

∏
xαi
i for α ∈ Zn. For

τ = o(1), a nice distribution satisfies that E 1
m

∑
i x

4
i 1 ( 1

m

∑
i x

2
i

)2
which means that it is

approximately sparse in the sense that the square of the entries of x has large variance (which
means that few of the entries have very big magnitude compared to the rest).

Theorem 4.6. For every ε > 0 and κ ≥ 1, there exists d and τ and a quasipolynomial-time
algorithm algorithm for sparse dictionary learning with the following guarantees: Suppose
the input consists of nO(1) independent samples17 from a distribution {y = Ax} over Rn,
where A ∈ Rn×m is a κ-overcomplete dictionary and the distribution {x} over Rm is
(d, τ)-nice. Then, with high probability, the algorithm outputs a set of vectors with Hausdorff
distance18 at most ε from the set of columns of A.

Encoding as a system of polynomial equations. Let y()1, . . . , y()R be independent sam-
ples from the distribution {y = Ax}. Then, we consider the polynomial P = 1

R

∑
i〈y()i, u〉d

in R[u]d. Using the properties of nice distributions, a direct computation shows that with
high probability P satisfies the relation

‖A�u‖dd − τ‖u‖d2 � P � ‖A�u‖dd + τ‖u‖d2 .

(Here, we are omitting some constant factors, depending on d, that are not important for the
following discussion.) It follows that P (a()i) = 1± τ for every column a()i of A. It’s also

17Here, we also make the mild assumption that the degree-2d moments of x are bounded by nO(1).
18 The Hausdorff distance between two sets of vectors upper bounds the maximum distance of a point in one of

the sets to its closest point in the other set. Due to the innate symmetry of the sparse dictionary problem (replacing
a column a()i of A by −a()i might not affect the input distribution), we measure the Hausdorff distance after
symmetrizing the sets, i.e., replacing the set S by S ∪ −S.
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not hard to show that every unit vector a∗ with P (a∗) ≈ 1 is close to one of the columns of A.
(Indeed, every unit vector satisfies P (a∗) ≤ maxi〈a()i, a∗〉d−2κ+ τ . Therefore, P (a∗) ≈ 1
implies that 〈a()i, a∗〉2 ≥ κ−Ω(1/d), which is close to 1 for d 1 log κ.) What we will show
is that pseudodistributions of degree O(log n) allow us to find all such vectors.

Why does the sum-of-squares method work? In the following, ε > 0 and κ ≥ 1 are
arbitrary constants that determine constants d = d(ε, κ) ≥ 1 and τ = τ(ε, κ) > 0 (as in the
theorem).

Lemma 4.7. Let P ∈ R[u] be a degree-d polynomial with ±(P − ‖A�u‖dd) � τ‖u‖d2 for
some κ-overcomplete dictionary A. Let D be a degree-O(log n) pseudodistribution that
satisfies the constraints {‖u‖22 = 1} and {P (u) = 1 − τ}. Let W ∈ R[u] be a product of
O(log n) random linear forms19. Then, with probability at least n−O(1) over the choice of W ,
there exists a column a()i of A such that

1
ẼDW 2

ẼDW 2 · (‖u‖2 − 〈a()i, u〉2) ≤ ε .

If ẼD is a pseudoexpectation operator, then ẼD′ : P �→ ẼW 2P/ẼW 2 is also a pseudoexpec-
tation operator (as it satisfies linearity, normalization, and nonnegativity). (This transformation
corresponds to reweighing the pseudodistribution D by the polynomial W 2.) Hence, the con-
clusion of the lemma gives us a new pseudodistributionD′ such that ẼD′‖u‖22−〈a()i, u〉2 ≤ ε.
Therefore, if we sample a Gaussian vector a∗ with the same quadratic moments as D′, it
satisfies ‖a∗‖22 − 〈a()i, a∗〉2 ≤ 4ε with probability at least 3/4. At the same time, it satis-
fies ‖a∗‖2 ≥ 1/4 with probability at least 1/2. Taking these bounds together, a∗ satisfies
〈a()i, a∗〉2 ≥ (1− 16ε)‖a∗‖2 with probability at least 1/4.

Lemma 4.7 allows us to reconstruct one of the columns of A. Using similar ideas, we
can iterate this argument and recover one-by-one all columns of A. We omit the proof of
Lemma 4.7, but the idea behind it is to first give an SOS proof version of our argument above
that maximizers of P must be close to one of the a(i)’s. We then note that if a distribution
D is supported (up to noise) on at most m different vectors, then we can essentially isolate
one of these vectors by re-weighing D using the product of the squares of O(logm) random
linear forms.

It turns out, this latter argument has a low degree SOS proof as well, which means that in
our case that given D satisfying the constraint {P (u) = 1 − τ}, we can isolate one of the
a()i’s even when D is not an actual distribution but merely a pseudodistribution.

5. Hypercontractive norms and small-set expansion

So far we have discussed the Small-Set Expansion Hypothesis and the Sum of Squares
algorithm. We now discuss how these two notions are related. One connection, mentioned
before, is that the SSEH predicts that in many settings the guarantees of the degree-2 SOS
algorithm are best possible, and so in particular it means that going from degree 2 to say
degree 100 should not give any substantial improvement in terms of guarantees. Another,
perhaps more meaningful connection is that there is a candidate approach for refuting the
SSEH using the SOS algorithm. At the heart of this approach is the following observation:

19Here, a random linear form means a polynomial 〈u, v〉 ∈ R[u] where v is a random unit vector in Rn.
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The small-set expansion problem is a special case of the problem of finding
“sparse” vectors in a linear subspace.

This may seem strange, as a priori, the following two problem seem completely unrelated:
(i) Given a graph G = (V,E), find a “small” subset S ⊆ V with low expansion φG(S), and
(ii) Given a subspace W ⊆ Rn, find a “sparse” vector in W . The former is a combinatorial
problem on graphs, and the latter a geometric problem on subspaces. However, for the right
notions of “small” and “sparse”, these turn out to be essentially the same problem. Intuitively,
the reason is the following: the expansion of a set S is proportional to the quantity x�Lx
where x is the characteristic vector of S (i.e. xi equals 1 if i ∈ S and equals 0 otherwise),
and L is the Laplacian matrix of G (defined as L = I − d−1A where I is the identity, d
is the degree, and A is G’s adjacency matrix). Let v1, . . . , vn be the eigenvectors of L and
λ1, . . . , λn the corresponding eigenvalues. Then x�Lx =

∑n
i=1 λi〈vi, x〉2.

Therefore if x�Lx is smaller than ϕ‖x‖2 and c is a large enough constant, then most of
the mass of x is contained in the subspace W = Span{vi : λi ≤ cϕ}. Since S is small, x is
sparse, and so we see that there is a sparse vector that is “almost” contained in W . Moreover,
by projecting x into W we can also find a “sparse” vector that is actually contained in W ,
if we allow a slightly softer notion of “sparseness”, that instead of stipulating that most
coordinates are zero, only requires that the distribution of coordinates is very “spiky” in the
sense that most of its mass is dominated by the few “heavy hitters”.

Concretely, for p > 1 and δ ∈ (0, 1), we say that a vector x ∈ Rn is (δ, p)-sparse if
Ei x

2p
i ≥ δ1−p(Ei x

2
i )

p. Note that a characteristic vector of a set of measure δ is (δ, p)-sparse
for any p. The relation between small-set-expansion and finding sparse vectors in a subspace
is captured by the following theorem:

Theorem 5.1 (Hypercontractivity and small-set expansion [12], informal statement). Let
G = (V,E) be a d-regular graph with Laplacian L. Then for every p ≥ 2 and ϕ ∈ (0, 1),

(1) (Non-expanding small sets imply sparse vectors.) If there exists S ⊆ V with |S| =
o(|V |) and φG(S) ≤ ϕ then there exists an (o(1), p)-sparse vector x ∈ W≤ϕ+o(1)

where for every λ, W≤λ denotes the span of the eigenvectors of L with eigenvalue
smaller than λ.

(2) (Sparse vectors imply non-expanding small sets.) If there exists a (o(1), p)-sparse
vector x ∈ W≤ϕ, then there exists S ⊆ V with |S| = o(|V |) and φG(S) ≤ ρ for some
constant ρ < 1 depending on ϕ.

The first direction of Theorem 5.1 follows from the above reasoning, and was known
before the work of [12]. The second direction is harder, and we omit the proof here. The
theorem reduces the question of determining whether there for small sets S, the minimum of
φG(S) is close to one or close to zero, into the question of bounding the maximum of Ei x

2p
i

over all unit vectors in some subspace. The latter question is a polynomial optimization
problem of the type the SOS algorithm is designed for! Thus, we see that we could potentially
resolve the SSEH if we could answer the following question:

What is the degree of SOS proofs needed to certify that the 2p-norm is bounded
for all (Euclidean norm) unit vectors in some subspace W?

We still don’t know the answer to this question in full generality, but we do have some
interesting special cases. Lemma 4.2 of Section 4.1 implies that if W is a random subspace of
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dimension5 √
n then we can certify that Ei x

4
i ≤ O(Ei x

2
i )

2 for all x ∈ W via a degree-4
SOS proof. This is optimal, as the 4-norm simply won’t be bounded for dimensions larger
than

√
n:

Lemma 5.2. Let W ⊆ Rn have dimension d and p ≥ 2, then there exists a unit vector
x ∈ W such that

Ei x
2p
i ≥ dp

n (Ei x
2
i )

p

Hence in particular any subspace of dimension d 1 n1/p contains a (o(1), p)-sparse
vector.

Proof of Lemma 5.2. Let P be the matrix corresponding to the projection operator to the
subspace W . Note that P has d eigenvalues equalling 1 and the rest equal 0, and hence
Tr(P ) = d and the Frobenius norm squared of P , defined as

∑
P 2
i,j , also equals d. Let

xi = Pei where ei is the ith standard basis vector. Then
∑

xi
i is the trace of P which equals

d and hence using Cauchy-Schwarz

∑
(xi

i)
2 ≥ 1

n

(∑
xi

)2
=

Tr(P )2

n
=

d2

n
.

On the other hand, ∑
i

∑
j

(xi)2j =
∑
i,j

(Pei)2j =
∑

P 2
i,j = d .

Therefore, by the inequality (
∑

ai)/(
∑

bi) ≤ max ai/bi, there exists an i such that if we let
x = xi then x2

i ≥ d
n

∑
j x2

j = dEx2
j . Hence, just the contribution of the ith coordinate to

the expectation achieves Ej x2p
j ≥ dp

n

(
Ej x2

j

)p
.

Lemma 5.2 implies the following corollary:

Corollary 5.3. Let p, n ∈ N, and W be subspace of Rn. If Ei x
2p
i ≤ O(Ei x

2
i )

p), then there
is an O(n1/p)-degree SOS proof for this fact. (The constants in the O(·) notation can depend
on p but not on n.)

Proof sketch. By Lemma 5.2, the condition implies that d = dimW ≤ O(n1/p), and it is
known that approximately bounding a degree-O(1) polynomial on the d-dimensional sphere
requires an SOS proof of at most O(d) degree (e.g., see [22] and the references therein).

Combining Corollary 5.3 with Theorem 5.1 implies that for every ε, δ there exists some τ
(tending to zero with ε), such that if we want to distinguish between the case that an n-vertex
graph G satisfies φG(S) ≤ ε for every |S| ≤ δn, and the case that there exists some S of size
at most δn with φG(S) ≥ 1− ε, then we can do so using a degree nτ SOS proofs, and hence
in exp(O(nτ )) time. This is much better than the trivial

(
n
δn

)
time algorithm that enumerates

all possible sets. Similar ideas can be used to achieve an algorithm with a similar running
time for the problem underlying the Unique Games Conjecture [5]. If these algorithms could
be improved so the exponent τ tends to zero with n for a fixed ε, this would essentially refute
the SSEH and UGC.

Thus, the question is whether Corollary 5.3 is the best we could do. As we’ve seen,
Lemma 4.2 shows that for random subspaces we can do much better, namely certify the
bound with a constant degree proof. Two other results are known of that flavor. Barak,
Kelner and Steurer [15] showed that if a d-dimensional subspace W does not contain a
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(δ, 2)-sparse vector, then there is an O(1)-degree SOS proof that it does not contain (or
even almost contains) a vector with O( δn

d1/3 ) nonzero coordinates. If the dependence on d
could be eliminated (even at a significant cost to the degree), then this would also refute the
SSEH. Barak, Brandão, Harrow, Kelner, Steurer and Zhou [12] gave an O(1)-degree SOS
proof for the so-called “Bonami-Beckner-Gross (2, 4) hypercontractivity theorem” (see [43,
Chap. 9]). This is the statement that for every constant k, the subspace Wk ⊆ R2t containing
the evaluations of all degree ≤ k polynomials on the points {±1}t does not contain an
(o(1), 2)-sparse vector, and specifically satisfies for all x ∈ Wk,

Ex4
i ≤ 9k(Ex2

i )
2 . (5.1)

On its own this might not seem so impressive, as this is just one particular subspace. However,
this particular subspace underlies much of the evidence that has been offered so far in support
of both the UGC and SSEH conjectures. The main evidence for the UGC/SSEH consists
of several papers such as [13, 34, 35, 47] that verified the predictions of these conjectures
by proving that various natural algorithms indeed fail to solve some of the computational
problems that are hard if the conjectures are true. These results all have the form of coming
up with a “hard instance” G on which some algorithm A fails, and so to prove such a result
one needs to do two things: (i) compute (or bound) the true value of the parameter on G, and
(ii) show that the value that A outputs on G is (sufficiently) different than this true value. It
turns out that all of these papers, the proof of (i) can be formulated as low degree SOS proof,
and in fact the heart of these proofs is the bound (5.1). Therefore, the results of [12] showed
that all these “hard instances” can in fact be solved by the SOS algorithm using a constant
degree. This means that at the moment, we don’t even have any example of an instance for
the problems underlying the SSEH and UGC that can be reasonably conjectured (let alone
proved) hard for the constant degree SOS algorithm. This does not mean that such instances
do not exist, but is suggestive that we have not yet seen the last algorithmic word on this
question.

Acknowledgments. We thank Amir Ali Ahmadi for providing us with references on the
diverse applications of the SOS method.
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Interactive information and coding theory
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Abstract. We give a high-level overview of recent developments in interactive information and cod-
ing theory. These include developments involving interactive noiseless coding and interactive error-
correction. The overview is primarily focused on developments related to complexity-theoretic appli-
cations, although the broader context and agenda are also set out. As the present paper is an extended
abstract, the vast majority of proofs and technical details are omitted, and can be found in the respective
publications and preprints.
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1. Introduction

1.1. A high-level overview of information and coding theory. We begin with a very high-
level overview of information and coding theory. This is an enormous field of study, with
subareas dealing with questions ranging from foundations of probability and statistics to
applied wireless transmission systems. We will focus only on some of the very basic foun-
dational aspects, which were set forth by Shannon in the late 1940s, or shortly after. The
goal will be to try and translate those to interactive communication settings, of the type that is
used in theoretical computer science. This program is only very partially complete, but some
of the early results are promising. While our overview of information and coding theory in
this section focuses on fairly simple facts, we present those in some detail nonetheless, as
they will be used as a scaffold for the interactive coding discussion. A thorough introduction
into modern information theory is given in [15].

Noiseless coding. Classical information theory studies the setting where one terminal (Al-
ice) wants to transmit information over a channel to another terminal (Bob). Two of the most
important original contributions by Shannon are the Noiseless Coding (or Source Coding)
Theorem and the Noisy Coding (or Channel Coding) Theorem. The Source Coding Theorem
asserts that the cost of Alice transmitting n i.i.d. copies of a discrete random variable X to
Bob over a noiseless channel scales as Shannon’s entropy H(X) as n → ∞1:

H(X) =
∑

x∈supp(X)

Pr[X = x] log
1

Pr[X = x]
. (1.1)
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If we denote by Xn the concatenation of n independent samples from X , and by C(Y ) the
(expected) number of bits needed for Alice to transmit a sample of random variable Y to
Bob, then the Source Coding Theorem asserts that2

lim
n→∞

C(Xn)

n
= H(X). (1.2)

This fact can be viewed as the operational definition of entropy, i.e. one that is grounded
in reality. Whereas definition (1.1) may appear artificial, (1.2) implies that it is the right
one, since it connects to the “natural” quantity C(Xn). Another indirect piece of evidence
indicating that H(X) is a natural quantity is its additivity property:

H(Xn) = n · H(X), (1.3)

and more generally, ifXY is the concatenation of random variablesX and Y , thenH(XY )=
H(X) +H(Y ) whenever X and Y are independent. Note that it is not hard to see that (1.3)
fails to hold for C(X), making H(X) a “nicer” quantity to deal with than C(X). Huffman
coding (1.11) below blurs the distinction between the two, as they only differ by at most one
additive bit, but we will return to it later in the analogous distinction between communication
complexity and information complexity.

Noisy coding. So far we assumed a noiseless channel— bits sent over the channel by Alice
are received by Bob unaltered. If the channel is noisy, that is, messages sent over the channel
may get corrupted, then clearly some redundancy in transmission is necessary. Abstractly,
the task of coding is the task of converting the message being sent into symbols to be trans-
mitted over the channel, in a way that allows the original message to be recovered from what
has been transmitted by the channel. The important considerations for how good a code is
are the type (and amount) of errors it can withstand and still accomplish the transmission
successfully, and the rate by which the error-correcting encoding enlarges the message being
transmitted.

Shannon’s Noisy-Channel Coding Theorem was first to address the noisy coding scenario
theoretically. The most important insight from that theorem is that, at least in the limit, the
ability of a channel to conduct information — defined formally as Shannon’s channel capac-
ity — can be decoupled from the content being transmitted over the channel. Informally, for
a memoryless channel C one can define its capacity cap(C) as “how many bits of information
is one utilization of C (i.e. one transmission over C) worth?”. For any X , if we denote by
CC(Xn) the expected number of utilizations of channel C needed to transmit n independent
samples of X (except with negligible error), then

lim
n→∞

CC(Xn)

n
=

H(X)

cap(C) . (1.4)

This means, conveniently, that one can study properties of channels separately from prop-
erties of what is being transmitted over the channels. The information-theoretic quantities
needed to express cap(C) are conditional entropy and mutual information. While these are

1All logs in this paper are base-2.
2In fact, Shannon’s Source Coding Theorem asserts that due to concentration the worst case communication

cost scales as H(X) as well, if we allow negligible error. We ignore this stronger statement at the present level of
abstraction.
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standard basic notions in information theory, we will define them here, to keep the exposition
accessible. For a pair of random variables X and Y , the conditional entropy H(X|Y ) can
be thought of as the amount of uncertainty remaining in X for someone who knows Y :

H(X|Y ) := H(XY )− H(Y ) = Ey∼Y H(X|Y = y). (1.5)

In the extreme case where X and Y are independent, we have H(X|Y ) = H(X). In the
other extreme, when X = Y , we have H(X|X) = 0. The mutual information I(X;Y )
between two variables X and Y measures the amount of information revealing Y reveals
about X , i.e. the reduction in X’s entropy as a result of conditioning on Y . Thus

I(X;Y ) = H(X)− H(X|Y ) = H(X) + H(Y )− H(XY ) = I(Y ;X). (1.6)

Conditional mutual information is defined similarly to conditional entropy:

I(X;Y |Z) := H(X|Z)− H(X|Y Z) = I(Y ;X|Z). (1.7)

A very important property of conditional mutual information is the chain rule:

I(XY ;Z|W ) = I(X;Z|W ) + I(Y ;Z|WX) = I(Y ;Z|W ) + I(X;Z|WY ). (1.8)

An informal interpretation of (1.8) is that XY reveal about Z what X reveals about Z, plus
what Y reveals about Z to someone who already knows X .

Abstractly, a memoryless channel (i.e. one where each utilization of the channel is inde-
pendent of other utilization) can be viewed as a set of pairs of variables (X, C(X)) where X
is the signal the sender inputs to the channel, and C(X) is the output of the channel received
on input X from the sender. If the channel is noiseless then C(X) = X . Under this notation,
the channel capacity of C is equal to

cap(C) = sup
Y

I(Y ; C(Y )). (1.9)

In other words, it is the supremum over all input distributions of the amount of information
preserved by the channel. The scenario just discussed is obviously a very simple one, but
even in more elaborate settings issues surrounding coding transmissions over a noisy channel
(at least when the noise is random) are very well understood. For example, for the binary
symmetric channel BSCε that accepts bits b ∈ {0, 1} and outputs b with probability 1 − ε
and b̄ with probability ε, the capacity is

cap(BSCε) = 1− H(ε) := 1− (ε log 1/ε + (1− ε) log 1/(1− ε)). (1.10)

One caveat is that mathematically striking characterizations such as above only become
possible in the limit, where the size of the message we are trying to transmit over the channel
— i.e. the block-length — grows to infinity. What happens for fixed block lengths, which
we discuss next, is of course important for both practical and theoretical reasons, and it will
be even more so in the interactive regime.

For noiseless coding in the one-way regime, it turns out that whileH(X) does not exactly
equal the expected number of bits C(X) needed to transmit a single sample from X , it is
very close to it. For example, the classical Huffman’s coding [25] implies that

H(X) ≤ C(X) < H(X) + 1, (1.11)
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where the “hard” direction of (1.11) is the upper bound. The upper bound showing that
C(X) < H(X) + 1 is a compression result, showing how encode a message with low
average information content (i.e. entropy) into a message with a low communication cost
(i.e. number of bits in the transmission). Note that this result is much less “clean” than the
limit result (1.2): in the amortized case the equality is exact, while in the one-shot case a gap
is created. This gap is inevitable, if only for integrality reasons, but as we will see later, it
becomes crucial in the interactive case.

Adversarial noise and list-decoding. So far we only discussed channels affected by ran-
domized errors. A variant of the noisy regime where the situation appears mathematically
much less clear is one where the errors on the channel are introduced adversarially. For ex-
ample, an adversarial ε-error rate binary channel receives a string S ∈ {0, 1}n of n bits, and
outputs a string S′ such that the Hamming distance dH(S, S′) < εn, i.e. S′ differs from S in
at most an ε-fraction of positions. A coding scheme for this setting is a pair of encoding and
decoding functions E : {0, 1}m → {0, 1}n and D : {0, 1}n → {0, 1}m, respectively, such
that for each X ∈ {0, 1}m and each S′ with dH(E(X), S′) < εn, X is recovered correctly
from S′, i.e. D(S′) = X . Clearly we want m to be as large as possible as a function of n. It
turns out that such an encoding scheme is possible with m = Ωε(n) for each ε < 1/4 (and
ε < 1/2 if the binary alphabet is replaced with an alphabet Σ of size3 |Σ| = Oε(1)). Unlike
the random-noise case the exact optimal rate of the code, i.e. the largest achievable ratio of
m
n is unknown for the adversarial model. Clearly, the limit cannot exceed cap(BSCε), but
it is bound to be lower, since correcting adversarial errors is much harder than randomized
ones. A priori it is not even obvious that the adversarial channel capacity is a positive con-
stant when ε < 1/4. Despite much work in the field [38, 45], even the basic binary channel
capacity problem remains open, with a notorious gap between the Gilbert-Varshanov lower
bound, and the Linear Programming upper bound [44].

A clear limitation of any error-correcting code, even over a large constant-size alpha-
bet Σ, is that no decoding is possible when ε ≥ 1/2: for two valid codewords X1, X2

and any encoding function E, there is a string S′ such that dH(E(X1), S
′) ≤ n/2 and

dH(E(X2), S
′) ≤ n/2, making decoding S′ an impossible task (note that over a large

constant-size alphabet, with a high probability one can recover from random errors of rate
exceeding 1/2). It turns out, however, that for any ε < 1, for |Σ| = Oε(1), it is possible to
come up with a constant-rate list-decoding scheme: one where the decoding function D(S′)
outputs a list of size s = Oε(1) of possible X1, . . . , Xs such that these are the only possi-
ble X’s satisfying dH(E(X), S′) < (1 − ε)n. List decodable codes, first introduced in the
1950s [16, 47] have played an important role in a number of areas of theoretical computer
science, a partial survey of which can be found in [23, 24].

1.2. Interactive computation models in complexity theory. In theoretical computer sci-
ence interactive communication models are studied within the area of communication com-
plexity. While communication complexity can be viewed as a direct extension of the study
of non-interactive communication models which were discussed in the previous section, its
development has been largely disjoint from the development of information theory, and the
areas have not reconnected until fairly recently. This may be partially explained by the com-
binatorial nature of the tools most prevalent in theoretical computer science.

3The Oε(1) notation means a function that is bounded by a constant for each fixed ε.
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Communication complexity was introduced by Yao in [48], and is the subject of the
text [30]. It has found numerous applications for unconditional lower bounds in a variety
of models of computation, including Turing machines, streaming, sketching, data structure
lower bounds, and VLSI layout, to name a few. In the basic (two-party) setup, the two
parties Alice and Bob are given inputs X ∈ X and Y ∈ Y , respectively, and are required
to compute a function F (X,Y ) of these inputs (i.e. both parties should know the answer
in the end of the communication), while communicating over a noiseless binary channel.
The parties are computationally unbounded, and their only goal is to minimize the number
of bits transmitted in the process of computing F (X,Y ). In a typical setup F is a function
F : {0, 1}n × {0, 1}n → {0, 1}. Examples of functions commonly discussed and used
include the Equality function EQn(X,Y ) := 1X=Y (X,Y ), and the Disjointness function

Disjn(X,Y ) :=
n∧

i=1

(¬Xi ∨ ¬Yi). (1.12)

We will return to these functions later in our discussion.
Of course, the (non-interactive) transmission problem can be viewed as just a special

case of computing the function Px : X × {⊥} → X , which maps (X,⊥) to X . However,
there are two important distinctions between the “flavors” of typical information theory re-
sults and communication complexity. Firstly, information theory is often concerned with
coding results where block length — i.e. the number of copies of the communication task
to be performed — goes to infinity. Recall, for example, that Shannon’s Source Coding
Theorem (1.2) gave Shannon’s entropy as a closed-form expression for the amortized trans-
mission cost of sending a growing number of samples X (this is often but not always the
case, for example, the Huffman coding (1.11) result is not of this type). On the other hand,
communication complexity more commonly studies the communication cost of computing
a single copy of F . Secondly, as in the examples above, communication complexity often
studies functions whose output is only a single bit or a small number of bits, thus “counting
style” direct lower bound proofs rarely apply. Tools that have been successfully applied in
communication complexity over the years include combinatorics, linear algebra, discrepancy
theory, and only later classical information theory.

To make our discussion of communication complexity more technical, we will focus
on the two-party setting. We briefly discuss the multi-party setting, which also has many
important applications, but is generally much less well-understood, in the last section of the
paper. The basic notion in communication complexity is that of a communication protocol.
A communication protocol over a binary channel formalizes a conversation, where each
message only depends on the input to the speaker and the conversation so far:

Definition 1.1. A (deterministic) protocol π for F : X × Y → {0, 1} is defined as a finite
rooted binary tree, whose nodes correspond to partial communication transcripts, such that
the two edges coming out of each vertex are labeled with a 0 and 1. Each leaf � is labeled by
an output value f
 ∈ {0, 1}. Each internal node v is labeled by a player’s name and either by
a function av : X → {0, 1} or bv : Y → {0, 1} corresponding to the next message of Alice
or Bob, respectively.

The protocol π(X,Y ) is executed on a pair of inputs (X,Y ) by starting from the root of
the tree. At each internal node labeled by av the protocol follows the child av(X) (corre-
sponding to Alice sending a message), and similarly at each internal node labeled by bv the
protocol follows bv(Y ). When a leaf � is reached the protocol outputs f
.
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By a slight abuse of notation, π(X,Y ) will denote both the transcript and the output of
the protocol; which is the case will be clear from the context. The communication cost of
a protocol is the depth of the corresponding protocol tree. A protocol succeeds on input
(X,Y ) if π(X,Y ) = F (X,Y ). Its communication cost on this pair of inputs is the depth of
the leaf reached by the execution. The communication complexity CC(F ) of a function F is
the lowest attainable communication cost of a protocol that successfully computes F . In the
case of deterministic communication we require the protocol to succeed on all inputs.

A deterministic communication protocol π induces a partition of the input space X × Y
into sets S
 by the leaf � that π(X,Y ) reaches. Since at each step the next move of the
protocol depends only on either X or Y alone, each S
 is a combinatorial rectangle of the
form S
 = SX
 × SY
 . This key combinatorial property is at the heart of many combinatorial
communication complexity lower bounds. To give an example of such a simple combina-
torial proof, consider the rank bound. Let N = |X |, M = |Y|, and consider the N × M
matrix MF over R whose (X,Y )-th entry is F (X,Y ). Each protocol π with leaf set L of
size L, induces a partition of X × Y into combinatorial rectangles {S
}
∈L. Let M
 be
the matrix whose entries are equal to MX,Y for (X,Y ) ∈ S
 and are 0 elsewhere. Since
{S
}
∈L is a partition of X × Y , we have MF =

∑

∈LM
. Assuming π is always correct,

each M
 is monochromatic, i.e. either all-0, or all-1 on S
, depending on the value of f
.
Thus, rank(M
) ≤ 1, and

rank(MF ) ≤
∑

∈L

rank(M
) ≤ L. (1.13)

In fact, a stronger bound of L − 1 holds unless MF is the trivial all-1 matrix. Thus any
protocol computing F must have communication cost of at least log(rank(MF ) + 1), and
it follows that the communication complexity of F is at least log(rank(MF ) + 1). As an
example of an application, if F = EQn is the Equality function, then MEQn = I2n is the
identity matrix, and thus CC(EQn) ≥ n + 1. In other words, the trivial protocol where
Alice sends Bob her input X (n bits), and Bob responds whether X = Y (1 bit), is optimal.

As in many other areas of theoretical computer science, there is much to be gained from
randomization. For example, in practice, the Equality function does not require linear com-
munication as Alice and Bob can just hash their inputs and compare the hash keys. The
shorter protocol may return a false positive, but it is correct with high probability, and re-
duces the communication complexity from n + 1 to O(log n).

More generally, a randomized protocol is a protocol that tosses coins (i.e. accesses ran-
dom bits), and produces the correct answer with high probability. The distributional setting,
where there is a prior probability distribution μ on the inputs and the players need to output
the correct answer with high probability with respect to μ is closely related to the random-
ized setting, as will be seen below. In the randomized setting there are two possible types
of random coins. Public coins are generated at random and are accessible to both Alice and
Bob at no communication cost. Private coins are coins generated privately by Alice and
Bob, and are only accessible by the player who generated them. If Alice wants to share her
coins with Bob, she needs to use the communication channel. In the context of communi-
cation complexity the pubic-coin model is clearly more powerful than the private coin one.
Fortunately, the gap between the two is not very large [35], and can be mostly ignored. For
convenience reasons, we will focus on the public-coin model.

The definition of a randomized public-coin communication protocol πR is identical to
Definition 1.1, except a public random string R is chosen at the beginning of the execution



Interactive information and coding theory 541

of the randomized πR, and all functions at the nodes of πR may depend on R in addition to
the respective input X or Y . We still require the answer f
 to be unequivocally determined
by the leaf � alone. The communication cost |πR| of πR is still its worst-case communication
cost (for historic reasons; an average-case notion would also have been meaningful to discuss
here).

The randomized communication complexity of F with error ε > 0 is given by

Rε(F ) := min
πR:∀X,Y PrR[πR(X,Y )=F (X,Y )]≥1−ε

|πR|. (1.14)

For a distribution μ on X × Y the distributional communication complexity Dμ,ε(F ) is
defined as the cost of the best protocol that achieves expected error ε with respect to μ. Note
that in this case fixing public randomness R to a uniformly random value does not change
(on average) the expected success probability of πR with respect to μ. Therefore, without
loss of generality, we may require π to be deterministic:

Dμ,ε(F ) := min
π:μ{X,Y : π(X,Y )=F (X,Y )}≥1−ε

|π|. (1.15)

It is easy to see that for all μ, Dμ,ε(F ) ≤ Rε(F ). By an elegant minimax argument [49],
a partial converse is also true: for each F and ε, there is a distribution against which the
distributional communication complexity is as high as the randomized:

Rε(F ) = max
μ

Dμ,ε(F ). (1.16)

For this reason, we will be able to discuss distributional and randomized communication
complexity interchangeably.

How can one prove lower bounds for the randomized setting? This setting is much less
restrictive than the deterministic one, making lower bounds more challenging. Given a func-
tion F , one can guess the hard distribution μ, and then try to lower bound the distributional
communication complexity Dμ,ε(F ) — that is, show that there is no low-communication
protocol π that computes F with error ≤ ε with respect to μ. Such a protocol π of cost
k = |π| still induces a partition {S
}
∈L of the inputs according to the leaf they reach, with
L ≤ 2k and each S
 a combinatorial rectangle. However, it is no longer the case that when
we consider the corresponding submatrixM
 ofMF it must be monochromatic— the output
of π is allowed to be wrong on a fraction of S
, and thus for some inputs the output of π on
S
 may disagree with the value of F . Still, it should be true that for most leaves the value of
F on S
 is strongly biased one way or the other, since the contribution of S
 to the error is

e(S
) = min
(
μ(S
 ∩ F−1(0)), μ(S
 ∩ F−1(1))

)
. (1.17)

In particular, a fruitful lower bound strategy is to show that all “large” rectangles with respect
to μ have e(S
)/μ(S
) 1 ε, and thus there must be many smaller rectangles — giving a
lower bound on L ≤ 2|π|. One simple instantiation of this strategy is the discrepancy bound:
for a distribution μ, the discrepancy Discμ(F ) of F with respect to μ is the maximum over
all combinatorial rectangles R of

Discμ(R,F ) := |μ(F−1(0) ∩ R)− μ(F−1(1) ∩ R)|.
In other words, if F has low discrepancy with respect to μ then only very small rectangles
(as measured by μ) can be unbalanced. With some calculations, it can be shown that for all



542 Mark Braverman

ε > 0 (see [30] and references therein),

Dμ, 12−ε(F ) ≥ log2(2ε/Discμ(F )). (1.18)

Note that (1.18) not only says that if the discrepancy is low then the communication com-
plexity is high, but also that it remains high even if we are only trying to gain a tiny advantage
over random guessing in computing F ! An example of a natural function to which the dis-
crepancy method can be applied is the n-bit Inner Product function IPn(X,Y ) = 〈X,Y 〉
mod 2. This simple discrepancy method can be generalized to a richer family of corruption
bounds that can be viewed as combinatorial generalizations of the discrepancy bound. More
on this method can be found in the survey [31].

One of the early successes of applying combinatorial methods in communication com-
plexity was the proof that the randomized communication complexity of the set disjointness
problem (1.12) is linear, R1/4(Disjn) = Θ(n). The first proof of this fact was given in the
1980s [26], and a much simpler proof was discovered soon after [41]. The proofs exhibit
a specific distribution μ of inputs on which the distributional communication complexity
Dμ,1/4(Disjn) is Ω(n). Note that the uniform distribution would not be a great fit, since
uniformly drawn sets are non-disjoint with a very high probability. It turns out that the fol-
lowing family of distributions μ is hard: select each coordinate pair (Xi, Yi) i.i.d. from a
distribution on {(0, 0), (0, 1), (1, 0)} (e.g. uniformly). This generates a distribution on pairs
of disjoint sets. Now, with probability 1/2 choose a uniformly random coordinate i ∈U [n]
and set (Xi, Yi) = (1, 1). Thus, under μ, X and Y are disjoint with probability 1/2.

Treating communication complexity as a generalization of one-way communication and
applying information-theoretic machinery to it is a very natural approach (perhaps the most
natural, given the success of information theory in communication theory). Interestingly,
however, this is not how the field has evolved. In fact, the fairly recent survey [31] was able
to present the vast majority of communication complexity results to its date without dealing
with information theory at all. It is hard to speculate why this might be the case. One
possible explanation is that the mathematical machinery needed to tackle the (much more
complicated) interactive case from the information-theoretic angle wasn’t available until the
1990s; another possible explanation is that linear algebra, linear programming duality, and
combinatorics (the main tools in communication complexity lower bounds) are traditionally
more central to theoretical computer science research and education than information theory.

A substantial amount of literature exists on communication complexity within the infor-
mation theory community, see for example [36, 37] and references therein. The flavor of the
results is usually different from the ones discussed above. In particular, there is much more
focus on bounded-round communication, and significantly less focus on techniques for ob-
taining specific lower bounds for the communication complexity of specific functions such
as the disjointness function. The most relevant work to our current discussion is a relatively
recent line of work by Ishwar and Ma, which studied interactive amortized communication
and obtained characterizations closely related to the ones discussed below [32, 33].

Within the theoretical computer science literature, in the context of communication com-
plexity, information theoretic tools were explicitly introduced in [13] in the early 2000s for
the simultaneous message model (i.e. 2 non-interactive rounds of communication). Building
on this work, [1] developed tools for applying information theoretic reasoning to fully inter-
active communication, in particular giving an alternative (arguably, more intuitive) proof for
the Ω(n) lower bound on the communication complexity of Disjn. The motivating ques-
tions for [13], as well as for subsequent works developing information complexity, were the
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direct sum [17] and direct product questions for (randomized) communication complexity.
In general, a direct sum theorem quantifies the cost of solving a problem Fn consisting

of n sub-problems in terms of n and the cost of each sub-problem F . The value of such
results to lower bounds is clear: a direct sum theorem, together with a lower bound on the
(easier-to-reason-about) sub-problem, yields a lower bound on the composite problem (a
process also known as hardness amplification). For example, the Karchmer-Wigderson pro-
gram for boolean formula lower bounds can be completed via a (currently open) direct sum
result for a certain communication model [27]. Direct product results further sharpen direct
sum theorems by showing a “threshold phenomenon”, where solving Fn with insufficient
resources is shown to be impossible to achieve except with an exponentially small success
probability. Classic results in complexity theory, such as Raz’s Parallel Repetition Theorem
[39] can be viewed as a direct product result.

In the next section, we will formally introduce information complexity, first as a general-
ization of Shannon’s entropy to interactive tasks. We will then discuss its connections to the
direct sum and product questions for randomized communication complexity, and to recent
progress towards resolving these questions.

2. Noiseless coding and information complexity

Interactive information complexity. In this section we will work towards developing in-
formation complexity as the analogue of Shannon’s entropy for interactive computation. It
will sometimes be convenient to work with general interactive two-party tasks rather than
just functions. A task T (X,Y ) is any action on inputs (X,Y ) that can be performed by a
protocol. T (X,Y ) can be though of as a set of distributions of outputs that are acceptable
given an input (X,Y ). Thus “computing F (X,Y ) correctly with probability 1 − ε” is an
example of a task, but there are examples of tasks that do not involve function or relation
computation, for example “Alice and Bob need to sample strings A and B, respectively,
distributed according to (A,B) ∼ μ(X,Y )”. For the purposes of the discussion, it suffices
to think about T as the task of computing a function with some success probability. The
communication complexity of a task T is then defined analogously to the communication
complexity of functions. It is the least amount of communication needed to successfully
perform the task T (X,Y ) by a communication protocol π(X,Y ).

The information complexity of a task T is defined as the least amount of information
Alice and Bob need to exchange (i.e. reveal to each other) about their inputs to successfully
perform T . This amount is expressed using mutual information (specifically, conditional
mutual information (1.7)). We start by defining the information cost of a protocol π. Given
a prior distribution μ on inputs (X,Y ) the information cost

IC(π, μ) := I(Y ; Π|X) + I(X; Π|Y ), (2.1)

whereΠ is the random variable representing a realization of the protocol’s transcript, includ-
ing the public randomness it used. In other words, (2.1) represents the sum of the amount
of information Alice learns about Y by participating in the protocol and the amount of in-
formation Bob learns about X by participating. Note that the prior distribution μ may dras-
tically affect IC(π, μ). For example, if μ is a singleton distribution supported on one input
(x0, y0), then IC(π, μ) = 0 for all π, since X and Y are already known to Bob and Alice
respectively under the prior distribution μ. Definition (2.1), which will be justified shortly,
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generalizes Shannon’s entropy in the non-interactive regime. Indeed, in the transmission
case, Bob has no input, thus X ∼ μ, Y = ⊥, and Π allows Bob to reconstruct X , thus
IC(π, μ) = I(X; Π) = H(X)− H(X|Π) = H(X).

The information complexity of a task T can now be defined similarly to communication
complexity in (1.15):

IC(T, μ) := inf
π successfully performs T

IC(π, μ). (2.2)

One notable distinction between (1.15) and (2.2) is that the latter takes an infimum instead of
a minimum. This is because while the number of communication protocols of a given com-
munication cost is finite, this is not true about information cost. One can have a sequence
π1, π2, . . . of protocols of ever-increasing communication cost, but whose information com-
plexity IC(πn, μ) converges to IC(T, μ) in the limit. Moreover, as we will discuss later, this
phenomenon is already observed in a task T as simple as computing the conjunction of two
bits.

Our discussion of information complexity will be focused on the slightly simpler to rea-
son about distributional setting, where inputs are distributed according to some prior μ. In
(2.2), if T is the task of computing a function F with error ε w.r.t. μ, the distribution μ is
used twice: first in the definition of “success”, and then in measuring the amount of infor-
mation learned. It turns out that it is possible to define worst-case information complexity
[7] as the information complexity with respect to the worst-possible prior distribution in the
spirit of the minimax relationship (1.16). In particular, the direct sum property of informa-
tion complexity which we will discuss below holds for prior-free information complexity as
well.

Information complexity as defined here has been extensively studied in a sequence of
recent works [2, 6, 7, 12, 19, 28], and the study is still very much in progress. In particular, it
is surprisingly simple to show that information complexity is additive for tasks over indepen-
dent pairs of inputs. Let T1 and T2 be two tasks over pairs of inputs (X1, Y1), (X2, Y2), and
let μ1, μ2 be distributions on pairs (X1, Y1) and (X2, Y2), respectively. Denote by T1⊗T2 to
task composed of successfully performing both T1 and T2 on the respective inputs (X1, Y1)
and (X2, Y2). Then information complexity is additive over these two tasks:

Theorem 2.1. IC(T1 ⊗ T2, μ1 × μ2) = IC(T1, μ1) + IC(T2, μ2).

Proof. (Sketch, a complete proof of a slightly more general statement can be found in [7]).
The “easy” direction of this theorem is the ‘≤’ direction. Take two protocols π1 and π2 that
perform T1 and T2 respectively, and consider the concatenation π = (π1, π2) (which clearly
performs T1 ⊗ T2). Consider what Alice learns from an execution of π with prior μ1 × μ2.
A straightforward calculation using, for example, repeated application of the chain rule (1.8)
yields

I(Y1Y2; Π1Π2|X1X2) = I(Y1; Π1|X1) + I(Y2; Π2|X2),

and similarly for what Bob learns. Therefore IC(π, μ1 × μ2) = IC(π1, μ1) + IC(π2, μ2). By
passing to the limit as IC(π1, μ1) → IC(T1, μ1) and IC(π2, μ2) → IC(T2, μ2) we obtain the
‘≤’ direction.

The ‘≥’ direction is more interesting, even if the proof is not much more complicated.
In this direction we are given a protocol π for solving T1 ⊗ T2 with information cost I =
IC(π, μ1×μ2), and we need to construct out of it two protocols for T1 and T2 of information
costs I1 and I2 that add up to I1 + I2 ≤ I . We describe the protocol π1(X1, Y1) below:
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• Bob samples a pair (X2, Y2) ∼ μ2, and sends X2 to Alice;

• Alice and Bob execute π((X1, X2), (Y1, Y2)), and output the portion relevant to T1 in
the performance of T1 ⊗ T2.

It is not hard to see that the tuple (X1, Y1, X2, Y2) is distributed according to μ1 × μ2,
and hence by the assumption on π, π1 successfully performs T1. Note that there is a slight
asymmetry in π1: X2 is known to both Alice and Bob while Y2 is only known to Bob. For
the purpose of correctness, the protocol would have worked the same if Bob also sent Y2 to
Alice, but it is not hard to give an example where the information cost of π1 in that case is
too high. The information cost of π is thus given by the sum of what Bob learns about X1

from π1 and what Alice learns about Y1 (note that (X2, Y2) are not part of the input):

I1 = I(X1; Π|X2Y1Y2) + I(Y1; Π|X1X2).

The protocol π2(X2, Y2) is defined similarly to π1 in a skew symmetric way:

π2(X2,Y2) :

• Alice samples a pair (X1, Y1) ∼ μ1, and sends Y1 to Bob;

• Alice and Bob execute π((X1, X2), (Y1, Y2)), and output the portion relevant to T2 in
the performance of T1 ⊗ T2.

We get that π2 again successfully performs T2, and its information cost is:

I2 = I(X2; Π|Y1Y2) + I(Y2; Π|X1X2Y1).

Putting I1 and I2 together we get:

I1+ I2 = I(X1; Π|X2Y1Y2)+ I(Y1; Π|X1X2)+ I(X2; Π|Y1Y2)+ I(Y2; Π|X1X2Y1) =

I(X2; Π|Y1Y2) + I(X1; Π|X2Y1Y2) + I(Y1; Π|X1X2) + I(Y2; Π|X1X2Y1) =

I(X1X2; Π|Y1Y2) + I(Y1Y2; Π|X1X2) = I.

Once again, passing to the limit, gives us the ‘≥’ direction, and completes the proof.

If we denote an n-time repetition of a task T by T⊗n, then repeatedly applying Theo-
rem 2.1 yields

IC(T⊗n, μn) = n · IC(T, μ). (2.3)

Thus information complexity is additive and has the direct sum property: the cost of n
copies of T scales as n times the cost of one copy. This fact can be viewed as an extension
of the property H(Xn) = n ·H(X) to interactive problems, but what does it teach us about
communication complexity?

Direct sum and interactive compression. Let us return to the communication complexity
setting, fixing T to be the task of computing a function F (X,Y ) with some error at most
ε > 0 over a distribution μ (the case ε = 0 seems to be different from ε > 0). We will denote
by Fn

ε the task of computing n copies of F on independent inputs distributed according to
μn, with error at most ε on each copy (note that computing F correctly with error at most ε
on all copies simultaneously is a harder task). The direct sum question for communication
complexity asks whether

Dμn(Fn
ε ) = Ω(n · Dμ(Fε))? (2.4)
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While this question remains open, information complexity sheds light on this question by
linking it to problems in interactive coding theory. As discussed below, information com-
plexity appears to be the best tool for either proving or disproving (2.4), as well as for
establishing the “right” direct sum theorem in case (2.4) is false. It is an easy observation
that the information cost of a protocol π is always bounded by its length |π|, and therefore
information complexity is always bounded by communication complexity. Therefore, by
(2.3),

1

n
· Dμn(Fn

ε ) ≥
1

n
· IC(Fn

ε , μn) = IC(Fε, μ). (2.5)

It turns out that the converse is also true in the limit, as n → ∞ [6]:

lim
n→∞

1

n
· Dμn(Fn

ε ) = IC(Fε, μ). (2.6)

Equation (2.6) can be viewed as the interactive version of the Source Coding Theorem (1.2).
In particular, it gives an operational characterization of information complexity exclusively
in terms of communication complexity.

A promising attack route (that works to-date followed) on the direct sum question for
communication complexity is to try and prove a relationship of the type IC(Fε, μ) � Dμ(Fε)
(as discussed above, the converse is trivially true). Indeed, if we could prove that IC(Fε, μ) =
Ω(Dμ(Fε)), by (2.5) it would imply that 1

n · Dμn(Fn
ε ) = Ω(Dμ(Fε)) and prove (2.4).

One equivalent way to interpret the attempts to prove IC(Fε, μ) � Dμ(Fε) is in terms
of a search for an interactive analogue of Huffman coding (1.11) (where it does hold that
H(X) > C(x)−1). (One way) Huffman coding shows how to encode a low-entropy “unin-
formative” signal into a short one. Its interactive version seeks to simulate a low information
cost “uninformative” protocol π with a low communication protocol π′.

Until very recently, we did not know whether such a general compression scheme ex-
ists. Just this year, the first example of a relation whose information and communication
complexities are exponentially separated was given in a striking work by Ganor, Kol, and
Raz [19]. This result, in particular, shows a protocol π for a sampling problem that has in-
formation cost I , but which cannot be simulated by a protocol π′ with communication cost
< 2Ω(I).

Note that (2.5), which follows from Theorem 2.1, can be further sharpened as follows.
If there is a protocol πn for solving Fn

ε — n copies of F — with communication cost Cn,
then there is a protocol π1 for solving a single copy of Fε whose communication cost is still
at most C := Cn, and whose information cost is at most I ≤ Cn/n. To prove a lower
bound on Cn, we can assume that it is “too small”, and then show how to convert π1 into
a protocol π′ for Fε that uses < Dμ(Fε) communication. This brings us to the following
general interactive coding/compression question:

Problem 2.2 (Interactive compression problem). Given a protocol π whose communication
cost is C and whose information cost is I , what is the smallest amount of communication
needed to (approximately) simulate π?

To prove the strongest possible direct sum theorem we need π′ to be compressed all the
way down to O(I) bits of communication (the strongest possible interactive compression
result), however, partial interactive compression results lead to weaker (but still non-trivial)
direct sum theorems. At present, the two strongest compression results, which partially re-



Interactive information and coding theory 547

solve Problem 2.2, compress π to Õ(
√

C · I) communication4 [2] and 2O(I) communication
[7], respectively. Note that these results are incomparable since C > I can be much (e.g.
double-exponentially) larger than I .

These result lead to direct sum theorems for randomized communication complexity. As
the compression introduces an additional small amount of error, the first result implies for
any constant ρ > 0:

Dμn(Fn
ε ) = Ω̃(

√
n · Dμ(Fε+ρ)), (2.7)

and the second one implies

Dμn(Fn
ε ) = Ω(n · log(Dμ(Fε+ρ))). (2.8)

The recent result of Ganor et al. [19] rules out the strongest possible direct sum the-
orem for relations. Since the hard-to-compress protocol in their example has a very high
communication complexity (on the order of 22

I

), it is still possible that any protocol can
be compressed to O(I · logO(1)(C)) communication, leading to a direct sum theorem with

n
logO(1) n

instead of just n. We should also note that the direct sum situation with functions
(as opposed to relations) remains open.

Why is interactive compression so much harder than non-interactive? The main differ-
ence between the interactive and non-interactive compression settings is that in the inter-
active setting each message of the protocol conveys an average of I/C 5 1 bits of infor-
mation. There are many ways to compress communication in the relevant setting, but all of
them incur an average loss ofΩ(1) bits per round (Huffman coding being one example of this
phenomenon). This is prohibitively expensive in the interactive case, if the number of rounds
of interaction r is equal to C. Therefore, inevitably, to compress interactive communication
one has to compress multiple rounds in one message. This problem disappears when I 1 r,
and this is what makes the ‘≤’ direction of (2.6) go through when n is sufficiently large.

Direct product for communication complexity. Next, we turn our attention to the more
difficult direct product problem for communication complexity. The direct sum question
talks about the amount of resources needed to achieve a certain probability of success on n
copies of F . What if that amount of resources is not provided? For example, (2.5) implies
that unless n · IC(Fε, μ) bits of communication is allowed in the computation of Fn

ε , the
computation of some copy of F will have < 1 − ε success probability. What does it tell us
about the success probability of all copies simultaneously? It only tells us that the probability
of the protocol succeeding on all copies simultaneously is bounded by 1 − ε. This is a
very weak bound, since solving the n copies independently leads to a success probability of
(1− ε)n, which is exponentially small for a constant ε. How can this gap be reconciled? In
particular, can one show that Alice and Bob cannot “pool” the errors from all n copies on
the same instances, thus keeping the success probability for each coordinate, as well as the
global success probability, close to 1 − ε? The direct product problem precisely addresses
this question. Let us denote by suc(F, μ, C) as the highest success probability (w.r.t. μ) in
computing F that can be attained using communication ≤ C. Thus suc(F, μ, C) ≥ 1− ε is
equivalent to Dμ(Fε) ≤ C. Somewhat informally phrased, the direct product question asks
whether

suc(Fn, μn, o(n · C)) < suc(F, μ, C)Ω(n)? (2.9)

4Here, the Õ(·) notation hides poly-logarithmic factors.
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As with the direct sum question, the direct product question appears “obvious”: one would
expect that the best we can do is just execute the best protocol for one copy of F n times
independently. This will lead to a success probability of ≤ suc(F, μ, o(C))n.

A prominent setting within complexity theory where a question similar to the direct
product question arose is that of parallel repetition for two-prover games [39]. Parallel
repetition is used in the context of probabilistically checkable proofs (PCP) and hardness
amplification. Hardness amplification is accomplished here by taking a hard task T (e.g. a
verification procedure where the success probability of an unauthorized provers is 1 − ε),
and creating a task Tn by taking n independent instances of T . It has been shown [39] that
as n grows, the success probability goes to 0. Unfortunately, it does not go to 0 as (1− ε)n.
Indeed, as shown by a counterexample constructed by Raz [40], the best rate one can hope
for is (1−ε2)n. The reason for this, pointed out by an earlier example by Feige and Verbitsky
[18], is that the answers can be arranged to align errors together, so that when the provers
fail, they fail on a lot more than εn coordinates at the same time. This is possible when
answers are allowed to be correlated.

The direct product question (2.9) for communication complexity combines features from
the direct sum question (thus hinting that information complexity is to play a role here as
well), and from the parallel repetition setup (since we want a success probability dropping
exponentially in n). The direct sum discussion already suggests that for suc(F, μ, C) =
1 − ε, the best scaling of the amount of communication one can hope for is as n · I , where
I = IC(Fε, μ). This is because, as n → ∞, the per-copy communication cost of computing
F with error ε scales as n · I . Thus, if we denote by suci(F, μ, I) ≥ suc(F, μ, I) the best
success probability one can attain at solving F while incurring an information cost of at most
I , the direct product question for information asks whether

suc(Fn, μn, o(n · I)) < suci(F, μ, I)Ω(n)? (2.10)

Note that the success probability on the left-hand-side is still with respect to communication.
A statement such as this with respect to information cost is bound to be false: Information
cost being an average-case quantity, one can attain an information-cost In protocol by doing
nothing with probability 1 − δ, and incurring an information cost of In/δ 1 n · I with
probability δ that can be taken only polynomially (and not exponentially) small.

In a sequence of two papers, the second being very recent [11, 12], (2.10) was shown to
be true up to polylogarithmic factors for boolean functions. To simplify parameters, suppose
suci(F, μ, I) < 2/3. Then there are constants c1, c2 such that

if T log T < c1n · I , then suc(Fn, μn, T ) < 2−c2n. (2.11)

The proof of (2.11) is quite involved and combines ideas from the proof of direct sum theo-
rems and of parallel repetition theorems.

Exact communication complexity bounds. One of the great successes of information the-
ory as it applies to (classical, one-way) communication problems is in its ability to give pre-
cise answers to fairly complicated asymptotic communication problems, for example ones
involving complicated dependencies between terminals or complicated channels. For exam-
ple, the capacity of the binary symmetric channel BSC0.2 is precisely 1−H(0.2) ≈ 0.278,
which means that to transmit n bits over such a channel, we will need ≈ 3.596n utilizations
of the channel (i.e. will need to send ≈ 3.596n bits down the channel). Using combinatorial
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techniques, in most cases, such precision is inaccessible in the two-party setting, since the
techniques often lose constant factors by design. In contrast, information complexity extends
the precision benefits of one-way information theory to the interactive setting.

We give one specific example of an exact communication complexity bound. Recall that
the disjointness problem Disjn(X,Y ) takes two n-bit vectors X,Y and checks whether
there is a location with Xi = Yi = 1. Thus Disjn is just a disjunction of n indepen-
dent copies of the two bit AND(Xi, Yi) function. Using techniques similar to the proof
of Theorem 2.1, one can show that the communication complexity of disjointness is tightly
linked with the information complexity of AND. Note that disjointness becomes trivial if
many coordinates (Xj , Yj) of the input are (1, 1). However, any distribution of inputs where
μ((Xj , Yj) = (1, 1)) ∼ 1/n → 0 will not be trivial. More formally, denote by 0+ a func-
tion f(n) of n such that f(n) = o(1) and f(n) 1 2−O(n). For example, one can take
f(n) = 1/n. Then with some work one shows [9] that

R0+(Disjn) =

(
inf

μ:μ(1,1)=0
IC(AND0, μ)

)
· n ± o(n). (2.12)

Thus, understanding the precise asymptotics of the communication complexity of Disjn
boils down to understanding the (0-error) information complexity of the two-bit AND func-
tion5. It turns out that one can give an explicit information-theoretically optimal family of
protocols forAND, and calculate the quantity in (2.12) explicitly, obtainingR0+(Disjn) =
CDISJ · n ± o(n) where CDISJ ≈ 0.4827.

Interestingly, even in the case of such a simple function as two-bit AND, the informa-
tion complexity is not attained by any particular protocol, but rather by an infinite family of
communication protocols! Moreover, if we denote by ICr(AND0) the information cost of
AND where the infimum in (2.2) is only taken over protocols of length r, then it turns out
that ICr(AND0) = IC(AND0) + Θ(1/r2), implying that an asymptotically optimal pro-
tocol is only achieved with a super-constant number of rounds [9]. We do not yet know how
general this 1/r2 gap phenomenon is, and which communication tasks admit a minimum in
(2.2).

3. Interactive error-correcting codes

Adversarial error-correction. The discussion so far focused on coding for interactive
computing over a noiseless binary channel. In this section we will focus on error-correction
problems when the channel contains random or adversarial noise. The first regime we would
like to consider is that of adversarial noise. In this regime Alice and Bob are trying to perform
a task T over a channel in which an adversary is allowed to corrupt a constant fraction of
the messages. Both the regime of a binary channel and that of a channel with constant-size
alphabetΣ (i.e. where symbols σ ∈ Σ are being transmitted over the channel) are interesting.

The one-way case has been extensively studied for several decades, as discussed in the
introduction. If the task T is just a simple transmission task, then the theory of (worst-
case) error-correcting codes [34, 44] applies. While there are many open problems in coding
theory, the overall picture is fairly well understood. In particular, constructions of “good”

5Note that even when μ(1, 1) = 0 and thus AND(X,Y ) = 0 on supp(μ), the task AND0 requires the
protocol to always be correct – even on the (1, 1) input. Otherwise, IC(AND0, μ) would trivially be 0.
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positive-rate, constant-distance codes exist (i.e. codes that increase communication by a
constant factor only, and can tolerate a constant fraction of errors), and there are efficient
encoding and decoding constructions.

In the interactive case, the task may include many back-and-forth messages. As a generic
task, it is convenient to think about alternating binary pointer jumping (BPJn). In this
problem the parties are working with a depth-n binary tree. Alice is given a subset TA of
edges on the odd layers of the tree, with exactly one edge coming out of each vertex on odd
layers. Similarly, Bob is given a subset TB of edges on the even layers of the tree. Their
goal is to find the unique leaf that is connected to the root by edges from TA ∪ TB . There is
an obvious n-bit protocol for finding the leaf, where Alice and Bob alternate. The definition
of BJPn is parallel to the definition of a n-round protocol π as given by Definition 1.1. In
this sense, BPJn is the generic interactive task, as any interactive protocol can be recast as
an instance of BPJn.

To continue the comparison with the non-interactive setting, suppose an adversary is al-
lowed to corrupt a δ-fraction of the symbols exchanged by Alice and Bob, for some δ > 0.
Can they still compute BPJn? Solving BPJn efficiently requires a lot of back-and-forth
interaction. A naïve approach would be to apply (standard) error-correction to the interactive
protocol on a round-by-round basis. This does not work, because the adversary can concen-
trate all of her errors, for example, on the first round, causing all subsequent communications
to be wrong and derailing the protocol’s execution. Another obvious solution that dose work
is to have Alice send her input TA to Bob using a standard error-correcting code. Bob then
can compute the leaf. This solution works, but causes an exponential blow-up in communi-
cation, since TA takes ∼ 2n bits to describe, while the efficient solution for BPJn requires
only O(n) communication.

It is not at all clear that a constant-rate error correcting code is possible. Surprisingly,
constant-rate error-correcting codes for interactive computing do exist. The first such code
was demonstrated in a breakthrough work by Schulman in the 1990s [42], who showed
a constant-rate code against an adversary who is allowed to corrupt a constant δ-fraction
of the symbols on the channel for δ < 1/240. Schulman introduced a concept of a tree
code. Variants and extensions of tree codes have been used in all constructions since. The
construction opened up opportunities for interactive error-correction, but also left room for
improvement, as the error-parameter δ < 1/240 is far from optimal and the error-correction
is not efficient in that it requires time exponential in n to compute the encoding/decoding
(even though the communication itself is O(n) symbols).

After a gap in progress on interactive error-correction, a substantial amount of progress
has been made in the last 5 years [5, 8, 10, 20–22]. Progress so far has focused on (1) making
the tolerable error rate δ as high as possible; (2) making the construction explicit and com-
putationally efficient. This while keeping the rate (i.e. the ratio between the encoding length
and the length of the noise-free execution) of the code constant. What remains completely
open is the exact coding rate for interactive coding, given a specific value of δ. All we know
are characterizations of δ for which various specific types of good codes exist.

Next, let us discuss the error-rate region for which (two-party) interactive error-correction
is possible. Suppose Alice and Bob communicate over a channel which uses an alphabet Σ2

with |Σ2| = O(1) a large constant that is allowed to depend on δ (the case of a binary noisy
channel, |Σ2| = 2, is also interesting, with many of the problems still open there). An in-
teractive error-correction scheme π is a protocol of a fixed length n′ = O(n) over Σ2 that
solves BPJn, even when the channel is affected by a noise of rate δ. In other words, for
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any inputs (TA, TB), any execution transcript Π of π in which a total of at most δ · n′ of the
symbols were corrupted results with Alice and Bob outputting the correct leaf

BPJn(TA, TB) = DA(TA,Π) = DB(TB ,Π), (3.1)

DA andDB being the decoding functions for Alice and Bob, respectively. HereDA andDB

are only allowed to depend on the portions of the transcript Π accessible to Alice and Bob,
respectively.

First assume that in π, the player speaking in each round is pre-determined (a single
symbol is sent in each round). Such protocols are caller robust. Note that without this
assumption, it is possible to have a round in which both Alice and Bob (or neither Alice nor
Bob) speak, since error may confuse the players as to whose turn it is to speak. In this case
further modeling assumptions are needed to specify what happens during these rounds.

In the robust case, note that the adversary knows ahead of time nA and nB — the num-
ber of rounds Alice and Bob speak, respectively, in π. Here nA + nB = n′. Assume
without loss of generality that nA ≤ n′/2. Then, as with the proof that one way error-
correcting codes cannot recover from an error rate exceeding 1/2, by extrapolating between
π(TA1

, TB) and π(TA2
, TB), an adversary can corrupt nA/2 rounds of π, and prevent Bob

from distinguishing two potential inputs TA1 and TA2 of Alice. If the resulting transcript is
Π, as long as BPJn(TA1 , TB) �= BPJn(TA2 , TB), either DB(TB ,Π) �= BPJn(TA1 , TB)
or DB(TB ,Π) �= BPJn(TA2 , TB), meaning that π sometimes fails. Thus the adversary can
foil the protocol using nA/2 ≤ n′/4 errors, so we cannot hope to overcome an error rate of
δ ≥ 1/4.

It turns out [10] that it is possible to deal with error rates of δ = 1/4− ε using constant-
rate codes. As in Schulman’s construction, the key technical ingredient of this result is that
of a tree code. A tree code is a prefix code C : {0, 1}m → Σm

2 ; in a prefix code the
i-th symbol of the codeword C(S)i = Ci(S[1..i]) only depends on the first i symbols of
the word being encoded. It is clear that a prefix code cannot have the constant-distance
property since, for example C(0m) and C(0m−11) cannot differ in more than one symbol.
The best property we can hope for is that codewords of length k that deviate after the i-th
symbol will differ by close to (k − i) symbols. This is indeed the definition of a tree code:
a tree code C : {0, 1}m → Σm

2 is said to have distance α if for all i,k, and w ∈ {0, 1}i,
w0, w1 ∈ {0, 1}k−i−1,

dH(C(w0w0), C(w1w1)) ≥ α · (k − i). (3.2)

It can be shown [42] that tree codes exist for any constant α < 1 (the alphabet Σ2 may need
to be made sufficiently large, with its size increasing as α approaches 1). Note that it is easy
to see that a random code will not be a tree code with a very high probability. Therefore,
even constructing a non-explicit tree codes is not a trivial task. To decode a tree code, the
receiver just finds the codeword that is closest to the received word in Hamming distance.

Informally, each symbol sent by the tree code not only encodes the current symbol being
sent, but also hashes the entire history of the transmission, ensuring that a mistake introduced
by an adversary will be corrected as following rounds arrive. The key useful property of tree
codes for the purposes of interactive error-correction codes is the following: Suppose that t
rounds ago Alice sent a message z encoded using the tree code, and the adversary managed
to keep Bob from receiving it, and instead Bob thinks that z̄ was sent t rounds ago. This
means that the amount of errors between now and some point t′ ≥ t rounds ago must be at
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least α · t′/2. In other words, to keep Bob from learning z, the adversary has to introduce
many errors in a large stretch that in particular is at least t symbols long.

Next, let us give the intuition for how tree codes can be useful in interactive error cor-
rection, following the construction in [10]. Unfortunately, due to space constraints, we will
not be able to give a full sketch here. The protocol π will proceed by having Alice and Bob
send edges of TA and TB , respectively, using a tree code to encode a stream of edges being
sent. The parties are trying to build the unique path from the root in TA ∪ TB . At each point
in time, one of the parties (say Alice) can extend the path, assuming she correctly decoded
the previous edges. By the discussion above about the main property of tree codes, to keep
Alice from correctly decoding the previous edges, the adversary will have to use an error
rate of at least α/2 in Bob’s transmissions between the time the previous edge had been sent
by Bob, and when it is decoded by Alice. This amounts to an error rate of α/4. By choos-
ing α/4 > δ (which is possible since δ < 1/4) we can guarantee enough rounds in which
Alice and Bob will make progress. This outline glosses over how edges are represented, and
indeed representing edges so that each only takes O(1) bits which can be encoded using the
tree code is the main technical challenge overcome by [10].

As noted earlier, relaxing the robustness assumption requires further modeling assump-
tions on what happens in rounds where either both Alice and Bob or neither speak. One
would expect that by having the party that is being targeted by the adversary speak more,
one can improve the error tolerance of the protocol. Indeed, the example showing the 1/4
limit above could be remedied if the party being targeted by the adversary spoke more than
n′/2 of the rounds (thus forcing the adversary to expend more of her budget). Under a rea-
sonable model, a recent work [22] shows that the error-tolerance of non-robust protocols can
be made 2/7− ε > 1/4, and that this bound is tight.

In the one-way error-correcting coding theory, an important way of going beyond error-
rate 1/2 is using the concept of list decoding. A list-decodable code is one where for a
corrupt encoded words, there is a (constant-size) list of possible decodings. Over large,
constant-size alphabets, list-decodable codes exist for any error rate of 1−ε, where the output
list size is Oε(1). In the interactive setting, somewhat surprisingly, one can also construct
list-decodable error-correcting schemes. In the robust setting, the best error rate attainable
by a constant-rate code is 1/2− ε [8]. This construction uses a generalization of tree codes
called list-tree-codes. This generalization has an average-case rather than worst-case coding
property, and is instantiated by a random prefix code with a sufficiently large constant |Σ2|
with a very high probability. Interestingly, it appears that one needs interactive list-decoding
even just to attain optimal error-resistance for unique decoding in some regimes.

One limitation of the constructions above is that they are not explicit. In other words,
while we know that they can all be instantiated, often with a random prefix code, no provable
explicit constructions of tree codes and list-tree-codes are known. Worse yet, even if one
could somehow derandomize these constructions, the brute-force decoding procedures re-
quire exponential time. Several recent works developed efficient interactive error-correcting
coding schemes. In particular, the very recent work by Ghaffari and Haeupler [21] gives an
efficient scheme that achieves the same error-correction guarantees as the best-known non-
efficient scheme (see [21] for additional recent history and references). Its only limitation is
that it uses randomness for initialization, but it allows this randomness to be accessible by
the adversary, so it is not a major limitation since no shared secret between Alice and Bob is
needed. Most excitingly, while the scheme has a slightly sub-constant rate, by combining it
with the construction of [8] it appears that it can be made constant-rate, thus concluding the
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quest for efficient interactive error-correcting schemes with optimal error dependence.
All efficient schemes to-date follow a similar paradigm: start with a non-efficient scheme

on a very small scale (say, log log n rounds). On such a small scale one can just brute-force
the search for tree codes, and for efficient encoding-decoding schemes. Next, show how to
go from an interactive constant-rate error-correcting scheme of depth k to one of depth, say,
2k. Note that one will only need to apply such a transition twice to go from depth log log n
do depth n.

A major gap in our understanding of interactive error-correction is in the rate of optimal
codes. In other words, for a given error rate δ = 1/4− ε, what is the best rate

ρδ =
n

n′ log |Σ2|
one can hope to attain in solving BPJn? We do not even know the asymptotics of ρδ as δ
approaches the boundary points of 0 and 1/4. Perhaps this should not be too disappointing,
since parallel questions are open for one-way communication. However, one could hope
to resolve these problems in the random error model, since there Shannon’s classical work
does give us precise channel capacity answers. We turn our attention to that regime next.

Random errors and channel capacity. In the random error model, Alice and Bob com-
municate over a noisy channel C, where the noise is generated randomly. For concreteness,
we will focus here on the binary symmetric channel with error ε,BSCε, where bits are being
transmitted and each bit sent over the channel is independently flipped with probability ε.

As discussed earlier, the channel capacity of BSCε is given by (1.10) and is equal to
1 − H(ε). Informally, this means that the utility of BSCε in conducting communication is
1− H(ε), and that for a growing n, transmitting n random bits over BSCε will require

n/cap(BSCε)± o(n) = n/(1− H(ε))± o(n) (3.3)

utilizations of the channel. How this logic should extend to the interactive case is still up to
debate. One natural extension is to consider the pointer jumping problemBPJn from before
as the standard interactive problem, and to define interactive channel capacity in terms of the
number of channel utilizations needed to execute BPJn, similarly to

icap1(C) := lim
n→∞

n

# of utilizations of C needed to perform BPJn w.h.p.
. (3.4)

No explicit formulas (or ways of obtaining explicit values) of icap1(BSCε) are known.
Even establishing directly that icap1(BSCε) > 0 does not seem completely straightforward,
although this fact is a direct consequence of the more general adversarial setting from the
previous section. One important recent result by Kol and Raz [29] establishes a gap between
icap1 and Shannon’s channel capacity for BSCε showing that

icap1(BSCε) = 1−Θ(
√

H(ε)) = 1−Θ(
√

ε log 1/ε) < cap(BSCε) (3.5)

as ε → 0. This result is quite technical, and underscores the difficulty of the interactive
channel capacity question.

One of the nice properties of Shannon’s one-way information theory is that the notions of
entropy and of channel capacity commute. That is, if we want to transmit a random variable
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X whose entropy is H(X) 1 1 over a channel C, then the number of channel utilizations
needed to transmit X is on average

(H(X)/cap(C))(1 + o(1)). (3.6)

In the interactive setting, we have established information complexity as the interactive ana-
logue of channel capacity. It is unclear whether there is a way to define interactive channel
capacity that makes the interactive analogue of (3.6) hold. Such an analogue may also help
shed light onto the basic structure of interactive communication. The result of [29] implies
that such a characterization cannot simultaneously capture interactive and non-interactive
tasks, and thus it is bound to be quite complex.

4. Conclusion and discussion

We conclude with some specific open problems and a general discussion. In addition to some
of the open questions outlined above, particularly surrounding compressibility of interactive
computation, several other questions, that are easy in the non-interactive setting arise when
interaction is added to the mix.

Computability of information complexity. The first problem that is (somewhat embar-
rassingly) open, is computing the information complexity from the truth table of F :

Problem 4.1. Given the truth table of a function F : (X,Y ) �→ {0, 1}, and error parameter
ε ≥ 0, and a distribution μ of (X,Y ), can one give a general procedure for computing the
information complexity IC(Fε, μ)?

We believe the answer to Problem 4.1 to be affirmative. As noted above, the problem
is that there might be a sequence of protocols whose information cost decreases as protocol
size increases. The ≤ direction of (2.6) gives one way to obtain a decreasing sequence that
converges to IC(Fε, μ) by considering the amortized cost of n copies of F as n → ∞.
Unfortunately, for this procedure to compute IC(Fε, μ), we need to have an effective bound
on the sequence’s rate of convergence down to IC(Fε, μ). The work [32] gives a computable
characterization of IC(Fε, μ), but only when one fixes the number of rounds of interaction
(back-and-forth messages) in advance. Once again, we do not know an effective rate of
convergence of the round-restricted information complexity to the unrestricted value.

One can also formulate Problem 4.1 as a continuous dynamic programming problem in
the spirit of the Hamilton-Jacobi-Bellman equation [9], but it is not clear how to solve the
resulting equation, although it might be doable by better understanding the properties of the
function IC(Fε, μ) when considered as a function on the space of distributions μ.

Multi-party communication. It is a natural and very interesting goal to generalize the
discussion above to more than two terminals. There are various models for multi-terminal
interactive computation. The main complication stems from the fact that the prior distribu-
tions, and the way the inputs to different players are correlated, may be rather sophisticated.
One popular model of multi-party computation is that of number-on-forehead (NOF). In the
NOF model each party gets to see all inputs but its own and the goal is to compute a function
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F (X1, . . . , Xk) of the inputs [14, 30]. Lower bounds in this model would have profound im-
plications in complexity theory [3]. Multiparty NOF lower bounds are considerably harder
than two-party bounds. For example, it is still unknown whether the communication com-
plexity of the 3-party analogue of Disjn has communication complexity Θ(

√
n) or Θ(n)

(or something in between) [43].
There are numerous complications in extending notions of information complexity to

multi-terminal settings. Apart from sheer technical difficulties, a major obstacle is finding the
“right” analogue of public and private randomness. Note that even with three parties we have
seven different types of randomness (one “private” for each party, one “public”, and three
shared between two of the three parties but not the third). Allowing all the different types of
randomness leads to another impasse, as in this regime there are information-theoretically
secure protocols for multi-party computation [4] which would bring the information com-
plexity of all problems close to 0.

Beyond communication: continuous relaxations for other models of computation.
From the viewpoint of theoretical computer science, information complexity can be viewed
as the continuous relaxation of communication complexity. Avoiding the “discreteness” of
bits and switching to information instead simplified not only the proofs, but the results them-
selves. For example, the direct sum theorem (Theorem 2.1) is true for information complex-
ity but is not true, at least in full generality, for communication complexity. Thus, this is one
more example in the context of complexity theory where a continuous relaxation is easier to
deal with. There are many more such examples in the context of algorithms. For example,
one of the leading paradigms in approximation algorithms involves relaxing discrete prob-
lems into continuous convex optimization programs (for example, linear or semi-definite),
and then rounding the resulting fractional solution to obtain an integral one. This allows one
to connect the problem of algorithm development with a rich (and deep) theory of continuous
analysis and geometry.

In the context of computational complexity, there is still much to be desired in terms of
our ability to “de-discretize” computation. The difficulty of dealing with a discrete computa-
tion theory has been foreseen by von Neumann as early as 1948 [46] in his Hixon Symposium
talk:

“There exists today a very elaborate system of formal logic, and, specifically,
of logic as applied to mathematics. This is a discipline with many good sides,
but also with certain serious weaknesses. This is not the occasion to enlarge
upon the good sides, which I have certainly no intention to belittle. About the
inadequacies, however, this may be said: Everybody who has worked in formal
logic will confirm that it is one of the technically most refractory parts of math-
ematics. The reason for this is that it deals with rigid, all-or-none concepts, and
has very little contact with the continuous concept of the real or of the complex
number, that is, with mathematical analysis. Yet analysis is the technically most
successful and best-elaborated part of mathematics. Thus formal logic is, by
the nature of its approach, cut off from the best cultivated portions of mathe-
matics, and forced onto the most difficult part of the mathematical terrain, into
combinatorics.

The theory of automata, of the digital, all-or-none type, as discussed up to now,
is certainly a chapter in formal logic. It would, therefore, seem that it will have
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to share this unattractive property of formal logic. It will have to be, from the
mathematical point of view, combinatorial rather than analytical.”

Over 65 years later, most fundamental problems in the theory of computation such as
the P vs. NP problem are wide open, and most unconditional lower bounds are based on
diagonalization ideas of Cantor, Gödel and Turing. Von Neuman’s prognostication appears
to have withstood the test of time.

Is there a natural continuous relaxation of computational complexity specific enough to
deal with its major open problems? And are our mathematical tools mature enough to pursue
one if it exists? It is hard to know, but information theory is a great example of a continu-
ous theory that organizes (and greatly simplifies) discrete communication. Communication
complexity started out as a discrete theory, but appears to be amenable to continuous treat-
ment, with information complexity being its natural continuous relaxation. It will be very
interesting to see whether this push can be extended further into computational complexity.
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Counting constraint satisfaction problems

Andrei A. Bulatov

Abstract. Counting constraint satisfaction problems (CSPs) originate from two very different areas:
statistical physics, where partition functions appearing in “spin-glass” models have been studied since
the beginning of the last century, and counting combinatorial problems formally introduced by Valiant
in the late 70s. In spite of such a long history, the systematic study of the general counting CSP started
less than 15 years ago. In this short survey we review recent results on counting CSPs.
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1. Introduction

In a counting problem the aim is to find the number of certain arrangements in a given combi-
natorial structure. Counting problems and their generalizations frequently occur in a variety
of areas ranging from combinatorics, to computer science, to statistical physics. In com-
plexity theory a systematic study of counting problems was initiated by Valiant who in an
attempt to understand the hardness of computing the Permanent introduced a formal frame-
work for such problems [61, 62]. In particular, Valiant introduced the complexity class #P, as
the class of non-negative integer functions f(I), for which there is a nondeterministic Turing
machine having f(I) accepting paths when run on instance I; he also introduced reduction
between counting problems, and showed the #P-hardness of several problems including the
Permanent. Further research on counting problems, leaving aside determining the complex-
ity of particular problems, included clarifying relations of #P to other complexity classes
[1, 3, 38, 41, 57], establishing a hierarchy of counting complexity classes inside #P [4, 59],
and the descriptive complexity of counting problems [55].

In this short survey we consider a special albeit quite broad type of counting problems,
the counting version of the Constraint Satisfaction Problem (CSP). The CSP provides a
powerful framework to express many combinatorial problems in a uniform way. In an in-
stance of the CSP we are given a set D, a set of variables V , and a conjunctive formula
R1(x1)∧ . . .∧Rm(xm), where each Ri is a relation (a predicate) on D, and each xi is a tu-
ple of variables from V , whose length matches the arity of Ri. The goal is to decide whether
there is an assignment σ : V → D that satisfies the formula. Feder and Vardi [34] observed
that the CSP can also be reformulated as the homomorphism problem: Given relational struc-
tures, G and H, of the same signature, decide whether or not there exists a homomorphism
from G to H. In the counting version of the CSP, #CSP, the goal is to find the number of
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satisfying assignments of a conjunctive formula, or the number of homomorphisms between
relational structures.

As is easily seen, the unrestricted CSP is NP-complete, because it includes such well
known NP-complete problems as Satisfiability and Graph Coloring. Therefore the CSP re-
search focuses on restricted cases of this problem. The most fruitful way to restrict the
general CSP is to fix the structure H; then the problem reduces to the following question:
given a relational structure G, decide whether or not there exists a homomorphism from G to
H. The ‘logic’ form of the problem can be restricted in a similar way by fixing set D and set
of predicates Γ that are allowed in the problem. The counting version of the CSP can also be
restricted using the same approach. A CSP restricted in one of these ways is often referred
to as non-uniform CSP and denoted by CSP(H) or CSP(Γ), respectively. For the count-
ing version of the problem we use #CSP(H) and #CSP(Γ). Non-uniform CSPs allow
one to express a wide range of combinatorial problems such as graph coloring, satisfiability,
independent sets, etc.

The principal research goals in the study of non-uniform CSPs, decision or counting, are
(1) to determine its precise complexity by identifying the complexity classes it is complete
in, and (2) to design efficient solution algorithms whenever such algorithms exist. Decision
non-uniform CSPs have received much attention during the last couple of decades, see, e.g.,
[2, 6, 7, 15, 43, 45, 56]. One of the most remarkable phenomena emerging from these studies
and directly related to goal (1) is that every non-uniform CSP of known complexity is either
polynomial time solvable or NP-complete. Such a property, often referred to as complexity
dichotomy, is, however, nontrivial, since by [48] there is an infinite hierarchy of complexity
classes between P and NP (assuming P �=NP). The dichotomy phenomenon triggered a flurry
of similar results, of which the counting CSP is an important part.

Another origin of the counting CSP can be traced back to statistical physics. Several
formalisms such as the Ising and Potts models [44, 53] have been used to study macroscopic
properties of ensembles of particles from their local interactions. Ising, Potts, and other mod-
els involve computing partition functions corresponding to a collection of particles. These
models result in a generalized version of the counting CSP known as the weighted counting
CSP, in which every homomorphism (satisfying assignment) is equipped with a real or com-
plex weight, and the goal is to find the sum — the partition function — of the weights of
all homomorphisms (or satisfying assignments). Although the goals in physics studying the
models are different from the algorithmic and complexity questions we are concerned with,
this link has served as a source of motivation for the counting CSP research.

2. Basic facts

2.1. Counting and approximation complexity. Counting problems including #CSPs as
well as weighted #CSPs form a subclass of problems of computing functions. Recall that in
such a problem the goal is, given a string w ∈ Σ∗, Σ is a finite alphabet and Σ∗ is the set
of finite strings over Σ, to find the value f(w), where f : Σ∗ → S is a function to some set
S. In this paper S is always some numerical set, N, the set of natural numbers, for counting
CSPs, or Z, Q, R, C, the sets of integers, rational numbers, real, and complex numbers, as
well as, Q+, R+, the sets of positive rational and real numbers, respectively, for weighted
#CSPs. Note that for algorithmic purposes elements of S must be efficiently representable.
Although some approaches to complexity of arbitrary real and complex functions exist, see,
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e.g. [47], we will avoid complications related to such methods by assuming that all numbers
we use are algebraic and have an efficient representation.

FP denotes the class of functions f for which there exists a polynomial time deterministic
Turing machine that computes f . Generally, the class of counting problems, #P, is defined
as a counting analog of the class NP. A function f : Σ∗ → N belongs to the class #P if there
exists a polynomial time non-deterministic Turing machine M such that for any instance
w ∈ Σ∗ the number of accepting paths of M(w) equals f(w).

Parsimonious reduction between counting problems was introduced by Valiant in [62].
Problem (function) f is parsimoniously reducible to problem g if there is a polynomial time
algorithm that transforms every instance w of f to an instancew′ of g such that the size of w′

is bounded by a polynomial in the size of w and f(w) = g(w′). Parsimonious reductions are
often too restrictive to obtain meaningful results. In this paper we mostly use more general
Turing reductions. Problem f is Turing reducible to problem g if there is a polynomial time
algorithm computing f that satisfies the following condition: for every instance w of f it
makes polynomially many queries of the form g(w′), where the size of w′ is also bounded
by a polynomial in the size of w.

#P-completeness with respect to parsimonious reductions is defined in a natural way: A
counting problem f is #P-complete if it belongs to #P and any problem from #P is parsimo-
niously reducible to f . For Turing reductions the situation is more complicated. Technically,
the class #P is not closed under Turing reductions, therefore, it is more correct to speak about
P#P-completeness, that is, completeness in the class of problems solvable in polynomial
time provided an access to an oracle from #P. This class contains very difficult problems,
for example, Toda [59] showed that the polynomial time hierarchy is contained in P#P. To
avoid unnecessary complications the hardness results in this paper will be stated in terms of
#P-hardness rather than completeness. A problem f is #P-hard if every problem from #P is
Turing reducible to f .

Ladner [48] showed that if P �=NP then there are infinitely many different complexity
classes between P and NP. Ladner’s result can be extended to counting complexity classes.
Many results cited here claim that a counting CSP must be either in FP or #P-hard. This,
however, is a nontrivial property that cannot be taken for granted.

2.2. Constraint satisfaction problem. Let D be a set and n ∈ N. The set of all n-tuples
over D is denoted by Dn; we will denote tuples in boldface, e.g., a, and its ith entry will
be denoted by a[i]; n is also referred to as the arity of a. An n-ary relation R is any subset
of Dn; again n is called the arity of R, denoted ar(R). We do not distinguish between a
relation R and the corresponding predicate, the function R : Dn → {0, 1} with R(a) = 1 if
and only if a ∈ R. A constraint language is any set of relations over some set.

We first introduce the ‘logic’ version of the counting CSP. For a ∈ Dn and σ : D → B
by σ(a) we denote the tuple (σ(a[1]), . . . , σ(a[n])). For n ∈ N the set {1, . . . , n} is denoted
by [n].

Definition 2.1. Let D be a finite set called a domain and Γ a constraint language over D.
An instance I of the counting constraint satisfaction problem associated with Γ (#CSP(Γ))
consists of a finite set of variables V and a conjunctive formula

R1(x1) ∧ . . . ∧ Rm(xm),

where R1, . . . , Rm ∈ Γ and xi is a tuple of variables from V of arity ar(Ri). A solution
of I is a mapping σ : V → D such that Ri(σ(xi)) = 1 for every i ∈ [m]. The objective
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in #CSP(Γ) is to find the number of solutions of a given instance I . By the size of I we
understand the length of any reasonable encoding of I .

Feder and Vardi [34] observed that CSP can be equivalently expressed through homo-
morphisms of relational structures.

A vocabulary is a finite set of relational symbols R1, . . . , Rn each of which has a fixed
arity ar(Ri). A relational structure over vocabularyR1, . . . , Rn is a tupleH = (H;RH1 , . . . ,
RHn ) such that H is a non-empty set, called the universe of H, and each RHi is a relation on
H having the same arity as the symbol Ri. Let G,H be relational structures over the same
vocabulary R1, . . . , Rn. A homomorphism from G to H is a mapping σ : G → H from the
universe G of G (the instance) to the universe H of H (the template) such that, for every
relation RG of G and every tuple a ∈ RG , it holds that σ(a) ∈ RH.

Definition 2.2. LetH be a relational structure. In the counting constraint satisfaction prob-
lem associated with H (#CSP(H)), the objective is, given a structure G with the same
vocabulary as H, to compute the number of homomorphisms from G to H. By the size of G
we understand the length of any reasonable encoding of G.
Example 2.3 (#H -Coloring, [30, 40, 49]). A graph H = (V,E) is a structure with a
vocabulary consisting of one binary symbol E. Then #CSP(H) is widely known as the
#H -Coloring Problem, in which the objective is to compute the number of homomor-
phisms from a given graph to H .

The #H -Coloring Problem can also be represented as #CSP(ΓH), where ΓH =
{E}. Indeed, every instance, i.e., a graph G = (W,F ) can be converted into a formula∧

uv∈F E(u, v).

Example 2.4 (#3-SAT, [22, 23, 61, 62]). An instance of the #3-SAT problem is spec-
ified by giving a propositional logic formula in CNF each clause of which contains 3 lit-
erals, and asking how many assignments satisfy it. Therefore, #3-SAT is equivalent to
#CSP(Γ3-SAT), where Γ3-SAT = {Rijk : i, j, k ∈ {0, 1}} and the Rijk = {0, 1}3 −
{(i, j, k)} are the ternary relations representable by 3-clauses.

Alternatively, #3-SAT can be represented as #CSP(S3), where S3 is the 2-element
relational structure with universe {0, 1} and vocabulary {Rijk : i, j, k ∈ {0, 1}}.
Example 2.5 (Systems of linear equations, [22, 23]). LetF be a finite field and let #3LIN(F )
be the problem of finding the number of solutions to a system of linear equations over F ,
each of which contains at most 3 variables. Similar to Example 2.4 this problem can be
viewed as#CSP(Γ3LIN(F )) where Γ3LIN(F ) contains all relations representable by a linear
equation with at most 3 variables.

For the homomorphism version of this problem, it is not hard to see that #3LIN(F ) is
equivalent to #CSP(L3), where L3 is the relational structure with the universe F each of
whose relations is given by a linear equation with at most 3 variables.

The more general problem #LIN(F ), in which linear equations are not limited to have 3
variables, can also be expressed as #CSP(ΓLIN(F )) for an appropriate constraint language.
However, ΓLIN(F ) is necessarily infinite.

In general, a relation that can be represented as the set of solutions of a system of linear
equations over a field will be called affine.

Example 2.6 (Independent sets). In the #Independent Set problem (#IS) the objective
is, given a graph G, to find the number of independent sets in G. As is easily seen, #IS is
equivalent to#CSP(I), where I = ({0, 1}, E1) is a graph withE1 = {(0, 0), (0, 1), (1, 0)}.
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Since #IS is a special case of the #H -Coloring problem, its representation as a CSP
in the ‘logic’ form is the same as in Example 2.3.

We now turn to weighted #CSPs. Recall that S is one of the sets Z,N,Q,R,C,
Q

+,R+, although the following definition works for any semiring. For a finite set D, the
domain, we let

Fk(D, S) = {f : Dk → S}, F(D, S) =
⋃
k≥1

Fk(D, S)

denote the set of functions from D to S. If f ∈ Fk(D, S), then k is called the arity of f ,
denoted ar(f).

Definition 2.7. Let Γ ⊆ F(D, S) be a finite set. The weighted #CSP associated with Γ,
denoted#CSP(Γ), is the following problem. An instance I of#CSP(Γ) consists of a finite
set of variables V and a product

f1(x1) · . . . · fm(xm),

where f1, . . . , fm ∈ Γ and xi is a tuple of variables from V of arity ar(fi). A configuration
σ for the instance I is a function σ : V → D. The weight of a configuration σ is given by

w(σ) =

m∏
i=1

fi(σ(xi)).

The objective in #CSP(Γ) is to find the partition function of I

ZΓ(I) =
∑

σ:V→D

w(σ).

An important special case of weighted #CSP is when Γ contains only one function f , and
this function is binary. Let D = {d1, . . . , d
}. Then f can be described by an � × �-matrix
Mf where Mf [i, j] = f(di, dj). The problem #CSP({f}) (or #CSP(f) for simplicity)
is often referred to as EVAL(Mf ). In other words, for an � × �-matrix M the problem
EVAL(M) is the problem of computing, given a multi-digraph G = (V,E), the sum

ZM (G) =
∑

σ:V→[
]

∏
uv∈E

M [σ(u), σ(v)].

Vertex weights add flexibility to the problem EVAL(M) and often occur in proofs as an
auxiliary tool. Technically, EVAL(M) with vertex weights, denoted EVAL(M,N), is the
problem #CSP(f, g), where f is the binary function corresponding to M , and g is a unary
function defining the weights. It is also standard to model g by a diagonal matrix N such
that N [i, i] = g(di). The partition function then takes the following shape

ZM,N (G) =
∑

σ:V→[
]

∏
uv∈E

M [σ(u), σ(v)] ·
∏
u∈V

N [σ(u), σ(u)].

The following two examples originate from certain “spin-glass” models of statistical
physics.
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Example 2.8 (The Ising model, [44]). This framework was introduced by Ising [44] to
describe the phase transition phenomenon in ferromagnets. For a given graph G = (V,E),
the model assigns a spin σ(v) to every vertex v ∈ V , which may be −1 or +1. Each edge
contributes some amount of energy into the system, this amount is the same for every edge
and equals−Jσ(u)σ(v) for some constant J ; also every vertex contributes the same amount
of energy N that is determined by the external magnetic field. Then the total energy of
the system (its Hamiltonian) equals H(σ) = −J

∑
uv∈E σ(u)σ(v) − N

∑
v∈V σv . Let T

denote the temperature of the system, and let k denote Bolzmann’s constant. Then setting
β = (kT )−1, the partition function of the system is given by

ZIsing(G, T ) =
∑

σ:V→{−1,+1}
e−βH(σ) =

∑
σ:V→{−1,+1}

∏
uv∈E

eβJσ(u)σ(v)
∏
v∈V

eβNσ(v).

Defining function fIsing(x,y) by fIsing(−1,−1) = fIsing(+1,+1) = e2βJ and
fIsing(−1,+1) = fIsing(+1,−1) = 1, function gIsing(x) = eβNx, and ΓIsing = {fIsing,gIsing} we
have ZIsing(G,T) = eβJ|E|ZΓIsing(G).

Alternatively, computing ZIsing(G,T) is equivalent to EVAL(MIsing,NIsing) where

MIsing =

(
e2βJ 1
1 e2βJ

)
, NIsing =

(
e−βN 0
0 eβN

)
,

Example 2.9 (The Potts model, [53]). The Potts model was introduced in [53] as a gen-
eralization of the Ising model. For a natural number q, in the q-state Potts model on a
graph G = (V,E) every configuration σ : V → [q] has the Hamiltonian given by H(σ) =
−J
∑

uv∈E δσ(u)σ(v), where δ is the Kronecker delta. Setting x = eβJ − 1 the corresponding
partition function ZPotts satisfies the equality

ZPotts(G;q,x) =
∑

σ:V→[q]

e−βH(σ) =
∑

σ:V→[q]

∏
uv∈E

(1+x · δσ(u),σ(v)) = ZΓPotts(G),

where ΓPotts = {fPotts} and fPotts : [q]× [q] → R is given by fPotts(x,y) = eβJ if x = y and
fPotts(x,y) = 1 otherwise.

Example 2.10 (Even Subgraphs, [36]). Let us consider the problem EVAL(MEven) for the
following 2× 2-matrix, whose rows and columns are indexed with 0,1

MEven =

(
1 1
1 −1

)
.

For a graph G = (V,E) the value 1
2ZMEven

(G) + 2|V |−1 is the number of induced subgraphs
of G with an even number of edges ([36]). To see this, observe that for every configuration
σ : V → {0,1} the term∏uv∈E MEven[σ(u),σ(v)] is 1 if the subgraph induced by {v : σ(v) =
1} has an even number of edges and−1 otherwise. Therefore up to a simple transformation,
ZMEven counts induced subgraphs with an even number of edges.

3. Ranks, linear equations, and groups

Many counting problems studied since the foundational results by Valiant [61, 62] are prob-
lems of the form #CSP(Γ), see, e.g. [26, 52, 54]. Problems related to the Potts and
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Ising models have been studied in statistical physics and elsewhere for nearly a century
[44, 46, 53]. However, a systematic study of the complexity of (weighted) #CSP has started
only in the late 90s.

In this section we present the three main algorithmic ideas used to solve #CSPs.

3.1. Linear equations. In Example 2.5 for a finite field F we introduced the problems
#3LIN(F ) and #LIN(F ). Observe that the number of solutions of a system of linear
equations over F can be easily found. Indeed, if the dimensionality of the solution space of
a given system equals k, the system has |F |k solutions. More surprising is that in some cases
this is the only reason a #CSP can be solved in polynomial time.

By a Boolean CSP (#CSP, weighted #CSP) we mean a problem whose domain D con-
tains only two elements. We will assume D = {0, 1}. Creignou and Herrmann [22, 23]
showed that among Boolean #CSPs the only polynomial time solvable case is LIN(F ),
where F is the 2-element field.

Theorem 3.1 ([22, 23]). Let Γ be a set of relations on {0, 1}. Then #CSP(Γ) ∈ FP if and
only if every relation from Γ is affine. Otherwise it is #P-hard.

3.2. Graphs and ranks. Consider the problemEVAL(M)whereM is an �×�-matrix with
entries from S (recall that S denotes one of N,Z,Q,Q+,R,R+,C), and let rank(M) denote
the rank of M . As is mentioned before, EVAL(M) is the same as the problem #CSP(f)
for an appropriate binary function f .

Lemma 3.2. If rank(M) ≤ 1 then EVAL(M) is solvable in polynomial time.

Proof. An instance of EVAL(M) is a multi-digraph G = (V,E), and

ZM (G) =
∑

σ:V→D

∏
uv∈E

M [σ(u), σ(v)].

Let indeg(u), outdeg(u) denote the indegree and outdegree of a vertex v ∈ V . Let |D| = k.
As rank(M) ≤ 1 there are numbers α1, . . . , αk, β1, . . . , βk ∈ S such that for 1 ≤ i, j ≤ k
we have:

M [i, j] = αi · βj

(βj can be chosen to be the M [1, j] and αi = M [i, 1]/M [1, 1]). Then for σ : V → D

ω(σ) =
∏

uv∈E
M [σ(u), σ(v)] =

∏
uv∈E

ασ(u)βσ(v) =
∏
v∈V

α
outdeg(v)
σ(v) β

indeg(v)
σ(v) .

Thus

ZM (G) =
∑

σ:V→D

ω(σ) =
∑
σ

∏
v∈V

α
outdeg(v)
σ(v) β

indeg(v)
σ(v) =

∏
v∈V

k∑
i=1

α
outdeg(v)
i β

indeg(v)
i .

The last term can easily be evaluated in polynomial time.

If all entries of M are natural numbers, M can be viewed as the adjacency matrix of a
multi-digraph HM = (V,E). In this case EVAL(M) is also the problem of counting the
number of homomorphisms of a given multi-digraph G = (W,F ) to HM . By a homomor-
phism of multi-digraphs here we understand a mapping σ : F → E such that for any arcs
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uv,wt ∈ F with σ(uv) = u′v′, σ(wt) = w′t′, if u = w then u′ = w′, and if v = t then
v′ = t′.

Another way to interpret the problem EVAL(M) for matrices with entries from N is
through equivalence relations. Let η, θ be equivalence relations on a setD and letA1, . . . , Ak

and B1, . . . , B
 be the equivalence classes of η and θ, respectively. The matrix Mη,θ is a
k × �-matrix such that Mη,θ[i, j] = |Ai ∩ Bj |.

The connection between #CSP(η, θ), EVAL, and weighted #CSP was established in
[14]. The bipartization of a k × �-matrix M is the (k + �)× (k + �)-matrix

bip(M) =

(
0 M
0 0

)
.

Matrix bip(M) is always the adjacency matrix of a bipartite (multi)-digraph with parts A
and B of size k and �, respectively, and such that every edge is directed from A to B. The
problems #CSP(η, θ) and EVAL(bip(Mη,θ)) are Turing reducible to each other. If Mη,θ

is a square matrix then #CSP(η, θ) is reducible to EVAL(Mη,θ); and for arbitrary η, θ, the
problem EVAL(Mη,θ · M�

η,θ) is reducible to #CSP(η, θ).
The rank 1 condition from Lemma 3.2 can be generalized further. Let M be a k × �-

matrix with entries from S. A submatrix ofM is a matrix obtained fromM by deleting some
rows and columns. For non-empty sets I = {i1, . . . , ip} ⊆ [k] and J = {j1, . . . , jq} ⊆ [�],
by MIJ we denote the p × q-submatrix with MIJ [r, s] = M [ir, js]. A submatrix M ′ is
proper if M ′ �= M . Let I = [k]− I and J = [�]− J .

Definition 3.3. A decomposition of M consists of two proper submatrices MIJ and MI J

such that M [i, j] = 0 for all (i, j) ∈ (I × J) ∪ (I × J). Matrix M is indecomposable if it
has no decomposition. A block of M is an indecomposable submatrix MIJ with at least one
non-zero entry and such that MIJ ,MIJ is a decomposition of M .

The following theorem by Bulatov and Grohe [14] characterizes matrices that give rise
to counting CSPs solvable in polynomial time. If every block of a matrix M has rank 1, M
is said to be block rank-one.

Theorem 3.4 ([14]).

(1) Let η, θ be equivalence relations on D and M = Mη,θ the corresponding matrix.
Then the problem #CSP(η, θ) is solvable in polynomial time if and only if M block
rank-one. Otherwise this problem is #P-hard.

(2) Let f : D2 → R
+ be a commutative function and M = Mf (or M = MH for a

multi-graph H). Then #CSP(f) (resp, or EVAL(MH)) is solvable in polynomial
time if and only if M is block rank-one. Otherwise this problem is #P-hard.

The block rank-one condition can be generalized to tensors of more than two dimensions.
LetM be an r-dimensional tensor over S indexed by elements of [k1]×. . .×[kr]. It is said to
have rank 1 if there are numbers γij , i ∈ [r], j ∈ [ki] such thatM [i1, . . . , ir] = γ1i1 ·. . .·γrir .
Decompositions and blocks of M are defined similar to Definition 3.3. Finally, M has the
block rank-one condition if every its block has rank at most one.

The block rank-one condition and Theorem 3.4 provide some insights into more complex
cases.
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Undirected graphs. Dyer and Greenhill [30] proved a dichotomy theorem for #CSP over
undirected graphs.

Theorem 3.5 ([30]). Let H be a graph, possibly with loops. Then #CSP(H) ∈ FP if
and only if every connected component of H is either a single vertex, or a complete graph
with all loops present, or a complete bipartite graph without loops. Otherwise #CSP(H) is
#P-hard.

As is easily seen, the adjacency matrices of graphs from Theorem 3.5 are the symmetric
01-matrices M satisfying the block rank-one condition.

The following two results from [29] and [31] make use of Theorem 3.4, although the
problems they study do not involve matrices explicitly. The reductions to binary functions
constructed in these papers are somewhat ad hoc; however, we shall see in the next section
how such reductions can be introduced and studied more systematically.

Directed acyclic graphs. Dyer et al. in [29] considered the complexity of #CSP(H),
where H = (V,E) is a directed acyclic digraph (DAG). A DAG H is said to be layered if
there is a partition V0, V1, . . . , V
 of V such that uv ∈ E if and only if u ∈ Vi and v ∈ Vi+1

for some i, or, equivalently, for any two nodes u, v all directed paths from u to v have the
same length. Let H [i,j] (i < j) denote the subgraph of H induced by Vi ∪ . . . ∪ Vj . For
u ∈ Vi and v ∈ Vj (i < j) by Huv we denote the subgraph of H induced by those connected
components of H [i+1,j−1] to which both u and v are connected. For an (acyclic) digraph G
letAG denote the |V |×|V |-matrix such thatAG[u, v] equals the number of homomorphisms
from G to Huv if u ∈ Vi, v ∈ Vj with i < j, and AG[u, v] = 0 otherwise.

Theorem 3.6 ([29]). Let H be a DAG. Then #CSP(H) ∈ FP if and only if H is layered
and for any digraph G the matrix AG is block rank-one. Otherwise the problem is #P-hard.

Clearly, the condition given in Theorem 3.6 cannot be straightforwardly decided. How-
ever, using Lovasz’s result [51] that digraphs H1, H2 are isomorphic if and only if any di-
graph G has the same number of homomorphisms to H1 and to H2, the condition can be
much simplified. It is, in fact, equivalent to the condition that for any u, u′, v, v′ such that
u, u′ and v, v′ are on the same level, the graphs HuvHu′v′ and Huv′Hu′v are isomorphic.
Here HG, for H = (V,E), G = (W,F ), denotes the product of graphs, that is, the graph
with vertex set V × W and such that (u, u′)(v, v′) is an edge if and only if uv ∈ E and
u′v′ ∈ F .

Hypergraphs. To explain the result of [31] we need several definitions. Recall that a hy-
pergraph is a set of vertices V and a collection E of hyperedges, subsets of vertices from
V . A hypergraph H = (V,E) is said to be r-uniform if every hyperedge from E contains
exactly r elements. A homomorphism of a hypergraph G = (W,F ) to H is a mapping
σ : W → V such that the image σ(A) of any hyperedge A ∈ F is a hyperedge from E. The
focus of [31] is on the complexity of #CSP(H), the problem of counting homomorphisms
to a r-uniform hypergraph H . It also considers an extension of this problem where every
hyperedge from E is associated with a positive weight. In other words the problem consid-
ered in [31] can be stated as #CSP(f), where f is an r-ary function V r → R

+, which is
totally symmetric, that is, f(x1, . . . , xr) = f(xπ(1), . . . , xπ(r)) for any permutation π of [r],
and f(a1, . . . , ar) = 0 whenever a1, . . . , ar ∈ V are not all different.
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Consider D as a graph with vertex set D and edge set E′ such that ab ∈ E′ if and
only if there are c3, . . . , cr ∈ D with f(a, b, c3, . . . , cr) �= 0. We denote this graph by Hf .
Since f is symmetric Hf is undirected. Let D1, . . . , Dm be the connected components of
Hf . Function f will be be said to have an affine decomposition if it satisfies the following
conditions:

AD1 Every Di can be represented as a Cartesian product [qi]× Ai.

AD2 For every i ∈ [m] and every j ∈ [qi] there is γij ∈ R
+ such that whenever f(d1, . . . , dr)

�= 0 and all dj = (tj , aj) ∈ Di for some i ∈ [m], f(d1, . . . , dr) = γit1 . . . γitr .

AD3 For every i ∈ [m] there exists an Abelian group with universe Ai and the operation
of addition +i, and ci ∈ Ai such that for any d1, . . . , dr ∈ Di, dj = (tj , aj), the
function f(d1, . . . , dr) �= 0 if and only if a1 +i . . . +i ar = ci.

AD4 In all other cases f(d1, . . . , dr) = 0.

Theorem 3.7 ([31]). Let H be an r-uniform hypergraph with weights, and let f : Dr → R
+

be the corresponding totally symmetric function such that f(d1, . . . , dr) = 0 whenever not
all the di are different. The problem #CSP(f) is solvable in polynomial time if and only if
f has an affine decomposition. Otherwise the problem is #P-hard.

3.3. The group condition. If matrix M contains negative or complex values, the problem
EVAL(M) can be solvable in polynomial time even though M does not satisfy the block
rank-one condition, due to cancellations possible in the presence of negative and complex
numbers. New interesting counting algorithms may appear.

Example 3.8. We consider the following simple binary function f on {0, 1}, see Exam-
ple 2.10. The values of f are given by the matrix M [x, y] whose rows and columns are
indexed with 0, 1, and M [x, y] is the value of the function on x, y:(

1 1
1 −1

)
.

Clearly, instances of the corresponding counting CSP are undirected multi-graphs
Since f(x, y) = (−1)xy , given a graph G = (V,E), V = {v1, . . . , vn}, we have

ZM (G) =
∑

σ:V→{0,1}

∏
vivj∈E

(−1)σ(vi)σ(vj) =
∑

σ:V→{0,1}
(−1)g(σ(v1),...,σ(vn)) = S0 − S1,

where g(x1, . . . , xn) =
∑

vivj∈E xixj is a quadratic polynomial over GF (2), and Sa, a =

0, 1, is the number of solutions of the equation g(x1, . . . , xn) = a.
A method to compute the number of solutions of a quadratic equation overGF (2) can be

found in [50]. It is based on the following observation. Quadratic polynomials f(x1, . . . , xn)
and g(x1, . . . , xn) are said to be equivalent if one can be obtained from the other by a
linear substitution of indeterminates. In particular, equivalent polynomials have the same
number of roots. Every (nontrivial) quadratic polynomial f(x1, . . . , xn) is equivalent to a
polynomial of the form x1x2 + g(x3, . . . , xn) where g is a quadratic polynomial. Then the
number of roots of f equals the number of roots of g (setting x1 = 0) plus the number of
roots of x2 + g(x3, . . . , xn) (setting x1 = 1), that is, 2n−2.
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The observations made in Example 3.8 lie in the core of all complexity results on weighted
#CSP, along with the block rank-one condition. In [12] it is used to determine the complexity
of the weighted #CSP over a 2-element domain as follows.

Theorem 3.9 ([12]). Let Γ ⊆ F({0, 1},R). The problem #CSP(Γ) is solvable in polyno-
mial time if and only if one of the following two conditions hold:

(1) Every function f ∈ Γ has the form f(x) = w(−1)s(x)g(x), where w ∈ R
+, s is a

degree 2 polynomial, and g is an affine predicate (see Example 2.5); or

(2) Every function f ∈ Γ can be represented as f(x1, . . . , xn) = h1(x1) . . . h(xn)·
g(x1, . . . , xn), where each hi is a unary function, and g is a polynomial which is
a product of binary polynomials of the form xi + xj and xi + xj + 1. (Note that in
this case f satisfies the block rank-one condition.)

Otherwise #CSP(Γ) is #P-hard.

For domains with more than 2 elements several results [18, 36, 58] focus on binary
functions and their matrices. In most cases these results involve a sophisticated chain of
reductions in order to identify the tractable cases. We do not describe these reductions in full
details, instead we highlight the most important ones and introduce the core tractable cases.

Goldberg et al. in [36] considered real symmetric matrices. The key type of matrices in
this case is a generalization of the small matrix we considered in Example 3.8, Hadamard
matrices. Recall that a square n × n-matrix is called Hadamard if all its entries are from
{1,−1} and H · HT is a diagonal matrix, that is, the rows of H are pairwise orthogo-
nal. Hadamard matrices that give rise to #CSPs solvable in polynomial time can again be
described through quadratic polynomials. Let H be an Hadamard n × n-matrix such that
n = 2k, and let �R : GF (2)k → [n] and �C : GF (2)k → [n] be bijective mappings,
called index mappings. For x = (x1, . . . , xk),y = (y1, . . . , yk), a polynomial h(x,y)
over GF (2) represents H with respect to �R and �C if for all a,b ∈ GF (2)k it holds that
H[�R(a), �C(b)] = (−1)h(a,b).

Theorem 3.10 ([36]). Let H be an Hadamard n × n-matrix. The problem EVAL(H) is
solvable in polynomial time if and only if n = 2k for some k > 0, and there are index map-
pings �R, �C : GF (2)k → [n] and a quadratic polynomial h(x,y), x = (x1, . . . , xk),y =
(y1, . . . , yn) such that h represents H with respect to �R, �C . Otherwise EVAL(H) is #P-
hard.

For a general real matrix M it is then proved that either EVAL(M) is #P-hard, or there
is an Hadamard matrix H such that EVAL(M) is interreducible with EVAL(H,N) with
additional vertex weights N .

The results of [36] have been further generalized by Thurley [58] to Hermitian matrices.

4. Algebraic approach and the hardness of #CSP

The other component of dichotomy results is proving the hardness of problems that cannot be
solved efficiently. In this section we introduce the algebraic approach to the counting CSPs
that turned out to be very useful for this purpose and eventually led to a complete complexity
classification of unweighted #CSPs in [8], its further improvements and simplifications [32,
33], and guided the way to complexity results on the weighted #CSP.
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4.1. Primitive positive definitions. Let Γ be a set of relations (predicates) over a finite
set D. A relation R over D is said to be primitive-positive (pp-) definable in Γ if R(x) =
∃y Φ(x,y), where Φ is a conjunction that involves predicates from Γ and equality relations.
The formula above is then called a pp-definition of R in Γ. A constraint language Δ is
pp-definable in Γ if so is every relation from Δ.

Example 4.1. Let K3 = ({a, b, c}, E) be a 3-element complete graph. Its edge relation is
the binary disequality relation on {a, b, c}. Then the pp-formula

S(x, y, z) = ∃t, u, v, w(E(t, x) ∧ E(t, y) ∧ E(t, z) ∧ E(u, v) ∧ E(v, w)

∧E(w, u) ∧ E(u, x) ∧ E(v, y) ∧ E(w, z))

defines the relation S that consists of all triples containing exactly 2 different elements from
{a, b, c}.

A link between pp-definitions and reducibility between decision CSPs was first observed
in [45]. It was later extended to counting CSPs in [10].

Theorem 4.2 ([10]). Let Γ and Δ be constraint languages over a finite set D and Δ finite.
If Δ is pp-definable in Γ then #CSP(Δ) is Turing reducible to #CSP(Γ).

It also follows from the results of [13] that a similar approach works for weighted #CSPs.
Let now Γ ⊆ F(D, S). Let also V = {x1, . . . , xn} be a set of variables. An atomic
formula has the form f(xi1 , . . . , xir ), r is the arity of f . A primitive-positive summation
formula (a pps-formula) is a summation of a product of atomic formulas. More precisely for
V ′ = {x1, . . . , xn+m} a pps-formula ψ over Γ is

ψ =
∑

xn+1,...,xn+m∈D

s∏
j=1

ϕj , (4.1)

where allϕj are atomic formulas over Γ in the variables V ′. The formulaψ defines a function

ψ(x) =
∑

xn+1,...,xn+m∈D

s∏
j=1

ϕj(xj1, . . . , xjrj ),

where x = (x1, . . . , xn). A function that can be defined via a pps-formula using functions
from Γ is said to be pps-definable in Γ. A set Δ ⊆ F(D, S) is pps-definable in Γ if so is
every function from Δ. If in Equation (4.1) m = 0, we say that the function is pp-definable
in Γ. The following theorem is implicit in [13].

Theorem 4.3 ([13]). Let Γ,Δ ⊆ F(D, S) be such that Δ is finite and Δ pps-definable in Γ.
Then #CSP(Δ) is parsimoniously reducible to #CSP(Γ).

One interesting example of what definitions can achieve is defining unary functions. Let
δd : D → S, d ∈ D, denote the function given by δd(d) = 1 and δd(x) = 0 otherwise. The
presence of such functions in Γ allows to ‘pin’ certain variables in a #CSP instance. Say, if
f1(x) · . . . ·f
(x) is an instance of#CSP(Γ), then the answer for the instance δd(x) ·f1(x) ·
. . . · f
(x) is

∑
σ:V→D,σ(x)=d w(σ). Bulatov and Dalmau [10] proved that adding δd to an

unweighted constraint language does not change its complexity. The following statement
generalizes this result to the weighted case.

Theorem 4.4. Let Γ ⊆ F(D,R+) and Γid = Γ∪{δd : d ∈ D}. Then #CSP(Γid) is Turing
reducible to #CSP(Γ).
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4.2. Polymorphisms and invariants. Primitive positive definability can be concisely char-
acterized using polymorphisms. An operation ϕ : Dk → D is said to be a polymorphism
of a relation R ⊆ Dn if for any a1, . . . ,ak ∈ R the tuple f (a1, . . . ,ak) also belongs to R,
where f (a1, . . . ,ak) stands for

(f (a1[1], . . . ,ak[1]) , . . . , f (a1 [n] , . . . ,ak [n])) .

Operation ϕ is a polymorphism of a constraint language Γ if it is a polymorphism of every
relation from Γ.

Example 4.5. LetR be an affine relation, that is,R is the solution space of a system of linear
equations over a field F . Then the operation ϕ(x, y, z) = x − y + z is a polymorphism of
R. Indeed, let A · x = b be the system defining R, and x,y, z ∈ R. Then

A · ϕ(x,y, z) = A · (x− y + z) = A · x− A · y + A · z = b.

In fact, the converse can also be shown: if R is invariant under ϕ, where ϕ is defined in a
certain finite field F then R is the solution space of some system of linear equations over F .

A link between polymorphisms and pp-definability of relations is given by Galois con-
nection.

Theorem 4.6 (Galois connection, [5, 35]). Let Γ be a constraint language on D, and let
R ⊆ Dn be a non-empty relation. Then R is preserved by all polymorphisms of Γ if and
only if R is pp-definable in Γ.

From the counting complexity point of view the most interesting type of polymorphisms
is Mal’tsev polymorphisms, that is, ternary operations ϕ satisfying the equations ϕ(x, y, y) =
ϕ(y, y, x) = x. The existence of a Mal’tsev polymorphism imposes strong structural condi-
tions on a relation.

Let R ⊆ Dn be a relation, a ∈ Dn, and I = {i1, . . . , ik} ⊆ [n]. By prIa we denote
the tuple (a[i1], . . . ,a[ik]) and by prIR the k-ary relation {prIa : a ∈ R}. If a ∈ prIR
and b ∈ pr[n]−IR, by (a,b) we denote the tuple c ∈ Dn such that c[i] = a[i] if i ∈ I and
c[i] = b[i] otherwise. We say that R is rectangular, if for any I ⊂ [n] and any a,b ∈ prIR,
c,d ∈ pr[n]−IR, if the tuples (a, c), (b, c), (b,d) belong to R, the tuple (a,d) also belongs
to R. A constraint language Γ is said to be strongly rectangular [33] if every relation pp-
definable in Γ is rectangular.

Theorem 4.7 (folklore). A constraint language is strongly rectangular if and only if it has a
Mal’tsev polymorphism1.

The absence of a Mal’tsev polymorphism of a constraint language Γ implies the hardness
of the counting CSP.

Theorem 4.8 ([10]). If a constraint language Γ does not have a Mal’tsev polymorphism,
then #CSP(Γ) is #P-hard.

1The most accessible source for a proof of this statement is probably [33]
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4.3. Congruence singular and strongly balanced languages. The block rank-one condi-
tion, a necessary condition for the tractability of certain counting CSPs can also be general-
ized using pp-definitions. Here we give two such generalizations, from [8] and from [32, 33].
It is easy to see that these two conditions are equivalent, for a formal proof see [33]. The
conditions we introduce are also equivalent to polynomial time solvability of #CSPs, as we
show in the next section.

First we introduce the notion of congruence singularity [8]. Let Γ be a constraint lan-
guage and R an n-ary relation pp-definable in Γ. As is easily seen, any 2n-ary relation S
such that pr[n]S = pr{n+1,...,2n}S = R can be viewed as a binary relation on R. Such a
relation S is called a congruence of R if it is pp-definable in Γ and is an equivalence relation
on R. Let η, θ, κ be congruences of R such that κ ⊆ η, θ. We associate with R and η, θ, κ a
matrix MR;η,θ,κ defined as follows. Let A1, . . . , Ak be the η-blocks, and let B1, . . . , B
 be
the θ-blocks. Then MR;η,θ,κ is a k × �-matrix such that MR;η,θ,κ[i, j] equals the number of
κ-blocks inside Ai ∩ Bj . A constraint language Γ is said to be congruence singular if for
any R pp-definable in Γ, and any its congruences η, θ, κ, κ ⊆ η, θ, the matrix MR;η,θ,κ is
block rank-one.

Next, we give a definition of balanced constraint languages as in [32, 33]. Let again R
be an n-ary relation pp-definable in Γ, and let k, � ≤ n. Relation R can be naturally viewed
as a ternary relation on Dk × D
 × Dn−k−
. Now, a ternary relation S ⊆ A1 × A2 × A3

is said to be balanced if the matrix M [x, y] = |{z : (x, y, z) ∈ S}| is a block rank-one
matrix. A relation of arity n ≥ 3 is balanced if every expression of it as a ternary relation on
Dk × D
 × Dn−k−
 is balanced. We will say that Γ is strongly balanced if every relation
pp-definable in Γ is balanced.

Example 4.9 (Directed acyclic graphs). Let H be a layered DAG, and let V0, . . . , V
 be its
layers. We show that if H is congruence singular then the matrix AG (see Section 3.2) is
block rank-one for any digraph G.

Let Φ(G,H), G = (W,F ), H = (V,E), and W = {w1, . . . , wn}, denote the set of
homomorphisms from G to H viewed as a |W |-ary relation on V ; each tuple represents a
homomorphism. Then Φ(G,H) is pp-definable in H . Indeed,

Φ(G,H)(w1, . . . , wn) =
∧

uv∈F
E(u, v).

If G is not layered then Φ(G,H) is empty; so assume G is layered. Let W1,W2 de-
note the set of vertices on the highest and lowest layers of G, respectively. Let η1, η2 be
congruences of Φ(G,H) such that (σ, σ′) ∈ ηi, i = 1, 2, iff σ(v) = σ′(v) for all v ∈ Wi.
By Hv∗, v ∈ Vi, we denote the subgraph of H [i+1,
] induced by the connected compo-
nents to which there is a directed path from v; similarly, H∗w, w ∈ Vj , denotes the sub-
graph of H [0,j−1], induced by the connected components from which there is a directed
path to w; then, Hvw = Hv∗ ∩ H∗w. As is easily seen the sets of the form Pu∗ = {σ ∈
Φ(G,H) : σ(z) ∈ Hu∗ for z ∈ W and σ(z) = u for z ∈ W1} are classes of η1, the sets
of the form P∗w = {σ ∈ Φ(G,H) : σ(z) ∈ H∗w for z ∈ W and σ(z) = w for z ∈ W2}
are classes of η2, and the sets of the form Puw = {σ ∈ Φ(G,H) : σ(z) ∈ Huw for z ∈
W,σ(z) = u for z ∈ W1, and σ(z) = w for z ∈ W2} are classes of η1 ∧ η2 (although there
are classes of those congruences not representable in the form Pu∗, P∗w, Puw).

Pick u, u′ ∈ Vi, v, v′ ∈ Vj , 1 ≤ i < j ≤ �. We need to show that HuvHu′v′ and
Huv′Hu′v are isomorphic. We use an observation made in [29] that |Φ(G,H1H2)| =
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|Φ(G,H1)|·|Φ(G,H2)|. SinceH is congruence singular, the matrixMΦ(G,H);η1,η2,=, where
= denotes the equality relation, is block rank-one. Hence∣∣∣∣ |Φ(G,Huv)| |Φ(G,Huv′)|

|Φ(G,Hu′v)| |Φ(G,Hu′v′)|
∣∣∣∣ = 0,

or Φ(G,Huv),Φ(G,Hu′v′) or Φ(G,Huv′),Φ(G,Hu′v) are in different blocks of
MΦ(G,H);η1,η2,=. In the latter case either |Φ(G,Hu′v)| = |Φ(G,Huv′)| = 0 or |Φ(G,Huv)|
= |Φ(G,Hu′v′)| = 0. The result follows.

4.4. The complexity of #CSP and universal algebra. Recall that a (universal) algebra
is an ordered pair A = (A,F ) where A is a non-empty set and F is a family of finitary
operations on A. Every constraint language on a set D can be associated with an algebra
Alg(Γ) = (D,Pol(Γ)), where Pol(Γ) denotes the set of all polymorphisms of Γ.

For the algebraic terminology and basic properties see [37].

Definition 4.10.
(1) LetA = (A;F ) be an algebra. The k-th direct power ofA is the algebraAk = (Ak;F )

where we treat each operation f ∈ F as acting on Ak component-wise.

(2) Let A = (A;F ) be an algebra, and let B be a subset of A such that, for any (say,
n-ary) f ∈ F , and for any b1, . . . , bn ∈ B, we have f(b1, . . . , bn) ∈ B. Then the
algebra B = (B;FB), where FB consists of restrictions of operations f ∈ F onto B,
is called a subalgebra of A.

(3) Let A1 = (A1;F1) and A2 = (A2;F2) be such that F1 = {f1
i | i ∈ I}, F2 = {f2

i |
i ∈ I}, and f1

i , f
2
i are of the same arity ri, i ∈ I . A mapping ϕ : A1 → A2 is called a

homomorphism from A1 to A2 if ϕ(f1
i (a1, . . . , ari)) = f2

i (ϕ(a1), . . . , ϕ(ari)) holds
for all i ∈ I and all a1, . . . , ari ∈ A1. If the mapping ϕ is onto then A2 is said to be a
homomorphic image of A1.

(4) A congruence of an algebra A = (A;F ) is an equivalence relation on A invariant
under all operations from F .

Let A = (A,F ). It is called #-tractable if for any finite constraint language Γ on A
such that F ⊆ Pol(Γ) the problem #CSP(Γ) is solvable in polynomial time. Algebra A is
#P-hard if there is a finite Γ with F ⊆ Pol(Γ) such that #CSP(Γ) is #P-hard.

Theorem 4.11 ([10]). Let A = (A;F ) be a finite algebra. Then

(1) if A is #-tractable then so is every subalgebra, homomorphic image, and direct power
of A.

(2) if A has a #P-hard subalgebra, homomorphic image, or direct power, then A is #P-
hard.

For an algebra A the class of algebras that are homomorphic images of subalgebras of
direct powers of A is called the variety generated by A, and is denoted by var(A).

An operation f on a set D is said to be idempotent if the equality f(x, . . . , x) = x
holds for all x ∈ D. An algebra all of whose term operations are idempotent is said to be
idempotent. Recall that δd denotes the predicate that is true only on d. It is easily seen that
for any constraint language Γ over D all polymorphisms of Γid = Γ ∪ {δd : d ∈ D} are
idempotent. By Theorem 4.4#CSP(Γ) and#CSP(Γid) are Turing reducible to each other.
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An idempotent algebraA is said to be congruence singular if for any its congruences η, θ
the matrix Mη,θ is block rank-one. If every finite algebra in a variety is congruence singular
then the variety is called congruence singular. It can be shown that a constraint language is
congruence singular if and only if Alg(Γid) generates a congruence singular variety. Thus
we obtain another equivalent condition for the dichotomy result on unweighted #CSPs.

5. Unweighted #CSP dichotomy

In this section we outline the proof of the following dichotomy theorem for unweighted
#CSP.

Theorem 5.1 ([8] and [32, 33]). Let Γ be a constraint language. Then the following condi-
tions are equivalent:

(1) #CSP(Γ) is solvable in polynomial time;

(2) Γ is congruence singular;

(3) Alg(Γid) generates a congruence singular variety;

(4) Γ is strongly balanced.

If none of these conditions hold, #CSP(Γ) is #P-hard.

The concept central to the proof is that of compact representation ([9]) or frames ([32,
33]). Let R be an n-ary relation over D with a Mal’tsev polymorphism. For i ∈ [n] and
a, b ∈ D we write a ∼i b if there are a,b ∈ R such that pr[i−1]a = pr[i−1]b, and a[i] = a,
b[i] = b. Since R is rectangular, the relation ∼i is an equivalence relation on priR. Let
Ei1, . . . , Eiki

be the equivalence classes of ∼i. A set F ⊆ R is said to be a compact
representation (a frame) of R if

(a) priF = priR for each i ∈ [n]; and

(b) for each Eik, k ∈ [ki], i ∈ [n], there is aik ∈ Di−1 such that, for each a ∈ Eik, there
exists ba ∈ F with pr[i−1]ba = aik and ba[i] = a (in a compact representation for
each pair (a, b) ∈ Eik there are ba,bb such that pr[i−1]ba = pr[i−1]bb and ba[i] =
a,bb[i] = b).

Lemma 5.2 ([9],[33]).

(1) If R is an n-ary relation with a Mal’tsev polymorphism ϕ then (a) there exists its
compact representation F ⊆ R such that |F | ≤ n(|D| − 1) + 1, and (b) R is the
closure of any its compact representation, that is, every tuple from R can be obtained
by (repeatedly) applying ϕ to tuples from F .

(2) If Γ is a constraint language with a Mal’tsev polymorphism, then for any instance I =
R1(x1)∧. . .∧Rm(xm) of #CSP(Γ) with set of variables V a compact representation
F of the set of solutions of I can be found in time polynomial in |V | and m that satisfies
the conditions of part (1).

We now describe the algorithm from [33] to find the number of solutions of an instance
I ∈ #CSP(Γ) where Γ satisfies the conditions of Theorem 5.1. In particular, by Theo-
rem 4.8 Γ has a Mal’tsev polymorphism ϕ, hence, by Lemma 5.2 we assume a compact



Counting constraint satisfaction problems 577

representation F of the set of solutions of I is known. Thus, the problem is given a compact
representation F of an n-ary relation R to find |R|.

For 1 ≤ i < j ≤ n set Ni,j(a) = |{c : (c, a) ∈ pr[i]∪{j}R}|, and let Di = priR.
Since |R| =∑a∈Dn

Nn−1,n(a), it suffices to find the numbers Ni,j(a). We compute these
numbers inductively. First, observe that N1,j(a) is the number of pairs in the binary relation
pr{1,j}R ∩ (D × {a}), and pri,jR is the closure of pri,jF , and therefore can be found by
brute force. Thus, it suffices to show how to find Ni,j(a) from Ni−1,j and Ni−1,i.

Take particular i and j and suppose that the numbers Ni−1,k are found for all k ≥ i. Let
J = [i] ∪ {j} and let S = prJR viewed as a ternary relation S = {(c, x, y) ∈ prJR : c ∈
pr[i−1]R, x ∈ Di, y ∈ Dj}. Since R is strongly balanced, the matrix M [x, y] = |{c ∈
pr[i−1]R : (c, x, y) ∈ S}| is a block rank-one matrix. As Ni,j(y) =

∑
x∈Di

M [x, y], it
suffices to find the entries of M .

Let Sy(x) denote the set {c : (c, x, y) ∈ S}. Since S is rectangular, the relation θy =
{(x1, x2) ∈ D2

i : Sy(x1) ∩ Sy(x2) �= ∅} on Di is an equivalence relation, and Sy(x1) =
Sy(x2) whenever (x1, x2) ∈ θy . Thus if T (y) ⊆ Di contains one representative of each
equivalence class of θy , then∑

x∈T (y)

M [x, y] = |{c : ∃x(c, x, y) ∈ S}| = Ni−1,j(y). (5.1)

We define an equivalence relation θ′x for x ∈ Di in a similar way.
Again using the rectangularity of S, it is not hard to see that if y, y′ ∈ Dj are such that

(x, y), (x, y′) ∈ pr{i,j}S for some x, then θy = θy′ . Moreover, in this case (x, y), (x, y′)
belong to the same block of M . Thus, the equivalence classes of θy can be found from the
compact representation. The relations ∼i,j and ∼j,i, such that (x1, x2) ∈∼i,j if and only if
∃c, y((c, x1, y), (c, x2, y) ∈ S), and (y1, y2) ∈∼j,i if and only if ∃c, x((c, x, y1), (c, x, y2) ∈
S) are also equivalence relations, and their equivalence classes can also be found from the
compact representation F . The matrix M has identical rows corresponding to the equiv-
alence classes of ∼i,j , and identical columns corresponding to the equivalence classes of
∼j,i.

If T ′(x) contains one representative of each of the classes of θ′x, we have∑
y∈T ′(x)

M [x, y] = |{c : ∃y(c, x, y) ∈ S}| = Ni−1,i(x). (5.2)

The matrix M̂ , obtained by choosing one representative from each of the equivalence classes
of∼i,j and∼j,i, is also a block rank-one matrix. Moreover, we know the block structure, row
and column sums of M̂ from pri,jR, ∼i,j , ∼j,i, (5.1), and (5.2). Hence, we can reconstruct
all the entries of M̂ . Then, using pri,jR, ∼i,j , and ∼j,i, we can reconstruct the matrix M .

Therefore #CSP(Γ) can be solved in polynomial time.
Somewhat surprisingly the dichotomy result for unweighted #CSPs, Theorem 5.1, can

be easily generalized to a dichotomy theorem for weighted #CSPs provided the weights are
non-negative rational. Given a collection of functions Γ ⊆ F(D,Q+) the idea is to create
a new domain for the problem consisting of tuples from Dk, k is the maximum arity of
functions in Γ; and then to simulate their weights by introducing several copies of each
tuple. Two different ways to implement this approach are suggested in [11].

Theorem 5.3 ([11]). Let Γ be a finite set of functions from F(D,Q+). Then #CSP(Γ) is
either solvable in polynomial time, or #P-hard.
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Another issue related to dichotomy results is the metaproblem: Given a finite set Γ of
relations or functions, decide whether or not #CSP(Γ) can be solved in polynomial time.
The metaproblem for unweighted #CSPs was left open even after the dichotomy result [8],
because it was not clear if verifying the congruence singularity condition is decidable. The
metaproblem for unweighted #CSP has been proved decidable and belonging to NP by Dyer
and Richerby [33]. The decidability result can be extended to weighted #CSPs with nonneg-
ative rational weights through the reduction used in Theorem 5.3. However, this reduction
does not imply immediately that the metaproblem belongs to NP, because if the weights are
large the reduction is inefficient, as it introduces the number of elements into the new domain
proportional to the weights of the original CSP.

6. Complex weights and the weighted #CSP dichotomy

In this section we state the dichotomy result by Cai and Chen [16, 17] for arbitrary #CSP
with complex weights. Unfortunately, the solution algorithm is too complicated to describe
it here. However, we will try to demonstrate how the algorithmic approaches considered
before converge in this result.

We start with two results for special cases of #CSP with complex weights that lead up
to the general dichotomy. These are generalizations of Theorems 3.9 and 3.10 to complex
weights [18, 21].

Theorem 6.1 ([21]). Let Γ ⊆ F({0, 1},C). The problem #CSP(Γ) is solvable in polyno-
mial time if and only if one of the following two conditions hold:

(1) Every function f ∈ Γ has the form f(x) = wg(x)iL1(x)+...+Lk(x), where w ∈ R
+,

each Lj is a linear polynomial over GF (2) while addition in the exponent is that of
integers, and g is an affine predicate (see Example 2.5);

(2) Every function f ∈ Γ can be represented as f(x) = hk(x1) . . . hn(xn)g(x), x =
(x1, . . . , xn), where each hi is a unary function, and g is a polynomial which is a
product of binary polynomials of the form xj + x
 and xj + x
 + 1. (Note that in this
case f satisfies the block rank-one condition.)

Otherwise #CSP(Γ) is #P-hard.

Cai et al. in [18] generalized the results on nonnegative and real binary functions, Theo-
rems 3.4, and Theorem 3.10, respectively, to complex binary functions. More precisely, their
result characterizes the complexity of EVAL(M), where M is either symmetric or is of the

form bip′(A) =

(
0 A

A� 0

)
for some matrixA (we will call such matrices bipartite). This

result, first, requires a generalization of Hadamard matrices, called discrete unitary matrices;
and, second, a more general solution algorithm for discrete unitary matrices.

The first step is to represent an arbitrary complex n×n-matrix M in a special form. The
problem EVAL(M) for an arbitrary symmetric or bipartite matrix M is either #P-hard, or
is Turing interreducible with EVAL(M ′) for a purified matrix M ′ = bip′(A), for A of the
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following form

A =

⎛
⎜⎜⎜⎝

μ1

μ2

. . .
μk

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

ξ11 ξ12 . . . ξ1n−k

ξ21 ξ22 . . . ξ2n−k

...
...

. . .
...

ξk1 ξk2 . . . ξkn−k

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

μk+1

μk+2

. . .
μn

⎞
⎟⎟⎟⎠ ,

for some 1 ≤ k ≤ n, where μj > 0 and every ξij is a root of unity.
The next step proves that EVAL(M) is either #P-hard, or is interreducible with

EVAL(M ′) with vertex weights, where M ′ = bip′(A) for a discrete unitary matrix A,
that is, an m × m-matrix A satisfying the following conditions: (a) Every entry of A is a
root of unity, (b) A(1, i) = A(j, 1) = 1 for i, j ∈ [m], and (c) AA∗ and A∗A are diagonal
matrices (A∗ denotes the conjugate transpose). Finally, let ζq denote a qth primitive root of
unity and let Fq be a discrete unitary matrix given by Fq[x, y] = ζ

(x−1)(y−1)
q .

Theorem 6.2 ([18]). Let M = bip′(A) for a discrete unitary matrix A. Then EVAL(M) is
solvable in polynomial time if and only if A is a Kronecker product Fq1 ⊗ . . .⊗Fq� for some
q1, . . . , q
. Otherwise EVAL(M) is #P-hard.

The solution algorithm for the weighted #CSP over Fq for q = pk boils down to com-
puting sums of the form ∑

x1,...,xn∈Zq

ζs(x1,...,xn)
q ,

where s is a quadratic polynomial over GF (q).
We now turn to a description of the dichotomy result for complex weighted #CSPs ob-

tained in [16, 17]. Let Γ ⊆ F(D,C). The result we are going to state requires 3 properties
of Γ that generalize the properties of functions used so far.

Block orthogonality. A function f ∈ F(D,C), D = {d1, . . . , d
}, is said to satisfy the
absolute block rank-one condition if |f |, that is, the function that takes the absolute value of
f , satisfies the block rank-one condition. Let x,y ∈ C


 be vectors that are linearly dependent
after taking absolute values. In particular, they have the same nonzero entries; denote the
set of such entries T . Let T1, . . . , Tk be the partition of T defined by |x[i]| = |x[j]| if and
only if i, j ∈ Ts for some s. Clearly, if we start with y the partition will be the same.
Vectors x,y are called block-orthogonal if for every s ∈ [k] they satisfy

∑
i∈Ts

x[i] · y[i] =
0. Let f(x, ∗) denote the �-ary vector (f(x, d1), . . . , f(x, d
)). An absolute block rank-
one function f : Dn → C is said to be block-orthogonal if for any x,y ∈ Dn−1 such
that f(x, ∗), f(y, ∗) �= 0 and vectors |f(x, ∗)|, |f(y, ∗)| are linearly dependent, the vectors
f(x, ∗), f(y, ∗) are either linearly dependent, or block-orthogonal.

Type partition. Let Φ ⊆ Dn be a nonempty set andΨ1, . . . ,Ψk be a partition of Φ, k ≥ 1.
These sets define a mapping type(·) from D1 ∪ . . . ∪ Dn to [k] as follows: for � ∈ [n] and
x ∈ D
, we set type(x) = {j ∈ [k] : ∃y ∈ Ψj such that x = pr[
]y} ⊆ [k]. The mapping
type(·) is said to be a type-partition map if for any � ∈ [n] and x,y ∈ D
, the sets type(x)
and type(y) are either equal or disjoint.

Let f : Dn → C. Also, letΦ = Dn−1 and setsΨi ⊆ Φ be defined by the rule: x,y ∈ Ψi
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for some i if and only if f(x, ∗), f(y, ∗) are linearly dependent. The corresponding mapping
is denoted by typef , and the corresponding equivalence relation on Dn−1 by θf .

Mal’tsev condition. For a function f : Dn → C let supp(f) ⊆ Dn denote the relation that
contains all x ∈ Dn such that f(x) �= 0. Let Γ ⊆ F(D,C). It is said to satisfy the Mal’tsev
condition if there is a Mal’tsev operation ϕ such that for any (n-ary) function f pp-definable
in Γ the operation ϕ is a polymorphism of supp(f) and θf , where the latter is viewed as the
set of all 2n − 2-tuples (x,y) whenever x,y are θf -related.

Theorem 6.3 ([17]). Let Γ ⊆ F(D,C). Then #CSP(Γ) is solvable in polynomial time if
and only if Γ satisfies the Mal’tsev condition, every function f pp-definable in Γ is absolute
block rank-one, block-orthogonal, and typef is a type-partition map. Otherwise #CSP(Γ)
is #P-hard.

7. Conclusion

This short survey is inevitably biased and incomplete. We conclude with a short overview of
what is left out, some open problems, and potential future research directions.

The study of general counting and weighted #CSPs may be considered as mostly com-
pleted with only some side issues remaining. The most important of them is the metaprob-
lem: Given a constraint language or a set of functions, decide whether the corresponding
#CSP is solvable in polynomial time, or, more generally, determine the complexity of the
corresponding #CSP. While the complexity of the metaproblem for unweighted #CSPs is to
some extent understood, that for weighted #CSPs remains open.

A different direction in the study of the CSP is to allow restricted classes of inputs,
such as CSPs on graphs or relational structures of bounded degree, or planar, or bipartite,
etc. Although a number of results have been obtained for such problems, see, e.g. [25–
28, 39, 42, 60, 64], the complexity of these problems remains unknown for many important
classes of structures. For example, any problem #CSP(Γ) is solvable in polynomial time
on structures of bounded tree-width [24]. A compelling question is then what is the trade-off
between the constraint language Γ and the class of allowed inputs so that the corresponding
#CSP remains in FP.

We also did not touch another research direction related to counting CSPs, the complexity
of computing the Holant problem. This problem originated from the work of Valiant on
holographic algorithms [63, 64]. The Holant problem is somewhat more expressive than the
CSP, however, its complexity is not completely known even in relatively small cases; for
some of the existing results on the subject see [19, 20]. Also, both the #CSP and Holant can
be considered to count solutions modulo a certain integer, for instance, counting the parity of
the number of solutions. Although some results in this direction exists, the problem mostly
remains open.

Finally, the complexity of approximation of all counting problems has been studied.
The complexity landscape in this case is much more complicated, and many of the natural
problems remain open.
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Flows, cuts and integral routing in graphs -
an approximation algorithmist’s perspective

Julia Chuzhoy

Abstract. Flow, cut and integral graph routing problems are among the most extensively studied in
Operations Research, Optimization, Graph Theory and Computer Science. We survey known algorith-
mic results for these problems, including classical results and more recent developments, and discuss
the major remaining open problems, with an emphasis on approximation algorithms.
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1. Introduction

In this survey we consider flow, cut, and integral routing problems in graphs. These three
types of problems are among the most extensively studied in Operations Research, Optimiza-
tion, Graph Theory, and Computer Science. Problems of these types naturally arise in many
applications, and algorithms for solving them are among the most valuable and powerful
tools in algorithm design and analysis.

In the classical maximum s–t flow problem, we are given an n-vertex graphG = (V,E),
that can be either directed or undirected, with non-negative capacities c(e) on edges e ∈ E,
and two special vertices: s, called the source, and t, called the destination. LetP be the set of
all paths connecting s to t in G. An s–t flow f is an assignment of non-negative values f(P )
to all paths P ∈ P , such that for each edge e ∈ E, the flow through e does not exceed its
capacity c(e), that is,

∑
P :e∈P f(P ) ≤ c(e). The value of the flow f is

∑
P∈P f(P ), and the

goal is to find a flow of maximum value. The maximum flow problem was introduced in the
50’s in order to model the capacity of the Soviet and East European railway systems. Ford
and Fulkerson [41] were the first to provide an efficient algorithm for solving the problem.
The problem can be expressed as a linear program (LP):

(LP-flow) max
∑

P∈P f(P )

s.t. ∑
P :e∈P f(P ) ≤ c(e) ∀e ∈ E

f(P ) ≥ 0 ∀P ∈ P
So far, in our definition of the maximum s–t flow problem, the number of paths P with

non-zero flow value f(P ) may be exponentially large in the graph size, and so can the num-
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ber of variables of (LP-flow). Fortunately, there is an equivalent “compact” LP-formulation
of the problem, whose solution can be efficiently converted into a solution to (LP-flow),
where the number of paths P with f(P ) > 0 is bounded by |E|. This provides an efficient
algorithm to solve (LP-flow), as long as we are only required to list the non-zero values f(P )
in the solution.

A very useful feature of the maximum s-t flow problem is that, if all edge capacities c(e)
are integral, then there is a maximum flow where for each P ∈ P , f(P ) is integral, and such
a flow can be found efficiently. This property is often referred to as the integrality of flow. In
particular, if all edge capacities are unit, then we can efficiently find a maximum-cardinality
collection P ′ of paths connecting s to t, such that the paths in P ′ are edge-disjoint: that is,
every edge of G belongs to at most one path of P ′.

A problem closely related to maximum s–t flow is minimum s–t cut. The input to this
problem is the same as the input to the maximum s–t flow problem, only now we will think
of the values c(e) as edge costs and not capacities. The goal is to select a minimum-cost
subset E′ ⊆ E(G) of edges, such that G \ E′ contains no path connecting s to t, where the
cost of E′ is

∑
e∈E′ c(e). It is easy to see that the value of the maximum s–t flow cannot

exceed the value of the minimum s–t cut in any graph: every path P ∈ P must contain at
least one edge of E′, and so the total flow carried by the paths in P cannot exceed the total
capacity of the edges in E′. The classical result of Ford and Fulkerson [41], often referred
to as the Max-Flow Min-Cut Theorem, shows that the opposite is also true, that is, in any
graph, the value of the minimum s–t cut is equal to the value of the maximum s–t-flow! In
fact, their algorithm for computing maximum flow can also be used to compute a minimum
cut. Therefore, we can see minimum cut as revealing the bottleneck in the routing capacity
of a graph: if the maximum amount of flow that can be sent from s to t is x, then we can
produce a certificate for this fact in the form of a valid flow of value x, and an s–t cut of
cost x. A convenient way of seeing the connection between flows and cuts is by computing
the dual linear program of (LP-flow), that we will call (LP-cut) for reasons that will become
apparent below.

(LP-cut) min
∑

e∈E cexe

s.t. ∑
e∈P xe ≥ 1 ∀P ∈ P (1.1)
xe ≥ 0 ∀e ∈ E (1.2)

Even though the number of constraints in (LP-cut) may be exponential in the graph size,
it can still be solved efficiently by standard methods, such as the Ellipsoid algorithm with a
separation oracle.

Let us start by adding the following integrality constraints to (LP-cut):

xe ∈ {0, 1} ∀e ∈ E (1.3)

This combination of a linear program with integrality constraints is called integral linear
program, and we denote it by (ILP-cut). It is immediate to see that (ILP-cut) is equivalent
to the minimum s–t cut problem: we set xe = 1 if e belongs to the solution E′, and xe = 0
otherwise. Constraint (1.1) ensures that every path from s to t contains at least one edge from
E′ - that is, G \ E′ contains no s–t path. Of course, any feasible solution of (ILP-cut) is
also a feasible solution to (LP-cut). However, (LP-cut) allows more solutions: for example,
solutions where the variables xe take fractional values. We say that (LP-cut) is a relaxation
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of the minimum s–t cut problem. The optimal solution to (LP-cut) is called the optimal
fractional solution to minimum s–t cut, and its value is denoted by OPTLP. The optimal
solution to (ILP-cut) is called the optimal integral solution; its value is denoted by OPT,
and it is also the value of the minimum s–t cut in G. Since the optimal integral solution is a
valid solution to (LP-cut), OPTLP ≤ OPT must hold. Interestingly, in this particular linear
program, the two values are equal. Moreover, there is an efficient algorithm, that, given a
fractional solution to (LP-cut), computes a valid integral solution of the same value.

We describe the algorithm for directed graphs; the algorithm for undirected graphs is
similar, with minor adjustments. The idea is to view the values xe in the optimal solution of
(LP-cut) as edge lengths. We can then define, for every pair (u, v) of vertices, the distance
d(u, v) from u to v, to be the length of the shortest path connecting u to v, under the edge
lengths xe. Constraint (1.1) ensures that d(s, t) ≥ 1, and it is easy to see that for every edge
e = (u, v):

d(s, v) ≤ d(s, u) + xe (1.4)

Let us choose a value ρ ∈ (0, 1) uniformly at random, and letB(s, ρ) = {v | d(s, v) ≤ ρ}
be the ball of radius ρ around s. This ball defines an s–t cutE′

ρ ⊆ E, where e = (u, v) ∈ E′
ρ

if u ∈ B(s, ρ) and v �∈ B(s, ρ). The probability that e = (u, v) belongs to E′
ρ is the prob-

ability that ρ lies between d(s, u) and d(s, v), which, from (1.4), is bounded by xe. The
expected cost of the cut E′

ρ is then:∑
e∈E

c(e) · Prρ
[
e ∈ E′

ρ

] ≤∑
e∈E

c(e)xe = OPTLP.

At least one value ρ : 0 < ρ < 1 must satisfy
∑

e∈E′
ρ
ce ≤ OPTLP. We can find this

value by going over all possible values of ρ and computingE′
ρ for each of them. Fortunately,

the number of different values of ρ that we need to check is not very large - it is enough to
consider all values in set {d(s, v) | v ∈ V }.

An algorithm that, given a fractional solution to a linear program, computes an integral
solution is called an LP-rounding algorithm. If the value of the solution produced by the
algorithm equals to the value of the fractional solution, then this algorithm can be used to
solve the problem exactly. If additionally the LP-rounding algorithm is efficient, then we
obtain an efficient algorithm for the problem, thus proving that it is in P. This is exactly what
we have just shown for minimum s–t cut. However, many optimization problems that we
consider in this survey are NP-hard, and therefore we do not expect them to have efficient al-
gorithms. Instead, we will often look for approximation algorithms - efficient algorithms that
solve the problem approximately. Given a minimization problem Π, we say that an efficient
algorithm A is an α-approximation algorithm for Π, if for any instance I of Π, algorithm A
produces a solution of value at most α · OPT(I), where OPT(I) is the value of the optimal
solution for I . For a maximization problem, an α-approximation algorithm needs to produce
a solution of value at least OPT(I)/α. Different optimization problems often have different
approximation factors achievable by efficient algorithms. The approximation factor α may
be a constant, or some function of the input size n (like O(log n), O(

√
n), and so on). For

many optimization problems, we still do not know what is the best approximation factor α∗

achievable for them. In order to determine this factor, in addition to designing an approxima-
tion algorithm, that establishes an upper bound on α∗, we need to provide a lower bound on
α∗. This is usually done by proving hardness of approximation, or inapproximability results:
namely, that achieving a better than α∗-approximation for a given problem Π is an NP-hard
problem.



588 Julia Chuzhoy

As we have shown, there is an efficient LP-rounding algorithm for minimum s–t cut that
can be used, together with (LP-cut), to solve the problem exactly. For many other minimiza-
tion problems, the value of the integral solution produced by an LP-rounding algorithm for a
minimization problem is greater thanOPTLP. However, if the value of the solution is at most
α ·OPTLP for any input instance I , then, since OPTLP ≤ OPT we obtain an α-approximate
LP-rounding algorithm. The technique of rounding linear programming relaxations is one
of the most powerful and widely used tools in the design of approximation algorithms.

From the strong duality theorem, the optimal value of (LP-flow) equals to the optimum
value of (LP-cut), that is, maximum flow equals to the value of the minimum fractional cut.
But since the values of the optimal fractional and the optimal integral solutions to the s–t
cut problem are the same, we get that the maximum flow value equals to the value of the
minimum cut in any graph G.

Linear program (LP-cut) is one of the rare cases where the optimal fractional and the
optimal integral solutions have the same value. For many other minimization problems and
their linear programming relaxations, OPTLP < OPT holds. Given a minimization problem
Π, and a linear programming relaxation (LP-rel) for Π, the integrality gap of (LP-rel) is the
largest possible ratio between the value OPT of the optimal integral solution and the value
OPTLP of the optimal fractional solution, achieved by any instance I of Π. (For maximiza-
tion problems we reverse the ratio, and the integrality gap is the maximum of OPTLP/OPT
over all instances; so the integrality gap is always at least 1). If the integrality gap of a lin-
ear programming relaxation (LP-rel) of problem Π is α, then no LP-rounding algorithm can
achieve a better than α-approximation for the problem. This statement however is only true
for the specific linear programming relaxation (LP-rel) of Π. Often one can come up with
different linear programming relaxations of the same problem, that have different integral-
ity gaps, and LP-rounding algorithms achieving different approximation factors. Studying
integrality gaps of linear programs is therefore crucial in understanding the power and the
limitations of the LP-rounding approach for specific optimization problems. Often, instances
exhibiting large LP-integrality gaps can give us insight into the structure of hard instances
of the problem, and this can help us prove inapproximability results. Alternatively, they can
help us strengthen the LP relaxation and obtain better LP-rounding algorithms.

As we have already seen, the integrality ratio of (LP-cut) is 1. We have also already
mentioned that, if all edge capacities are integral, then there is an optimal solution to the
maximum s–t flow problem where all values f(P ) are also integral. Therefore, if all edge
capacities are integral, then the integrality gap of (LP-flow) is also 1. In the following sec-
tions we consider generalizations of the maximum s–t flow problem, where instead of one
source-destination pair, there are several such pairs. There are two natural ways to define
the objective function in this setting: we can try to maximize the total amount of flow sent
between all source-destination pairs - a problem known as the maximum multicommodity
flow; or we can try to maximize a value λ such that all demand pairs can simultaneously
send λ flow units between them - this is known as maximum concurrent flow. We define
the two corresponding graph cut problems, minimum multicut and sparsest cut, and study
their LP-relaxations, as well as known approximation algorithms and hardness results in
Sections 2 and 3. Unfortunately, the integrality of flow does not hold anymore in the mul-
tiple source-destination pairs setting, and the problem of computing maximum integral flow
becomes NP-hard. We discuss approximation algorithms and hardness results for integral
routing problems in Sections 4 and 5.

Before we proceed, let us mention another common and useful version of the maximum
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s–t flow problem, where the capacities are on the graph vertices and not on edges. In this
problem, we are given a graph G = (V,E), a source vertex s ∈ V and a destination vertex
t ∈ V , and capacity values c(v) for all vertices v ∈ V \ {s, t}. As before, let P denote the
set of all paths connecting s to t in G. A valid flow assigns values f(P ) ∈ R

+ to each path
P ∈ P , so that for every vertex v ∈ V \ {s, t},∑P :v∈P f(P ) ≤ c(v). In the corresponding
vertex cut problem, we are given costs c(v) on vertices v ∈ V , and the goal is to select a
minimum-cost subset S ⊆ V \ {s, t} of vertices, so that G \ S contains no path connecting
s to t. The node-capacitated version of the maximum flow problem behaves very similarly
to the edge-capacitated one. We can write a linear programming relaxation, similar to (LP-
flow), which can be solved efficiently using similar methods. The dual of this linear program
is a relaxation of the minimum vertex cut problem. As in the edge-capacitated version of the
problem, the integrality gap of the LP-relaxation for minimum vertex cut is 1, and, when all
vertex capacities are integral, the integrality gap of the LP-relaxation for node-capacitated
maximum flow is also 1. The maximum flow value and the minimum cut value are therefore
equal for any graph G even in this model. If all vertex capacities are unit, then we obtain an
efficient algorithm for computing a maximum-cardinality set P ′ of internally node-disjoint
paths connecting s to t (so every vertex v ∈ V \ {s, t} may belong to at most one path of
P ′). Therefore, the cardinality of P ′ is equal to the value of the minimum vertex s–t cut in
any graph G - this is known as Menger’s theorem [69].

2. Maximum multicommodity flow and minimum multicut

A natural generalization of the maximum s–t flow problem is maximum multicommodity
flow. In this problem, instead of a single source-destination pair (s, t), we are given a collec-
tion of k such pairs {(s1, t1), . . . , (sk, tk)}, that we call demand pairs. The goal is to send
maximum amount of flow between the demand pairs, without violating the edge capacities:
that is, for each 1 ≤ i ≤ k, the flow leaving si must arrive at ti, and the total amount of
flow traversing any edge e is at most c(e). It is sometimes convenient to think of having k
different flow types, or commodities, where the ith commodity needs to be sent from si to ti.
For each 1 ≤ i ≤ k, let Pi denote the set of all paths connecting si to ti in G. The following
linear program is a generalization of (LP-flow) to the multi-commodity setting:

(LP-multi-flow) max
∑k

i=1

∑
P∈Pi

f(P )

s.t. ∑
P :e∈P f(P ) ≤ c(e) ∀e ∈ E

f(P ) ≥ 0 ∀1 ≤ i ≤ k ∀P ∈ Pi

Like (LP-flow), this linear program can be solved efficiently using similar methods. The
cut counterpart of maximum multicommodity flow is minimum multicut. In this problem,
the input is the same as in the maximum multicommodity flow problem, but we view the
values c(e) as edge costs, rather than capacities. The goal is to select a minimum-cost subset
E′ ⊆ E of edges, such that in graph G \ E′, there is no path connecting any source si to
its destination ti. As in the single-commodity scenario, it is easy to see that the value of the
maximum multicommodity flow cannot exceed the value of the minimum multicut in any
graph G, since for each 1 ≤ i ≤ k, every path P ∈ Pi must contain at least one edge of E′.
Therefore, the total amount of flow carried by the paths in

⋃k
i=1 Pi is bounded by the total
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capacity of the edges in E′. The dual linear program of (LP-multi-flow) also happens to be
a relaxation of minimum multicut:

(LP-multicut) min
∑

e∈E c(e)xe

s.t. ∑
e∈P xe ≥ 1 ∀1 ≤ i ≤ k ∀P ∈ Pi (2.1)
xe ≥ 0 ∀e ∈ E (2.2)

Indeed, if we restrict the values xe to be in {0, 1}, and let E′ be the set of all edges e
with xe = 1, then Constraint (2.1) ensures that every path connecting any source si to its
destination ti contains at least one edge of E′, or, equivalently, G \ E′ contains no path
connecting si to ti, for any 1 ≤ i ≤ k. Let OPTLP be the value of the optimal solution to
(LP-multicut), that we also call the minimum fractional multicut value. The optimal solution
to the minimum multicut problem is denoted by OPT, and is called the minimum integral
multicut value. From the LP-duality theorem, the value of the maximum multicommodity
flow equals to the value of the minimum fractional multicut. However, the integrality gap
of (LP-multicut) is no longer 1, and so the maximum multicommodity flow value may be
smaller than the value of minimum multicut. The equality between maximum flow and min-
imum cut therefore breaks down in the multicommodity setting. However, we can still hope
to obtain an approximate version of the Max-Flow Min-Cut Theorem, by bounding what is
called the flow-cut gap - the largest possible ratio between maximum multicommodity flow
and minimum multicut in any graph. Since the maximum multicommodity flow value equals
to the value of the minimum fractional multicut, the flow-cut gap is precisely the integrality
gap of (LP-multicut).

For undirected graphs, Garg, Vazirani and Yannakakis [45], building on the work of
Leighton and Rao [67] and Klein et al. [57] showed that the integrality gap of (LP-multicut)
is O(log k), by providing an efficient LP-rounding algorithm, whose approximation factor
is O(log k). This bound on the integrality gap is almost tight: there is an instance of the
minimum multicut problem, for which OPT = Ω(log k) · OPTLP [67]. The integrality gap
of (LP-multicut), and the flow-cut gap for undirected graphs are therefore well understood
(to within a constant factor), and stand on Θ(log k). The question of whether one can obtain
a better than O(log k)-approximation algorithm for undirected multicut by other methods,
or perhaps by LP-rounding of a different linear programming relaxation remains wide open.
The best currently known hardness of approximation result shows that for some constant c,
the problem does not have a c-approximation algorithm, assuming that P �= NP [36]. Under
a complexity assumption called the Unique Games Conjecture [55], the undirected multicut
problem is hard to approximate to within any constant factor [24, 56]. The status of the
Unique Games Conjecture is however still wide open.

The situation is very different in directed graphs. It is easy to obtain a factor k-approxima-
tion to the minimum multicut problem, by computing, for each 1 ≤ i ≤ k, a minimum si–ti
cut E′

i, and returning
⋃k

i=1 E′
i as the solution to minimum multicut. Surprisingly, a beautiful

construction of Saks et al. [77] shows that this algorithm is close to the best one can achieve
via the LP-rounding of (LP-multicut), since the integrality gap of (LP-multicut), and hence
the flow-cut gap, can be as large as k − ε for any ε > 0 in directed graphs. The number of
pairs k in their construction is however quite small when compared to the total number of
vertices n in the graph: k = Θ(log n/ log log n), and hence, as a function of n, the lower
bound they achieve on the integrality gap is only Ω(log n/ log log n). Unfortunately, [34]
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have shown that the integrality gap of (LP-multicut), and therefore the flow-cut gap in di-
rected graphs is at least Ω(n1/7/ poly log n)1. The best current approximation algorithm
achieves an O(n11/23 · poly log n)-approximation via LP-rounding of (LP-multicut), thus
providing an upper bound of O(n11/23 · poly log n) on the flow-cut gap [1, 31, 46]. The
value of the flow-cut gap for directed graphs therefore remains open, but, unlike undirected
graphs, it is polynomially large in n. Minimummulticut in directed graphs is hard to approx-
imate to within factor 2Ω(log1−ε n) for any constant ε > 0, under the plausible complexity
assumption that some problems in NP do not have efficient randomized algorithms [34].

3. Concurrent flow and sparsest cut

Maximum concurrent flow problem can be seen as multicommodity flow with additional
fairness requirements. The input to this problem is the same as in maximummulticommodity
flow, but instead of routing maximum amount of flow between all demand pairs, we would
like to ensure that every demand pair routes a significant amount of flow, and we measure
our success by the smallest amount of flow routed between any demand pair. In other words,
we would like to maximize a value λ, such that each demand pair (si, ti) can route λ flow
units from si to ti simultaneously, and the total flow on any edge e does not exceed its
capacity c(e). The linear programming formulation of this problem uses the same notation
as in (LP-multi-flow), and is as follows:

(LP-concurrent-flow) max λ

s.t. ∑
P∈Pi

f(P ) ≥ λ ∀1 ≤ i ≤ k∑
P :e∈P f(P ) ≤ c(e) ∀e ∈ E

f(P ) ≥ 0 ∀1 ≤ i ≤ k ∀P ∈ Pi

Often, a more general version of this problem is considered, where each demand pair
(si, ti) is associated with a demand value Di ≥ 0, and we need to route λDi flow units from
si to ti simultaneously, without violating the edge capacities, for largest possible value λ.
Linear program (LP-concurrent-flow) can also be solved efficiently using methods similar to
those discussed in Section 1. The dual linear program for (LP-concurrent flow), that we call
(LP-spcut), appears below.

(LP-spcut) min
∑

e∈E c(e)xe

s.t. ∑
e∈P xe ≥ hi ∀i : 1 ≤ i ≤ k, ∀P ∈ Pi (3.1)∑k
i=1 hi ≥ 1 (3.2)
xe ≥ 0 ∀e ∈ E

hi ≥ 0 ∀1 ≤ i ≤ k

This linear program can be seen as a relaxation of a different graph cut problem, called
the sparsest cut problem. Suppose we are given an undirected graph G = (V,E) with costs

1We say that f(n) = poly logn if there is some constant c, such that f = Θ((logn)c).
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c(e) on edges e ∈ E, and a collection M = {(s1, t1), . . . , (sk, tk)} of demand pairs. For
any subset S ⊆ V of vertices, let S = V \ S. Let E(S, S) denote the set of all edges with
exactly one endpoint in S, and let D(S, S) be the set of all demand pairs (si, ti), where

exactly one of si, ti belongs to S. The sparsity of S is
∑

e∈E(S,S) c(e)

|D(S,S)| . In the sparsest cut
problem, the goal is to find a subset S ⊆ V of vertices of minimum sparsity. If the set M
of the demand pairs contains every pair of vertices of G, then the problem is called uniform
sparsest cut. The general version of the problem, where M can be arbitrary, is often called
the non-uniform sparsest cut problem.

Sparsest cut is one of the central combinatorial optimization problems. It is closely re-
lated to the important graph theoretic notions of graph expansion and graph conductance.
Approximation algorithms for the sparsest cut problem are often used as subroutines in al-
gorithms for problems arising in many different areas of Computer Science. As an example,
one of the most useful paradigms in algorithm design is divide-and-conquer, that often re-
quires a small balanced partition of a given graph G. That is, we need to partition V (G) into
two sub-sets V1, V2, each of which only contains a constant fraction (say at most 2/3) of the
vertices of G, such that the number of edges |E(V1, V2)| is minimized. This problem can be
approximately solved by using an approximation algorithm for the sparsest cut problem as a
subroutine.

In order to see that (LP-spcut) is a relaxation of the sparsest cut problem, consider any
solution S to the sparsest cut problem, and let E′ = E(S, S). For each edge e ∈ E, define
a new variable x′e whose value is 1 if e ∈ E′ and 0 otherwise. For each i : 1 ≤ i ≤ k,
define a new variable h′i, whose value is 1 if (si, ti) ∈ D(S, S), and 0 otherwise. Let
D = |D(S, S)|. We are now ready to define a solution to (LP-spcut): for each edge e ∈ E,
set xe = x′e/D, and for each 1 ≤ i ≤ k, set hi = h′i/D. It is then easy to see that
we have defined a feasible solution to the linear program (LP-spcut), and the value of the
solution

∑
e c(e)xe =

∑
e∈E c(e)x′

e

D =
∑

e∈E′ c(e)
|D(S,S)| is exactly the sparsity of S. As with

undirected multicut, there is an LP-rounding approximation algorithm for the sparsest cut
problem, whose approximation factor is O(log k) in undirected graphs [13, 67, 68], and a
matching lower bound of Ω(log k) on the integrality gap of (LP-spcut) [67]. Therefore, the
flow-cut gap between maximum concurrent flow and sparsest cut in undirected graphs is
Θ(log k). In a major breakthrough, Arora, Rao and Vazirani [11] designed an O(

√
log n)-

approximation algorithm for uniform sparsest cut, by rounding a semidefinite relaxation of
the problem. Their algorithm was later generalized to the non-uniform sparsest cut problem,
where the approximation ratio becomes O(

√
log k · log log k) [10]. Somewhat surprisingly,

these techniques do not seem to help with the minimum multicut problem, where the best
approximation ratio in undirected graphs still stands on O(log k), and is achieved by an LP-
rounding algorithm of [45, 67]. On the negative side, it is known that the sparsest cut problem
does not have a factor c-approximation for some specific constant c, unless all problems in
NP have randomized subexponential time algorithms [2], and this holds even for the uniform
sparsest cut problem. Assuming the Unique Games Conjecture, the non-uniform sparsest
cut is hard to approximate to within any constant factor [24, 56]. The approximability of the
sparsest cut problem remains one of the central open questions in the area of approximation
algorithms. Some progress has recently been made on special cases of the problem [9, 48].

For directed graphs, the notion of a sparsest cut can be defined in two distinct ways.
In one version of the problem, which we refer to as the bipartite sparsest cut, the sparsest
cut in a graph is a bipartition of vertices into two sets S and S̄ that minimizes the ratio of
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∑
e∈|E(S,S)| c(e)

|D(S,S)| . In the second version, which we refer to as the non-bipartite sparsest cut,
we need to select a subset E′ of edges, minimizing the ratio of

∑
e∈E′ c(e) to the num-

ber of the demand pairs disconnected in G \ E′. We note that (LP-spcut) is a relaxation
of the non-bipartite sparsest cut. In undirected graphs, it is easy to see that the two no-
tions are equivalent, but this is not the case in directed graphs. The best currently known
approximation ratio for the non-bipartite sparsest cut is O(n11/23 poly log n), achieved by
LP-rounding of (LP-spcut) [1, 49]. As in minimum multicut, the integrality gap of (LP-
spcut) is Ω(n1/7/ poly log n) [34]. Therefore, the integrality gap of (LP-spcut), and the
flow-cut gap between maximum concurrent flow and sparsest cut in directed graph is poly-
nomial in n. The non-bipartite sparsest cut problem in directed graphs is hard to approximate
to within factor 2Ω(log1−ε n) for any constant ε > 0, assuming that some problems in NP do
not have efficient randomized algorithms [34]. The bipartite sparsest cut is known to be hard
to approximate to within 2Ω((logn)ε) for some ε > 0, unless 3SAT has subexponential-time
algorithms [23].

4. Integral routing

In this section we consider integral routing problems. We start with the edge-disjoint paths
problem, that can be seen as the integral counterpart of maximum multicommodity flow,
and discuss several closely related problems, such as node-disjoint paths and congestion
minimization. We then consider an integral counterpart of the maximum concurrent flow
problem, called integral concurrent flow.

Edge-disjoint paths problem (EDP) is one of the basic problems in integral routing, and
we can think of it as an integral version of maximum multicommodity flow. For simplicity,
in this section, we assume that all edge capacities are unit. The input to the EDP problem
is an n-vertex graph G = (V,E), that can be either directed or undirected, and a collection
M = {(s1, t1), . . . , (sk, tk)} of k pairs of vertices, that we call demand pairs. In order to
route a pair (si, ti), we need to select a path Pi connecting si to ti. The goal is to route a
maximum possible number of the demand pairs via edge-disjoint paths: that is, every edge
e may participate in at most one path in the solution. A closely related problem is node-
disjoint paths (NDP), defined exactly like EDP, except that the paths chosen to route the
demand pairs now need to be node-disjoint, so a vertex of G may belong to at most one such
path. For directed graphs, the two problems are almost equivalent: an EDP instance (G,M)
can be transformed into an instance of the NDP problem, by sub-dividing every edge of G
with a new vertex. (This transformation does not preserve the number of vertices, which can
grow, so if we are interested in approximation factors as a function of |V (G)|, we should be
careful when using this transformation). An instance G of NDP in a directed graph can be
transformed into an instance of the EDP problem, by replacing every vertex v with a directed
edge (av, bv), and every edge (u, v) with an edge (bu, av). For undirected graphs, it is only
known that NDP is more general than EDP, as every instance of EDP can be transformed
into an instance of NDP via the same transformation, but the transformation in the opposite
direction is not known for undirected graphs.

In directed graphs, both NDP and EDP are NP-hard even when the number of the demand
pairs is 2 [42]. The following simple algorithm achieves anO(

√
m)-approximation for EDP,

where m is the number of the graph edges [47, 61–63]. Start with the empty solution. While
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at least one demand pair can be routed inG, select a shortest path P , connecting any demand
pair (si, ti). Add P to the solution, delete all edges of P from the graph, and delete (si, ti)
from the list of the demand pairs that need to be routed. In order to see that this algorithm
obtains an O(

√
m)-approximation, consider any optimal solution OPT to the problem. In

every iteration, if a path P connecting si to ti is added to the solution, then we delete from
OPT all paths sharing edges with P , and the path routing the demand pair (si, ti), if such
belongs to OPT. As long as P contains fewer than

√
m edges, we delete at most

√
m + 1

paths from OPT in every iteration, while adding at least one path to our solution. Consider
now the first iteration where the length of the selected path P is more than

√
m. Since we

choose the shortest path routing any demand pair, and all paths that currently belong to OPT
can be chosen by the algorithm, every path in OPT contains at least

√
m edges, and, since

these paths are edge-disjoint, OPT contains at most
√

m paths in total. Therefore, even if
we delete all paths from OPT in the current iteration, while adding only one path to the
solution, we still preserve the O(

√
m)-ratio between the number of paths deleted from OPT

and the number of paths added to the solution, thus obtaining an O(
√

m)-approximation.
Surprisingly, this simple algorithm is almost the best we can hope for: EDP in directed
graphs is hard to approximate to within a factor of Ω(m1/2−ε) for any constant ε [47]. For
the NDP problem, the algorithm described above gives an O(

√
n)-approximation, and the

problem is hard to approximate in directed graphs to within a factor of Ω(n1/2−ε) for any
constant ε [47].

While the approximation status of EDP and NDP is well understood in directed graphs,
both problems remain wide open in undirected graphs. When the number k of the demand
pairs is bounded by a constant, there is an efficient algorithm to solve both NDP and EDP [73,
76]. We discuss this algorithm in more detail in the following section. For general values
of k, it is NP-hard to even decide whether all pairs can be simultaneously routed on edge-
disjoint paths [51]. The best currently known approximation algorithms achieve an O(

√
n)-

approximation for both problems [28, 62], while the best current negative result shows that
neither problem has an O(log1/2−ε n)-approximation for any constant ε, unless all problems
in NP have randomized algorithms with running time nO(poly logn) [4, 5].

The vertices in the set T = {s1, . . . , sk, t1, . . . , tk} are called terminals. We will assume
for simplicity that all terminals are distinct, that is, |T | = 2k, and that each terminal is
incident on exactly one edge. This can be assumed without loss of generality, by performing
the simple transformation of the input graph G, that preserves the routing solutions: for each
terminal v ∈ T , if v participates in z demand pairs, we add z new vertices v1, . . . , vz to G,
each of which connects to v with an edge. We then replace v with the vertices v1, . . . , vz in
all demand pairs in which v participates, so that each of these new vertices participates in
exactly one demand pair. If we add the following integrality constraints to the linear program
(LP-multi-flow):

f(P ) ∈ {0, 1} ∀1 ≤ i ≤ k, ∀P ∈ Pi,

and set the values c(e) for all edges e ∈ E in the linear program to 1, then we obtain an
integral linear program, which is equivalent to EDP. Therefore, (LP-multi-flow) is an LP-
relaxation of EDP. The best currently known approximation algorithm for EDP achieves an
O(

√
n)-approximation by rounding (LP-multi-flow) [28]. Unfortunately, the integrality gap

of (LP-multi-flow) is very large even in undirected graphs: if n denotes the number of the
graph vertices, and k is the number of the demand pairs, then the integrality gap can be
as large as Ω(

√
n), and as large as Ω(k) [44]. An example of an instance realizing this

integrality gap is a wall graph. Wall graphs play an important role in algorithms for routing
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problems and in Graph Minor Theory. They are also among the simplest examples of graphs
for which we do not have good approximation algorithms for the EDP problem. A wall of
height 5 and width 4 is shown in Figure 4.1(a). A wall of height h and width w can be
constructed from a 2-dimensional grid of width 2w and height h. Let C1, . . . , C2w be the
columns of the grid, in their natural left-to-right order. Consider some column Ci, and let
ei1, . . . , e

i
h−1 be the edges of column Ci in their top-to-bottom order. If i is odd, then we

delete all edges eij where j is even, and if i is even, we delete all edges eij where j is odd.
We also delete all vertices of degree at most 1 in the resulting graph, obtaining a wall of
height h and width w. This wall contains h horizontal paths corresponding to the h rows
of the grid, that we call the rows of the wall, denoting them by R1, . . . , Rh in their natural
top-to-bottom order. There are also exactly w disjoint paths connecting the vertices of R1 to
the vertices of Rh, which do not contain the vertices of R1 ∪ Rh as their inner vertices. We
call these paths the columns of the wall, and we denote them by C1, . . . , Cw in their natural
left-to-right order.

In order to define an instance of the edge-disjoint-paths problem, we start with a wall of
height k+2 and width 2k. For each 1 ≤ i ≤ k, let si be the unique vertex in the intersection
of R1 and Ci, and let ti be the unique vertex in the intersection of Rk+2 and C2k−i+1. The
set of the demand pairs is M = {(s1, t1), . . . , (sk, tk)}. It is easy to see that the value of
the optimal fractional solution for this instance is at least k/2: for each 1 ≤ i ≤ k, we will
define a path Pi connecting si to ti, and we will send 1/2 flow unit along each such path. We
will ensure that every edge of the wall belongs to at most two such paths, obtaining a feasible
solution of value k/2 to (LP-multi-flow). In order to define path Pi, for 1 ≤ i ≤ k, we start
from si, and follow column Ci, until we reach row Ri+1; we then follow Ri+1 to column
C2k−i+1, and column C2k−i+1 until we reach ti. It is immediate to verify that every edge
belongs to at most two such paths, and so setting f(Pi) = 1/2 for each 1 ≤ i ≤ k gives a
feasible solution of value k/2 to (LP-multiflow). However, the value of the optimal integral
solution is at most 1: assume for contradiction that we can route two demand pairs: (si, ti)
and (sj , tj), for i �= j, and let Pi, Pj be the two corresponding paths. Let Γ be the cycle
that serves as the boundary of the wall. The wall is a planar graph, and has a drawing in the
plane, with Γ being the boundary of the outer face - this is the natural drawing, as the one in
Figure 4.1(a). The resulting drawings of the paths Pi, Pj have to cross, since their endpoints
appear in the circular order (si, sj , ti, tj) along Γ. But this is impossible since Pi, Pj are
disjoint, and the drawing is planar. Therefore, the integrality gap of (LP-multi-flow) is at
least k/2, and, since the number of the vertices in our graph is O(k2), the gap is Ω(

√
n) as

a function of n.

(a) A wall of height 5 and width 4.
The columns are shown in red.

s1 s2 s3

t1t2t3

(b) An integrality gap example with k = 3.

Figure 4.1. A wall graph
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Interestingly, even though there are several approximation algorithms achieving constant
or polylogarithmic approximation factors for large families of planar graphs, such as grids
and grid-like graphs [12, 14, 59, 60], The best currently known approximation ratio for
EDP on planar graphs is no better than that for general graphs, namely O(

√
n). Even if the

underlying graph is a wall of heightΘ(
√

n) (but the terminals can be located anywhere in the
wall and not necessarily on the boundary), no better than O(

√
n)-approximation is known,

to the best of our knowledge. Closing the gap in our understanding of the approximability
of EDP is one of the central problems in the area of graph routing, and a good starting point
may be planar graphs or even wall graphs.

The situation with the NDP problem in undirected graphs is very similar: the best current
upper and lower bounds on its approximability stand on O(

√
n) and Ω(log1/2−ε n) for any

constant ε, respectively [4, 5, 47, 61–63]. We can again use the multi-commodity flow
relaxation of the NDP problem, defined similarly to (LP-multi-flow), except that the capacity
constraints are on the vertices and not on the edges of G. This relaxation has an integrality
gap of Ω(

√
n), and the graph realizing this gap is a 2-dimensional (

√
n × √

n)-grid. No
better than O(

√
n)-approximation is known for NDP on planar graphs, and even on grid

graphs.
Another important class of graphs is expander graphs. We say that a graphG = (V,E) is

anα-expander, iff for any subset S ⊆ V of its vertices with |S|≤|V |/2,|E(S, V \S)|≥α ·|S|.
In general, we say that a graph is an expander if it is an α-expander for some fixed constant
α independent of the graph size. Both EDP and NDP have polylogarithmic approximation
algorithms on bounded-degree expander graphs [20, 21, 43, 58, 67]. Both these problems
also have constant-factor approximation algorithms on trees [30, 44], and EDP has constant-
factor approximation algorithms on grids and grid-like graphs [12, 14, 59, 60].

Routing with small congestion. Seeing that the status of the EDP problem in undirected
graphs is still wide open, it is natural to investigate what happens if we relax the problem
requirements slightly, by allowing small congestion. We say that a set of paths P causes
edge-congestion c, if every edge belongs to at most c paths inP . When the congestion c = 1,
we sometimes say that P causes no congestion. Vertex congestion is defined similarly. It
is a common practice to compare a solution to this relaxed version of EDP with an optimal
solution that has no congestion. We say that an algorithm achieves an approximation factor
α with congestion c for the EDP problem, iff it routes OPT/α demand pairs with congestion
c, where OPT is the maximum number of pairs that can be routed with no congestion.

The classical algorithm of Raghavan and Thompson [70] gives a constant factor approx-
imation for EDP with congestion O(log n/ log log n). The algorithm performs LP-rounding
of (LP-multi-flow), by viewing the values f(P ) for each path P as probabilities. Each
path P ∈ ⋃i Pi is selected to the solution independently with probability f(P ). If several
paths routing the same demand pair are selected, we discard the additional paths arbitrar-
ily. It is not hard to show that with a constant probability we obtain a solution where the
number of the demand pairs routed is within a constant of the optimal fractional solution,
and each edge participates in at most O(log n/ log logn) paths. This randomized rounding
scheme can be slightly altered to give, for any congestion value c, a factor O(cn1/(c−1))-
approximation [15, 16, 62, 80]. More recent result give LP-rounding algorithms for EDP
that achieve O(poly log k)-approximation with smaller congestion [3, 32, 35], with the best
current algorithm giving O(poly log k)-approximation with congestion 2.

An important class of instances of the EDP problem is well-linked instances. We say that
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a set T of vertices in graph G is well-linked if for any pair T1, T2 ⊆ T of equal-sized subsets
of T , there is a set of |T1| node-disjoint paths connecting the vertices of T1 to the vertices
of T2 in G. We say that an instance of EDP is well-linked if every terminal participates in
exactly one demand pair, and the set of all terminals is well-linked. Chekuri, Khanna and
Shepherd [27, 29] have shown an efficient algorithm, that, given any EDP instance (G,M),
partitions it into a number of sub-instances (G1,M1), . . . , (G
,M
), such that each in-
stance Gi is well-linked, while the sum of the values of the optimal fractional solutions in
all these instances is Ω(OPT/ log2 k). Therefore, in order to obtain a polylogarithmic ap-
proximation with congestion 2 to EDP, it is enough to find a polylogarithmic approximation
with congestion 2 in each such sub-instance separately. The main result of [35] is a structural
theorem, that shows that any well-linked instance with k demand pairs contains a large cross-
bar. The crossbar can be viewed as a degree-3 tree T on poly log k vertices, such that every
vertex v of T is mapped to a connected subgraph Cv of G, and every edge e = (u, v) of T
is mapped to a collection Pe of k/ poly log k disjoint paths in G, where each path connects
a vertex of Cv to a vertex of Cu. Moreover, each edge of G participates either in at most
one graph in {Cv}v∈V (T ), or in at most one path of

⋃
e∈E(T ) Pe, but not both. This crossbar

is then exploited to embed an expander X on k/poly log k vertices into G with congestion
at most 2. Specifically, we select a subset M′ ⊆ M of k/ poly log k demand pairs that we
will attempt to route. Every vertex v of the expander X is mapped to a connected sub-graph
Hv of G, and every edge e = (u, v) of X is mapped to a path Pe in G connecting a vertex
of Hv to a vertex of Hu. Each edge of G may participate in up to two sub-graphs Hv , or at
most one such sub-graph and at most one path Pe. Each terminal participating in the pairs in
M′ belongs a distinct sub-graph Hvt for some vt ∈ V (X). The embedding of the expander
is performed using the crossbar, building on a beautiful result of Khandekar, Rao and Vazi-
rani [54] on constructing expanders via cut-matching games. Finally, known algorithms for
routing on expander graphs are used to find the final routing.

These results demonstrate a fundamental difference between routing with congestion 1
and routing with congestion 2 or higher: Suppose we are given a solution P to the EDP
problem that connects D of the demand pairs with congestion c, and we are interested in
obtaining another solution with a lower congestion. By sending 1/c flow units along each
path in P , we obtain a valid fractional solution to (LP-multi-flow) of valueD/c. We can then
use the LP-rounding algorithm of [35] to find a solution connecting Ω (D/(c poly log k)) of
the demand pairs with congestion 2. That is, we can lower the congestion to 2 with only
a factor (c poly log k) loss in the number of the demand pairs routed. However, if we are
interested in routing with no congestion, then we may have to lose an Ω(

√
n)-factor in the

number of pairs routed, as we can see from the integrality gap example described above: we
can view the fractional solution as routing k demand pairs integrally with congestion 2 (by
sending 1 flow unit along each path instead of 1

2 ), but if we require an integral routing with
congestion 1, then at most one pair can be routed.

The O(poly log k)-approximation algorithm with congestion 2 is close to the best one
can hope to obtain from rounding (LP-multi-flow): as discussed above, any sub-polynomial
approximation for EDP obtained via this relaxation must incur congestion at least 2. The

integrality gap of (LP-multi-flow) is Ω
((

logn
(log logn)2

)1/(c+1)
)

for any constant congestion

value c [4], and so the integrality gap for congestion 2 is polylogarithmic. An almost match-
ing hardness of approximation result shows that for any constant ε, for any congestion value
c : 1 ≤ c ≤ O

(
log logn

log log logn

)
, there is no O

(
(log n)

1−ε
c+1

)
-approximation algorithm for
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EDP with congestion c, unless all problems in NP have randomized algorithms with run-
ning time (npoly logn) [4]. This gives an Ω

(
log(1−ε)/3 n

)
-hardness of approximation for

EDP with congestion 2. These algorithms for EDP were generalized to NDP, giving an
O(poly log(k))-approximation with a constant congestion [26].

Allowing congestion does not seem to help much in directed graphs: EDP remains
nΩ(1/c)-hard to approximate even when congestion c is allowed, for any value c between
2 and δ log n/ log log n, for some fixed constant δ, unless all problems in NP have random-
ized algorithms with running time npoly logn [6, 33], almost matching the O(cn1/(c−1))-
approximation [15, 16, 62, 80] achievable via the randomized rounding technique.

Congestion minimization Congestion minimization is a natural counterpart of the EDP
problem: here, the goal is to route all demand pairs, while minimizing the edge conges-
tion. We can slightly alter (LP-multi-flow) to obtain an LP-relaxation for the congestion
minimization problem:

(LP-cong-min) min c

s.t. ∑
P∈Pi

f(P ) = 1 ∀1 ≤ i ≤ k∑
P :e∈P f(P ) ≤ c ∀e ∈ E

f(P ) ≥ 0 ∀1 ≤ i ≤ k ∀P ∈ Pi

The randomized rounding algorithm of Raghavan and Thompson [70] gives the best
currently known approximation algorithm for the congestion minimization problem, whose
approximation factor isO(log n/ log log n), by independently choosing, for each 1 ≤ i ≤ k,
one path P ∈ Pi, where path P is chosen with probability f(P ). For directed graphs, this
algorithm is close to being the best possible, as the problem is known to be hard to approx-
imate to within factor Ω(log n/ log log n) [6, 33]. But for undirected graphs the problem is
still wide open, with the best current negative result standing on Ω

(
log logn

log log logn

)
-hardness

of approximation, unless all problems in NP have randomized algorithms with running time
(npoly logn) [7]. Even the integrality gap of (LP-cong-min) for undirected graphs is not well
understood: the current upper bound stands onO(log n/ log log n), by the algorithm of [70],
and the current lower bound is Ω

(
log logn

log log logn

)
[7].

Integral concurrent flow In the integral concurrent flow problem (ICF), we are given an
undirected n-vertex graph G = (V,E), a collection {(s1, t1), . . . , (sk, tk)} of pairs of ver-
tices that we call demand pairs, and a demand value Di for each 1 ≤ i ≤ k. The goal is
to find a maximum value λ, and a collection P of paths, such that for each demand pair
(si, ti) set P contains at least *λ · Di+ paths connecting si to ti, and each edge partici-
pates in at most one such path. This problem is an integral counterpart of the maximum
concurrent flow problem. To the best of our knowledge, no approximation algorithms are
known for the problem. As with the EDP problem, we also consider a relaxed version, where
a small congestion is allowed on the edges. Chalermsook et al. [22] showed a poly log n-
approximation algorithm for ICF with a constant congestion, by rounding solutions of an LP-
relaxation similar to (LP-concurrent-flow). They also showed that for any values η, α, such
that η · α ≤ O(log log n/ log log log n), no efficient algorithm can find an α-approximate
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solution with congestion η to ICF unless all problems in NP have randomized algorithms
with running time npoly logn.

Chalermsook at al. [22] also consider a more general version of the ICF, called group-
ICF, in which, instead of the k pairs of vertices {(s1, t1), . . . , (sk, tk)}, we are given k pairs
of vertex subsets, ((S1, T1), . . . , (Sk, Tk)), so for each 1 ≤ i ≤ k, Si, Ti ⊆ V . The goal
is to find a maximum value λ, and a collection P of paths, such that for each 1 ≤ i ≤ k,
there are at least *λ · Di+ paths connecting the vertices of Si to the vertices of Ti in P ,
and every edge e ∈ E belongs to at most one such path. It is easy to see that group-ICF
generalizes both the ICF and the EDP problems. We can use an LP-relaxation similar to (LP-
concurrent-flow) for the group-ICF problem. When no congestion is allowed, the integrality
gap of the relaxation is Ω(

√
n), even when k = 2. Moreover, even if we allow congestion

c, this ratio can still be as large as Ω(n1/c+1). Chalermsook et al. [22] show that for any
0 < η ≤ O(log log n) and α = O

(
n1/22η+3

)
, no efficient algorithm can find α-approximate

solutions with congestion η for group-ICF, unless all problems in NP have algorithms with
running time nO(log logn). Given an optimal integral solution P to the group-ICF problem
instance, let D = mini {*λ∗ · Di+} be the minimum number of paths connecting any pair
(Si, Ti) in this solution. Their hardness result only holds for the regime where D << k.
They further show that if D > k poly log n, then there is an efficient algorithm that finds a
(poly log n)-approximate solution to group-ICF with constant congestion.

5. Routing with few demand pairs

In this section we consider the NDP problem on undirected graphs when the number k of
the demand pairs is bounded by a constant independent of the graph size. (Recall that for
directed graphs, NDP is NP-hard even for k = 2 [42]).

Given a graphG, a separation ofG is a pair (X,Y ) of sub-graphs ofG, withX∪Y = G
and E(X) ∩ E(Y ) = ∅. The order of the separation is |V (X) ∩ V (Y )|. When the number
of the demand pairs is k = 2, the following beautiful theorem can be used to solve the NDP
problem.

Theorem 5.1 ( [50, 74, 78, 79, 81]). Let G be a graph and s1, t1, s2, t2 four vertices. Assume
that there is no separation (X,Y ) in G of order at most 3, such that s1, t1, s2, t2 ∈ V (X)
and X �= G. Then either both pairs (s1, t1) and (s2, t2) can be routed on disjoint paths
in G, or there is a drawing of G inside a disc in the plane, with s1, s2, t1, t2 appearing on
the boundary of the disc in this circular order. Moreover, there is an efficient algorithm that
either finds the routing or the drawing of G.

In order to apply the above theorem to the NDP problem instance, we pre-process the
input graph G as follows: if there is a separation (X,Y ) of G of order at most 3, such that
s1, t1, s2, t2 ∈ V (X) and X �= G, then there must be a separation (X ′, Y ′) of G with all the
above properties, such that Y ′ is connected. We delete fromG all vertices of V (Y ′)\V (X ′),
and add all edges connecting every pair of vertices in V (X ′) ∩ V (Y ′). It is easy to see that
the two pairs (s1, t1), (s2, t2) can be routed on disjoint paths in the new graph iff they can
be routed on disjoint paths in the old graph. We repeat this process, until G contains no
separation (X,Y ) of order at most 3, with s1, t1, s2, t2 ∈ V (X) and X �= G, and then apply
Theorem 5.1 to find the routing.
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For the case where k > 2, but is still bounded by a constant, Robertson and Seymour [73,
76] have shown an efficient algorithm for NDP, with running time O(n3 · f(k)), where n is
the number of graph vertices, and f is some function. This running time was later improved
to O(n2 · f(k)) [53]. Before we describe their algorithm, we need to define several graph-
theoretic notions.

We start with the notion of treewidth. Intuitively, treewidth measures how close our
graph is to a tree: the lower the treewidth value (which is always at least 1), the “closer”
our graph is to being a tree. Trees are relatively simple graphs, and many combinatorial
optimization problems that are NP-hard on general graphs have efficient algorithms on trees.
Many other problems have good approximation algorithms on trees, even if such algorithms
are not known for general graphs. Sometimes, when the graphs that we work with are not
too complex, techniques used for designing algorithms on trees may still be applicable. It
would be therefore useful to have some machinery that allows us to adapt known algorithms
for trees to “tree-like” graphs, and to have a formal way to measure the “closeness” of a
graph to a tree. The notion of treewidth achieves both these goals: it gives a way to measure
the closeness of a graph to a tree, while providing a convenient tree-like representation of the
graph, that often allows us to adapt the algorithms known for trees to low-treewidth graphs.

The treewidth of a graph G = (V,E) is typically defined via tree decompositions. A
tree-decomposition for G consists of a tree T = (V (T ), E(T )) and a collection of sets
{Xv ⊆ V }v∈V (T ) called bags, such that the following two properties are satisfied: (i) for
each edge (a, b) ∈ E, there is some node v ∈ V (T ) with both a, b ∈ Xv and (ii) for
each vertex a ∈ V , the set of all nodes of T whose bags contain a form a non-empty (con-
nected) subtree of T . The width of a given tree decomposition is maxv∈V (T ) {|Xv| − 1},
and the treewidth of a graph G, denoted by tw(G), is the width of a minimum-width tree
decomposition for G. There is an interesting connection between graph treewidth and well-
linkedness: if w denotes the size of the largest-cardinality well-linked set of vertices in G,
then w ≤ tw(G) ≤ 4w.

The problem of computing the treewidth of a graph is NP-hard [8]. When the treewidth
value k is bounded by a constant, the treewidth and the corresponding tree decomposition can
be computed in time O(n · f(k)) for some function f [17, 19, 64, 65, 71, 76]. Using the best
currently known approximation algorithms for the vertex version of the sparsest cut prob-
lem [40], one can obtain an O(

√
log k)-approximation algorithm for computing treewidth in

general graphs, together with the corresponding tree decomposition [18].
Suppose we are given an instance (G,M) of the NDP problem, where |M| = k, and

assume that we are given a tree decomposition T of G of width w. Then the problem can
be solved in time O(n) · f(w, k) for some function f , via dynamic programming, as fol-
lows. Using standard methods, we can transform the tree decomposition T into another
tree decomposition T ′, such that |V (T ′)| ≤ n, the width of T ′ is at most w + 2k, every
vertex of T ′ has degree at most 3, and there is one vertex v in T whose degree is 1, and
Xv = {s1, . . . , sk, t1, . . . , tk}. We root the tree T at the vertex v. For each vertex u of
T , let Su be the set of all the vertices of T contained in the sub-tree rooted at u, and let
Yu =

⋃
u′∈Su

Xu′ . We define a graph Gu associated with the vertex u to be the sub-graph
of G induced by Yu. We will think of the vertices of Xu as the terminals for the graph Gu.
Since |Xu| ≤ w+2k+1, there are 2O((w+k) log(w+k)) ways to define a matchingM between
the vertices of Xu (where we allow the matchings to be partial). We say that a matching M
is routable in Gu iff there is a solution to the NDP problem in graph Gu, where every pair
of vertices in M is routed. A folio of the vertex u ∈ V (T ), denoted by π(u), is the list
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of all such matchings M (defined over the set Xu of vertices), such that M is routable in
Gu. The main idea of the algorithm is to use dynamic programming in order to compute a
folio for every vertex u ∈ V (T ), by processing the tree in the bottom-up fashion. For each
matching M in the folio π(u), we will also compute and store the set of paths in Gu routing
the matching M . Notice that once we compute π(v), we can select a matching M ∈ π(v)
containing the largest number of the demand pairs from M to obtain a solution to the NDP
problem. For each leaf vertex u ∈ V (T ), the folio π(u) can be computed by exhaustively
going over all possible matchings M , and for each such matching, checking whether it can
be routed in Gu by exhaustive search, since |V (Gu)| ≤ w + 2k. When a non-leaf vertex
u is processed, we need to check all possible ways to combine the matchings in the folios
π(u′), π(u′′) of the two children u′, u′′ of u into a single folio π(u) of u. Since the sizes
of all three folios are bounded by 2O((w+k) log(w+k)), and |Xu| ≤ 2k + w, the running time
of this algorithm can be bounded by f(k + w) for some function f , and the overall running
time O(n · f(k + w)). This gives an efficient algorithm for NDP with constant number of
demand pairs on bounded-treewidth graphs. But what about general graphs, whose treewidth
may not be bounded by a constant? Robertson and Seymour’s Excluded Grid Theorem is a
very powerful tool for handling such graphs. The theorem states that there is some function
g : Z+ → Z

+, such that for any integer t, every graph of treewidth at least g(t) contains a
sub-division of the (t × t)-wall (this is equivalent to saying that G contains a (t × t)-grid
as a minor). A long line of work is dedicated to improving the known upper and lower
bounds on the function g [25, 38, 39, 52, 66, 72, 75]. The best current bounds show that
the theorem holds for g(t) = O(t98 · poly log(t)) [25], and the best negative result shows
that g(t) = Ω(t2 log t) must hold [72]. Robertson et al. [72] suggest that this value may
be sufficient, and Demaine et al. [37] conjecture that the bound of g(t) = Θ(t3) is both
necessary and sufficient.

Notice that if the treewidth of G is w, then there is a well-linked set of size Ω(w) in
G. We can then use the machinery developed for approximating EDP and NDP in well-
linked instances. The first step in the proof of the excluded grid theorem of [25] constructs a
crossbar in G, given the set of Ω(w) well-linked vertices. This step expands and generalizes
the crossbar construction from [26, 35]. In the next step, a new crossbar is constructed,
where the underlying tree is a path, and then a result of Leaf and Seymour [66] is used to
build a large wall in this new crossbar.

We are now ready to complete the description of the algorithm for NDP when the number
k of the demand pairs is bounded by a constant. We use some threshold function τ(k). If
the treewidth of graph G is at most τ(k), then we run the dynamic programming algorithm
described above to solve the NDP problem in time O(n · f(τ(k))). Otherwise, the treewidth
of G is at least τ(k), and we can find a large wall in G. Using this wall, we can identify an
irrelevant vertex v in G, such that for any subset M′ ⊆ M of the demand pairs, the pairs
in M′ are simultaneously routable in G \ {v} iff they are simultaneously routable in G. We
then delete the vertex v from graphG and continue. Since the number of iteration is bounded
by |V (G)|, we will eventually arrive at a graph G whose treewidth is at most τ(k), and then
apply the dynamic programming algorithm to it.
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Computing on the edge of chaos: Structure
and randomness in encrypted computation

Craig Gentry

Abstract. This survey, aimed mainly at mathematicians rather than practitioners, covers recent devel-
opments in homomorphic encryption (computing on encrypted data) and program obfuscation (gen-
erating encrypted but functional programs). Current schemes for encrypted computation all use es-
sentially the same “noisy” approach: they encrypt via a noisy encoding of the message, they decrypt
using an “approximate” ring homomorphism, and in between they employ techniques to carefully con-
trol the noise as computations are performed. This noisy approach uses a delicate balance between
structure and randomness: structure that allows correct computation despite the randomness of the en-
cryption, and randomness that maintains privacy against the adversary despite the structure. While the
noisy approach “works”, we need new techniques and insights, both to improve efficiency and to better
understand encrypted computation conceptually.
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1. Introduction

Many results in cryptography are counterintuitive. Alice and Bob can agree on a secret key
over a public channel. Alice can prove to Bob that she knows something – say, a proof that P
�= NP – without revealing any details of the proof. Alice can send Bob an encryption of her
datam1, . . . ,mt such that Bob can compute a succinct encryption of f(m1, . . . ,mt) for any
function f that he wants, but without Bob learning anything aboutm1, . . . ,mt. The last trick
is called “fully homomorphic encryption” (FHE). This survey is about FHE and another type
of encrypted computation called program obfuscation. Obfuscation allows Alice to encrypt
a software program so that the obfuscated program is fully executable but hides essential
secrets inside.

Before exploring encrypted computation, let us review some basics about computation
and cryptography, illustrated by the story of a young theoretical computer scientist.

1.1. Computation. Young Gauss, the story goes, was challenged by his teacher to add up
the numbers from 1 to 100. To his teacher’s surprise, Gauss computed the solution almost
instantly, while the other pupils toiled for the remainder of the class.

While his classmates added the numbers sequentially, Gauss found a shortcut. He saw
that, for even n, the first n numbers can be partitioned into n/2 pairs that each add up to
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n + 1, and that therefore the sum of the first n numbers is n(n + 1)/2. A mathematician
might say that Gauss found a formula or expression for the sum of the first n numbers –
namely, n(n + 1)/2. A computer scientist would add that Gauss also found an algorithm
or program. Moreover, Gauss’s algorithm is efficient, in contrast to the inefficient algorithm
used by his classmates.

Gauss’s algorithm for adding up the first n numbers takes as input the number n, rep-
resented by k = log2 n bits (or log10 n decimal digits). The most complex part of Gauss’s
algorithm is to multiply n and n + 1, which requires O(k2) steps using grade-school multi-
plication. Since the number of computational steps in Gauss’s algorithm is only polynomial
in the size of the input, we say his algorithm is polynomial-time. The sequential algorithm
used by his classmates takes at least n = 2k steps, which is exponential-time.

If a problem – such as adding up the numbers 1 to n, or multiplying two numbers – has a
polynomial-time algorithm that always solves it, then we say the problem is in the complex-
ity class P (for polynomial-time). BPP, which contains P, is the class of problems solvable
by efficient algorithms, which includes probabilistic polynomial-time (PPT) algorithms that
may use random coins and only solve the problem with good probability. NP (for “nonde-
terministic polynomial-time”) contains problems that, if you happen to guess the solution,
you can verify that it is correct in polynomial time. For example, the integer factorization
problem – decomposing an integer N into its prime factors, which is essentially the inverse
of multiplication – is inNP, but widely believed not to be in BPP. The biggest open problem
in complexity theory is to prove P �= NP (if that is the case).

1.2. Cryptography. Since we have not resolved P
?
= NP and other complexity-theoretic

questions, we do not know whether strong cryptography is possible. We might live in any of
Impagliazzo’s Worlds [23]. Impagliazzo imagined a face-off between Gauss and his teacher
in five different worlds, each of which is possible given what we currently know. In “Algo-
rithmica”, P = NP or some moral equivalent, making much of modern cryptography inse-
cure, and making it virtually impossible for the teacher to stump Gauss. To make the face-off
fair, the teacher’s problem needs to have a succinct verifiable answer, but any such problem
is in NP, hence in P, and therefore is easy for Gauss to solve. At the other extreme, in
“Cryptomania”, public-key cryptography [12, 33] is possible: two parties can communicate
secret messages over public channels. Impagliazzo notes “In Cryptomania, Gauss is utterly
humiliated. By means of conversations in class, [the teacher] and his pet student would be
able to jointly choose a problem that they would both know the answer to, but which Gauss
could not solve.” Most cryptographers bet their careers that we live in Cryptomania. But bet-
ting against the Gausses of the world is a risky proposition, and so “cryptographers seldom
sleep well” [25].

Still, cryptographers soldier on. An early triumph was a paper by Goldwasser and Micali
[21] that introduced “probabilistic encryption”, defined a rigorous (now standard) notion of
security for encryption schemes, and proposed an elegant construction of public-key encryp-
tion whose security they provably reduced to a natural, plausible computational assumption:
that the quadratic residuosity problem is hard. We review their results here as a vigorous
warm-up for recent encrypted computation schemes.

A public-key encryption scheme has three efficient algorithms: a key-generation algo-
rithm K that generates public and secret keys (pk, sk), an encryption algorithm E that takes
pk and a plaintext message m and outputs a ciphertext c, and a decryption algorithm D that
takes sk and c and recovers m. It is called “public key”, since anyone can use the publicly
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available pk to encrypt (without needing any secret knowledge). Of course, for any key pair
(pk, sk) output by K, whenever c = E(pk,m), it should hold that m = D(sk, c).

Goldwasser and Micali observed that, to be secure, an encryption scheme really should
be probabilistic – that is, E needs to be randomized, and there must be many ciphertexts for
each plaintext. If E were deterministic, an adversary could easily detect whether two cipher-
texts encrypt the same thing! To make this intuition more precise, they defined a notion of
“semantic security” for encryption in terms of a game between a challenger and an adver-
sary. In the initial phase, the adversary can ask the challenger for encryptions of messages of
its choosing. (In the public-key setting, the adversary can generate these encryptions itself.)
Then, the adversary generates two equal-length messagesm0,m1 and asks for an encryption
of one of them. The challenger sends a “challenge ciphertext” E(mb) for random b ∈ {0, 1},
the adversary wins the game if it guesses b, and the scheme is considered semantically secure
if the adversary has negligible advantage.

In the Goldwasser-Micali (GM) public-key encryption scheme, Alice samples random
prime integers p, q according to an appropriate distribution and sets N = pq, samples a
uniform x ∈ (Z/NZ)∗ that is a non-square modulo N but whose Jacobi symbol

(
x
N

)
equals

1, and publishes (N, x) as her public key. Bob encrypts m ∈ {0, 1} for Alice by sampling
random r ∈ (Z/NZ)∗ and sending the ciphertext c ← xm · r2 ∈ (Z/NZ)∗. That is, an
encryption of 0 is a square, and an encryption of 1 is a non-square (with Jacobi symbol 1).
Alice decrypts to recover m by distinguishing whether c is a square modulo the secret prime
factor p (e.g., by using Gauss’s quadratic reciprocity theorem).

The quadratic residuosity problem is related to the integer factorization problem. The
problem is: given a composite integer N = pq (but not the prime factors p and q) and an
element x ∈ (Z/NZ)∗ whose Jacobi symbol is 1 (where N and x are sampled accord-
ing to appropriate distributions), decide whether x is a square in (Z/NZ)∗. The quadratic
residuosity assumption is that the quadratic residuosity problem is hard (not in BPP). To
put it another way, the assumption is that, against all PPT adversaries, the subset of squares
modulo N = pq is pseudorandom among the set of elements with Jacobi symbol 1. The
assumption is clearly stronger than factoring, but it seems like a safe assumption, since we
do not know an actual algorithm to solve it that is significantly faster than factoring. For
us, the assumption has the added appeal of taunting our adversary Gauss, since he can use
his quadratic reciprocity theorem to compute the Jabobi symbol of x modulo N without
knowing N ’s factorization, but this does not help him since we always fix

(
x
N

)
= 1.

To reduce the semantic security of their scheme to quadratic residuosity, Goldwasser
and Micali use a “hybrid argument” approach that has become standard. Assume that our
adversary Gauss can break the cryptosystem – i.e., can distinguish encryptions of 0 from
encryptions of 1. Consider two different games, Game 0 and Game 1. In Game 0, we
generate the public key (N, x) and a challenge ciphertext (an encryption of a random bit
m ∈ {0, 1}) for Gauss in the correct way. By assumption, Gauss should be able to guess
m with noticeable advantage. In Game 1, however, we generate the public key (N, x) in
a different way. Specifically, we make x a square in (Z/NZ)∗, and generate the challenge
ciphertext by encrypting m using the normal encryption procedure, as if (N, x) were a valid
public key. In Game 1, encryptions of 0 and encryptions of 1 have the same distribution
(either way, the ciphertext is a random square), and thus Gauss cannot have any advantage
guessing m. Thus, Gauss’s success probability noticeably differs in Games 0 and 1. To
construct a PPT algorithm to decide whether x is a non-square or square (i.e., whether we
are in Game 0 or Game 1), we simply use Gauss’s performance to help us distinguish. This
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bases the security of GM on quadratic residuosity.

1.3. Homomorphic encryption. The GM scheme has a curious bonus feature: it is mal-
leable. It allows anyone to manipulate (in limited but meaningful ways) what is encrypted,
even without knowing the secret key: to compute on encrypted data. Specifically, suppose
that c1 is a GM encryption of m1 ∈ {0, 1}, and c2 is a GM encryption of m2 – that is,
c1 = xm1 · r21 and c2 = xm2 · r22 for some r1, r2 ∈ (Z/NZ)∗. We can increment the plain-
text by multiplying the ciphertext by x, without even knowing what the plaintext is. The new
ciphertext c ← c1 · x = xm1+1 · r21 encrypts m1 + 1. Also, we can add plaintexts by multi-
plying the corresponding ciphertexts: c ← c1 · c2 = xm1+m2 · (r1r2)2 encrypts m1 + m2.
These plaintext additions are in Z/2Z, since x2 is an encryption of 0. Interestingly, GM
allows an unlimited number of plaintext additions, but GM’s overall malleability is limited.
GM can compute linear functions on encrypted data, but it does not (for example) provide
any way to operate on two ciphertexts so as to multiply the two plaintexts.

Rivest, Adleman and Dertouzos [32] saw the potential of computing on encrypted data
a few years earlier in 1978, shortly after the invention of the RSA public-key encryption
scheme [33], which allows multiplications of plaintexts but not additions. They wondered
whether it could be possible to construct an encryption scheme that is completely malleable,
that allows unlimited computations on encrypted data. They called such a scheme a “privacy
homomorphism”. These days, we call it “fully homomorphic encryption” (FHE), where
“fully” means it allows any computation over encrypted values. (GM is “additively homo-
morphic” and RSA is “multiplicatively homomorphic”.) They also foresaw that an FHE
scheme would have amazing applications. It took more than 30 years after Rivest et al.
proposed the notion to discover the first plausible FHE scheme [16]. Now that we have dis-
covered plausible constructions, we have made tremendous progress improving them, but
still have far to go.

Before we address what FHE can do, let us be more precise about what it is. In this sur-
vey, an FHE scheme is first of all a public-key encryption scheme with the usual algorithms
K, E, and D. Let M and C be the message space and ciphertext space of the scheme. Let us
say that a ciphertext c ∈ C encrypts a message m ∈ M under key (pk, sk) if decryption re-
turns m ← D(sk, c). The special feature of an FHE scheme is that it comes equipped with a
fourth efficient algorithm, called Evaluate and denoted by V, such that for any valid key pair
(pk, sk), any t (for any t) encryptions c1, . . . , ct of any messages m1, . . . ,mt ∈ M under
(pk, sk), and for any t-ary function f : Mt → M, V(pk, f, c1, . . . , ct) outputs a ciphertext c
that encrypts f(m1, . . . ,mt). Crucially, Evaluate is a public algorithm that anyone can exe-
cute without the secret key, and of course we want the encryption scheme to be semantically
secure despite its availability. In short, an FHE scheme allows computation of any function
f inside an “impenetrable box” of encryption.

We can describe FHE in terms of a commutative diagram.

Ct C

Mt M

V(pk,f,·,...,·)

D(sk,·,...,·) D(sk,·)

f(·,...,·)

The diagram is meant to convey that, for any key, messages, ciphertexts, and function
f , the order of decryption and applying f does not matter: either way we end up with
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f(m1, . . . ,mt). An analogous commutative diagram with encryption instead of decryption
does not work. Although it is true that the order of encryption and applying f does not
matter in the sense that (either way) we end up with an encryption of f(m1, . . . ,mt), the
actual ciphertexts might be different. (Recall that having many different ciphertexts for each
message is essential for an encryption scheme to be semantically secure.)

Later in the survey, we will see in detail how to construct an FHE scheme. At this point,
we must keep the reader in suspense.

1.3.1. Applications of homomorphic encryption. An exciting potential application of
FHE is preserving privacy online, which is more relevant now than ever before. For example,
we seem to heading toward widespread acceptance of cloud computing, where users put
their data online “in the cloud” for convenience and availability. Putting everything online
unencrypted is to risk an Orwellian future, not just because the corporation hosting our
data may misuse it, but also because a government may strong-arm the corporation into
providing a backdoor. For certain types of data, such as medical records, storing them off-
site unencrypted may be illegal. On the other hand, encrypting one’s data seems to nullify
the benefits of the “computing” part of cloud computing. Unless I give the cloud my secret
decryption key (sacrificing my privacy), how can I expect the cloud to do any meaningful
processing of my encrypted data? Fully homomorphic encryption provides a way out of this
false dilemma. If I want to make some query f on my encrypted data, I can just send a
description of f to the cloud, which uses the Evaluate algorithm to derive an encryption of
f(m1, . . . ,mt), which is the response to my query.

In addition to encrypting my data, I can encrypt my query f (under the same pk). More
broadly, I can encrypt a program P , so that the cloud can execute P on unencrypted data
or data encrypted under the same pk, and output the encrypted result. At first, this fact may
seem surprising, but it is just an application of Turing’s idea that a program can be viewed
just another type of data to be processed by a universal Turing machine. (In more modern
terms, a program can be read and executed by an interpreter program.)

The applications of FHE may seem counterintuitive and hard to believe. In a world with
FHE – call it “Cryptomegalomania” – cryptography flexes its muscles and sticks its tongue
out at young Gauss. Gauss might have the last laugh though. Current FHE schemes are
too impractical to realize all of the applications that are possible in principle. Developing
a significantly faster FHE scheme is an interesting mathematical problem that also has high
stakes for society.

1.3.2. Shortcomings of homomorphic encryption. Besides high overhead, there are two
related “problems” with FHE.

The first problem is that Evaluate always has an encrypted output. This is, in some sense,
optimal for security: nothing is ever revealed to anyone but the secret key holder. But it is of-
ten sub-optimal for functionality. Sometimes it is useful to reveal some (carefully controlled)
unencrypted information to the Evaluator. This especially true for encrypted programs. One
might like to hide (encrypt) certain aspects of a program (e.g., to prevent it from being se-
mantically deconstructed) while preserving its functionality as a fully executable program
with unencrypted inputs and outputs.

The second problem is that, while FHE can handle general computations “efficiently”
in the sense of “polynomial-time”, FHE cannot exploit certain optimizations essential to the
practicality of computation in modern computing environments. Specifically, FHE needs to
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put a function f or program P into a special format – called a boolean or arithmetic circuit
– before it can be processed.1 In a circuit evaluation of f , the number of computational steps
does not depend on the input x. For the security of FHE, this is necessary: if the run time
of Evaluate depended on the particular value of (encrypted) x, it would reveal something
about x. However, it also means that Evaluate’s run time depends on the worst-case x’s;
Evaluate can never take a shortcut for “easy” inputs. Similarly, FHE cannot do random
access (as in a random access machine (RAM)) over encrypted data, since FHE does not
allow the Evaluator to learn unencrypted data-dependent addresses. Nor does FHE allow an
Evaluator to exploit an inverted index, which helps make searches (like web searches) over
huge data-sets practical.

1.4. Program obfuscation. Using FHE, we can generate encrypted programs that have en-
crypted output. But is there some way to generate encrypted programs that have unencrypted
output? To put it another way: Is there any meaningful sense in which we can “encrypt” a
program while preserving its functionality (input/output behavior) as a fully executable pro-
gram? This is the seemingly-paradoxical and hard-to-define goal of program obfuscation.

Program obfuscation may sound impossible to achieve, and indeed some notions of ob-
fuscation are. For example, consider a program P that prints its own code. Since any obfus-
cationO(P ) of P must have the same functionality as P , O(P ) reveals P completely. Barak
et al. [4] showed that some programs are unobfuscatable even without being so exhibition-
ist. They showed that, assuming one-way functions (functions that are hard to invert), there
are unlearnable programs P (programs for which no PPT algorithm can recover P or any
code equivalent to P just from oracle access to P ) that can be completely recovered from
any code that implements them. Obfuscation is impossible in an “absolute” sense: for some
programs, any obfuscation reveals everything.

However, it turns out that obfuscation is possible in a “relative” sense. To understand
this notion of encrypting a program, let us revisit what it means to encrypt a message. Gold-
wasser and Micali called an encryption scheme “semantically secure” if a PPT adversary
has negligible advantage of winning the following game: the adversary picks two equal-
length messages m0,m1, the challenger encrypts one of them, and the adversary tries to
guess which one. They need the “equal-length” message requirement, because a ciphertext
always reveals some information about the message it encrypts – namely, an upper bound
on its length. Similarly, an obfuscated program always reveals something about the orig-
inal program – an upper bound on its size, and also the program’s input/output behavior.
Accordingly, Barak et al. [4] defined an analogue of semantic security for programs via a
similar game: the adversary picks two equal-size functionally-equivalent programs (repre-
sented as circuits C0, C1), the challenger obfuscates one of them, and the adversary tries to
guess which one. The obfuscator is considered secure if every PPT adversary has negligible
advantage of winning the game. This notion is called indistinguishability obfuscation (IO).

It is not obvious that IO is actually useful. An IO obfuscator does not guarantee it
will hide any secrets residing in the program. It does not provide any absolute guarantees
about the quality of the obfuscation. However, IO provides a strong relative guarantee –
namely, an indistinguishability obfuscator is a “best-possible” obfuscator: it is as good as
any other obfuscator of roughly the same complexity [4, 22]. To see this, suppose O is
a secure indistinguishability obfuscator. Suppose BO(·) is the actual best obfuscator of a

1We will discuss circuits in more detail in Section 2.
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certain complexity of circuits of a certain size, whereas Pad(·) merely increases the size of
circuits the same amount asBO(·). Then, for any circuitC, the circuitsBO(C) and Pad(C)
are the same size and have the same functionality, and so O(BO(C)) and O(Pad(C)) are
indistinguishable. Since they are indistinguishable, O(Pad(C)) obfuscates C as well as
O(BO(C)), which obfuscates C as well as BO(C).

Although IO only provides a relative guarantee of security, it can be used to construct
schemes having absolute guarantees. For example, Garg et al. [15] showed how to use
IO to construct a functional encryption scheme [5]: a public-key scheme administered by
an authority that chooses a function f and distributes secret keys to users such that a user
with sky associated to string y can recover exactly f(x, y) from a ciphertext encrypting x.
For example, y might specify a user’s security clearance, and f might specify a redaction
policy, such that user y obtains only the portion of document x for which it has clearance.
Obfuscation can also be used to “fix” some of the problems with FHE. For example, it can be
used to allow encrypted computation in the RAMmodel of computation (rather than circuits)
[1, 18].

Garg et al. [15] recently found the first plausibly secure construction of IO. Here is a
very brief overview of how their scheme works. First, they show how to “bootstrap” IO for
NC1 (logarithmic depth) circuits to IO for general circuits. Specifically, the obfuscation of
a circuit C consists of encryptions of C under two FHE key pairs (sk0, pk0), (sk1, pk1) and
an obfuscated conditional decryption circuit O(ConD) (to be described momentarily). The
Evaluator computes the encrypted program C on its input under both FHE public keys, and
feeds the resulting ciphertexts, with a “proof” that they were computed correctly, as input
to O(ConD), which decrypts one ciphertext using sk0 if the proof verifies. Garg et al. use
the fact that ConD can be implemented in NC1 for known FHE schemes. Assuming O is
a secure IO for NC1, they show that a PPT attacker cannot distinguish whether the FHE
secret key inside O(ConD) is sk0 or sk1, since either way ConD’s output is the same. This
shell game shows that sk0 is hidden, and forms part of their hybrid security proof for IO for
general circuits.

Next, Garg et al. present an indistinguishability obfuscator for NC1 circuits. Their NC1

obfuscator uses a graded encoding scheme by Garg et al. [14]. A graded encoding scheme
is similar to a homomorphic encryption scheme, with the important difference that it comes
equipped with zero test that allows anyone to efficiently distinguish when the encoded value
is 0. This zero test allows some unencrypted information to leak (unlike FHE), but schemes
using graded encodings are carefully designed to ensure that (hopefully) this leakage can
only occur when the Evaluator computes over the encodings in a permitted way. Currently,
known schemes for IO for NC1 have security based on unconventional assumptions about
graded encodings.

Since Garg et al.’s obfuscation construction, there have been some improvements both in
security and efficiency, but both aspects are still worse than for FHE, in part because current
obfuscation schemes use FHE as a component. This is a young and active area of research.

1.5. “Computing on the Edge of Chaos” and “Structure and Randomness”. We now
begin turning to the construction of FHE and obfuscation schemes. Before we begin in
earnest, let us start with a high-level intuition for how current FHE schemes (and the obfus-
cation schemes derived from them) work. Current FHE schemes all use essentially the same
“noisy” approach. They encrypt via a noisy encoding of the message: by sending the mes-
sage to a ciphertext that is similar to a perturbed codeword in an error-correcting code. The
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decrypter recovers the message by recovering the noise. The public key is, in some sense,
a “bad” basis of the error-correcting code, which permits efficient encryption but does not
permit efficient correction of errors. By careful manipulation of the ciphertexts, an Evalua-
tor can add and multiply the underlying plaintexts while increasing the noise by only a small
amount. Furthermore, when the noise becomes almost large enough to drown out the signal
(the message), the Evaluator can apply an operation called “bootstrapping” to “refresh” the
noisy ciphertext: to generate a new ciphertext that encrypts the same message but with less
noise. In short, the “noise” turns out to be both a boon and a bane. The noise hides the mes-
sage from adversaries. However the noise lies behind the impracticality of current schemes:
it makes ciphertexts large and it requires computationally expensive steps to bound the noise
as computations are performed.

The phrases “computing on the edge of chaos” and “structure and randomness” capture
some intuitions that I have about encrypted computation, and the possibility that a noisy ap-
proach may be necessary. Of course, these intuitions may be illusions. I would like nothing
more than for someone to find a radically different way of constructing fully homomorphic
encryption and obfuscation schemes that escapes the current paradigm of using noisy, ap-
proximate homomorphisms. Consider the title of this paper a provocation, a challenge.

My (not very strongly held) intuition, for what it’s worth, is that “exact” mathematical
structures – e.g., exact rather than approximate homomorphisms of the kind used in previous
weakly homomorphic encryption schemes such as Goldwasser-Micali – seem either too rigid
(e.g., they allow only additive but not multiplicative homomorphism) or too permissive (e.g.,
they allow full homomorphism but enable trivial linear algebra attacks). Instead, for robust
encrypted computation, we seem to need mathematical structures that can be inexact without
simply being wrong – that is, structures that noisily remain close to exact solutions.

To be secure under Goldwasser and Micali’s notion of “semantic security”, an encryption
scheme must be probabilistic – i.e., it must use randomness in encryption. But getting this
randomness to play nicely with the structure we need for correct computation is a delicate
balance, and it raises certain questions: What happens to the randomness when we do ho-
momorphic operations on ciphertexts? Does the randomness mix with the structured part of
the ciphertexts, or does it somehow remain cordoned off? If the former, how is the structure
preserved (so as to allow correct decryption)? If the latter, how does the randomness re-
main safely cordoned off despite performing complex general computations? (It seems like
general computation would induce a lot of mixing.) Also, in the latter case, how does the
scheme remain secure – for example, how does it remain secure against linear algebra at-
tacks if the randomness is perpetually isolated to certain coordinates? In the noisy approach
to homomorphic encryption, the randomness indeed mixes with the structure (in particular,
with the message), but the randomness is always kept small so that it does not overwhelm
the structure.

I thought “computing on the edge of chaos” would be a fun and original way to de-
scribe the current approach to encrypted computation, but it turns out the phrase has already
been taken. Apparently, it refers to a critical phase transition point in cellular automata
between overly ordered and completely chaotic where the automata become capable of uni-
versal computation, and more broadly refers to the notion that dynamic “lifelike” systems,
such as the economy or human brain, are healthiest when they are “poised on the edge of
chaos”. The notion seems intuitively appealing, though there has been pushback against it as
being unrigorous and unsubstantiated. The idea that the noisy approach to encrypted com-
putation somehow exploits a phase transition between order and chaos also seems intuitively



Computing on the edge of chaos: Structure and randomness in encrypted computation 617

appealing, if even more unsubstantiated.

1.6. Roadmap. In the rest of the survey, we will limit our focus to FHE. We will describe
in depth how to construct an FHE scheme with security provably based on the hardness of
the so-called learning with errors (LWE) problem.

2. Circuits and homomorphic encryption

We touched upon circuits and homomorphic encryption in the Introduction. Here, we discuss
them more formally.

2.1. Circuits. Before we can specify how to Evaluate a function using homomorphic en-
cryption, we need to be more explicit about our model of computation. The canonical theo-
retical representation of a computer is the Turing machine, described by Alan Turing in the
1930’s. It handles general computations, and is as efficient as modern random access mem-
ory (RAM) computers up to polynomial factors (assuming the RAM computer’s memory is
not pre-loaded). However, in this survey, we will primarily use a mathematically cleaner
representation of algorithms, called a boolean or arithmetic circuit. Circuits also handle gen-
eral computations, and almost as efficiently as Turing machines. In particular, if there is a
Turing machine program that always evaluates a function f in at most Tf steps, then there is
a circuit for f that has size O(Tf · log Tf ) [30].

An arithmetic circuit is a remarkably simple and mathematically clean way of repre-
senting a program. It is typically just a composition of addition gates (which take several
inputs and output their sum), multiplication gates (which take several inputs and output their
product), and scalar multiplication gates (which take one input and multiply it by a scalar),
where these operations are performed over some ring. The gates are typically arranged into
levels, so that the outputs of gates at level i are inputs to gates at level i + 1 unless i is the
last level of the circuit. The circuit cannot contain any loops (it is a directed acyclic graph),
but one can reuse the output of a gate as input to multiple higher-level gates. The number
of gates is called the size of the circuit, and the number of levels is called the depth. Notice
that, since the circuit just uses addition and multiplication, the output of each gate has a nice
mathematical interpretation: it is simply a multivariate polynomial (evaluated at the inputs).

When the ring is F2 and each gate has at most two inputs, we call the circuit a boolean
circuit. Interestingly, any boolean function can be computed using a circuit composed en-
tirely of NAND gates. For x, y ∈ {0, 1}, NAND(x, y) = 1 − x · y ∈ {0, 1}. Restricting to
{0, 1}, we can implement NAND over any ring.

It may be surprising that multivariate polynomials representable by polynomial-size cir-
cuits, even boolean circuits of NAND gates, are adequate to represent polynomial-time com-
putation.2 However, a multivariate polynomial with low circuit complexity may be very
complex by other measures. Even when the circuit has polynomial size, the multivariate
polynomials it represents may have an exponential number of monomials. Moreover, over
large fields, the degree of the polynomials may be exponential in the depth of the circuit,

2Leslie Lamport, in his essay How to Tell a Program from an Automobile, remarked that “An automobile runs,
a program does not. (Computers run, but I’m not discussing them.) ... An automobile is a piece of machinery,
a program is some kind of mathematical expression”. Lamport’s observation becomes especially clear when the
program is represented as a circuit, which in turn represents nothing more than a set of multivariate polynomials.
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since each level of multiplication gates may double the degree.

2.2. Homomorphic encryption. A homomorphic encryption scheme is a tuple of four
probabilistic polynomial time (PPT) algorithms (K,E,D,V). In this survey, the message
space M of the scheme will always be some ring and our computational model will be
arithmetic circuits over this ring (e.g., addition, multiplication and NAND gates).

• HE.K takes the security parameter λ (and possibly other parameters of the scheme)
and produces a secret key sk and a public key pk.

• HE.E takes pk a message m ∈ M and produces a ciphertext c which is the encryption
of m.

• HE.D takes sk and a ciphertext c and produces a message m.

• HE.V takes pk, an arithmetic circuit f over M, and ciphertexts c1, . . . , ct, where t is
the number of inputs to f , and outputs a ciphertext c.

Roughly speaking, the security parameter λ specifies the security level of the scheme. The
algorithms of the scheme should take time poly(λ), but any known algorithms to attack the
scheme should take time super-polynomial in λ, preferably exponential (say 2λ) time.

Definition 2.1 (Correctness and Compactness). We say that a homomorphic encryption
scheme (K,E,D,V) correctly evaluates a circuit family F if for all f ∈ F and for all
m1, . . . ,mt ∈ M it holds that if sk, pk were properly generated by K with security parame-
ter λ, and if ci = E(pk,mi) for all i, and c = V(pk, f, c1, . . . , ct), then

Pr[D(sk, c) �= f(m1, . . . ,mt)] = negl(λ) ,

where the probability is taken over all the randomness in the experiment.
We say that the scheme compactly evaluates the family if in addition the run time of the

decryption circuit only depends on λ and not on its input.

The notation negl(λ) means the function grows more slowly than the inverse of any polyno-
mial: negl(λ) = O(1/λc) for any constant c.

The reason for the compactness requirement is that homomorphic encryption is uninter-
esting without it. If the ciphertext size could depend on the circuit size, we could just set
c = (f, c1, . . . , ct), and decrypt c by decrypting the ci’s and applying f . Obviously such a
scheme is useless for delegation of computation, since the decrypter rather than the Evaluator
performs all of the computation.

Much of this survey will focus on the construction of a leveled fully homomorphic
scheme, where the parameters of the scheme depend (polynomially) on the depth (but not
the size) of the circuits that the scheme is capable of evaluating.

Definition 2.2 (Leveled FHE). We say that a family of homomorphic encryption schemes
{E(L) : L ∈ Z

+} is leveled fully homomorphic if, for all L ∈ Z
+, they all use the same

decryption circuit, E(L) compactly evaluates all circuits of depth at most L, and the compu-
tational complexity of E(L)’s algorithms is polynomial (the same polynomial for all L) in
the security parameter, L, and (in the case of the evaluation algorithm) the size of the circuit.

In a “pure” FHE scheme, the complexity of the algorithms (except for Evaluate) is indepen-
dent of L.

We use Goldwasser and Micali’s notion of semantic security [21].
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Definition 2.3. A homomorphic scheme is secure if any PPT adversary that first gets a
properly generated pk, then specifies m0,m1 ∈ M and finally gets E(pk,mb) for random b,
cannot guess b with probability > 1/2 + negl(λ).

Of course, the adversary can try to use the additional Evaluate algorithm to win the semantic
security game.

3. Learning with Errors (LWE)

As we saw in the Introduction, when cryptographers construct an encryption scheme, they
try to prove that the scheme is secure as long as a natural problem (such as quadratic residu-
osity) is hard to solve. This proof is called a reduction. Here, we describe a natural problem
called learning with errors (LWE). Later, we will show how to construct public-key and ho-
momorphic encryption schemes whose security reduces to it. We also review some evidence
that LWE is a hard problem.

The LWE problem was introduced by Regev [31]. Informally, the “search” version of
LWE is about solving “noisy” systems of linear equations. The problem is to recover a n-
dimensional vector �s over Z/qZ from many pairs (�ai, bi), where the �ai’s are sampled as
uniformly random vectors over Z/qZ, and bi is set to 〈�ai, �s〉+ ei ∈ Z/qZ for some “error”
ei of small magnitude (5 q). If not for the errors, we could recover �s efficiently using
Gaussian elimination after receiving about n equations. Introducing error seems to make the
problem hard.

More formally, LWE is typically defined as a “decision” problem as follows.

Definition 3.1 (LWE). For security parameter λ, let n = n(λ) be an integer dimension,
q = q(λ) ≥ 2 be an integer, and χ = χ(λ) be a distribution over Z. The LWEn,q,χ problem
is to distinguish the following two distributions:

(1) Output (�ai, bi) sampled uniformly from (Z/qZ)n+1.

(2) For fixed uniform �s ← (Z/qZ)n, sample �ai ← (Z/qZ)n uniformly, sample ei ← χ,
set bi = 〈�ai, �s〉+ ei ∈ Z/qZ, and output (�ai, bi).

The LWEn,q,χ assumption is that the LWEn,q,χ problem is hard.

For n, q = poly(λ), Regev gave a polynomial-time reduction from search LWE to deci-
sion LWE. Applebaum et al. [2] showed that the hardness of LWE is unaffected when the
coefficients of secret �s are chosen from the small error distribution χ.

Sometimes we prefer to view LWE in the following way. Let �ci = (bi,�ai) and �t =
(1,−�s) for bi,�ai, �s as above. Then [〈�ci,�t〉]q = [�ei]q is small for all i, where [x]q denotes
the representative of x in (−q/2, q/2]. The LWE problem is to decide whether there exists a
vector �t that is “nearly orthogonal” to all of the �ci’s.

Typically, χ is taken to be a discrete Gaussian distribution over Z, with deviation σ 5 q.
Rather than referring explicitly to the noise distribution χ, sometimes it is convenient to refer
to a bound β on the size of the noise.

Definition 3.2 (β-bounded distributions). A distribution ensemble {χn}n∈N, supported over
the integers, is called β-bounded if Pre←χn [|e| > β] = negl(n).
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When the noise is extremely small or has some structure, there are sub-exponential al-
gorithms to solve LWE [3]. For example, when ei ∈ {0, 1} for all i, solving LWE is easy:
taking tensor products, 〈�ci,�t〉 ∈ {0, 1} implies 〈�ci ⊗ �ci,�t ⊗ �t〉 − 〈�ci,�t〉 = 0, giving us a
O(n2)-dimension error-free linear system to recover �t ⊗ �t, hence �t. However, for discrete
Gaussian error distributions with σ = poly(n), the hardness of LWE stops depending so
much on the noise bound β, and appears to depend more on the ratio q/β.

In particular, the LWE problem has been shown to be as hard on average (for ran-
dom instances) as certain lattice problems in the worst-case (the hardest instances). A n-
dimensional lattice is a (full-rank) additive subgroup of Rn. For lattice dimension parameter
n and number d, the shortest vector problem GapSVPγ is the problem of distinguishing
whether a n-dimensional lattice has a nonzero vector of Euclidean norm less than d or no
nonzero vector shorter than γ(n) · d. The gist of the theorem below is that if one can solve
average-case n-dimensional LWE for ratio q/β then one can solve worst-case n-dimensional
GAPSVPγ for γ just a little larger than q/β.

Theorem 3.3 ([26, 27, 29, 31], Corollary 2.1 from [6]). Let q = q(n) ∈ N be either a prime
power or a product of small (size poly(n)) distinct primes, and let β ≥ ω(log n) · √n. Then
there exists an efficient sampleable β-bounded distribution χ such that if there is an efficient
algorithm that solves the average-case LWE problem for parameters n, q, χ, then:

• There is an efficient quantum algorithm that solves GapSVPÕ(nq/β) on any n-dimen-
sional lattice.

• There is an efficient classical algorithm that solves GapSVPÕ(nq/β) on any n-dimen-

sional lattice when q ≥ Õ(2n/2).

Brakerski et al. [9] recently improved the classical result by removing the requirement on
the size of q.

GAPSVPγ is NP-hard for any constant γ, but unfortunately in cryptography we need γ
to be larger (at least n in the theorem above). For γ = poly(n), the fastest algorithm to
solve GAPSVPγ takes time 2O(n). (As a crude rule of thumb, the fastest algorithm to solve
GAPSVP2k takes roughly 2n/k time [34].) Interestingly, there are no quantum algorithms
for GAPSVP that perform significantly better than classical algorithms. In contrast, there
are polynomial-time quantum algorithms for integer factorization and some other common
problems used in cryptography.

4. Public key encryption from LWE

Regev [31] described a simple encryption scheme based on LWE. We describe a variant of
his scheme here. We split key generation algorithm K into three parts Setup, SecretKeyGen
and PublicKeyGen. Let [x]q denote the integer x ∈ (−q/2, q/2] that represents the coset of
x ∈ Z/qZ.

• Setup(1λ): Choose an odd integer modulus q = q(λ), lattice dimension parameter
n = n(λ), and error distribution χ = χ(λ) appropriately for LWE for security param-
eter λ. Also, choose parameterm = m(λ) = O(n log q). Let params = (n, q, χ,m).

• SecretKeyGen(params): Sample �s ← χn. Set sk = �t ← (1,−s1, . . . ,−sn) ∈
(Z/qZ)n+1.
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• PublicKeyGen(params, sk): Generate a matrix A ← (Z/qZ)m×n uniformly and a
vector �e ← χm. Set�b = A · �s + �e. Set B to be the (n + 1)-column matrix consisting
of �b followed by the n columns of A. Set the public key pk = B. (Remark: Observe
that B · �t = �e.)

• E(params, pk, μ): To encrypt message μ ∈ {0, 1}, sample uniform �r ∈ {0, 1}m, set
�μ ← (μ, 0, . . . , 0) ∈ (Z/qZ)n+1, and output the ciphertext:

�c ← �μ + 2 · �r · B ∈ (Z/qZ)n+1.

• D(params, sk,�c): Output [[〈�c,�t〉]q]2.

Decryption works correctly when the parameters are set so that |〈�r,�e〉| < q/4− 1 is guaran-
teed, since if �c = �μ + 2 · �r · B for μ ∈ {0, 1}, then [〈�c,�t〉]q = [μ + 2 · 〈�r,�e〉]q is an integer
of magnitude < q/2 with the same parity as μ.

Interestingly, the encryption process of Regev’s scheme already uses the fact the scheme
is additively homomorphic. Each row 2 · Bi of 2 · B is an encryption of 0, in the sense that
[〈Bi,�t〉]q is small and even. To encrypt, one takes a random subset sum (defined by �r) of the
2 ·Bi’s to obtain a “random” encryption of 0, and then one adds in �μ to get an encryption of
μ.

This encryption process increases the size of the error: the error associated to the cipher-
text is μ plus a subset sum of the errors associated to the 2 · Bi’s. One needs to set q large
enough to “accommodate” the error expansion – again, one wants |μ + 2 · 〈�r,�e〉| < q/2 to
ensure correct decryption.

The security of Regev’s scheme follows from the following lemma [31].

Lemma 4.1 (Implicit in [31]). Let params = (n, q, χ,m) be such that the LWEn,q,χ

assumption holds, with q odd. Then, for m = O(n log q) and B, �r as generated above,
the joint distribution (B, 2 · �r · B) is computationally indistinguishable from uniform over
(Z/qZ)m×(n+1) × (Z/qZ)n+1. Concretely, it suffices to take m > 2n log q.

The lemma says that, for Regev’s encryption scheme, it is hard to distinguish a uniform
matrix and uniform vector from a valid pk and a valid encryption of 0.

To sketch a proof of the lemma, observe that it follows from two claims: that it is hard
to distinguish (B, 2 · �r · B) from (U, 2 · �r · U) where U is uniform in (Z/qZ)m×(n+1),
and also (U, 2 ·�r ·U) from (U, �u) where �u is uniform in (Z/qZ)n+1. The first claim follows
immediately from the LWE assumption, since given a LWE instanceB orU , we can generate
the 2 ·�r ·B or 2 ·�r ·U part ourselves. The second claim is true statistically. For large enough
m, the distributions (U, 2 · �r · U) and (U, �u) have negligible statistical distance from each
other when q is odd.

Now, let us use the lemma to reduce LWE to the semantic security of Regev’s encryption
scheme. Assume an adversary wins the semantic security game with non-negligible advan-
tage. We imagine two games between the challenger and the adversary. In Game 0, the
challenger uses the distribution (B, 2 ·�r ·B) to generate its public key pk = B and challenge
ciphertext �c ← �μ + 2 · �r · B. By assumption, the adversary guesses μ with non-negligible
advantage. In Game 1, uses uniform (U, �u) ∈ (Z/qZ)m×(n+1) × (Z/qZ)n+1, sets pk = U ,
and sets �c ← �μ+�u. In Game 1, since �u is uniform, the adversary has no advantage guessing
μ. We guess that the distribution is (B, 2 · �r · B) (that we are in Game 0) if the adversary
guesses μ correctly; otherwise, we guess the distribution is uniform (that we are in Game 1).
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One can show that if the adversary guesses μ correctly in Game 0 with probability 1/2 + ε,
then we guess the distribution correctly with probability 1/2 + ε/2.

5. Leveled FHE from LWE

The Gentry-Sahai-Waters (GSW) leveled FHE scheme [20] is currently the conceptually
simplest FHE scheme whose security is based on LWE. As a warm-up to build intuition,
we first describe how a noise-free (but insecure) version of GSW would work. Then, we
introduce noise, describe how to fix the problems it causes, and reduce the security of GSW
to the security of Regev’s scheme (hence to LWE).

5.1. Thought experiment: Leveled FHE from learning without errors. Imagine that
Regev’s encryption scheme had no error, that an encryption of μ ∈ {0, 1} is simply a vector
�c ∈ (Z/qZ)n+1 such that 〈�c,�t〉 = μ ∈ Z/qZ, where �t is the secret key. How can we add and
multiply such ciphertexts so as to add and multiply the plaintexts inside?

Addition is easy. Given two ciphertexts �c1,�c2 that happen to encrypt μ1, μ2, we add
them to obtain a ciphertext that encrypts the sum: 〈�c1 + �c2,�t〉 = μ1 + μ2.

Multiplication is tricker. We can use tensor products: 〈�c1⊗�c2,�t⊗�t〉 = μ1 ·μ2. However,
then each circuit level of multiplications squares the dimension of the ciphertexts, making
the scheme non-compact and inefficient.

To get compact multiplication, a better idea is to use matrix multiplication. Specifically,
let an encryption of μ be a square matrix C such that C · �t = μ · �t. In other words, the
secret key is an eigenvector of the ciphertext matrix, and the message is the eigenvalue.3
Addition and multiplication of ciphertexts induces addition and multiplication of plaintexts
(eigenvalues). Decryption is a ring homomorphism from the ring of matrices having �t as an
eigenvector to the corresponding eigenvalue.

Unfortunately, this scheme is easy to attack. The encryptions of 0 form a subspace that
is easily identified (via linear algebra) once enough encryptions of 0 are collected. More
broadly, this eigenvector-based FHE scheme falls within the so-far-unsuccessful hidden ring
homomorphism approach to FHE. In this approach, the message space M and ciphertext
space C are rings, and decryption Dsk : C → M is a ring homomorphism that depends on the
secret key sk. Addition and multiplication of ciphertexts induce addition and multiplication
of plaintexts. Encryptions of 0 form an ideal I in C, while encryptions of 1 are in 1 +
I. Semantic security relies on the hardness of the ideal membership problem: roughly,
distinguish whether an element of C is in I. Another example in this framework is the Polly
Cracker scheme proposed by Fellows and Koblitz [13], where the secret key is a secret point
in �s ∈ F

n
q , and μ is encrypted as a “random” multivariate polynomial that evaluates to μ at

�s. Unfortunately, so far, there are no FHE schemes based on hidden ring homomorphisms
that are both compact and secure (though the approach has not been ruled out).

5.2. Error-Preserving transformations. As we will see, the GSW scheme uses exactly
the above eigenvector approach, but adds noise to it. In GSW, the secret key is a vector �v
with a special form, and an encryption of μ is a matrix C such that C ·�v = μ ·�v+�e for small
error vector �e – that is, �v is an approximate eigenvector of the ciphertext, with the message

3Note that since we work modulo q, eigenvectors here do not have the usual geometric interpretation.
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as the eigenvalue. The noise makes multiplication tricky again, since

C1 · C2 · �v = C1 · (μ2 · �v + �e2) = μ1 · μ2 · �v + (μ2 · �e1 + C1 · �e2).

The new noise μ2 · �e1 + C1 · �e2 depends not only on the old noises, but also on the second
message and the first ciphertext. To ensure that the magnitude of the noise grows at most by
a polynomial factor with each circuit level of multiplication, we need to keep the messages
small (we do this by restricting messages to {0, 1} and using NAND gates) and also keep
the ciphertexts small.

Here, we describe embarrassingly simple (but very useful) error-preserving transforma-
tions that an Evaluator can apply to make the entries of a ciphertext matrix small (in {0, 1})
without knowing or altering what the ciphertext encrypts. The idea is simply to use binary
decomposition: we decompose each mod-q coefficient into log2 q coefficients in {0, 1}.

Specifically, let �c, �t be vectors in (Z/qZ)k. Let � = *log2 q+ + 1 and N = k · �. Let
BitDecomp(�c) = (c1,0, . . . , c1,
−1, . . . , ck,0, . . . , ck,
−1), a N -dimensional vector where
ci,j is the j-th bit in ci’s binary representation, bits ordered least significant to most sig-
nificant. For �c∗ = (c1,0, . . . , c1,
−1, . . . , ck,0, . . . , ck,
−1), let BitDecomp−1(�c∗) = (

∑
2j ·

c1,j , . . . ,
∑

2j · ck,j) be the inverse of BitDecomp, but well-defined even when the input is
not a 0/1 vector. For N -dimensional �c∗, let Flatten(�c∗) = BitDecomp(BitDecomp−1(�c∗)),
a N -dimensional vector with 0/1 coefficients. When A is a matrix, let BitDecomp(A),
BitDecomp−1(A), or Flatten(A) be the matrix formed by applying the operation to each row
of A separately. Finally, let Powersof2(�t) = (t1, 2t1, . . . , 2


−1t1, . . . , tk, 2tk, . . . , 2

−1tk),

a N -dimensional vector. Here are some obvious facts:

• 〈�c,�t〉 = 〈BitDecomp(�c),Powersof2(�t)〉.
• For any N -dimensional �c∗:
〈�c∗,Powersof2(�t)〉 = 〈BitDecomp−1(�c∗),�t〉 = 〈Flatten(�c∗),Powersof2(�t)〉.

In the GSW scheme, which we finally formally describe in the next subsection, we will
use �v ← Powersof2(�t) as the secret key vector, rather than �t. The salient feature of Flatten
is that we can apply it to a matrix C that encrypts a message under Powersof2(�t) without
affecting its product with Powersof2(�t) and hence what it encrypts, and (importantly) without
knowing �t. By Flattening ciphertexts after each operation, we ensure that the next operation
will increase the magnitude of the error by only a polynomial factor.

5.3. The GSW leveled FHE scheme from LWE. Brakerski and Vaikuntanathan were the
first to construct a leveled FHE scheme based on LWE [10]. However, the scheme by Gentry,
Sahai and Waters is particularly simple. It uses a “compiler” that transforms any LWE-
based public-key encryption scheme (K,E,D) that has certain natural properties into a LWE-
based leveled FHE scheme (GSW.K,GSW.E,GSW.D,GSW.NAND) capable of Evaluating
circuits of NAND gates. Regev’s scheme has the needed properties. The properties are:

1. Property 1 (Vectors and parameters): The ciphertext and decryption key are vectors
�c,�t ∈ (Z/qZ)n

′
for some n′. The first coefficient of �t is 1 and q is odd.

2. Property 2 (Small dot product): If �c encrypts 0, then 〈�c,�t〉 is “small”.

3. Property 3 (Security): Encryptions of 0 are indistinguishable from uniform vectors
over Z/qZ (under LWE).
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The parameters n, q, χ of the underlying encryption scheme determine the depth L of the
circuits that GSW can Evaluate. So, the compiler is not completely black box; K must be
tweaked to depend on L. (We will discuss how L affects parameter sizes later.) The GSW
scheme works as follows.

• GSW.K(1λ, 1L): Compute K(1λ, 1L) to obtain parameters params, secret vector
sk = �t ∈ (Z/qZ)n

′
and public key pk. Let � = *log q+ + 1 and N = n′ · �. Set

�v = Powersof2(�t).

• GSW.E(params, pk, μ ∈ {0, 1}): Set �c′i ← E(params, pk, 0) for i from 1 to N .
(Remark: These are just N encryptions of 0 under the public key encryption scheme.)
Set C ′ ∈ (Z/qZ)N×n′

to be the matrix with rows {�c′i}. Output the ciphertext C given
below. (IN is the N -dimensional identity matrix.)

C = Flatten
(
μ · IN + 2 · BitDecomp(C ′)

) ∈ (Z/qZ)N×N .

• GSW.D(params, sk, C): Let �c1 be the first row of C. Output [[〈�c1, �v〉]q]2.
• NAND(C1, C2): ToNAND two ciphertextsC1, C2 ∈ (Z/qZ)N×N , output Flatten(IN−

C1 · C2).

Decryption works, since if C is as above, then

C · �v = (μ · IN + 2 · BitDecomp(C ′)) · �v [Flatten preserves product with �v]

= μ · �v + 2 · C ′ · �t [BitDecomp(C ′) · Powersof2(�t) = C ′ · �t]
= μ · �v + 2 · small [By Property 2 above].

Since v1 = 1, the integer [〈�c1, �v〉]q = μ · v1 + 2 · small is small and has the same parity as
μ, allowing recovery of μ ∈ {0, 1} when |small| < q/4− 1.

NAND works, since if C1, C2 happen to be valid encryptions of μ1, μ2 ∈ {0, 1} with
errors �e1, �e2, then:

NAND(C1, C2) · �v = (IN − C1 · C2) · �v = (1− μ1 · μ2) · �v − μ2 · �e1 − C1 · �e2
Note that NAND maintains the invariant that if the input messages are in {0, 1}, then so is
the output message. With this invariant, and using Flatten to ensure that C1’s coefficients
are in {0, 1}, the output error is at most N + 1 times larger than the bigger input error.

Theorem 5.1. GSW is semantically secure under the LWE assumption.

Proof. By Property 3, C ′ is indistinguishable from a uniform matrix under LWE. Thus,
since q is odd, BitDecomp−1(C) = μ ·BitDecomp−1(IN )+2 ·C ′ is indistinguishable from
uniform U . But then C = Flatten(C) is indistinguishable from BitDecomp(U), where the
latter is independent of μ.

5.4. Parameters and performance. Suppose that we would like to use GSW to evaluate
NAND circuits with up to L levels. How should we set the parameters to ensure correctness
and security? How much computation does the Evaluate algorithm use per NAND gate?

We have seen that each NAND gate multiplies the magnitude of the error by a factor of
at most N + 1. If β is a bound on the error magnitude of fresh ciphertexts, then L levels
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of NAND gates amplify the error magnitude to at most β · (N + 1)L. Decryption works
correctly despite such large error, as long as q/4 − 1 > β · (N + 1)L  q/β > 4NL. The
ratio q/β must grow exponentially with L to “accommodate” the noise.

Using the rule of thumb that solving GAPSVP2k in n-dimensional lattices takes time
roughly 2n/k, and acknowledging that a GAPSVPq/β solver would break the scheme, the
lattice dimension n (hence N ) must increase linearly with log(q/β) to maintain fixed 2λ

security against known attacks. But let us brush this issue under the rug and view n as a fixed
parameter. Choosing χ so that β is not too large, and since in practice there is no reason
to have log q grow super-linearly with n, we have log q = O(L logN) = O(L(log n +
log log q)) = O(L log n). Given that the NAND procedure is dominated by multiplication
of two N × N matrices for N = O(n log q) = Õ(nL), we have the following theorem to
characterize the performance of GSW.

Theorem 5.2. For dimension parameter n and depth parameter L, GSW correctly evaluates
depth-L circuits of NAND gates with Õ((nL)ω) field operations per gate, where ω < 2.3727
is the matrix multiplication exponent.

Thus, we obtain a leveled FHE scheme with poly(λ, L) computation per NAND gate that
achieves 2λ security against known attacks.

However, even the most theoretical mathematician or computer scientist should be able
to see that this scheme will be too slow in practice to Evaluate even moderately complex
functions. While LWE-based GSW is far from being the fastest FHE scheme, a big open
problem remains: construct a FHE scheme that is truly practical!

As described so far, GSW may leave even a theoretician unsatisfied, as it leaves ample
room for qualitative improvement. It begs some questions: Can we make per-gate computa-
tion independent of L? Can we Evaluate a priori unbounded depth circuits? Can we actually
reduce the noise rather than merely “accommodating” it? For example, can we devise a “re-
fresh” procedure that reduces the noise level of a ciphertext without altering what it encrypts,
so that we can Evaluate ad infinitum, refreshing when needed?

The theoretician, at least, may find some solace in the answers we provide in the next
section, where we describe precisely such a “refresh” procedure, called bootstrapping, that
allows Evaluation of unbounded-depth circuits with per-gate computation independent of the
depth.

6. Bootstrapping: Homomorphic encryption for unbounded depth circuits

In GSW and all current FHE schemes, ciphertexts are “noisy”. Computing over the cipher-
texts increases the noise, until eventually the noise becomes bigger than the modulus q, and
all hope of reliably decrypting the message correctly is lost. Must we surrender to this life-
destroying entropy? Or is there some way to “rejuvenate” an old noisy ciphertext, to create
a new ciphertext that encrypts the same value but with much less noise, so that it can safely
participate in more computation? Here, we describe a procedure called bootstrapping that
refreshes ciphertexts, gives them a sort of immortality, so that we can Evaluate unbounded
depth circuits with per-gate computation independent of the depth.

6.1. Self-Referentiality in encrypted computation. Can the brain understand itself? Philo-
sophically, it seems appealing to think that, as a brain becomes more complex, so does the
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task of understanding it, so that self-understanding remains eternally just out of reach.
Here we consider a somewhat similar question: Can a homomorphic encryption scheme

decrypt itself? The decryption function of a homomorphic encryption scheme is, after all,
just another function that we can try to plug into the Evaluate algorithm. But does it work?
Or, is it the case that, for any L, the decryption function of a leveled FHE scheme capable
of Evaluating depth-L circuits has depth greater than L, beyond the Evaluation capacity of
scheme?

This is no idle brain-teaser. Actually, among the functions than an FHE scheme can Eval-
uate, its own decryption function is not only the most interesting, but perhaps also the most
useful. Let us consider what we can do with such self-referential encrypted computation.
Suppose c encrypts μ under (pk, sk). Set ski ← E(pk, ski) for all of the bits {ski} of sk –
that is, the ciphertexts {ski} are an encryption of the key under itself. We will publish this
encryption of the secret key, so that Evaluators can use it. Set ci ← E(pk, ci) for all of the
bits {ci} of c – that is, these ciphertexts are a double encryption of μ. Now, suppose that the
leveled FHE scheme can correctly Evaluate L levels, but Evaluating the decryption function
D requires only L − 1 levels. Consider the following ciphertext:

c′ ← V(pk,D, ({ski}, {ci})).
By the correctness of Evaluate:

D(sk, c′) = D({ski}, {ci}) = μ.

That is, the new ciphertext c′ encrypts the same value as the old ciphertext c. (Interestingly,
Evaluating the decryption function on the double encryption {ci} removes the inner encryp-
tion.) Moreover, since c′ is the result of Evaluating a circuit of only L − 1 < L levels on
fresh ciphertexts {ski}, {ci}, it (possibly unlike c) can be used safely as input to one more
NAND gate. Of course, an Evaluator can use this refreshing trick as often as necessary to
ensure the noise level of the ciphertexts remains safely bounded. In short, if we have a mag-
ical homomorphic encryption scheme capable of Evaluating its own decryption circuit with
room to spare, then that homomorphic encryption scheme can be bootstrapped into a pure
FHE scheme capable of evaluating unbounded depth circuits.4

More formally, Gentry [16] defined and proved the following.

Definition 6.1 (Bootstrappable encryption scheme). A homomorphic encryption scheme E
is called bootstrappable if E compactly evaluates all circuits of depth at most (D+1), where
D is the depth of E’s decryption circuit, and the computational complexity of E’s algorithms
is polynomial in the security parameter and (in the case of the evaluation algorithm) the size
of the circuit.

Theorem 6.2 (Bootstrapping Theorem). For any bootstrappable encryption scheme E , there
exists a leveled FHE scheme {E(L)} with related security.

Letting S be the size of E’s decryption circuit, the per-gate evaluation complexity of
the leveled FHE is exactly the complexity of evaluating a (2S + 1)-gate circuit using the
bootstrappable scheme: independent of the depth of the circuit.

Under an assumption of circular security – that is, an assumption that semantic security
is preserved despite publishing an encryption of the secret key under its corresponding public
key – one obtains a pure FHE scheme.

4For more intuition, see Gentry’s (somewhat dated) 2010 survey [17] on FHE for a full-fledged physical analogy
for bootstrapping in terms of gloveboxes inside gloveboxes.
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Gentry also provided the first bootstrappable and fully homomorphic encryption schemes
based on plausible assumptions.

Circular encryptions sound dangerous, but for most encryption schemes it appears that
revealing an encryption of sk under pk does not lead to any attack. On the other hand, it is
typically difficult to prove that an encryption scheme is circular-secure, hence the need for
the additional assumption.

To avoid the circular-security assumption, one can instead provide an acyclic chain of
encrypted secret keys. One generates a key pair (pki, ski) for each level of the circuit, and
provides an encryption of ski under pki+1. In this case, one can prove that the encrypted
secret key bits are indistinguishable from encryptions of 0 as long as E is semantically secure.

6.2. Evaluating the GSW decryption circuit. So, can GSW decrypt itself? It turns out
it can, but we need one more trick. The concept of the trick is that, before we bootstrap,
we can pre-process the ciphertext into a form that does not permit any more homomorphic
operations, but is much less complex to decrypt (and hence to bootstrap).

In more detail, recall that a GSW ciphertext is a matrix, but we use only the first row
of the matrix during decryption: μ = [[〈�c1, �v〉]q]2. Also, we can use �t rather than �v =
Powersof2(�t) as the secret key: μ = [[〈BitDecomp−1(�c1),�t〉]q]2. Now, we only need to
decrypt (bootstrap) BitDecomp−1(�c1). However, there is still a problem: the complexity
of decrypting it depends on q and hence on L, the number of levels the scheme can Evalu-
ate. Can we remove this dependence, to obtain a ciphertext whose decryption complexity is
polynomial in the security parameter λ and completely independent of L? If so, then we are
done.

Brakerski and Vaikuntanathan [10] gave a particularly clean way of removing this de-
pendence. They showed that we can apply modulus reduction and dimension reduction to
a Regev-type ciphertext �c (like our BitDecomp−1(�c1) above), so that the complexity of de-
crypting the final ciphertext becomes independent of L. Modulus reduction takes an initial
ciphertext �c that encrypts μ modulo q, and outputs a new ciphertext that encrypts μ modulo
a smaller modulus p. Dimension reduction reduces the dimension of the ciphertext vector.
After applying modulus and dimension reduction, we obtain a ciphertext �c∗ of poly(λ) di-
mension such that μ = [[〈�c∗,�t〉]p]2 for small p (e.g., p may even be only polynomial in the
security parameter). The size of �c∗ is independent of L.

Let us sketch how modulus reduction works. (We omit a description of dimension re-
duction.) Recall that Applebaum et al. [2] showed that the hardness of LWE is unaffected
when the coefficients of secret key are chosen from the small error distribution χ. When �t is
small and [〈�ci,�t〉]q is small, then [〈�c∗i ,�t〉]p is also small, where �c∗i = *(p/q) · �ci3 is simply
p/q times �ci rounded. The following easy lemma makes this more precise, and also shows
that we can preserve other aspects of the noise, such as its parity.

Lemma 6.3. Let p and q be two odd moduli, and let �c be an integer vector. Define �c∗ to
be the integer vector closest to (p/q) · �c such that �c∗ = �c mod 2. Then, for any �t with
|[〈�c,�t〉]q| < q/2− (q/p) · �1(�t), we have

[
〈
�c∗,�t
〉
]p = [

〈
�c,�t
〉
]q mod 2 and

|[〈�c∗,�t〉]p| < (p/q) · |[〈�c,�t〉]q|+ �1(�t)

where �1(�t) =
∑ |ti| is the �1-norm of �t.
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Proof. For some integer k, we have [
〈
�c,�t
〉
]q =

〈
�c,�t
〉 − kq. For the same k, let ep =〈

�c∗,�t
〉−kp ∈ Z. Since �c∗ = �c and p = q modulo 2, we have ep = [

〈
�c,�t
〉
]q mod 2. To finish

the proof, it suffices to prove that ep = [
〈
�c∗,�t
〉
]p and that it has small enough norm. We have

ep = (p/q)[
〈
�c,�t
〉
]q +
〈
�c∗ − (p/q)�c,�t

〉
, and therefore |ep| ≤ (p/q)[

〈
�c,�t
〉
]q + �1(�t) < p/2.

The latter inequality implies ep = [
〈
�c∗,�t
〉
]p.

An alternative view of modulus reduction is that we might as well divide �c by q and
consider its dot product with �t modulo 1 – the q merely represents the fact that we represent
coefficients of �c with log q bits of precision. When we begin to Evaluate a deep circuit, we
need lots of precision, since many noise-increasing operations remain. But as we complete
the circuit, we can drop precision, allowing the ciphertext to become smaller.

To make a homomorphic encryption scheme bootstrappable, one merely sets the param-
eters of the scheme so that it is capable of Evaluating the reduced decryption circuit (plus
one more NAND gate). The reduced decryption circuit has depth logarithmic in the security
parameter. Since each level of NAND gates increases the noise by a polynomial factor, we
can bootstrap GSW by setting q to be quasi-polynomial, and (modulo the circular security
issue) we can base the security of GSW on LWE for quasi-polynomial factors. Very recently,
Brakerski and Vaikuntanathan [11] showed how to go from quasi-polynomial to polynomial
by devising a decryption algorithm that, when Evaluated with GSW, increases the noise by
only a polynomial factor.

7. Looking beyond bootstrapping

In some sense, the current approach to FHE using noise and bootstrapping has been enor-
mously successful. As we have seen, we can Evaluate arbitrary encrypted functions over
encrypted data with overhead only polynomial in the security parameter, independent of the
complexity of the function. In fact, we can do even better. We can pack many plaintexts
into each ciphertext, and perform batch SIMD (simultaneous instruction multiple data) on
encrypted arrays, so as to Evaluate a function many times in parallel without additional com-
putation over many encrypted data-sets [7, 8, 19, 35]. Using a variant of LWE called ring
LWE in which the coefficient vectors are over the ring of integers of a cyclotomic number
field, we can even move data in encrypted arrays between different array “slots” by using
automorphisms of the ring. Using ring LWE with ciphertext-packing and automorphisms,
we can get the overhead of FHE down to polylogarithmic in the security parameter [19].

Unfortunately, it turns out that polylogarithmic can still be impractically large. The
overhead of current FHE schemes is still at least in the high millions for reasonable values of
the security parameter. The problem is noise and bootstrapping: Evaluating the decryption
circuit after Evaluating each NAND gate in our function seems to inherently require huge
overhead, even it is batched to refresh multiple ciphertexts simultaneously. Can we do better?
Can we eliminate bootstrapping, or even eliminate noise altogether?

7.1. Can we refresh ciphertexts without bootstrapping? Bootstrapping reduces the noise
of a ciphertext by applying Decryption to it inside an Evaluation. But is there a more direct
way to reduce the noise so as to Evaluate unbounded depth circuits? This is a fascinating
open problem.

Quantum error correction (QEC) has a high-level similarity to ciphertext refreshing. To
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correct noise in a quantum computation (e.g., phase errors in the qubits), QEC introduces
some ancillary bits to the computation, uses them to compute an error correction syndrome
over the primary qubits, measures the syndrome, and uses the result to adjust the quantum
state of the primary qubits. A peculiarity of QEC is that measurement of the ancillary bits
must not reveal anything about the correct values of the primary bits; else, the measurement
would collapse the computation. Can we construct an analogous noise reduction technique
for FHE, where an Evaluator can compute a syndrome that allows it to reduce ciphertext
noise, but still cannot learn what the ciphertext encrypts?

Tao’s computational program for Navier-Stokes [36] might be another place to look for
new ideas to reduce ciphertext noise. Part of the reason bootstrapping is slow is that it goes
“outside of the system”: it refreshes a ciphertext not by acting on it directly, but rather by
using the ciphertext to construct a function that is Evaluated over fresh encryptions of the
secret key bits. If, instead, we could manage ciphertext noise endogenously (like Tao’s water-
based circuits), one could hope that eliminating the layer of indirection would also reduce
computational complexity.

7.2. Can we eliminate noise altogether? The noisiness of LWE-based ciphertexts is the
basis of their security, but also an obstacle to making FHE practical. Can we construct an
FHE scheme without noise?

Without noise, decryption in GSW is a purely linear function, and the system can be
broken easily using linear algebra. More generally, for any encryption scheme in which
D(sk, c) is a degree k polynomial, we can view D(sk, c) as a dot product 〈M(sk),M(c)〉 of
the vectors of monomials of degree at most k associated to sk and c, and an attacker can use
linear algebra to break semantic security in time λO(k). So, to get 2λ security, the degree of
D(sk, c) must be essentially linear in λ, a “complex” function. And yet, for an FHE scheme,
D(sk, c) must also be robust and flexible enough to allow computation.

Interestingly, the noise in LWE-based schemes boosts the degree of the decryption func-
tion. Although [[�c,�t]q]2 looks “almost linear”, the rounding makes it high degree both mod-
ulo q and modulo 2. On the other hand, the “almost linearity” of decryption allows compu-
tation.

As some some final food for thought, we sketch an interesting but so-far-unrealized
framework due to Nuida [28] for constructing pure noise-free FHE using non-abelian groups.
Unfortunately, the framework also illustrates the difficulty of avoiding linear algebra attacks,
even in contexts (using groups rather than rings) where one might hope they are inapplicable.
First, a couple of definitions:

Definition 7.1 (Perfect Group Pairs). We call (G,H) a perfect group pair if G and H are
both finite perfect groups (equal to their commutator subgroups) andH is a normal subgroup
of G. We also require that G and H have efficient (polylog(|G|)) operations – in particular,
given a set of group generators of G or H , one can re-randomize them to obtain a random
set of B group elements (for some polynomial bound B) that generate the same group.

Definition 7.2 (Perfect Group Pair Decision (PGP) Problem). Given (generators for) a per-
fect group pair G and H , and a third set of generators that generates G or H , distinguish
which.

The form of the ciphertexts is simple: an encryption of 1 is a set of generators of G,
while an encryption of 0 is a set of generators of H . The public key contains encryptions
of ‘1’ and ‘0’ that the encrypter can randomize to generate its ciphertext. Decryption will



630 Craig Gentry

use some (unspecified) secret key τG,H that allows the keyholder to distinguish between
generators for G and H . Semantic security follows directly from the PGP assumption and
the re-randomizability of the group generators.

We describe homomorphic operations only for AND and OR gates (monotone circuits).
Suppose the inputs to the gate are generators of (unknown) groups K1,K2. To Evaluate an
OR gate, output (randomized) generators for the join of K1 and K2. (The output group is G
iff an input group is G and H otherwise, and thus computes OR correctly.) To Evaluate an
AND gate, output (randomized) generators for the commutator [K1,K2]. (SinceH is normal
inG, the output group isH iff an input group isH andG otherwise, and thus computes AND
correctly.)

The main open problem for this framework is to find suitable perfect group pairs. It
is easy to find perfect group pairs for which the PGP problem is easy: for example, take
G = H × K for perfect groups H and K, where the extra coordinate makes elements of G
easy to identify. Also, there are various perfect matrix group pairs (G,H) where the PGP
problem is less trivial, but still ultimately solvable via linear algebra. Even if the groups
are not initially presented as matrices, one must avoid groups with efficiently computable
representations that enable linear algebra attacks. Still, this framework, though unrealized,
serves as a useful counterpoint to the notion that noise and bootstrapping may be necessary
to obtain FHE.
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Social choice, computational complexity, Gaussian
geometry, and Boolean functions

Ryan O’Donnell

Abstract. We describe a web of connections between the following topics: the mathematical theory
of voting and social choice; the computational complexity of the Maximum Cut problem; the Gaus-
sian Isoperimetric Inequality and Borell’s generalization thereof; the Hypercontractive Inequality of
Bonami; and, the analysis of Boolean functions. A major theme is the technique of reducing inequal-
ities about Gaussian functions to inequalities about Boolean functions f : {−1, 1}n → {−1, 1}, and
then using induction on n to further reduce to inequalities about functions f : {−1, 1} → {−1, 1}.
We especially highlight De, Mossel, and Neeman’s recent use of this technique to prove the Majority
Is Stablest Theorem and Borell’s Isoperimetric Inequality simultaneously.
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(This survey gives only a sketch of various results, and is slightly imprecise in places.
For more details on the topics described herein, see [69].)

1. Social choice and Boolean functions

We begin by discussing a problem concerning voting. This will motivate for us certain
definitions involving Boolean functions; i.e., functions f : {−1, 1}n → {−1, 1} (or more
generally, f : {−1, 1}n → R) whose domain consists of n-bit strings. Suppose we have
an election with n voters and 2 candidates, named −1 and 1. A voting rule is simply any
Boolean function f : {−1, 1}n → {−1, 1}, mapping the voters’ votes to the winner of the
election. The majority rule Majn : {−1, 1}n → {−1, 1}, defined (for n odd) byMajn(x) =
sgn(x1 + x2 + · · · + xn), is perhaps the most natural and mathematically elegant voting
rule, but a variety of others are used in practice. Several countries (the US and the UK,
for example) elect their head of state via a two-level (weighted-)majority scheme. Other
countries, unfortunately, have been known to use a dictator rule: f(x) = xi for some dictator
i ∈ [n]. The mathematical field of social choice is concerned with the properties of various
voting rules; for a survey, see e.g. [18].

Let’s now imagine a twist on the scenario: The n voters decide on their votes, x =
(x1, . . . , xn) ∈ {−1, 1}n. However, due to faulty voting machines, each vote is indepen-
dently misrecorded with probability δ ∈ [0, 1]. We denote the resulting list of votes by
y ∈ {−1, 1}n, and call it a noisy copy of the original votes x. We now ask: What is the
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probability that the noise affects the outcome of the election? How does this probability
depend on the voting rule f? To answer this question we also need a probabilistic model
for how the original votes are cast. We make the simplest possible assumption — that they
are uniformly random, denoted x ∼ {−1, 1}n. In the social choice literature this is called
the Impartial Culture Assumption [32]. Let’s introduce some mathematical notation for our
scenario, using the more convenient parameter ρ = 1− 2δ ∈ [−1, 1]:

Definition 1.1. Given x ∈ {−1, 1}n and ρ ∈ [−1, 1], we say that the random vector y is
a ρ-correlated copy of x if each coordinate yi is independently set to xi with probability
1
2 (1 + ρ) and set to −xi with probability 1

2 (1 − ρ). (For the more common case of ρ ≥ 0,
this is equivalent to setting yi = xi with probability ρ and making yi uniformly random
with probability 1 − ρ.) When x ∼ {−1, 1}n is uniformly random and y is a ρ-correlated
copy of x, we call (x,y) a ρ-correlated random pair of strings. Note that this is actually
symmetric in x and y; an alternative definition is that each pair (xi,yi) ∈ {−1, 1}2 is
chosen independently with E[xi] = E[yi] = 0 and E[xiyi] = ρ.

Definition 1.2. For ρ ∈ [−1, 1], the operatorTρ acts on Boolean functions f : {−1, 1}n → R

via
Tρf(x) = E

y a ρ-correlated copy of x
[f(y)].

We also define the noise stability of f at ρ to be

Stabρ[f ] = E
x∼{−1,1}n

[f(x) · Tρf(x)] = E
(x,y) ρ-correlated

strings

[f(x)f(y)].

Note that in the special case f : {−1, 1}n → {−1, 1},
Stabρ[f ] = 1− 2 Pr

(x,y) ρ-correlated
strings

[f(x) �= f(y)].

Returning to the election scenario in which the voters’ votes are misrecorded with prob-
ability δ, we see that the probability this affects the outcome of the election is precisely
1
2 − 1

2Stab1−2δ[f ]. Thus the voting rules that minimize this probability are precisely those
which maximize the noise stability Stab1−2δ[f ].

Let’s focus on the more natural case of 0 < ρ < 1, i.e., 0 < δ < 1
2 . It’s obvious that

the Boolean functions f : {−1, 1}n → {−1, 1} that maximize Stabρ[f ] are precisely the
two constant functions f(x) = ±1. These functions are highly unfair as voting rules, so it’s
natural to make an assumption that rules them out. One common such assumption is that f
is unbiased, meaning E[f(x)] = 0; in other words, the two outcomes ±1 are equally likely
when the voters vote uniformly at random. A stronger, but still very natural, assumption is
that f is odd, meaning f(−x) = −x. In the social literature this is called neutrality, meaning
that the voting rule is not affected by changing the names of the candidates.

We might now ask which unbiased functions f : {−1, 1}n → {−1, 1} maximize
Stabρ[f ]. This problem can be solved easily using Fourier analysis of Boolean functions,
the basic facts of which we now recall:

Fact 1.3. Any f : {−1, 1}n → R can be uniquely expressed as a multilinear polynomial,

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi.
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This is called the Fourier expansion of f , and the coefficients f̂(S) ∈ R are called the Fourier
coefficients of f . We have Parseval’s formula,

E
x∼{−1,1}n

[f(x)g(x)] =
∑
S⊆[n]

f̂(S)ĝ(S).

In particular, if f : {−1, 1}n → {−1, 1} then
∑

S f̂(S)2 = 1.

Fact 1.4. The Fourier expansion of Tρf is

Tρf(x) =
∑
S⊆[n]

ρ|S|f̂(S)
∏
i∈S

xi

and hence Stabρ[f ] =
∑

S ρ|S|f̂(S)2.

Using these facts, the following is an exercise:

Fact 1.5. Assume 0 < ρ < 1. Then Stabρ[f ] ≤ ρ holds for all unbiased f : {−1, 1}n →
{−1, 1}, with equality iff f is a (possibly negated) dictator function, f(x) = ±xi. Further-
more, Stab−ρ[f ] ≥ −ρ holds for all f : {−1, 1}n → {−1, 1}, not necessarily unbiased,
with the same equality conditions.

This conclusion is somewhat disappointing from the standpoint of election fairness; it
says that if our goal is to choose a voting rule that minimizes the effect of misrecorded votes
(assuming 0 < δ < 1

2 ), the “best” choice is dictatorship (or negated-dictatorship).
Incidentally, this is precisely the disappointment that occurs in Arrow’s Theorem [6], the

seminal result in social choice theory. In brief, Arrow’s Theorem is concerned with what hap-
pens when n voters try to rank three candidates by means of holding three pairwise elections
using Boolean voting rule f . The well-known Condorcet Paradox [22] is that for some f
— including f = Majn — it is possible to get an “irrational” outcome in which the elec-
torate prefers Candidate A to Candidate B, prefers Candidate B to Candidate C, and prefers
Candidate C to Candidate A. Arrow showed that the only f ’s which always yield “rational”
outcomes are dictators and negated-dictators. Kalai [46] gave a very elegant Fourier-analytic
proof of Arrow’s Theorem by noting that when the voters’ individual rankings are uniformly
random, the probability of a rational outcome is precisely 3

4 − 3
4Stab− 1

3
[f ] (which also

equals 3
4 + 3

4Stab 1
3
[f ] for odd f ). Then Arrow’s conclusion follows from Fact 1.5. Kalai

also obtained a robust version of Arrow’s Theorem by using the FKN Theorem [31] from the
analysis of Boolean functions: Any f that achieves a rational outcome with probability at
least 1− δ must agree with some (negated-)dictator on all but an O(δ)-fraction of inputs.

Just as we ruled out constant functions f by insisting on unbiasedness, we might also
try to rule out dictatorships (and similar functions) by insisting that f give only negligible
influence to each individual voter. Here we refer to the following definitions:

Definition 1.6. Let f : {−1, 1}n → R. For i ∈ [n], the (discrete) ith derivative is

Dif(x) =
f(x1,...,xi−1,1,xi,...,xn)−f(x1,...,xi−1,−1,xi,...,xn)

2 =
∑
S�i

f̂(S)
∏

j∈S\{i}
xj .

The ith influence of f is

Inf i[f ] = E
x∼{−1,1}n

[Dif(x)
2] =
∑
S�i

f̂(S)2.
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Note that when f : {−1, 1}n → {−1, 1} we also have

Inf i[f ] = Pr
x∼{−1,1}n

[f(x) �= f(x1, . . . ,xi−1,−xi,xi+1, . . . ,xn)].

If f : {−1, 1}n → {−1, 1} is a voting rule, Inf i[f ] represents the probability that
the ith voter’s vote is pivotal for the outcome. (This notion was originally introduced by the
geneticist Penrose [73]; it was independently popularized in the social choice literature by the
lawyer Banzhaf [10].) The ith influence also has an interpretation in terms of the “geometry”
of the discrete cube graph: if we think of f : {−1, 1}n → {−1, 1} as the indicator of a vertex
set A ⊆ {−1, 1}n, then Inf i[f ] is fraction of edges in the ith coordinate direction that are
on A’s boundary.

In the interest of fairness, one might want to disallow voting rules f : {−1, 1}n →
{−1, 1} that give unusually large influence to any one voter. This would disqualify a dictator
voting rule like f(x) = xi since it has Inf i[f ] = 1 (which is maximum possible). On the
other hand, the majority voting rule is quite fair in this regard, since all of its influences quite

small: using Stirling’s formula one can compute Inf i[Majn] ∼
√

2
π

1√
n

n→∞−−−−→ 0 for all
i ∈ [n].

We can now ask a question that will occupy us for a significant portion of this survey:

Question 1.7. Let 0 < ρ < 1. Assume f : {−1, 1}n → {−1, 1} is unbiased and satisfies
maxi{Inf i[f ]} ≤ on(1). How large can Stabρ[f ] be?

We can think of this question as asking for the “fair” voting rule that minimizes the effect
of misrecorded votes in a noisy election. Alternatively, the case of ρ = 1

3 corresponds to
asking for the “fair” odd voting rule which maximizes the probability of a “rational” outcome
in the context of Arrow’s Theorem.

Since majority rule seems like a fair voting scheme, it’s natural to ask how well it does.
For n → ∞, this can be estimated using the Central Limit Theorem:

Stabρ[Majn] = E
(x,y) ρ-correlated

strings

[
sgn
(

x1+···+xn√
n

)
sgn
(

y1+···+yn√
n

)]
n→∞−−−−→ E

(z,z′) ρ-correlated
Gaussians

[sgn(z)sgn(z′)] = 1− 2Pr[sgn(z) �= sgn(z′)],

where we say (z, z′) is a ρ-correlated pair of Gaussians if the random variables z, z′ are
joint standard normals with E[zz′] = ρ. An equivalent definition is that z = 〈�u,�g〉 and
z′ = 〈�v,�g〉, where �g is drawn from the standard d-dimensional Gaussian distribution γd and
�u,�v ∈ R

d are any two unit vectors satisfying 〈�u,�v〉 = ρ. (In particular, we can take z = �g1,
z′ = ρ�g1 +

√
1− ρ2�g2.) Using this latter definition, it’s not hard to verify the following

old [78] fact:

Proposition 1.8 (Sheppard’s Formula). If (z, z′) are ρ-correlated Gaussians, −1 ≤ ρ ≤ 1,
then Pr[sgn(z) �= sgn(z′)] = 1

π arccos ρ.

Taking care with the error term in the Central Limit Theorem, one may deduce:

Proposition 1.9. For fixed −1 < ρ < 1,

Stabρ[Majn] = 1− 2
π arccos ρ + O( 1√

n
).
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As a corollary, the probability of a “rational” outcome when usingMajn in a three-way elec-
tion tends to 3

2π arccos(− 1
3 ) ≈ 91%, a fact known as Guilbaud’s Theorem [38].

Is there a “fair” voting rule with even higher noise stability? In 2004, Khot et al. [51, 52]
conjectured the result below, stating that majority essentially gives the best possible answer
to Question 1.7. A year later their conjecture was proven by Mossel et al. [66, 67]:

Theorem 1.10 (“Majority Is Stablest Theorem”). Fix 0 < ρ < 1. Assume f : {−1, 1}n →
[−1, 1] satisfies E[f(x)] = 0 and maxi{Inf i[f ]} ≤ ε. Then

Stabρ[f ] ≤ 1− 2
π arccos ρ + oε(1).

(Furthermore, for −1 < ρ < 0 the inequality holds in reverse and the hypothesis E[f(x)] =
0 is unnecessary.)

Peculiarly, the motivation in Khot et al. [51] for conjecturing the above had nothing to
do with social choice and voting. Instead, the conjecture was precisely what was needed to
establish the computational complexity of finding approximately maximum cuts in graphs.
We discuss this motivation next.

2. The computational complexity of Max-Cut

The Max-Cut problem is the following fundamental algorithmic task: Given as input is an
undirected graph G = (V,E). The goal is to find a partition V = V + ∪ V − so as to maxi-
mize the fraction of cut edges. Here we say e ∈ E is “cut” if it has one endpoint in each of
V ±. We write Opt(G) to denote the value of the best possible solution; i.e., the maximum
fraction of edges in G that can be cut. For example, Opt(G) = 1 iff G is bipartite.

Unfortunately, the Max-Cut problem is known to be NP-hard [49]. This means that
there is no efficient (i.e., poly(|V |)-time) algorithm for determining Opt(G), assuming the
well-believed P �= NP Conjecture. Under the closely related coNP �= NP Conjecture, we
can also state this difficulty as follows: It is not true that whenever G is a graph satisfying
Opt(G) ≤ β, there is a short (i.e., poly(|V |)-length) proof of the statement “Opt(G) ≤ β”.

Max-Cut is perhaps the simplest nontrivial constraint satisfaction problem (CSP). Rather
than formally defining this class of problems, we’ll simply give two more examples. In the
Max-3Lin problem, given is a system of equations over F2, each of the form “xi1 + xi2 +
xi3 = b”; the task is to find an assignment to the variables x1, . . . , xn so as to maximize the
fraction of satisfied equations. In the Max-3Coloring problem, given is an undirected graph;
the task is to color the vertices using 3 colors so as to maximize the fraction of bichromatic
edges.

For all of these CSPs the task of determining Opt(·) is NP-hard. One way to cope with
this difficulty is to seek approximation algorithms:

Definition 2.1. Let 0 ≤ α ≤ β ≤ 1. Algorithm A is said to be (α, β)-approximating for a
certain CSP (e.g., Max-Cut) if it has the following guarantee: For every input G satisfying
Opt(G) ≥ β, the algorithm finds a solution of value at least α. If A is a randomized
algorithm, we allow it to achieve value at least α in expectation. Note that a fixed A may be
(α, β)-approximating for many pairs (α, β) simultaneously.
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Example 2.2. There is a simple greedy algorithm that is (1, 1)-approximating for Max-
Cut; i.e., given a bipartite G, it finds a bipartition. Similarly, one can efficiently (1, 1)-
approximate Max-3Lin using Gaussian elimination. On the other hand, (1, 1)-approximating
Max-3Coloring — i.e., validly 3-coloring 3-colorable graphs — is NP-hard. For Max-3Lin
the near-trivial algorithm of outputting x1 = · · · = xn = B, where B is the more common
“right-hand side” of the system, is a ( 12 , β)-approximation for every 1

2 ≤ β ≤ 1. One can
also get an efficient ( 12 , β)-approximation for Max-Cut (for any β) either by a simple greedy
algorithm, or by outputting a random partition V = V + ∪ V −. The classical statement
that “Max-Cut is NP-hard” is equivalent to stating that there exists 1

2 < β < 1 such that
(β, β)-approximating Max-Cut is NP-hard (in fact, this is true for all 1

2 < β < 1).

In the case of Max-3Lin, it is a rather astonishing fact that the trivial approximation
algorithms mentioned above are best possible assuming P �= NP; this is a celebrated result of
Håstad [40, 41] combining “PCP technology” [4, 5, 13, 29] and Fourier analysis of Boolean
functions:

Theorem 2.3. For any δ > 0, it’s NP-hard to ( 12 + δ, 1− δ)-approximate Max-3Lin.

For quite a long time, it was not known how to do any better even for the much simpler
problem of Max-Cut. This changed in 1994 with the famous and sophisticated result of
Goemans and Williamson [34, 35] (see also [23]):

Theorem 2.4. There is an efficient algorithm that ( θπ , 1
2 − 1

2 cos θ)-approximates Max-Cut
for every θ ∈ [θGW, π], where θGW ≈ .74π is the positive solution of tan( θ2 ) = θ. E.g., the
Goemans–Williamson algorithm simultaneously ( 34 ,

1
2 + 1

2
√
2
)-approximates, ( 45 ,

5
8 +

√
5
8 )-

approximates, and (1− 2
π

√
ε − o(

√
ε), 1− ε)-approximates Max-Cut.

(Variants of the Goemans–Williamson algorithm that perform well for θ < θGW are also
known.)

Figure 2.1.

Briefly, the algorithm works as follows: Given a graph G = (V,E), one considers the
following semidefinite programming optimization problem:

SDPOpt(G) = max avg
(v,w)∈E

[
1
2 − 1

2 〈�U(v), �U(w)〉
]

subject to �U : V → Sd−1.

(SDP)
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Here one also maximizes over all d ∈ Z
+, although one can show that it suffices to take

d = |V |. Essentially, the optimization problem (SDP) seeks to assign a unit vector to each
vertex in V so that edges in G are spread as far apart as possible. It’s easy to see that if d
is fixed to 1 (so that �U : V → {−1, 1}) then (SDP) is identical to the Max-Cut problem;
therefore Opt(G) ≤ SDPOpt(G) always. Surprisingly, although computing Opt(G) is
intractable, one can efficiently compute SDPOpt(G). (Roughly speaking, the reason is that
if we introduce real variables ρvw = 〈�U(v), �U(w)〉, then (SDP) is equivalent to maximizing
a linear function of the ρvw’s over an explicit convex subset of R|V |×|V |, namely the set of
all positive semidefinite matrices R = (ρvw)v,w∈V with 1’s on the diagonal.)

Thus (SDP) gives us an efficiently-computable upper bound on Opt(G). One may hope
that it is a relatively “good” upper bound, and that furthermore one can prove this con-
structively by providing an efficient algorithm which converts the optimum “vector solu-
tion” (�U∗(v))v∈V to a good “±1 solution” (U∗(v))v∈V — i.e., a good bipartition of V .
Goemans and Williamson fulfilled this hope, as follows: Their algorithm first chooses �g to
be a standard d-dimensional Gaussian and then it outputs the bipartition of G defined by
U∗(v) = 〈�U∗(v), �g〉. Using Sheppard’s Formula, it’s not hard to show that this establishes
Theorem 2.4.

The Goemans–Williamson algorithm was originally considered to be quite complex for
such a simple CSP as Max-Cut; furthermore, its approximation guarantee seemed quite pe-
culiar. More than one paper [28, 30] suggested the research goal of improving this ap-
proximation guarantee. Furthermore, the best known NP-hardness result for the problem
(from [40, 82]) does not match the algorithm. For example, it’s known that (.875 + δ, .9)-
approximating Max-Cut is NP-hard for all δ > 0, and the Goemans–Williamson algorithm
achieves (α, .9)-approximation for α = 1 − 1

π arccos 4
5 ≈ .795. But whether cutting 80%

of the edges in a graph G with Opt(G) = 90% is polynomial-time solvable or is NP-hard is
unknown.

Nevertheless, in 2004 Khot et al. [51] obtained the following “surprising” [45] result:
Under the Unique Games Conjecture [50] (a notorious conjecture in computational com-
plexity not related to Max-Cut), the Majority Is Stablest Theorem implies that there is no
efficient algorithm beating the Goemans–Williamson approximation guarantee (at least for
θ ∈ [θGW, π]; see [70] for optimal results when θ < θGW). We remark that the while the
Unique Games Conjecture is believable, its status is vastly more uncertain than the P �= NP
conjecture).

Let us briefly explain what the Majority Is Stablest Theorem has to do with the complex-
ity of the Max-Cut problem. As shown in [51], the advantage of the Unique Games Conjec-
ture (as opposed to just the P �= NP assumption) is that it makes the “Håstad PCP technol-
ogy” much easier to use. Very roughly speaking, it implies that to establish intractability of
beating ( θπ , 1

2 − 1
2 cos θ)-approximation, it suffices to find certain so-called “gadget graphs”

for theMax-Cut problem. Precisely speaking, these gadget graphs need to have the following
properties:

• The vertex set V should be {−1, 1}n. (As a consequence, bipartitions of V correspond
to Boolean functions f : {−1, 1}n → {−1, 1}.)

• The bipartitions given by the n “dictators” f(x) = xi should each cut at least a 1
2 −

1
2 cos θ fraction of the edges.

• Any bipartition which is not “noticeably correlated” with a dictator partition should
not cut “essentially more” than a θ

π fraction of the edges. More precisely, if f :
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{−1, 1}n → {−1, 1} is any bipartition of V with maxi{Inf i[f ]} ≤ ε, then the frac-
tion of edges it cuts is at most θ

π + oε(1).

Actually, it’s also acceptable for these gadgets to be edge-weighted graphs, with nonnegative
edge-weights summing to 1. Khot et al. suggested using the noisy hypercube graph on vertex
set {−1, 1}n, in which the weight on edge (u, v) ∈ {−1, 1}n×{−1, 1}n is preciselyPr[x =
u,y = v] when (x,y) are a (cos θ)-correlated random strings (note that ρ = cos θ < 0 for
θ ∈ [θGW, π]). Such gadget graphs have the first two properties above, and the Majority
Is Stablest Theorem precisely implies that they also have the third property. It’s somewhat
surprising that the technical properties required for this Unique Games/PCP-based hardness
result correspond so perfectly to a natural problem about voting theory.

Thus subject to the Unique Games Conjecture, no efficient algorithm can improve on the
Goemans–WilliamsonMax-Cut approximation guarantee. In particular, this means that there
must be infinite families of graphs on which the Goemans–Williamson algorithm performs
no better than the guarantee established in Theorem 2.4. As first shown by Karloff [48],
the noisy hypercube graphs G also serve as examples here: Though they have Opt(G) =
1
2 − 1

2 cos θ, one optimal solution of (SDP) for these graphs is �U∗(v) = v/
√

d, and applying
the Goemans–Williamson algorithm to these vectors will indeed give a bipartition cutting
only a θ

π fraction of edges in expectation.
Before turning our attention more fully to the Majority Is Stablest Theorem, we should

mention a far-reaching generalization of the above-described work in complexity theory,
namely the Raghavendra Theory of CSP approximation. Raghavendra [74] showed that
for all CSPs (not just Max-Cut), the natural analogue of the Goemans–Williamson SDP
algorithm has optimal approximation guarantee among all efficient algorithms, subject to the
Unique Games Conjecture. This theory will be discussed further in our concluding Section 7.

3. Borell’s isoperimetric inequality

The Majority Is Stablest Theorem concerns Boolean functions, but thanks to the Central
Limit Theorem it includes as a “special case” a certain inequality concerning Gaussian ge-
ometry first proved by Borell [17]. (In this field, the idea that Boolean inequalities imply
Gaussian inequalities dates back to the work of Gross [37] on the Log-Sobolev Inequality.)
To state this Gaussian inequality we first make some definitions:

Definition 3.1. Given z ∈ R
d and ρ ∈ [−1, 1], we say that the random vector z′ is a

ρ-correlated Gaussian copy of z if z′ has the distribution ρz +
√

1− ρ2g, where g is a
standard d-dimensional Gaussian random vector. When z is itself a standard d-dimensional
Gaussian and z′ is a ρ-correlated Gaussian copy, we call (z, z′) a ρ-correlated d-dimensional
Gaussian pair. An equivalent definition is that each pair of random variables (zi, z

′
i) is a

ρ-correlated pair of Gaussians (as defined in Section 1) and the pairs are independent for
i ∈ [d]. Note that (z, z′) has the same distribution as (z′, z).

Remark 3.2. The distribution of a ρ-correlated d-dimensional Gaussian pair (z, z′) is also
rotationally symmetric inRd. Note that for large dwe’ll have ‖z‖, ‖z′‖ ∼ √

d and 〈z, z′〉 ∼
ρd. Thus an intuitive picture to keep in mind when d is large is that (z, z′) is roughly
distributed as a uniformly random pair of vectors of length

√
d and angle arccos ρ.
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Definition 3.3. The Ornstein–Uhlenbeck semigroup of operators is defined as follows: For
ρ ∈ [−1, 1], the operator Uρ acts on functions f : Rd → R by

Uρf(z) = E
z′ a ρ-correlated Gaussian copy of z

[f(z′)].

We also define the Gaussian noise stability of f at ρ to be

Stabρ[f ] = E
(z,z′) ρ-correlated

d-dimensional Gaussian pair

[f(z)f(z′)].

We can now state the “Gaussian special case” of Majority Is Stablest:

Theorem 3.4. Fix 0 < ρ < 1. Assume h : Rd → [−1, 1] satisfies Ez∼γd
[h(z)] = 0. Then

its Gaussian noise stability satisfies

Stabρ[h] ≤ 1− 2
π arccos ρ.

(Furthermore, for −1 < ρ < 0 the inequality holds in reverse and the hypothesis E[h] = 0
is unnecessary.)

To obtain Theorem 3.4 from the Majority Is Stablest Theorem (at least for “nice enough” h),
we use the fact that Gaussian random variables can be “simulated” by sums of many indepen-
dent ±1 random bits. More precisely, we can apply Majority Is Stablest to f : {−1, 1}dn →
[−1, 1] defined by

f(x1,1, . . . , xd,n) = h
(

x1,1+···+x1,n√
n

, . . . ,
xd,1+···+xd,n√

n

)
and then take n → ∞ and use a d-dimensional Central Limit Theorem. (The assumption and
error dependence on the influence bound ε disappears, because we have ε → 0 as n → ∞.)
Note that in Section 1 we saw exactly this limiting procedure in the case of h = sgn : R1 →
{−1, 1} when we computed the limiting (Boolean) noise stability of Majn.

Theorem 3.4 was first proved by Borell in 1985 [17]. (In fact, Borell proved significant
generalizations of the theorem, as discussed below.) In 2005, Mossel et al. [67] used it to
prove the Majority Is Stablest Theorem by reducing the Boolean setting to the Gaussian set-
ting. The key technical tool here was a “nonlinear” version of the Central Limit Theorem
called the Invariance Principle (see also [76]). Briefly, the Invariance Principle implies that
if f : {−1, 1}n → R is a low-degree multilinear polynomial with small influences then
the distributions of f(x1, . . . ,xn) and f(g1, . . . , gn) are “close”, where x1, . . . ,xn are
independent ±1 random variables and g1, . . . , gn are independent Gaussians. The Invari-
ance Principle has had many applications (e.g., in combinatorics [24], learning theory [47],
pseudorandomness [62], social choice [64], sublinear algorithms [14], and the Raghavendra
Theory of CSPs mentioned at the end of Section 2) but we won’t discuss it further here.
Instead, we’ll outline in Section 6 an alternative, “purely discrete” proof of the Majority Is
Stablest Theorem due to De, Mossel, and Neeman [20].

Let’s now look more carefully at the geometric content of Theorem 3.4. SupposeA ⊂ R
d

is a set with Gaussian volume γd(A) = 1
2 . Applying Theorem 3.4 with h = 1− 2 · 1A, and

also writing θ = arccos ρ ∈ (0, π
2 ), one obtains the following:
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Corollary 3.5. For 0 ≤ θ ≤ π
2 and A ⊆ R

d, define the rotation sensitivity

RSA(θ) = Pr
(z,z′) cos θ-correlated

d-dimensional Gaussian pair

[1A(z) �= 1A(z
′)].

Then if γd(A) = 1
2 , we have RSA(θ) ≥ θ

π .

By Sheppard’s Formula, equality is obtained if d = 1 and A = (−∞, 0]. In fact, by
rotational symmetry of correlated Gaussians, equality is obtained when A is any halfspace
through the origin in R

d. (Geometrically, it’s natural to guess that halfspaces minimize
RSA(θ) among sets A of fixed Gaussian volume, using the intuition from Remark 3.2.) As
shown in [55], this corollary is quite easy to prove for “many” values of θ:

Proof of Corollary 3.5 for θ = π
2
 , � ∈ Z

+. Let g, g′ be independent d-dimensional Gaus-
sians and define z(j) = cos(jθ)g + sin(jθ)g′ for 0 ≤ j ≤ �. Then it’s easy to check
that (z(i), z(j)) is a cos((j − i)θ)-correlated Gaussian pair. In particular, z(0) and z(
) are
independent. Now using γd(A) = 1

2 and a union bound we get

1
2 = Pr[1A(z

(0)) �= 1A(z
(
))] ≤


∑
j=1

Pr[1A(z
(j−1)) �= 1A(z

(j))] = � ·RSA(θ),

which is the desired inequality.

Returning to Theorem 3.4, it states that if (z, z′) are ρ-correlated d-dimensional Gaus-
sians (0 < ρ < 1) then halfspaces are the volume- 12 sets which maximize Pr[z, z′ ∈ A].
In fact, halfspaces are also the optimizers at any fixed volume. Furthermore, if we gener-
alize by looking for sets A,B of fixed volume maximizing Pr[z ∈ A, z′ ∈ B], parallel
halfspaces are again best. These isoperimetric facts (and more) were all originally proved by
Borell [17]:

Theorem 3.6 (“Borell Isoperimetric Inequality”). Fix 0 < ρ < 1 and 0 ≤ α, β ≤ 1. Sup-
pose A,B ⊆ R

d satisfy γd(A) = α, γd(B) = β. Then if (z, z′) is a ρ-correlated d-
dimensional Gaussian pair,

Pr[z ∈ A, z′ ∈ B] ≤ Pr[z ∈ H, z′ ∈ H ′]

where H and H ′ are (any) parallel halfspaces satisfying γd(H) = α, γd(H
′) = β. (If

−1 < ρ < 0 then the inequality is reversed.) By rotational symmetry we may assume
H = (−∞,Φ−1(α)], H ′ = (−∞,Φ−1(β)] ⊆ R and thus write the above as

Pr[z ∈ A, z′ ∈ B] ≤ Λρ(α, β) := Pr
(w,w′) ρ-correlated

Gaussians

[w ≤ Φ−1(α),w′ ≤ Φ−1(β)].

In case α = β = 1
2 , Sheppard’s Formula implies

Pr[z ∈ A, z′ ∈ B] ≤ Λρ(
1
2 ,

1
2 ) =

1
2 − 1

2π arccos ρ.

Borell’s original proof of this theorem used the Gaussian symmetrization method due to
Ehrhard [25] and was quite technical. Four other proofs are known. Beckner [12] pointed out
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that the analogous isoperimetric inequality on the sphere is easy to prove by two-point sym-
metrization [7], and the Gaussian result can then be deduced via “Poincaré’s limit” (see [19]).
Mossel and Neeman [65] recently gave a slick proof using semigroup methods, and together
with De [20] they gave another proof via Boolean functions. Finally, Eldan [27] gave the
most recent new proof, using stochastic calculus.

We will describe De, Mossel, and Neeman’s Boolean proof of Borell’s Isoperimetric
Inequality in Section 6. It has the advantage that it can be used to prove the Majority Is
Stablest Theorem “at the same time” (using a few technical tricks from the original Invari-
ance Principle-based proof, including hypercontractivity). But first, we’ll spend some time
discussing further special cases of Borell’s Isoperimetric Inequality.

4. Hypercontractivity

Borell’s Isoperimetric Inequality is very precise, giving the exact maximal value of Pr[z ∈
A, z′ ∈ B] (when (z, z′) are ρ-correlated) for any fixed Gaussian volumes γd(A) = α,
γd(B) = β. A small downside is that this maximum value, Λρ(α, β), does not have a nice
closed-form expression except when α = β = 1

2 . In the interesting regime of α, β →
0, however, we can get a closed form for its asymptotics. Let’s do a rough “heuristic”
estimation.

Suppose H,H ′ are parallel halfspaces of “small” Gaussian volume α, β, with α ≤ β.
By rotational symmetry we can assume H = [a,∞), H ′ = [b,∞) ⊂ R for some “large”
values a ≥ b > 0. Precisely, we have a = −Φ−1(α), but speaking roughly we’ll express
this as α ≈ exp(−a2

2 ), as this is asymptotically correct up to lower-order factors. Similarly
we’ll write β ≈ exp(− b2

2 ). We are interested in estimating Pr[g ∈ H, g′ ∈ H ′], where
(g, g′) are a ρ-correlated Gaussian pair. We’ll actually take g′ = ρg +

√
1− ρ2h, where

h is a standard Gaussian independent of g. To start the estimation, by definition we have
Pr[g ∈ H] ≈ exp(−a2

2 ). Further, conditioned on g ∈ H we will almost surely have that g
is only “barely” larger than a. Thus we expect g′ to be conditionally distributed roughly as
ρa+

√
1− ρ2h. In this case, g′ will be in H ′ if and only if h ≥ (b− ρa)/

√
1− ρ2. Under

the assumption that b−ρa ≥ 0, the probability of this is, roughly again, exp(− (b−ρa)2

2(1−ρ2) ). All
in all, these calculations “suggest” that

Λρ(α, β) = Pr[g ∈ H, g′ ∈ H ′] ≈ exp(−a2

2 ) exp(− (b−ρa)2

2(1−ρ2) ) = exp
(
− 1

2
a2−2ρab+b2

1−ρ2

)

(under the assumption that α ≈ exp(−a2

2 ) ≤ exp(− b2

2 ) ≈ β are “small”, with b ≥ ρa).
Since Borell’s Isoperimetric Inequality tells us that parallel halfspaces are maximizers, we
might optimistically guess the following:

Theorem 4.1 (“Gaussian Small-Set Expansion Theorem”). Let 0 < ρ < 1. Let A,B ⊆ R
d

have Gaussian volumes exp(−a2

2 ), exp(− b2

2 ), respectively, and assume 0 ≤ ρa ≤ b ≤ a.
Then

Pr
(z,z′) ρ-correlated

d-dimensional Gaussian pair

[z ∈ A, z′ ∈ B] ≤ exp
(
− 1

2
a2−2ρab+b2

1−ρ2

)
.
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In particular, if A ⊆ R
d has γd(A) = α then

Stabρ[1A] ≤ α
2

1+ρ ⇐⇒ Pr
(z,z′) ρ-correlated

d-dimensional Gaussian pair

[z′ ∈ A | z ∈ A] ≤ α
1−ρ
1+ρ . (4.1)

Indeed this theorem is correct, and it can be formally deduced from Borell’s Isoperimetric
Inequality. We’ll outline a more direct proof shortly, but first let’s discuss its content. The
one-set statement (4.1) says that if A is any “small” subset of Gaussian space (think of α as
tending to 0) and ρ is bounded away from 1 (say ρ = 1−δ), then a ρ-noisy copy of a random
point in A will almost certainly (i.e., except with probability αδ/(2+δ)) be outside A.

One might ask whether a similar statement is true for subsets of the discrete cube {−1,1}n.
As we saw with Majority Is Stablest implying Theorem 3.4, isoperimetric inequalities on the
discrete cube typically imply the analogous statement in Gaussian space, by the Central
Limit Theorem. On the other hand, the converse does not generally hold; this is because
there are subsets of {−1, 1}n like the dictators {x : xi = 1}, or more generally “subcubes”
{x : xi1 = · · · = xik = 1}, which have no analogue in Gaussian space. In particular, one
has to rule out dictators using the “small-influences” condition in order for the Boolean ana-
logue of Borell’s theorem, namely the Majority Is Stablest Theorem, to be true. However it
is often true that asymptotic isoperimetric inequalities for “small” subsets of Gaussian space
also hold in the Boolean setting with no influences assumption; this is because small sub-
cubes and small Hamming balls (the Boolean analogue of Gaussian halfspaces) have similar
isoperimetric properties in {−1, 1}n. In particular, it turns out that Theorem 4.1 holds iden-
tically in {−1, 1}n:
Theorem 4.2 (“Boolean Small-Set Expansion Theorem”). Let 0 < ρ < 1. Let A,B ⊆
{−1, 1}n have volumes |A|

2n = exp(−a2

2 ), |B|2n = exp(− b2

2 ), and assume 0 ≤ ρa ≤ b ≤ a.
Then

Pr
(x,y) ρ-correlated strings

[x ∈ A,y ∈ B] ≤ exp
(
− 1

2
a2−2ρab+b2

1−ρ2

)
.

In particular, if |A|2n = α then

Stabρ[1A] ≤ α
2

1+ρ ⇐⇒ Pr
(x,y) ρ-correlated strings

[x ∈ A | y ∈ A] ≤ α
1−ρ
1+ρ . (4.2)

This theorem is formally stronger than its Gaussian counterpart Theorem 4.1, by virtue
of the Central Limit Theorem. In fact, there is a related functional inequality which is even
stronger; this is the crucial Hypercontractive Inequality first proved by Bonami [15].

Theorem 4.3 (“Boolean Hypercontractive Inequality”). Let f, g : {−1, 1}n → R, let r, s ≥
0, and assume 0 ≤ ρ ≤ √

rs ≤ 1. Then

E
(x,y) ρ-correlated

[f(x)g(y)] ≤ ‖f‖1+r‖g‖1+s.

(Here we are using Lp-norm notation, ‖f‖p = Ex∼{−1,1}n [|f(x)|p]1/p.)

To recover Theorem 4.2, one simply applies the Hypercontractive Inequality with f =
1A, g = 1B and optimizes the choice of r, s. (We mention that this deduction was first noted,
in its “reverse” form, by Mossel et al. [68].) The Gaussian analogue of the Boolean Hyper-
contractive Inequality also holds; indeed, the traditional proof of it (say, in [44]) involves
first proving the Boolean inequality and then applying the Central Limit Theorem.
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Another interpretation of the Hypercontractive Inequality is as a “generalized Hölder’s
inequality”. In fact, its ρ = 1 case (corresponding to y ≡ x) is identical to Hölder’s inequal-
ity (since the hypothesis

√
rs = 1 is identical to (1 + s)′ = 1 + r). The Hypercontractive

Inequality shows that as x and y become less and less correlated, one can put smaller and
smaller norms of f and g on the right-hand side. (In the ultimate case of ρ = 0, meaning x
and y are independent, one gets the trivial inequality E[f(x)g(y)] ≤ ‖f‖1‖g‖1.)

Speaking of Hölder’s inequality, we should mention that it can be used to show that The-
orem 4.3 is equivalent to the following more traditional formulation of the Hypercontractive
Inequality: For f : {−1, 1}n → R, 1 ≤ p ≤ q ≤ ∞:

‖Tρf‖q ≤ ‖f‖p (4.3)

provided 0 ≤ ρ ≤
√

p−1
q−1 .

Writing p = 1 + r, q = 1 + 1/s, one uses the fact that ‖Tρf‖q = sup{E[g · Tρf ] :
‖g‖q′ = 1}, and that the quantity inside the sup is the same as the left-hand side in Theo-
rem 4.3. Here we see an explanation for the name of the inequality — it shows that Tρ is not
just a contraction in Lp but in fact is a “hypercontraction” from Lp to Lq . In this formula-
tion, the inequality can be viewed as quantifying the “smoothing” effect of the Tρ operator.
By virtue of Fact 1.4 one can use this formulation to show that low-degree polynomials of
independent ±1 random variables are “reasonable”, in the sense that their high norms are
comparable to their 2-norm. However we won’t pursue this interpretation any further here.

A wonderful fact about the Boolean Hypercontractive Inequality is that the n = 1 case
implies the general n case by induction. Indeed, for the two-function form given in Theo-
rem 4.3, the induction is almost trivial. If (x,y) are ρ-correlated and we write x = (x1,x

′)
for x′ ∈ {−1, 1}n−1 (and similarly for y), then

E[f(x)g(y)] = E
(x1,y1)

E
(x′,y′)

[fx1(x
′)gy1

(y′)] ≤ E
(x1,y1)

[‖fx1‖1+r‖gy1
‖1+s],

by induction, where fx1 denotes the restriction of f gotten by fixing the first coordinate to
be x1 (and similarly for gy1 ). Then defining the 1-bit functions F (x1) = ‖fx1‖1+r and
G(y1) = ‖gy1‖1+s we have

E
(x1,y1)

[‖fx1‖1+r‖gy1
‖1+s] = E

(x1,y1)
[F (x1)G(y1)] ≤ ‖F‖1+r‖G‖1+s = ‖f‖1+r‖g‖1+s,

where we used the n = 1 case of the Hypercontractive Inequality.
Thus to prove all of the Boolean and Gaussian Hypercontractivity and Small-Set Expan-

sion theorems, it suffices to prove the n = 1 case of the Boolean Hypercontractive Inequal-
ity. In fact, by the Hölder trick we just need to prove (4.3) in the case n = 1. It’s also
easy to show that we can assume f : {−1, 1} → R is nonnegative, and by homogeneity
we can also assume f has mean 1. Thus everything boils down to proving the following: If

0 ≤ ρ ≤
√

p−1
q−1 ≤ 1 and 0 ≤ δ ≤ 1 then

(
1
2 (1 + ρδ)q + 1

2 (1− ρδ)q
)1/q ≤ ( 12 (1 + δ)p + 1

2 (1− δ)p
)1/p

. (4.4)

Note that if we think of δ as very small and perform a Taylor expansion, the above becomes

1 + 1
2ρ

2(q − 1)δ2 + · · · ≤ 1 + 1
2 (p − 1)δ2 + · · · .



646 Ryan O’Donnell

This shows that the ρ ≤
√

p−1
q−1 condition is necessary, and also that it’s “essentially” suffi-

cient assuming δ is small. However, we need to actually verify (4.4) for all 0 ≤ δ ≤ 1. For
some simple values of p and q, this is easy. For example, if p = 2 and q = 4, establish-
ing (4.4) amounts to noting that 1 + 2δ2 + 1

9δ
4 ≤ 1 + 2δ2 + δ4. This is already enough to

prove, say, the Boolean Small-Set Expansion statement (4.2) with parameter ρ = 1
3 . On the

other hand, establishing (4.4) for all p, q and all δ is a little bit painful (albeit elementary). In
the next section, we’ll see a similar problem where this pain can be circumvented.

5. Bobkov’s inequality and Gaussian isoperimetry

Let’s now look at a different special case of Borell’s Isoperimetric Inequality, namely the
case where B = A and ρ → 1−. Using the rotation sensitivity definition from Corollary 3.5,
Borell’s inequality tells us that if A ⊆ R

d, and H ⊆ R
d is a halfspace of the same Gaussian

volume, then RSA(δ) ≥ RSH(δ). Since we also have RSA(0) = RSH(0) = 0, it follows
thatRS′A(0

+) ≥ RS′H(0+). (It can be shown that this derivativeRS′A(0
+) is always well-

defined, though it may be ∞.) As we’ll explain shortly, the derivative RS′A(0
+) has a very

simple meaning; up to a factor of
√

π
2 , it is the Gaussian surface area of the set A. Thus

Borell’s Isoperimetric Inequality implies the following well-known result:

Theorem 5.1 (“Gaussian Isoperimetric Inequality”). Let A ⊆ R
d have Gaussian volume

γd(A) = α, and let H ⊆ R
d be any halfspace with γd(H) = α. Then

γ+
d (A) ≥ γ+

d (H). (5.1)

Here we are using the following definition:

Definition 5.2. The Gaussian surface area of A ⊆ R
d is

γ+
d (A) =

√
π

2
·RS′A(0

+) = lim
δ→0+

γd((∂A)+δ/2)

δ
= E

z∼γd

[‖∇1A(z)‖] =
∫
∂A

ϕ(x) dx.

The first equation may be taken as the definition, and the remaining equations hold assuming
A is “nice enough” (for technical details, see [1, 2, 2, 3, 43, 63]).

To get a feel for the definition, let’s “heuristically justify” the second equality above,
which relates the derivative of rotation sensitivity to the more natural-looking Gaussian
Minkowski content of ∂A. We can think of

RS′A(0
+) =

RSA(δ)

δ
=

1

δ
Pr

(z,z′) cos δ-correlated
d-dimensional Gaussian pair

[1A(z) �= 1A(z
′)] (5.2)

for “infinitesimal” δ. The last expression here can be thought of as the probability that
the line segment � joining z, z′ crosses ∂A. Now for infinitesimal δ we have cos δ ≈ 1
and sin δ ≈ δ; thus the distribution of (z, z′) is essentially that of (g, g + δg′) for g, g′

independent d-dimensional Gaussians. When g lands near ∂A, the length of the segment
� in the direction of the nearby unit normal v to ∂A will have expectation E[|〈δg′,v〉|] =
δE[|N(0, 1)|] =√2/π ·δ. Thus (5.2) should essentially be√2/π ·δ ·γd({z : dist(z, ∂A) <
δ}), completing the heuristic justification of the second inequality in Definition 5.2.
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Incidentally, it’s easy to see that the Gaussian surface area of the one-dimensional half-
space (−∞, a] ⊆ R is ϕ(a); thus we can give an explicit formula for the right-hand side
of (5.1):

Fact 5.3. The right-hand side of (5.1) is the Gaussian isoperimetric function,

I(α) = ϕ ◦ Φ−1(α) ∈ [0, 1√
2π

].

A remark: One easily checks that it satisfies the differential equation II ′′ + 1 = 0, with
boundary conditions I(0) = I(1) = 0.

The Gaussian Isoperimetric Inequality was originally independently proven by Borell [16]
and by Sudakov and Tsirel’son [81]. Both proofs deduced it via Poincaré’s limit from Lévy’s
Spherical Isoperimetric Inequality [61, 77]. (This is the statement that the fixed-volume sub-
sets of a sphere’s surface which minimize perimeter are caps — i.e., intersections of the
sphere with a halfspace.) Ehrhard [25] subsequently developed his Gaussian symmetriza-
tion method to give a different proof. In 1997, Bobkov gave a surprising new proof by the
same technique we saw in the last section: establishing a functional Boolean analogue by
induction. We’ll now outline this proof.

We start with the following equivalent functional form of the Gaussian Isoperimetric
Inequality (first noted by Ehrhard [26]): For locally Lipschitz f : Rd → [0, 1],

I(E[f(z)]) ≤ E[‖(∇f(z), I(f(z)))‖2], (5.3)

where z ∼ γd and ‖·‖2 denotes the usual Euclidean norm in d+1 dimensions. The Gaussian
Isoperimetric Inequality for A can be deduced by taking f = 1A; conversely, inequality 5.3
can be deduced from the Gaussian Isoperimetric Inequality by taking A = {(x, a) : f(x) ≥
Φ(a)} ⊆ R

d+1. In turn, Bobkov showed that the above inequality can be deduced (by the
usual Central Limit Theorem argument) from the analogous Boolean inequality:

Theorem 5.4 (“Bobkov’s Inequality”). For any f : {−1, 1}n → [0, 1],

I(E[f ]) ≤ E[‖(∇f, I(f))‖2].

Here the expectation is with respect to the uniform distribution on {−1, 1}n, and ∇f =
(D1f, . . . ,Dnf).

Just as with the Hypercontractive Inequality, this inequality has the property that the
n = 1 case implies the general n case by a fairly easy induction. Indeed, this induction uses
no special property of I or the 2-norm:

Fact 5.5. Let J : [0, 1] → R
≥0, and let ‖ · ‖ denote a fixed Lp-norm. Consider, for f :

{−1, 1}n → [0, 1], the following inequality:

J(E[f ]) ≤ E[‖(∇f, J(f))‖]. (5.4)

If this inequality holds for n = 1 then it holds for general n.

Now given a norm ‖ · ‖ we can seek the “largest” function J for which (5.4) holds when
n = 1. As an aside, for the 1-norm ‖ · ‖1 we may take J(α) = α log2(1/α), and this yields
a form of the classic Edge Isoperimetric Inequality for the discrete cube [39], sharp for all
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α = 2−k, k ∈ Z
+. Returning to Bobkov’s Inequality, the n = 1 case we need to verify is

that
J(α) ≤ 1

2

√
δ2 + J(α + δ)2 + 1

2

√
δ2 + J(α − δ)2 (5.5)

when J = I and α ± δ ∈ [0, 1]. Bobkov used some (elementary) labor to show that this
inequality indeed holds when J = I. To see how the Gaussian isoperimetric function arises,
we Taylor-expand the right-hand side in δ, getting:

J(α) +
1

2J(α)
(J(α)J ′′(α) + 1)δ2 ± O(δ4). (5.6)

Thus if take J = I, which satisfies II ′′ + 1 = 0, then the needed inequality (5.5) will at
least be satisfied “for small δ, up to an additive o(δ2)”.

Perhaps surprisingly, this is enough to deduce that (5.5) holds exactly, for all δ. This was
(in a sense) first established by Barthe and Maurey, who used stochastic calculus and Itô’s
Formula to prove that (5.5) holds with J = I. Let us present here a sketch of an elementary,
discrete version of Barthe–Maurey argument.

We wish to show that Theorem 5.4 holds in the n = 1 case; say, for the function f(y) =
α + βy, where y ∼ {−1, 1}. Let’s take a random walk on the line, starting from 0, with
independent increments x1,x2,x3, . . . of ±δ, and stopping when the walk reaches ±1 (we
assume 1/δ ∈ Z

+). We let y ∈ {−1, 1} be the stopping point of this walk (which is equally
likely to be ±1). Now proving Bobkov’s inequality for f(y) = α+ β(x1 +x2 +x3 + · · · )
can be reduced to proving Bobkov’s inequality just for f(x1) = α+ βx1, essentially by the
same easy induction used to derive Theorem 5.4 from its n = 1 case. This puts us back in
the same position as before: we need to show that

I(α) ≤ 1
2

√
(βδ)2 + I(α + βδ)2 + 1

2

√
(βδ)2 + I(α − βδ)2.

However we now have the advantage that the quantity βδ is indeed “small”; we can make it
as small as we please. By the Taylor expansion (5.6), the above inequality indeed holds up to
an additive o(δ2) error. Furthermore, if we simply let this error accumulate in the induction,
it costs us almost nothing. It’s well known and simple that if T is the number of steps the
random walk takes before stopping, then E[T ] = 1/δ2. Thus we can afford to let an o(δ2)
error accumulate for 1/δ2 steps, since δ can be made arbitrarily small.

The Barthe–Maurey version of the above argument replaces the random walk with Brow-
nian motion; this is arguably more elegant, but less elementary. An amusing aspect of all
this is the following: We first saw in Section 3 that statements about Gaussian geometry
can be proven by “simulating” Gaussian random variables by sums of many random ±1 bits
(scaled down); the above argument shows that it can also be effective to simulate a single±1
random bit by the sum of many small Gaussians (i.e., with Brownian motion).

We end this section by mentioning that Bobkov’s approach to the Gaussian Isoperimetric
Inequality inspired Bakry and Ledoux [9, 59] to give a “semigroup proof” of the Gaussian
version of Bobkov’s inequality (5.3) (á la [8, 58]). Specifically, if one defines

F (ρ) = E
γd

[‖(∇Uρf, I(Uρf))‖2],

then they showed that F is a nondecreasing function of ρ ∈ [0, 1] just by differentiation
(though the computations are a bit cumbersome). This immediately implies (5.3) by taking
ρ = 0, 1. Mossel and Neeman [65] proved the more general Borell Isoperimetric Inequality
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using a very similar semigroup technique, and Ledoux [60] generalized their methodology
to include the Hypercontractive Inequality, Brascamp–Lieb inequalities, and some forms of
the Slepian inequalities. However, it was by returning to discrete methods — i.e., proving a
statement about Boolean functions by induction — that De, Mossel, and Neeman [21] were
able to simultaneously establish the Majority Is Stablest Theorem and Borell’s theorem.

6. The De–Mossel–Neeman proof of the MIST

Mossel and Neeman actually proved the following functional version of Borell’s Isoperimet-
ric Inequality:

Theorem 6.1. Fix 0 < ρ < 1 and let f, g : Rd → [0, 1]. Then if (z, z′) is a ρ-correlated
d-dimensional Gaussian pair,

E[Λρ(f(z), g(z
′))] ≤ Λρ(E[f(z)],E[g(z′)]). (6.1)

(If −1 < ρ < 0 then the inequality is reversed.)

This is equivalent to Borell’s inequality in the same way that (5.3) is equivalent to the
Gaussian Isoperimetric Inequality (note in particular that Λρ(α, β) = αβ when α, β ∈
{0, 1}). This inequality also has the property that the general-d case follows from the d =
1 case by a completely trivial induction, using no special property of Λρ or the Gaussian
distribution; it only uses that the d pairs (zi, z

′
i) are independent. In particular, if (6.1) were

to hold for one-bit functions f, g : {−1, 1} → [0, 1] then we could deduce it for general f, g :
{−1, 1}n → [0, 1] by induction, then for Gaussian f, g : R → [0, 1] by the Central Limit
Theorem, and finally for Gaussian f, g : Rd → [0, 1] by induction again. Unfortunately, the
inequality (6.1) does not hold for f, g : {−1, 1} → [0, 1]. It’s clear that it can’t, because
otherwise we would obtain the Majority Is Stablest Theorem with no hypothesis about small
influences (which is false). Indeed, the “dictator” functions f, g : {−1, 1} → [0, 1], f(x) =
g(x) = 1

2 + 1
2x provide an immediate counterexample; inequality (6.1) becomes the false

statement 1
4 + 1

4ρ ≤ 1
2 − 1

2π arccos ρ.
Nevertheless, as noted by De, Mossel, and Neeman [21] we are back in the situation

wherein (6.1) “essentially” holds for one-bit functions “with small influences”; i.e., for
f(x) = α + δ1x, g(x) = β + δ2x with δ1, δ2 “small”. To see this, Taylor-expand the
left-hand side of (6.1) around (α, β):

E
(x,x′)

ρ-correlated

[Λρ(f(x), g(x
′))] = Λρ(α, β) +E[δ1x ·D1Λρ(α, β)] +E[δ2x

′ ·D2Λρ(α, β)]

+ E

[[
δ1x δ2x

′] · HΛρ(α, β) ·
[
δ1x
δ2x

′

]]
+ · · · (6.2)

(Here HΛρ denotes the Hessian of Λρ.) The first term here matches the right-hand side
of (6.1). The second and third terms vanish, since E[x] = E[x′] = 0. Finally, since
E[xx′] = ρ the fourth term is

[
δ1 δ2

] · HρΛρ(α, β) ·
[
δ1
δ2

]
, where the notation HρF means

[
1 ρ
ρ 1

]
◦ HF. (6.3)
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One can show by a relatively short calculation that det(HρΛρ) is identically 0 and that
the diagonal entries of HρΛρ always have opposite sign to ρ. Thus for 0 < ρ < 1, the
matrix HρΛρ is everywhere negative semidefinite and hence (6.3) is always nonpositive.
(The reverse happens for 0 < ρ < 1.) Ledoux [60] introduced the terminology ρ-concavity
of F for the condition HρF � 0.

It follows that (6.1) indeed holds for one-bit Boolean functions f, g, up to the “cubic
error term” elided in (6.2). If one now does the induction while keeping these cubic error
terms around, the result is the following:

Theorem 6.2 (“De–Mossel–Neeman Theorem”). Fix 0 < ρ < 1 and any small η > 0. Then
for f, g : {−1, 1}n → [η, 1− η],

E
(x,y)

ρ-correlated

[Λρ(f(x), g(y))]

≤ Λρ(E[f(x)],E[g(y)]) + Oρ,η(1) ·
n∑

i=1

(‖dif‖33 + ‖dig‖33),
(6.4)

where dih denotes the ith martingale difference for h,

(x1, . . . ,xi) �→ E[h | x1, . . . ,xi]−E[h | x1, . . . ,xi−1].

(For −1 < ρ < 0, the inequality (6.4) is reversed.)

With this theorem in hand, Borell’s Isoperimetric Inequality for Gaussian functions f, g :
R → [η, 1−η] is easily deduced by the standard Central Limit Theorem argument: one only
needs to check that the cubic error term is O( 1√

n
), and n may be taken arbitrarily large.

Then one immediately deduces the full Borell theorem by taking η → 0 and doing another
induction on the Gaussian dimension d. On top of this, De, Mossel, and Neeman showed
how to deduce Majority Is Stablest from Theorem 6.2, using a small collection of analytical
tricks appearing in the original proof. The key trick is to use hypercontractivity to bound
‖dif‖33 in terms of

(‖Dif‖22)1+δ = Inf i[f ]
1+δ

for some small δ ≈ log log(1/ε)
log(1/ε) > 0. The fact that we get the nontrivial extra factor Inf i[f ]δ ,

which is at most εδ ≈ 1
log(1/ε) by assumption, is the key to finishing the proof.

7. Conclusions: proof complexity

As mentioned, there are two known proofs of the Majority Is Stablest Theorem: the original
one, which used the Invariance Principle to reduce the problem to Borell’s Isoperimetric
Inequality; and, the elegant one due to De, Mossel, and Neeman, which is a completely
“discrete proof”, as befits a purely discrete problem like Majority Is Stablest. Esthetics is
not the only merit of the latter proof, however; as we describe in this section, the fact that
the De–Mossel–Neeman proof is simpler and more discrete leads to new technical results
concerning the computational complexity of Max-Cut.

Regarding Max-Cut, let’s consider the closely related problem of certifying that a given
graph has no large cut. As we saw in Section 2, for any graph G we can use semidefinite
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programming to efficiently compute a value β = SDPOpt(G) such that the maximum cut
in G satisfiesOpt(G) ≤ β. We think of this algorithm as producing a proof of the statement
“Opt(G) ≤ β”. Furthermore, the (analysis of the) Goemans–Williamson algorithm implies
that the bound found by this algorithm is fairly good; whenever G truly satisfies Opt(G) ≤
θ
π (for θ ∈ [θGW, π]), we will efficiently obtain a proof of “Opt(G) ≤ 1

2 − 1
2 cos θ”. For

example, ifOpt(G) ≤ 3
4 then there is an efficiently-obtainable “SDP proof” of the statement

“Opt(G) ≤ 1
2 + 1

2
√
2
≈ .854”.

Assuming the Unique Games Conjecture (and P �= NP), the works [51, 66] imply that
there is no efficient algorithm that can in general find better proofs; e.g., that can certify
“Opt(G) ≤ .853” whenever Opt(G) ≤ 3

4 . In fact, under the additional standard assump-
tion of coNP �= NP, the implication is simply that no short proofs exist; i.e., there are infinite
families of graphs G = (V,E) withOpt(G) ≤ 3

4 but no poly(|V |)-length proof of the state-
ment “Opt(G) ≤ .853” (say, in some textbook formalization of mathematical reasoning).
In other words:

Unique Games & P �= NP prediction about Max-Cut: Let θ ∈ [θGW, π] and δ > 0.
There is no polynomial-time algorithm that, given a Max-Cut instance G withOpt(G) ≤ θ

π ,
outputs a proof of “Opt(G) ≤ 1

2 − 1
2 cos θ − δ”.

Unique Games & coNP �= NP prediction about Max-Cut: In fact, there are infinitely
many graphs G withOpt(G) ≤ θ

π , yet for which no polynomial-length proof of “Opt(G) ≤
1
2 − 1

2 cos θ − δ” exists.

As mentioned, the Unique Games Conjecture is quite contentious, so it’s important
to seek additional evidence concerning the above predictions. For example, to support
the first prediction one should at a minimum show that the semidefinite program (SDP)
fails to provide such proofs. That is, one should find graphs G with Opt(G) ≤ θ

π yet
SDPOpt(G) ≥ 1

2 − 1
2 cos θ. Such graphs are called SDP integrality gap instances, as

they exhibit a large gap between their true optimal Max-Cut and the upper-bound certi-
fied by the SDP. Borell’s Isoperimetric Inequality precisely provides such graphs, at least if
“weighted continuous graphs” are allowed: One takes the “graph” G whose vertex set is Rd

and whose “edge measure” is given by choosing a (cos θ)-correlated pair of Gaussians. The
fact that Opt(G) ≤ θ

π is immediate from Borell’s Theorem 3.4; further, it’s not hard to
show (using the idea of Remark 3.2) that choosing �U(v) = v/

√
d in (SDP) establishes

SDPOpt(G) ≥ 1
2 − 1

2 cos θ − od(1). These facts were essentially established originally
by Feige and Schechtman [30], who also showed how to discretize the construction so as to
provide finite integrality gap graphs.

(Incidentally, we may now explain that the Raghavendra Theory mentioned at the end of
Section 2 significantly generalizes the work of Khot et al. [51] by showing how to transform
an SDP integrality gap instance for any CSP into a matching computational hardness-of-
approximation result, assuming the Unique Games Conjecture.)

Although the semidefinite program (SDP) fails to certifyOpt(G) ≤ θ
π for the “correlated

Gaussian graphs” described above, a great deal of recent research has gone into developing
stronger “proof systems” for reasoning about Max-Cut and other CSPs. (See, e.g., [33] for
a survey.) Actually, until recently this research was viewed not in terms of proof complexity
but in terms of analyzing “tighter” SDP relaxations that can still be solved efficiently. For
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example, one can still solve the optimization problem (SDP) in polynomial time with the
following “triangle inequality” constraint added in:

〈U(v), U(w)〉+ 〈U(w), U(x)〉 − 〈U(v), U(x)〉 ≤ 1 ∀v, w, x ∈ V.

Note that with this additional constraint we still have Opt(G) ≤ SDPOpt(G) for all G,
because the constraint is satisfied by any genuine bipartition U : V → {−1, 1}. As
noted by Feige and Schechtman [30], adding this constraint gives a certification better than
“Opt(G) ≤ 1

2 − 1
2 cos θ” for the Gaussian correlation graphs, though it’s not clear by how

much.
Although this stronger “SDP + triangle inequality” proof system does better on Gaussian

correlation graphs, a breakthrough work of Khot and Vishnoi [54] showed that it still suffers
from the same integrality gap for a different infinite family of graphs. In other words, even
when the SDP includes the triangle inequalities, these Khot–Vishnoi graphs G = (V,E) have
SDPOpt(G) ≥ 1

2 − 1
2 cos θ yet Opt(G) ≤ θ

π + o|V |(1). The second fact, the upper bound
on the true Max-Cut value, relies directly on the Majority Is Stablest Theorem. Subsequent
works [53, 75] significantly generalized this result by showing that even much tighter “SDP
hierarchies” still fail to certify anything better than “Opt(G) ≤ 1

2 − 1
2 cos θ” for the Khot–

Vishnoi graphs G. This could be considered additional evidence in favor of the Unique
Games & P �= NP Prediction concerning Max-Cut.

A recent work by Barak et al. [11] cast some doubt on this prediction, however. Their
work showed that the especially strong “Lasserre/Parrilo SDP hierarchy” [57, 72, 79] suc-
ceeds in finding some good CSP bounds which weaker SDP hierarchies are unable to obtain.
Specifically, they showed it provides good upper bounds on the optimal value of the Khot–
Vishnoi “Unique Games instances” (which are, in some sense, subcomponents of the Khot–
Vishnoi Max-Cut graphs). Subsequent work of O’Donnell and Zhou [71] further empha-
sized the equivalence of the Lasserre/Parrilo SDP hierarchy and the Sum-of-Squares (SOS)
proof system, invented by Grigroriev and Vorobjov [36]. In the context of the Max-Cut
CSP, this proof system (inspired by Hilbert’s 17th Problem [42] and the Positivstellensatz of
Krivine [56] and Stengle [80]) seeks to establish the statement “Opt(G) ≤ β” for a graph
G = (V,E) by expressing

β−
(

avg
(v,w)∈E

1
2 − 1

2XvXw

)
=

s∑
i=1

P 2
i within the ring R[(Xv)v∈V ]/(X2

v−1)v∈V , (7.1)

for some formal polynomials P1, . . . , Ps of degree at most some constant C. Somewhat
remarkably, there is an efficient (|V |O(C)-time) algorithm for finding such Pi’s whenever
they exist.

As mentioned, for the Khot–Vishnoi Max-Cut graphs G, the fact that Opt(G) ≤ θ
π +

o(1) follows directly from the Majority Is Stablest Theorem. To show that the SOS proof
system can also certify this fact (thereby casting some doubt on the Unique Games & P �=
NP Prediction about Max-Cut), one needs to show that not only is the Majority Is Stablest
Theorem true, but that it can be proved within the extremely constrained SOS proof system,
á la (7.1). The original proof of the Majority Is Stablest Theorem was quite complicated,
using the Invariance Principle from [67] to reduce Borell’s Isoperimetric Inequality, and then
relying on the known geometric proofs [12, 17] of the latter. The prospect for converting this
proof into an SOS format seemed quite daunting (although a partial result was established
in [71], showing that the SOS proof system can establish “Opt(G) ≤ 1

2 − cos θ
π − ( 12 −
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1
π ) cos

3 θ”). However, the simplicity and discrete nature of the new De–Mossel–Neeman
proof of the Majority Is Stablest Theorem allowed them to show that the SOS proof system
can establish the truth about the Khot–Vishnoi graphs, Opt(G) ≤ 1

2 − 1
2 cos θ + o(1).

It is to be hoped that this result can be extended to the entire Raghavendra Theory, thereby
showing that the SOS proof system can certify the optimal value of the analogue of the
Khot–Vishnoi instances for all CSPs. However as the Raghavendra Theory still relies on the
Invariance Principle, whether or not this is possible is unclear.

Finally, in light of the De–Mossel-Neeman result, the following interesting question
is open: Are there (infinite families of) instances of the Max-Cut problem G such that
Opt(G) ≤ θ

π , yet such that any mathematical proof of this statement is so complicated
that the SOS proof system cannot establish anything better than “Opt(G) ≤ 1

2 − 1
2 cos θ”?

If such graphs were found, this might tilt the weight of evidence back in favor of the Unique
Games & P �= NP Prediction. Of course, if human mathematicians explicitly construct the
proof ofOpt(G) ≤ θ

π , presumably it will have polynomial length, and therefore not provide
any evidence in favor of the Unique Games & coNP �= NP Prediction. To provide evidence
for this stronger prediction, one presumably needs to give a probabilistic construction of
graphs G such that both of the following happen with high probability: (i) Opt(G) ≤ θ

π ;
and, (ii) there is no polynomial-length proof even of “Opt(G) ≤ 1

2 − 1
2 cos θ”.
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Algorithms for circuits and circuits for algorithms:
Connecting the tractable and intractable

Ryan Williams

Abstract. The title of this paper highlights an emerging duality between two basic topics in algorithms
and complexity theory. Algorithms for circuits refers to the design of algorithms which can analyze
finite logical circuits or Boolean functions as input, checking a simple property about the complexity
of the underlying function. For instance, an algorithm determining if a given logical circuit C has an
input that makes C output true would solve the NP-complete Circuit-SAT problem. Such an algorithm
is unlikely to run in polynomial time, but could possibly be more efficient than exhaustively trying
all possible inputs to the circuit. Circuits for algorithms refers to the modeling of “complex” uniform
algorithms with “simple” Boolean circuit families, or proving that such modeling is impossible. For
example, can every exponential-time algorithm be simulated using Boolean circuit families of only
polynomial size? It is widely conjectured that the answer is no, but the present mathematical tools
available are still too crude to resolve this kind of separation problem. This paper surveys these two
generic subjects and the connections that have been developed between them, focusing on connections
between non-trivial circuit-analysis algorithms and proofs of circuit complexity lower bounds.

Mathematics Subject Classification (2010). Primary 68Q17; Secondary 68Q25.

Keywords. circuit complexity, algorithm analysis, satisfiability, lower bounds, derandomization, learn-
ing, exact algorithms, parameterized algorithms.

1. Introduction

Budding theoretical computer scientists are generally taught several dictums at an early age.
One such dictum is that the algorithm designers and the complexity theorists (whoever they
may be) are charged with opposing tasks. The algorithm designer discovers interesting meth-
ods for solving certain problems; along the way, she may also propose new notions of what is
interesting, to better understand the scope and power of algorithms. The complexity theorist
is supposed to prove lower bounds, showing that sufficiently interesting methods for solving
certain problems do not exist. Barring that, he develops a structural framework that explains
the consequences of such impossibility results, as well as consequences of possessing such
interesting methods.

Another dictum is that algorithm design and analysis is, on the whole, an easier ven-
ture than proving lower bounds. In algorithm design, one only has to find a single efficient
algorithm that will solve the problem at hand, but a lower bound must reason about all pos-
sible efficient algorithms, including bizarrely behaving ones, and argue that none solve the
problem at hand. This dictum is also reflected in the literature: every year, many interest-
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ing algorithms are discovered, analyzed, and published, compared to the tiny number of
lower bounds proved.1 Furthermore, there are rigorously mathematical reasons for believing
that lower bounds are hard to prove. The most compelling of these are the three “barriers”
of Relativization [9], Natural Proofs [64], and Algebrization [1]. These “no-go” theorems
demonstrate that the known lower bound proof methods are simply too coarse to prove even
weak lower bounds, much weaker than P �= NP. Subsequently, complexity theory has been
clouded with great pessimism about resolving some of its central open problems.

While the problems of algorithm design and proving lower bounds may arise from look-
ing at opposing tasks, the two tasks do have deep similarities when viewed in the appropriate
way.2 This survey will concentrate on some of the most counterintuitive similarities: from
the design of certain algorithms (the supposedly “easier” task), one can derive new lower
bounds (the supposedly “harder” task). That is, there are senses in which algorithm design is
at least as hard as proving lower bounds, contrary to dictums. These connections present an
excellent mathematical “arbitrage” opportunity for complexity theorists: to potentially prove
hard lower bounds via supposedly easier algorithm design. (Moreover, there is money to be
made: this approach has recently led to new lower bounds.)

Several connections take the following form:

The existence of an “efficient” algorithm T that can analyze all structured cir-
cuits C implies the existence of an “efficient” function f that is not computable
by all structured circuit families.

Therefore, while algorithms and lower bounds are opposites by definition, there are situ-
ations where algorithm design for a problem X can be translated into “lower bound design”
for another problem Y . The key is that there are two computational models under consid-
eration here: the algorithm model or the usual “Turing” style model of algorithms, and the
circuit model or the non-uniform circuit family model, which we shall define shortly. Care-
ful design of algorithms for analyzing instances of the circuit model are used to construct
functions computable (in one sense) in the algorithm model that are uncomputable (in an-
other sense) in the circuit model. There is a kind of duality lurking beneath which is not
well-understood.

The focus of this article is on two generic topics in algorithms and complexity, and
connections between them:

• Circuits for Algorithms refers to the modeling of powerful uniform algorithms with
non-uniform circuit families, or proving that such modeling is impossible. For in-
stance, the celebrated EXP versus P/poly question asks if exponential-time algorithms
can be simulated using non-uniform circuit families of polynomial size. Complexity
theorists believe that the answer is no, but they presently have no idea how to prove
such a circuit lower bound.

• Algorithms for Circuits refers to the design of algorithms which can analyze finite
logical circuits or Boolean functions as input, checking some property about the com-
plexity of the underlying function. To illustrate, the problem Circuit-SAT asks if a
given logical circuit has an input that forces the circuit to output true. Circuit-SAT

1Of course, there can be other reasons for this disparity, such as funding.
2Similarities are already present in the proof(s) that the Halting Problem is undecidable: such results rely on

the construction of a universal Turing machine that can run arbitrary Turing machine code given as input. This is a
textbook application of how an algorithm can be used to prove an impossibility theorem.
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is NP-complete and believed to be intractable; nevertheless, even “mildly intractable”
algorithms for this problem would be useful in both theory and practice. It is an
outstanding open question whether one can asymptotically improve over the “brute
force” algorithm for Circuit-SAT which simply evaluates the circuit on all possible
inputs. Recent surprising developments have shown that even tiny improvements over
exhaustive search would significantly impact Circuits for Algorithms—in fact, new
circuit lower bounds have been deduced from such algorithms.

The rest of the paper is organized as follows. The next section provides a bit of relevant
background. Section 3 surveys circuits for algorithms, and Section 4 surveys algorithms for
circuits. Section 5 discusses known connections between the two, and prospects for future
progress. Section 6 briefly concludes.

2. Preliminaries

Recall {0, 1}n is the set of all n-bit binary strings, and {0, 1}� =
⋃

n∈N{0, 1}n.

A quick recollection of machine-based complexity Any reasonable algorithmic model
with a coherent method for counting steps (such as Turing machines and their transition
functions) will suffice for our discussion. For an algorithm A, we let A(x) denote the output
of A on the input x. A language L is a subset of {0, 1}�; in the following, the variable L
always denotes a language. We typically think of L as an indicator function from {0, 1}� to
{0, 1}, in the natural way.

Let t : N → N. An algorithmA runs in time t(n) if, on all x ∈ {0, 1}n,A(x) halts within
t(|x|) steps. Decidability of L in time t(n) means that there is an algorithm A running in
time t(n) such that A(x) = L(x) for all x.

L is verifiable in time t(n) if there exists an algorithm A such that, on all x ∈ {0, 1}n,
x ∈ L if and only if there is a yx ∈ {0, 1}t(|x|) such that A(x, yx) runs in time O(t(|x|)) and
A(x, yx) = 1. Intuitively, the string yx serves as a proof that x ∈ L, and this proof can be
verified in time O(t(|x|)).

An algorithm A runs in space t(n) if, on all x ∈ {0, 1}n, the total workspace used by
A(x) is at most t(|x|) cells (or registers, or bits, depending on the model). Decidability of a
language in space t(n) is defined in the obvious way.

Some complexity classes relevant to our discussion are:

• P: the class of languages decidable in O(p(n)) time for some p ∈ Z[x].

• NP: languages verifiable in O(p(n)) steps for some p ∈ Z[x].

• PSPACE: languages decidable in space O(p(n)) for some p ∈ Z[x].

• EXP: languages decidable in O(2p(n)) time for some p ∈ Z[x].

• NEXP: languages verifiable in O(2p(n)) time for some p ∈ Z[x].

• EXPSPACE: languages decidable in space O(2p(n)) for some p ∈ Z[x].

LetC be one of the above classes. An algorithm A with oracle access to C has a powerful
extra instruction: there is a language L ∈ C such that A can call L(y) in one time step, on
any input y of its choosing. (Intuitively, A can efficiently “consult the oracle” in class C for
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answers.) This is an interesting notion when C is a hard complexity class, say in NP or in
PSPACE, and L is chosen to be a hard language in C.

Circuit complexity A function f : {0, 1}n → {0, 1} is called Boolean. We let x1, . . . , xn

denote the n variables to a Boolean function f . Circuit complexity is chiefly concerned with
the difficulty of building up Boolean functions out of “simpler” functions, such as those of
the form g : {0, 1}2 → {0, 1}. Examples of interesting Boolean functions include:

• ORk(x1, . . . , xk), ANDk(x1, . . . , xk), with their usual logical meanings,

• MODmk(x1, . . . , xk) for a fixed integer m > 1, which outputs 1 if and only if
∑

i xi

is divisible by m.

• MAJk(x1, . . . , xk) = 1 if and only if
∑

i xi ≥ 2k/23.
A basis set B is a set of Boolean functions. Two popular choices for B are B2, the set of

all functions g : {0, 1}2 → {0, 1}, and U2, the set B2 without MOD2 and the negation of
MOD2. A Boolean circuit of size s with n inputs x1, . . . , xn over basis B is a sequence of
n + s functions C = (f1, . . . , fn+s), with fi : {0, 1}n → {0, 1} for all i, such that:

• for all i = 1, . . . , n, fi(x1, . . . , xn) = xi,

• for all j = n + 1, . . . , n + s, there is a function g : {0, 1}k → {0, 1} from B and
indices i1, . . . , ik < j such that

fj(x1, . . . , xn) = g(fi1(x1, . . . , xn), . . . , fik(x1, . . . , xn)).

The fi are the gates of the circuit; f1, . . . , fn are the input gates, fn+1, . . . , fn+s−1 are the
internal gates, and fn+s is the output gate. The circuit C can naturally be thought of as a
function as well: on an input string x = (x1, . . . , xn) ∈ {0, 1}n, C(x) denotes fn+s(x).

Thinking of the connections between the gates as a directed acyclic graph in the nat-
ural way, with the input gates as n source nodes 1, . . . , n, and the jth gate with indices
i1, . . . , ik < j as a node j with incoming arcs from nodes i1, . . . , ik, the depth of C is the
longest path from an input gate to the output gate. As a convention, gates with fan-in 1 are
not counted in the depth measure. That is, gates of the form g(x) = xi or g(x) = ¬xi are
not counted towards the length of a path from input to output.

Given a basis set B and f : {0, 1}n → {0, 1}, what is the minimal size s of a Boolean
circuit over B with output gate fn+s = f? This quantity is the B-circuit complexity of f ,
and is denoted by CB(f). The minimal depth of a circuit computing f is also of interest for
parallel computing, and is denoted by DB(f).

3. Circuits for algorithms

The circuit model is excellent for understanding the difficulty and efficiency of computing
finite functions. For every f : {0, 1}n → {0, 1} and basis set, the circuit complexity of f is
a fixed integer which could be high or low, relative to n.

Boolean circuits should be contrasted with the typical uniform algorithm models used in
computability and complexity theory, based on finite objects such as Turing machines. In
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that setting, one is presented with functions (languages) defined over infinitely many strings,
i.e., of the form

L : {0, 1}� → {0, 1}, (3.1)

and a primary goal is to find a fixed program or machine M such that, for every input
x ∈ {0, 1}�, running M on input x always produces the output L(x) in some finite (or
efficient) number of steps. This sort of computational model can trivially compute all finite
functions (outputting 1 on only finitely many inputs) in constant time, by hard-coding the
answers to each of the finitely many inputs in the program’s code.

There is a logical way to extend the Boolean circuit model to also compute functions of
type (3.1): we simply provide infinitely many circuits.

Definition 3.1. Let s : N → N, d : N → N, and L : {0, 1}� → {0, 1}. L has size-s(n)
depth-d(n) circuits if there is an infinite family {Cn | n ∈ N} of Boolean circuits over B2

such that, for every n, Cn has n inputs, size at most s(n), depth at most d(n), and for all
x ∈ {0, 1}n, Cn(x) = L(x).

This is an infinite (so-called non-uniform) computational model: for each input length n,
there is a different “program” Cn for computing the 2n inputs of that length, and the size of
this program can grow with n.

Note that every language L has circuits of size O(n2n), following the observation that
every f : {0, 1}n → {0, 1} is specified by a 2n-bit vector, called the truth table of f .
This construction can be improved to 2n/n + o(2n/n) size [55, 71], and a simple counting
argument shows that this improved size bound is tight for general functions. The class of
functions of type (3.1) computable with “feasibly-sized” circuits is often called P/poly:

Definition 3.2. Let s : N → N and L : {0, 1}� → {0, 1}. Define SIZE(s(n)) to be the class
of functions L such that L has size-s(n) circuits, and P/poly to be the class of functions L
such that there is a k ≥ 1 satisfying L ∈ SIZE(nk + k).

Studying P/poly requires us to contemplate explicit trade-offs between the sizes of pro-
grams for computing functions and the sizes of inputs to those programs. Proving that a
language is not in P/poly is a very strong result, implying that even finite segments of the
language require “large” computations, relative to the sizes of inputs in the segment. From
such results one can, in principle, derive concrete numerical statements about the limits of
solving a problem. A proof that L /∈ P/poly could potentially be used to establish that
solving L on 1000-bit inputs requires 10100 size computations. This would be a true claim
concerning the intractability of L in the known physical universe.3

Immediately one wonders how the two computational models of algorithms and circuits
relate. The basic Circuits for Algorithms question is:

What “normal” algorithms (efficient or not) can be simulated in P/poly?

More precisely, take a complexity class C defined with respect to the usual uniform
algorithm model (P, NP, PSPACE, EXP, NEXP, and so on). Which of these classes are
contained in P/poly? For example, if EXP were contained in P/poly, then all uniform

3In fact, statements of this form have been extracted from circuit complexity lower bounds. See Stockmeyer-
Meyer [74].
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algorithms running in exponential time can be simulated by polynomial-size computations
in the non-uniform circuit model. It is believed that in general, circuit families cannot really
solve NP-hard problems significantly more efficiently than algorithms can, and that NP �⊂
P/poly. Complexity theory is very far from proving this; for one, it would imply P �= NP.

To gain a little insight into the difficulty, we may first ask if P/poly is contained in any of
the above classes. The answer to that question is no. Let {M1,M2,M3, . . .} be a computable
enumeration of Turing machines. Consider the function L(x) defined to output 1 if and only
if M|x| halts on 1|x|. For every n, either L outputs 1 on all n-bit strings, or L outputs 0 on all
such strings. It is easy to infer from this that L ∈ P/poly. However, L is also undecidable,
as there is an easy reduction from the Halting Problem to L. The class P/poly, defined in
terms of an infinite computational model, has unexpected power.

In general, the tools of computability theory are essentially powerless for understanding
P/poly, and complexity theory has not yet discovered enough new tools. Indeed, this pro-
vides another reason to study circuit complexity: we’re forced to develop new lower bound
proof methods that go beyond old methods like diagonalization, which is known not to be
sufficient by itself due to the Relativization barrier [9]. These new methods may be useful
in the long run for resolving other problems such as P vs NP. While nontrivial results are
known (which we now survey), they are meager in comparison to what is conjectured.

3.1. Classes with efficient circuits. It is relatively easy to see thatP ⊂ P/poly: polynomial-
time algorithms can be “unrolled” for polynomially many steps, and simulated step-by-step
using polynomial-size circuits. Furthermore, randomized polynomial-time algorithms have
polynomial-size circuit families, i.e., BPP ⊂ P/poly [2], by judiciously hard-coding good
random seeds in polynomial-size circuits.

Besides what we have already sketched, there are few other nontrivial results known.
Kolmogorov made an intriguing conjecture:

Conjecture 3.3 (A. N. Kolmogorov, according to Levin [50]). For every L ∈ P, there is a k
such that L has kn size circuits.4

The conjecture would be surprising, if true. For languages in P requiring n100100 time,
it appears unlikely that the complexity of such problems would magically shrink to O(n)
size, merely because a different circuit can be designed for each input length. Kolmogorov’s
conjecture implies P �= NP [50].

While it is generally believed that Conjecture 3.3 isn’t true, a resolution looks very diffi-
cult. To see why, we sketch here the lack of progress on circuit lower bounds for languages
in P. For a language L : {0, 1}� → {0, 1}, define Ln : {0, 1}n → {0, 1} to be the n-bit
restriction of L: Ln agrees with L on all x ∈ {0, 1}n. The best known circuit lower bounds
for functions in P are only small linear bounds:

Theorem 3.4 ([13]). There is an L ∈ P with CB2
(Ln) ≥ 3n − o(n) for all n.

Theorem 3.5 ([38, 49]). There is an L ∈ P with CU2
(Ln) ≥ 5n − o(n) for all n.

Hence it is possible that every L ∈ P has circuits of size 5.1n. Even if the L is al-
lowed to be in NP, no better circuit lower bounds are known. It is open whether every

4Apparently the conjecture was based on the affirmative answer by Kolmogorov and Arnol’d of Hilbert’s 13th
problem [7, 47], which asks if every continuous function on three variables can be expressed as a composition of
finitely many continuous functions on two variables.
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L ∈ TIME[2O(n)]NP (functions in 2O(n) time with access to an NP oracle) has 5.1n size
circuits. In Section 5 we will see a possible approach to this question.

It was recently shown that, if Kolmogorov’s conjecture is true, then such O(n)-size cir-
cuits must be intractable to construct algorithmically [67].5

3.2. Classes without efficient circuits. Let us now survey which functions are known to
not be in P/poly.

Ehrenfeucht [22] studied the decision problem for sentences in the first order theory of N
with addition, multiplication, and exponentiation, where all quantified variables are bounded
by constants. (The problem is clearly decidable since all variables are bounded.) He showed
that this problem requires (1 + δ)n-size circuits for some δ > 0, assuming a reasonable
encoding of sentences as binary strings. Meyer (1972, cf. [74]) and Sholomov [72] proved
that the same problem is decidable by a Turing machine using exponential (2O(n)) space—in
complexity notation, EXPSPACE �⊂ SIZE((1+δ)n). This result can be scaled down to show
the same circuit size lower bound for a language in Σ3EXP.6

Kannan [42] proved that NEXPNP �⊂ P/poly. In fact his proof shows that NEXPNP �⊂
SIZE(f(n)), for every f : N → N satisfying f(f(n)) ≤ 2n (these are the half-exponential
functions). It is open whether NEXPNP ⊂ SIZE(2εn) for all ε > 0.

The P/poly lower bound of Kannan has been mildly improved over the years, to the
presumably smaller (but still gigantic) complexity class MAEXP [15]. However, it is open
whether NEXP (or even EXPNP) is contained in P/poly. It looks impossible that all prob-
lems verifiable in exponential time could be computed using only polynomial-size circuits,
but the infinite nature of the circuit model has confounded all proof attempts. Section 5
outlines a new approach to this problem.

3.3. Restricted circuits. There are several natural ways to restrict the circuit model beyond
just circuit size, and still allow for complex circuit computations. In particular, restricting
the depth leads to an array of possibilities.

Let A be the basis of unbounded fan-in AND and OR gates with NOT, i.e.,

A = {NOT} ∪
⋃
n∈N

{ORn,ANDn}.

For an integerm ≥ 2, letMm be the basis of unbounded fan-in MODm, AND, and OR gates
with NOT:

Mm = {NOT} ∪
⋃
n∈N

{ORn,ANDn,MODmn}.

Let T be the basis of unbounded fan-in MAJ gates with NOT:

T = {NOT} ∪
⋃
n∈N

{MAJn}.

The following complexity classes are all subclasses of P/poly that have been widely studied.

5More formally, there is a language L computable in nc time for some c ≥ 1, such that for every d ≥ 1 and
every algorithm A running in nd time, there are infinitely many n such that A(1n) does not output an O(n) size
circuit Cn computing L on n-bit inputs.

6Σ3EXP = NEXPNPNP
is nondeterministic exponential time with oracle access to NPNP (and NPNP equals

nondeterministic polynomial time with oracle access to NP). This class is contained in EXPSPACE, and the
containment is probably proper.
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Let k ≥ 0 be an integer.

• NCk: Languages computable with polynomial size, O(logk n) depth circuits over the
basis U2.7

• ACk: Languages computable with a polynomial size and O(logk n) depth circuit fam-
ily {Cn} over A. That is, there is a fixed integer d ≥ 1 such that every Cn has depth
d logk n.8

• ACk[m]: Languages computable with polynomial size, O(logk n) depth circuits over
Mm.

• ACCk: The union over all m ≥ 2 of ACk[m].9

• TCk: Languages computable with polynomial size, O(logk n) depth circuits over the
basis T .10

A thorough survey of these classes cannot be provided here; instead, let us focus attention
on the most relevant aspects for the present story. The most well-studied of these classes are
AC0, ACC0, TC0, and NC1, and it is known that

AC0 � AC0[p] � ACC0 ⊆ TC0 ⊆ NC1 ⊆ P/poly,

when p is a prime power.
NC1 is well-motivated in several ways: for instance, it is also the class of languages

computable with infinite families of polynomial-size Boolean formulas, or circuits where all
internal gates have outdegree one. For formulas, interesting lower bounds are known: the
best known formula size lower bound for a function in P is n3−o(1) over U2, by Håstad [29].
TC0 is well-motivated from the study of neural networks: the MAJ function is a primitive
model of a neuron, and the constant depth criterion reflects the massive parallelism of the
human brain. Less primitive models of the neuron, such as linear threshold functions, end
up defining the same class TC0. (A linear threshold function is a Boolean function f de-
fined by a linear form

∑n
i=1 wixi for some wi ∈ Z, and a threshold value t ∈ Z. For all

(x1, . . . , xn) ∈ {0, 1}n, f(x1, . . . , xn) = 1 if and only if
∑

i wixi ≥ t.)
The MODm operations may look strange, but they arose naturally out of a specific pro-

gram to develop circuit complexity in a “bottom up” way, starting with very restricted cir-
cuits and a hope of gradually relaxing the restrictions over time. First, AC0 was studied as a
“maximally parallel” but still non-trivial class, and it was shown that MOD2 �∈ AC0 [3, 26].
This made it reasonable to ask what is computable when the MOD2 function is provided
among the basis functions in AC0, leading to the definition of AC0[2]. Then it was proved
that for distinct primes p and q, MODq �∈ AC0[q] [65, 73], hence MOD3 �∈ AC0[2]. One
then wonders what is computable when MOD3 and MOD2 are both allowed in the basis.
It is not hard to see that including MOD6 in the basis functions is equivalent to including
MOD3 and MOD2. Attention turned to AC0[6]. (There were many other separate threads of
research, such as lower bounds on fixed-depth versions of TC0 [28], which space prevents
us from covering here.)

7The acronym NC stands for “Nick’s Class,” named after Nick Pippenger.
8AC stands for “Alternating Circuits,” alternating between AND and OR. As a reminder, NOT gates are not

counted in the depth bounds of AC, ACC, and TC circuits.
9ACC stands for “Alternating Circuits with Counting.”
10TC stands for “Threshold Circuits.”
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At this point, the trail was lost. It is still open whether every language in P/poly (and
in EXP) has depth-three circuit families over M6. It has been shown only recently that
NEXP is not contained in ACC0, via a generic connection between algorithms-for-circuits
and circuits-for-algorithms [80, 82] (see Section 5). Yet it is open whether NEXP is con-
tained in TC0, even for TC0 circuits of depth three.

4. Algorithms For circuits

In the most common form of circuit analysis problem, one takes a circuit as input, and
decides a property of the function computed by the circuit. Let a property P be a function
from the set of all Boolean functions {f : {0, 1}n → {0, 1} | n ≥ 0} to the set {0, 1}.

Generic Circuit Analysis
Input: A logical circuit C
Output: A property P (f) of the function f computed by C

The canonical example of such a problem is the Circuit Satisfiability problem (a.k.a.
Circuit-SAT), which we shall survey in detail.

Circuit-SAT
Input: A logical circuit C
Output: Does the function f computed by C output 1 on some input?

This is basically equivalent to checking ifC implements a trivial function that is constant
on all inputs—a function of minimum circuit complexity. Hence the Circuit-SAT problem
may viewed as providing nontrivial insight into the circuit complexity of the function imple-
mented by a given circuit.

As Circuit-SAT is NP-complete, it is unlikely that there is an polynomial-time algorithm
for it. An algorithm which exhaustively searches over all possible inputs to C requires
Ω(2n · |C|) time steps, where n is the number of inputs to C, and |C| is the size of the
circuit. Is there a slightly faster algorithm, running in (for example) 1.99n · |C|2 time?
Presently, there is no known algorithm for solving the problem on generic circuits of size
s and n inputs that is asymptotically faster than the time cost of exhaustive search. Fine-
grained questions of this variety are basic to two emerging areas of research: parameterized
algorithms [21, 23] and exact algorithms [24]. For many NP-hard problems, asymptotically
faster algorithms over exhaustive search do exist, and researchers actively study the extent
to which exhaustive search can be beaten. (We shall see in Section 5 that even slightly faster
Circuit-SAT algorithms can sometimes have a major impact.)

4.1. Restrictions of Circuit-SAT. As seen in Section 3, many circuit restrictions have been
studied; here we survey the known algorithms for the satisfiability problem under these dif-
ferent restrictions. In this section, we think of AC0, ACC, TC0, NC1, and P/poly not as
classes of languages, but as classes of circuit families: collections of infinite circuit fami-
lies satisfying the appropriate restrictions. For each class C, a satisfiability problem can be
defined:
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C-SAT
Input: A circuit C from a family in class C
Output: Is there an input on which C evaluates to true?

Just as with general Circuit-SAT, the C-SAT problem remains NP-complete even for
AC0-SAT [18], yet for simple enough C, C-SAT algorithms running faster than exhaustive
search are known.

k-SAT. The k-SAT problem is to determine satisfiability of a very simple circuit type: an
AND of ORs of k literals (which can be input variables and/or their negations). This is
also called conjunctive normal form (CNF). Without loss of generality, the AND gate may
be assumed to have O(nk) fan-in, as there are only O(nk) possible ORs of k literals. The
k-SAT problem is also NP-complete [18] for all k ≥ 3. Nevertheless, 3-SAT can be solved
in 1.331n time using a deterministic algorithm [56], or 1.308n time [30] using a randomized
algorithm. These running times form the tail end of a long line of published algorithms, with
each subsequent algorithm decreasing the base of the exponent by a little bit. (See the survey
of Dantsin and Hirsch [19].)

How much faster can 3-SAT be solved? The Exponential Time Hypothesis of Impagli-
azzo and Paturi [34] asserts that this line of work must “converge” to some base of exponent
greater than 1:

Exponential Time Hypothesis (ETH): There is a δ > 0 such that 3-SAT on n
variables cannot be solved in O((1 + δ)n) time.

Impagliazzo, Paturi, and Zane [36] showed that ETH is not just a hypothesis about one
NP-complete problem: by using clever subexponential time reductions, ETH implies that
many other NP-hard problems require (1 + δ)n time to solve for some δ > 0. Many other
consequences of ETH have been found [51].

The k-SAT problem for arbitrary k has also been extensively studied. The best known
k-SAT algorithms all run in 2n−n/(ck) time, for a fixed constant c [19, 62, 63, 68]. So for
k > 3, the savings in running time over 2n slowly disappears as k increases. The Strong
Exponential Time Hypothesis [16, 34] asserts that this phenomenon is inherent in all SAT
algorithms:

Strong Exponential Time Hypothesis (SETH): For every δ < 1 there is a k such
that k-SAT on n variables cannot be solved in 2δn time.

For example, SETH implies that even 2.99999n is not enough time for solving k-SAT over
all constants k. (It is known that SETH implies ETH.)

AC0-SAT. There has been less work on this problem, but recent years have seen progress
[10, 16, 32]. The fastest known AC0-SAT algorithm is that of Impagliazzo, Matthews, and
Paturi [32], who give an O(2n−Ω(n/(log s)d−1)) time algorithm on circuits with n inputs, s
gates, and depth d.
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ACC0-SAT. The author [82] gave an algorithm running in O(2n−nε

) time for ACC0 cir-
cuits of 2n

ε

size, for some ε ∈ (0, 1) which is a function of the depth d of the given circuit
and the modulus m used in the MODm gates. This algorithm was recently extended to han-
dle the larger circuit class ACC0 ◦ THR, which is ACC0 augmented with an additional layer
of arbitrary linear threshold gates near the inputs [81].

TC0-SAT. For depth-two TC0 circuits, Impagliazzo, Paturi, and Schneider [35] showed
that satisfiability with n inputs and cn wires (i.e., edges) can be determined in 2δn time
for some δ < 1 that depends on c. No nontrivial algorithms are known for satisfiability of
depth-three TC0 (and circuit lower bounds aren’t known, either).

Formula-SAT. Santhanam [66] proved that satisfiability of cn size formulas over U2 can
be determined in 2δn, for some δ < 1 depending on c. His algorithm was extended to the
basis B2 by Seto and Tamaki [70], and to larger size formulas over U2 by Chen et al. [17].
Applying recent concentration results of Komargodski, Raz and Tal [48], the algorithm of
Chen et al. can solve SAT for formulas over U2 of size n3−o(1) in randomized 2n−nΩ(1)

time
with zero error. (Recall that the best known formula lower bound is n3−o(1) size as well;
these Formula-SAT algorithms exploit similar ideas as in the lower bound methods.)

4.2. Approximate circuit analysis. A different form of circuit analysis is that of additive
approximate counting; that is, approximating the fraction of satisfying assignments to a given
circuit:

Circuit Approximation Probability Problem (CAPP)
Input: A circuit C
Output: The quantity Prx[C(x) = 1], to within ± 1/10.

The constant 1/10 is somewhat arbitrary, and could be any constant in (0, 1/2) (usually
this constant is a parameter in the algorithm). As with C-SAT, the problem C-CAPP can be
defined for any circuit class C. Approximate counting has been extensively studied due to its
connections to derandomization. CAPP is easily computable with randomness by sampling
(for instance) 100 x’s uniformly at randomn, and evaluating C on them. We want to know
purely deterministic algorithms. The structure of this subsection will parallel that of the
coverage of C-SAT. We cannot hope to cover all work in this article, and can only provide
highlights.11

Several algorithms we shall mention give a stronger property than just approximately
counting. Prior to viewing the circuit, these algorithms efficiently construct a small col-
lection A of strings (assignments), such that for all circuits C of the appropriate size and
depth from a circuit class C, the fraction of satisfying assignments of C overA is a close ap-
proximation to the total fraction of satisfying assignments of C. Such algorithms are called
pseudorandom generators and are inherently tied to lower bounds. Indeed, lower bounds
against a circuit class C are generally a prerequisite for pseudorandom generators for C, be-
cause the efficient process which produces such a collection A cannot be modeled within
C.

11We should also note that many algorithms from the previous subsection not only solve C-SAT, but can exactly
count the number of satisfying assignments (or can be modified to do so), implying a C-CAPP algorithm.
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The case of depth-two AC0 (i.e., of an AND of ORs of literals, or an OR of AND of
literals) is especially interesting. Luby and Velickovic [53] showed that this case of CAPP is
computable in nexp(O(

√
log logn)) time. Gopalan, Meka, and Reingold [27] improved this to

about nO(log logn) time. It appears that here, a deterministic polynomial-time algorithm for
CAPP may be within reach.

Ajtai and Wigderson [4] showed that AC0-CAPP is solvable in 2n
ε

time for every ε > 0,
providing a pseudorandom generator. A pseudorandom generator of Nisan [59] yields an
AC0-CAPP algorithm running in nlogO(d) s time, where s is the size and d is the depth.
There has been much work since then; most recently, Trevisan and Xue [76] construct tighter
pseudorandom generators forAC0, showing thatAC0-CAPP can be computed in nÕ(logd−1 s)

time.
For the class ACC0, exact counting of satisfying assignments can be done in about the

same (best known) running time as computing satisfiability [81].
To our knowledge, no nontrivial CAPP algorithm for depth-two TC0 circuits is known.

However, here is a good place to mention two other threads of work relating to low-depth
circuits. The problem of approximately counting the number of zeroes in {0, 1}n of a low-
degree polynomial over a finite field is equivalent to computing CAPP on a MODp of AND
gates of fan-in d. This problem can be solved essentially optimally for fixed d, in determin-
istic time Od(n

d) [14, 52, 54, 78]. A polynomial threshold function of degree d (PTF) has
the form f : {−1, 1}n → {−1, 1} and is representable by the sign of a multivariate degree-d
polynomial over the integers. (Such functions can be construed as Boolean; the convention
is that−1, 1 correspond to true and false, respectively.) Approximating the number of zeroes
to a degree-d PTF can be modeled by solving CAPP on a linear threshold gate of MOD2
gates of fan-in d. It is known that for every fixed d, approximate counting for degree-d PTFs
can be done in polynomial time [58].

For Boolean formulas, Impagliazzo, Meka, Zuckerman [33] give a pseudorandom gener-
ator yielding a 2s

1/3+o(1)

time algorithm for Formula-CAPP on size-s formulas over U2. For
formulas of size s over B2 and branching programs of size s, their generator can be used to
approximately count in 2s

1/2+o(1)

time.
No nontrivial results for CAPP are known for unrestricted Boolean circuits.

4.3. Truth table analysis. So far, we have only considered circuit analysis problems where
the input to be analyzed is a circuit. Another class of circuit analysis problems take a Boolean
function on n variables as input, specified as a 2n-bit string, and the goal is to compute some
property of “good” circuits which compute the function f .

Generic Truth Table Analysis
Input: A function f : {0, 1}n → {0, 1}
Output: Property P (f) of circuits computing f

A natural example is that of minimizing a circuit given its truth table:

Circuit-Min [40, 83]
Input: A function f : {0, 1}n → {0, 1} and k ∈ Z

+

Output: Is CB2(f) ≤ k?
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In other words, we want to decide if the circuit complexity of f is at most k. As with
Circuit-SAT and CAPP, we can also define the C-Min problem for restricted circuit classes
C. The problem is easily seen to be in NP. It is strongly believed that Circuit-Min is in-
tractable: if it were in P, then there would be no pseudorandom functions, contradicting
conventional wisdom in cryptography. Informally, a pseudorandom function is a function
f implementable with polynomial-size circuits that “behaves like” a random function, to all
efficient processes with input/output access to f . Since a random function g has high circuit
complexity with high probability, and f has low circuit complexity, an efficient algorithm for
Circuit-Min could be used to tell f and g apart with non-negligible success probability, after
querying them at nO(1) points. As a result, restricted versions of Circuit-Min such as NC1-
Min and TC0-Min are also intractable under cryptographic assumptions, as those classes are
believed to support such functions.12

Perhaps Circuit-Min is NP-hard. Proving that is a difficult open problem. To obtain a
polynomial-time reduction from (say) 3-SAT to Circuit-Min, unsatisfiable formulas have to
be efficiently mapped into functions without small circuits; however, recall that we do not
know explicit functions with high circuit complexity. Kabanets and Cai [40] show that if
the NP-hardness of Circuit-Min could be proved under a natural notion of reduction, then
long-open circuit lower bounds like EXP �⊂ P/poly would follow.

One version of Circuit-Min is known to be NP-complete: DNF-Min, the problem of
minimizing a DNF formula (an OR of ANDs of literals) given its truth table [5, 57]. (In-
tuitively, DNF-Min can be proved hard because strong lower bounds are known for com-
puting Boolean functions with DNFs.) However, one can efficiently find an approximately
minimum-sized DNF [5].

A newly-introduced and related analysis problem is that of compression:

Compression of C [17]
Input: A function f : {0, 1}n → {0, 1} computable with a circuit from C
Output: A (possibly unrestricted) circuit C computing f with size 5 2n/n

Chen et al. [17] show that the techniques used in existing circuit lower bound proofs can
be “mined” to obtain somewhat efficient compression algorithms for AC0, small Boolean
formulas, and small branching programs. They pose as an open problem whether ACC0
admits such a compression algorithm.

Learning circuits There is one more important form of circuit analysis that can be viewed
as restricted access to the truth table of a function: that of learning a function f : {0, 1}n →
{0, 1} which is initially hidden, but is known or assumed to be implementable in some
restricted circuit class C. In this survey we focus on the problem of exact learning of C with
membership and equivalence queries [6], where a learning algorithm does not see f in its
entirety, but has the ability to:

12Here is a good point to briefly mention a connection between Circuit-Min and complexity barriers. Razborov
and Rudich [64] showed that practically all known circuit lower bound proof techniques (i.e., proving there are no
efficient circuits-for-algorithms) yield weak efficient algorithms for Circuit-Min, weak enough to break any candi-
date pseudorandom function. Hence it’s likely that such “natural proofs” cannot prove even TC0 lower bounds.
In summary, every “natural proof” that there are no efficient circuits for some algorithms also yields an interesting
algorithm for efficient circuits!
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• query f on an arbitrary x ∈ {0, 1}n (a membership query), and

• pose a hypothesis circuit H on n bits, asking if H and f compute the same function
(an equivalence query). If H �= f , the algorithm is provided with a counterexample
point x on which H(x) �= f(x).

Pseudorandom functions, mentioned earlier, naturally connect with learning. A pseudo-
random function has small circuits yet “looks like a random function” when it is queried a
small number of times—this kind of function is naturally difficult to learn. Hence learning of
Boolean functions computable in TC0 and NC1 is believed to be intractable. Other examples
can be found in the references [44, 77].

5. Connections

In the Circuits for Algorithms space, one designs simple circuits to simulate complex al-
gorithms, or proves that no simple circuits exist for this task. In Algorithms for Circuits,
the goal is to design faster circuit-analysis algorithms. It is reasonable to hypothesize that
these tasks may inform each other. A provably nontrivial algorithm for analyzing all circuits
from a class should exhibit, at its core, nontrivial understanding about the limitations of that
circuit class. Conversely, if a simple function cannot be computed by small circuits, then
algorithms may be able to use this function to analyze small circuits faster than exhaustive
search.

For restricted classes of circuits, one can sometimes adapt known techniques for prov-
ing lower bounds to derive faster SAT algorithms (or CAPP algorithms) for those circuits.
For instance, the progress on Formula-SAT algorithms and on pseudorandom generators for
Boolean formulas, both mentioned in Section 4, came out of tighter analyses of the random
restriction method originally used for proving formula lower bounds [29, 75].

In the following, we restrict attention to more generic connections (i.e., formal implica-
tions) between efficient circuit-analysis algorithms and circuit lower bounds.

5.1. Circuit lower bounds and derandomization/CAPP. Perhaps the earliest explicit study
of how algorithms and lower bounds connect can be found in the formal theory of cryp-
tographic pseudorandomness, initiated by Blum and Micali [12] and Yao [84]. The exis-
tence of cryptographic pseudorandom generators were shown to imply subexponential time
deterministic simulations of randomized polynomial time algorithms. Nisan and Wigder-
son [60] defined a relaxed notion of pseudorandom generator explicitly for the purposes of
derandomizing randomized algorithms (instead of for cryptography) and proved connections
between circuit lower bounds and the existence of pseudorandom generators. Subsequent
work [8, 31, 37, 46] improved these connections. These papers give an effective equivalence
between (for example) functions in 2O(n) time requiring “high” circuit complexity, and the
existence of pseudorandom generators computable in 2O(n) time that are effective against
“low complexity” circuits.

For an example, Babai et al. [8] showed that EXP �⊂ P/poly implies that randomized
polynomial-time algorithms can be simulated deterministically in subexponential time, on
infinitely many input lengths. Formally speaking:

Theorem 5.1 ([8]). EXP �⊂ P/poly implies BPP ⊆ ioSUBEXP.
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This connection was sharpened by Impagliazzo and Wigderson:

Theorem 5.2 ([37]). If there is a δ > 0 and a function computable in 2O(n) time requiring
circuits of size at least (1 + δ)n for almost all input lengths n, then P = BPP.

That is, from exponential-size lower bounds, one can simulate every randomized polyno-
mial-time algorithm in deterministic polynomial time. Impagliazzo, Kabanets, and Wigder-
son [31] showed that even a seemingly weak lower bound like NEXP �⊂ P/poly would
imply a derandomization result: namely, there is a simulation of Merlin-Arthur games (a
probabilistic version of NP) computable in nondeterministic subexponential time. In the op-
posite direction, they showed how a subexponential time algorithm for CAPP implies lower
bounds:

Theorem 5.3 ([31]). If CAPP can be computed in 2n
o(1)

time for all circuits of size n, then
NEXP �⊂ P/poly.

Recall the best known algorithm for CAPP is exhaustive search, taking Ω(2n) time;
an improvement to 2n

ε

for every ε > 0 would be an incredible achievement. However,
the hypothesis of Theorem 5.3 can be weakened significantly: essentially any nontrivial
improvement over 2n time for CAPP implies the lower bound.

Theorem 5.4 ([80]). Suppose for every k, CAPP on circuits of size nk and n inputs can be
computed in O(2n/nk) time. Then NEXP �⊂ P/poly.

Furthermore, computing CAPP for a restricted circuit class C faster than exhaustive
search would imply that NEXP �⊂ C [67, 80]. Theorem 5.4 requires that C satisfy certain clo-
sure properties (all classes covered in this survey satisfy them). Ben-Sasson and Viola [11]
have recently sharpened the connection between CAPP algorithms and circuit lower bounds,
by carefully modifying a known construction of probabilistically checkable proofs.

5.2. Circuit lower bounds from SAT algorithms. We now survey the impact of Circuit-
SAT algorithms on the topic of Circuits for Algorithms. First, if we have “perfect” circuit
analysis, i.e., Circuit-SAT is solvable in polynomial time, then there is a function in EXP that
does not have small circuits. This result is quite old in complexity-theory years:

Theorem 5.5 (Meyer [43]). If P = NP then EXP �⊂ P/poly.

This is an interesting implication, but it may be of limited utility since we do not be-
lieve the hypothesis. Nevertheless, Theorem 5.5 is a good starting point for thinking about
how circuit analysis can relate to circuit lower bounds. A proof can be quickly sketched:
assuming P = NP, we obtain many other equalities between complexity classes, including
NPNPNP

= P and Σ3EXP = NEXPNPNP

= EXP. As stated in Section 3, Σ3EXP contains a
language requiring circuits of maximum complexity (by directly “diagonalizing” against all
circuits up to the maximum size). Therefore EXP now contains such a language as well.

This simple argument shows how a feasibility hypothesis like P = NP implies a reduc-
tion in the algorithmic complexity of hard functions. It is tantalizing to wonder if a lower
bound could proved by contradiction, in this way: from a feasibility hypothesis, deduce
that the complexity of another provably hard function reduces so drastically that it becomes
contradictorily easy. Sure enough, recent progress by the author on ACC0 lower bounds
(described below) takes this approach.
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Studying the proof more carefully, Theorem 5.5 can be improved in a few ways. Con-
sidering the contrapositive of the proof sketch, we find that if every function in 2O(n) time
has less than the maximum possible circuit complexity (1 + o(1))2n/n, then P �= NP. In
other words, if non-uniform circuits can gain even a small advantage over exponential-time
algorithms in simulation, then P �= NP would follow. Another improvement of Theorem 5.5
comes from observing we do not exactly need polynomial time Circuit-SAT algorithms:
weaker guarantees such as n(logn)k time would suffice to conclude EXP �⊂ P/poly. Assum-
ing ETH, this sort of running time is still beyond what is expected.

Combining these results with our earlier remarks on derandomization, we see that either
EXP doesn’t have large circuits and hence P �= NP, or EXP requires large circuits and every
randomized algorithm would have an interesting deterministic simulation, by Theorem 5.2.
No matter how EXP vs P/poly is resolved, the consequences will be very interesting.

Modern times. Theorem 5.5 and its offshoots only work for Circuit-SAT algorithms run-
ning in subexponential time. An indication that techniques for weak SAT algorithms may
still be useful for circuit lower bounds appears in the work of Paturi, Pudlak, and Zane [63].
They gave a structure lemma on k-SAT instances, and applied it to prove not only that k-SAT
has an 2n−n/k time algorithm, but also lower bounds for depth-three AC0 circuits.

In recent years, the author showed that very weak improvements over exhaustive search
for C-SAT would imply circuit lower bounds for NEXP:

Theorem 5.6 ([80, 82]). There is a c > 0 such that, if C-SAT can be solved on circuits with
n inputs and nk size in O(2n/nc) time for every k, then NEXP �⊂ C.

While the conclusion is weaker than Theorem 5.5, the hypothesis (for all classes C we
have considered) is extremely weak compared to P = NP; indeed, it even looks plausible.
The above theorem was combined with the ACC0-SAT algorithm mentioned in Section 4.1
to conclude:

Theorem 5.7 ([82]). NEXP �⊂ ACC0.

Since Theorem 5.7 was proved, it has been concretely extended twice. The first extension
slightly lowers the complexity of NEXP, down to complexity classes such as NEXP/1 ∩
coNEXP/1 [79]. (In fact a generic connection is proved between C-SAT algorithms and C
circuit lower bounds for NEXP/1∩coNEXP/1, with a slightly stronger hypothesis: we have
to assume SAT algorithms for nlogk n size circuits.) The second extension strengthens ACC0
up to the class ACC0 ◦ THR, or ACC0 circuits augmented with a layer of linear threshold
gates near the inputs [81].

Theorem 5.6 holds for all circuit classes C of Section 2, but one may need (for example)
a SAT algorithm for 2d-depth circuits to obtain a d-depth circuit lower bound. The project of
tightening parameters to make C-SAT algorithms directly correspond to the same C circuit
lower bounds has seen much progress [11, 39, 61, 67]. Now (for example) it is known that
SAT algorithms for depth d + 1 or d + 2 (depending on the gate basis) imply depth-d lower
bounds.

Perhaps Circuit-SAT looks too daunting to improve upon. Are there other connections
between SAT algorithms and circuit lower bounds? Yes. From faster 3-SAT algorithms,
superlinear size lower bounds follow:
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Theorem 5.8 ([80]). Suppose the Exponential Time Hypothesis (ETH) is false: that is, 3-
SAT is in 2εn time for every ε > 0. Then there is a language L ∈ TIME[2O(n)]NP such that,
for every c ≥ 1, L does not have cn-size circuits.

ETH was discussed in Section 4.1, and the conclusion of Theorem 5.8 was discussed
as open in Section 3.1. Refuting the Strong Exponential Time Hypothesis (SETH) from
Section 4.1 also implies (weaker) circuit lower bounds:

Theorem 5.9 ([39]). Suppose SETH is false: that is, there is a δ < 1 such that k-SAT is in
O(2δn) time for all k. Then there is a language L ∈ TIME[2O(n)]NP such that, for every
c ≥ 1, L does not have cn-size Valiant-series-parallel circuits.

Intuition for the connections. One intuition is that a faster circuit-analysis algorithm (say,
for C-SAT) demonstrates a specific weakness in representing computations with circuits from
C. A circuit family from C is not like a collection of black boxes which can easily hide satis-
fying inputs. (If we could only query the circuit as a black box, viewing only its input/output
behavior, we could not solve C-SAT in o(2n) time.) Another intuition is that the existence of
a faster circuit-analysis algorithm for C demonstrates a strength of algorithms that run in less-
than-2n time: they can analyze nontrivial properties of a given circuit. Hence from assuming
a less-than-2n time C-SAT algorithm, we should be capable of inferring that “less-than-2n

time algorithms are strong” and “C-circuits are weak.”
These observations hint at a proof that, assuming a C-SAT algorithm, there is a language

in NEXP without polynomial-size C circuits. The actual proof does not resemble these hints;
it is a proof by contradiction. We assert that both a faster algorithm for analyzing C exists,
and thatNEXP ⊂ C. Together these two assumptions imply a too-good-to-be-true algorithm:
a way to simulate every language solvable in nondeterministic O(2n) time with only o(2n)
time. This simulation contradicts the nondeterministic time hierarchy theorem [85], which
implies that there are problems solvable in 2n time nondeterministically which cannot be
solved in O(2n/n) time nondeterministically. Informally, the faster nondeterministic simu-
lation works by using NEXP ⊂ C to nondeterministically guess C circuits that help perform
an arbitrary 2O(n) time computation, and using the faster circuit-analysis algorithm to verify
that these C circuits do the job correctly.

5.3. Other connections.

Circuit lower bounds from learning. Intuitively, an efficient algorithm for learning cir-
cuits would have to harness some deep properties about the circuit class under consideration;
perhaps these properties would also be enough to prove circuit lower bounds. Fortnow and
Klivans proved a theorem modeling this intuition. Let C be a restricted circuit class, such
as those defined in Section 3.3. In the following, say that C is exactly learnable if there is
an algorithm for learning every hidden function from C using membership and equivalence
queries (cf. Section 4.3).

Theorem 5.10 ([25]). If all n-bit functions from C are exactly learnable in deterministic
2n

o(1)

time, then EXPNP �⊂ C.

Theorem 5.11 ([25]). If all n-bit functions from C are exactly learnable in randomized
polynomial time, then randomized exponential time (BPEXP) is not contained in C.
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Recently, these connections between learning circuits and circuit lower bounds have been
somewhat strengthened:

Theorem 5.12 ([45]). If C is exactly learnable in 2n
o(1)

time, then there is a language in
TIME[2n

o(1)

] that is not in C.

Theorem 5.13 ([45]). If C is exactly learnable in polynomial time, then there is a language
in TIME[nω(1)] that is not in C.

These proofs use a clever diagonalization argument, where the learning algorithm is used
to construct an efficiently computable function f that plays the role of a contrarian teacher
for the learning algorithm. When the learner asks a membership query x, f tells the learner
true if f has not already committed to a value for x (otherwise, f reports f(x)). When an
equivalence query is asked, f tells the learner “not equivalent” and outputs the first string y
for which it has not already committed to an output value (thereby committing to a value for
y). As f is constructed to never be equivalent to any hypothesis proposed by the learning
algorithm, f cannot have circuits in C.

Equivalences between circuit analysis and circuit lower bounds. Earlier it was men-
tioned that there are rough equivalences between pseudorandom generators and circuit lower
bounds. Pseudorandom generators can be viewed as “circuit analysis” algorithms, in the
context of computing CAPP. Impagliazzo, Kabanets, and Wigderson [31] proved an explicit
equivalence:

Theorem 5.14 ([31]). NEXP �⊂ P/poly if and only if CAPP is in ioNTIME[2n
ε

]/nε for all
ε > 0.

Without going into the notation, this theorem states that NEXP circuit lower bounds are
equivalent to the existence of “non-trivial” subexponential time algorithms for CAPP. The
author recently proved a related equivalence between the NEXP �⊂ C problem (for various
circuit classes C) and circuit-analysis algorithms. Call an algorithm A non-trivial for C-Min
if

• A(f) runs in 2O(n) time on a given f : {0, 1}n → {0, 1}, and
• for all constants k and for infinitely many input lengths n, there is a f : {0, 1}n →
{0, 1} such that A(f) outputs 1, and for all f : {0, 1}n → {0, 1} computable with an
(nk + k)-size circuit from C, A(f) outputs 0.

That is, for infinitely many n, algorithm A outputs 1 on at least one Boolean function on
n bits, and 0 on all functions with small circuit complexity.

Theorem 5.15 ([79]). NEXP �⊂ C if and only if there is an algorithm A which is non-trivial
for C-Min.

Connections in an algebraic setting. In this survey, we considered Boolean functions and
circuits computing them. However, connections between circuit-analysis algorithms and
circuit lower bounds also hold in an algebraic framework, where Boolean functions are re-
placed by polynomials over a ring R, and Boolean circuits are replaced by algebraic circuits,
which defined analogously to Boolean circuits, but we allow side constants from the ring as
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extra inputs to an algebraic circuit, and the gates are either additions or multiplications over
the ring. Typically, R is taken to be a finite field, or Z. Each algebraic circuit C(x1, . . . , xn)
computes some polynomial p(x1, . . . , xn) over R.

The canonical circuit-analysis problem in this setting is:

Polynomial Identity Testing (PIT): Given an algebraic circuit C, does C compute
the identically zero polynomial?

Using subtraction, it is easy to see this problem is equivalent to determining if two alge-
braic circuits C and C ′ compute the same polynomial.

It’s natural to think of PIT as a type of satisfiability problem. However, PIT is probably
not NP-hard: the problem is easily solvable in randomized polynomial time by substituting
random elements (possibly over an extension field) [20, 69, 86]. A very interesting open
problem is to determine whether randomness is necessary for efficiently solving PIT. Ka-
banets and Impagliazzo [41] proved that an efficient deterministic algorithm for PIT would
imply algebraic circuit lower bounds: either NEXP �⊂ P/poly, or the permanent of a matrix
requires superpolynomial-size algebraic circuits.

6. Conclusion

This article has shown how a host of open problems in algorithms have direct bearing on
some of the central problems in complexity theory. It is quite likely that there exist deeper
interactions between Algorithms for Circuits and Circuits for Algorithms which await our
discovery. Hopefully, the reader has been persuaded to think a little more about how algo-
rithms and lower bounds relate to each other.
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Codes with local decoding procedures

Sergey Yekhanin

Abstract. Error correcting codes allow senders to add redundancy to messages, encoding bit strings
representing messages into longer bit strings called codewords, in a way that the message can still
be recovered even if a fraction of the codeword bits are corrupted. In certain settings however the
receiver might not be interested in recovering all the message, but rather seek to quickly recover just a
few coordinates of it. Codes that allow one to recover individual message coordinates extremely fast
(locally), from accessing just a small number of carefully chosen coordinates of a corrupted codeword
are said to admit a local decoding procedure. Such codes have recently played an important role in
several areas of theoretical computer science and have also been used in practice to provide reliability
in large distributed storage systems. We survey what is known about these codes.
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1. Introduction

The 60+ years of research in coding theory that started with the works of Shannon [24]
and Hamming [14] gave us nearly optimal ways to add redundancy to messages, encoding
bit strings representing messages into longer bit strings called codewords, in a way that the
message can still be recovered even if a certain fraction of the codeword bits are corrupted.

In certain scenarios however, the receiver of the corrupted message might not be inter-
ested in recovering all the message, but rather seek to reconstruct just a small portion of it.
For instance one can think of a setting where a large database is stored encoded with an error
correcting code and a user who is willing to access a single database record. When clas-
sical codes are employed the user would have no alternative but to decode all the database
(investing effort that is at least proportional to the database size) and then access the record.
This example calls for codes that admit local decoding procedures, i.e., allow one to reliably
recover individual message coordinates from accessing just a small number of coordinates of
a corrupted codeword. The goal of our survey is to review the state of the art in such codes.

In what follows we model corrupted coordinates as being erased rather then flipped. This
simplifies presentation and also allows us give a unified treatment of the few lines of work on
the subject. We assume that the decoder is aware of which coordinates are missing. Below
is a simple example of a code that admits a local decoding procedure.
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Hadamard code. The code encodes k-bit messages x to 2k-bit codewords C(x). It allows
any coordinate x(i) to be recovered by accessing just two coordinates of C(x) even after
almost a half of coordinates of C(x) are erased. In what follows, let [k] denote the set
{1, . . . , k}. Every coordinate of the Hadamard code corresponds to one (of 2k) subsets of
[k] and stores the XOR of the corresponding bits of the message x. Observe that for any set
S ⊆ [k], x(i) equals the XOR of the values stored at coordinates S and S : {i}. (Here, :
denotes the symmetric difference of sets such as {1, 4, 5} : {4} = {1, 5}, and {1, 4, 5} :
{2} = {1, 2, 4, 5}). It is not difficult to verify that if less than half of coordinates of C(x)
are erased; then for every i ∈ [k], there exists a set S ⊆ [k] such that both coordinates
corresponding to S and S : {i} are available, and thus x(i) can be recovered with two
reads.

Codes with local decoding procedures vary in terms of the number of erasures after
which local recovery can be guaranteed. The other two main parameters of interest are the
codeword length and the query complexity. The length of the code measures the amount
of redundancy that is introduced into the message by the encoder. The query complexity
counts the number of coordinates that need to be read from the corrupted codeword in order
to recover a single coordinate of the message. For instance, in the Hadamard code above,
local recovery is guaranteed after 2k−1 − 1 erasures, redundancy equals 2k − k, and query
complexity is 2.

In general one cannot optimize all three parameters discussed above simultaneously.
There are tradeoffs. In this survey we restrict our attention to two main families of codes
with local decoding procedures, namely, Locally Decodable Codes (LDCs) and Local Re-
construction Codes (LRCs). Locally decodable codes allow quick recovery of individual
message coordinates in a very aggressive scenario when a linearly growing number of code-
word coordinates might be missing. These codes play an important role in several areas of
theoretical computer science and tend to require either a large amount of redundancy or a
high query complexity. Local reconstruction codes, by contrast, only allow quick recovery
when just a single coordinate is unavailable. As such they are considerably more efficient in
terms of both codeword length and number of queries. Instances of these codes have been
used in practice to provide reliability in large distributed storage systems.

Outline of the paper. In Sections 2 through 4 we deal with locally decodable codes. Sec-
tion 2 provides a basic introduction to the area and discusses applications. Sections 3 and 4
cover the two main families of LDCs, namely multiplicity codes that are the most efficient
codes in the regime of high query complexity and matching vector codes that are the best
known codes in the regime of low query complexity. In Section 5 we review the state of the
art in local reconstruction codes.

2. Basics of locally decodable codes

As we discussed above LDCs are erasure correcting codes that allow extremely efficient
(sub-linear time) decoding of individual message coordinates even when a linearly growing
number of codeword coordinates are unavailable. Below is a formal definition.

Definition 2.1. Let q be a prime power, 1 ≤ r ≤ k ≤ N be integers, and δ > 0 be real.
Assume that for every i ∈ [k] there is a collection Di of r-subsets of [N ]. An (r, δ)-locally
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decodable code is a mapping C : Fk
q → F

N
q such that:

• For every message x ∈ F
k
q , for each i ∈ [k] and S ∈ Di the symbol x(i) can be

recovered from accessing r coordinates of C(x) that belong to S.

• For every set E ⊆ [N ] such that |E| ≤ δn, for every i ∈ [k] there exists a set S ∈ Di

such that E ∩ S = ∅.
A locally decodable code is called linear if C is a linear transformation over Fq. Almost

all codes considered in the survey are linear.
Not all parameters of locally decodable codes are considered equally important. In what

follows we will typically pay little attention to alphabet size q and fraction of erasures δ and
focus on the values of the codeword length N and the query complexity r when the message
length k grows to infinity. Ideally, one would like to have both N and r as small as possible.
One however can not minimize the length and the query complexity simultaneously. There
is a tradeoff. On one end of the spectrum we have classical error correcting codes that have
both query complexity and codeword length proportional to the message length. On the
other end we have the Hadamard code that has query complexity 2 and codeword length
exponential in the message length. Establishing the optimal trade-off between the length and
the query complexity is the major goal of research in the area of locally decodable codes.

2.1. Reed Muller codes. In this section we discuss the oldest and most basic family of
locally decodable codes. An LDC allows to quickly recover any coordinate of a message
by accessing only few coordinates of its corrupted encoding. A related property is that of
local correctability allowing to locally recover not only coordinates of the message but also
arbitrary coordinates of the encoding.

Definition 2.2. Let q be a prime power, 1 ≤ r ≤ k ≤ N be integers, and δ > 0 be real.
Assume that for every i ∈ [N ] there is a collection Di of r-subsets of [N ]. An (r, δ)-locally
correctable code is a subset C ⊆ F

N
q of size qk such that:

• For every codeword x ∈ C, for each i ∈ [N ] and S ∈ Di the symbol x(i) can be
recovered from accessing r coordinates of x that belong to S.

• For every set E ⊆ [N ] such that |E| ≤ δn, for every i ∈ [N ] there exists a set S ∈ Di

such that E ∩ S = ∅.
We often refer to the quantity logq |C| as the message length of a locally correctable

code C. It is not hard to show that every linear locally correctable code yields a linear locally
decodable code with the same parameters.

Reed Muller codes that we discuss below are locally correctable. In what follows a
D-evaluation of a function h defined over a domain D, is a vector of values of h at all
points of D. Also with a slight abuse of terminology we often refer to a dimension N of a
vector x ∈ F

N
q as its length. The key idea behind Reed Muller codes is that of polynomial

interpolation. Messages are encoded by complete evaluations of low degree multivariate
polynomials over a finite field. Local correctability is achieved through reliance on the rich
structure of short local dependencies between such evaluations at multiple points.

A Reed Muller code is specified by three integer parameters, namely, a prime power
(alphabet size) q, number of variables n, and a degree d. The q-ary code consists of Fn

q -
evaluations of all polynomials of total degree at most d in the ring Fq[z1, . . . , zn]. When
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viewed as an LDC such code encodes k =
(

n+d
d

)
-long messages over Fq to qn-long code-

words.
Below we present the simplest local corrector for Reed Muller codes. To recover the

value of a degree d polynomial F ∈ Fq[z1, . . . , zn] at a point w ∈ F
n
q it picks an affine line

through w and then relies on the local dependency between the values of F at any d + 2
points along the line. Let F∗q denote the multiplicative subgroup of the field Fq.

Theorem 2.3. Let n and d be positive integers. Let q be a prime power, δ > 0 be a real, and
d < (1− δ)q − 1 be an integer; then there exists a linear code of dimension k =

(
n+d
d

)
in

F
N
q , N = qn, that is (d + 1, δ)-locally correctable.

Proof. The code consists of Fn
q -evaluations of all polynomials of total degree at most d in the

ring Fq[z1, . . . , zn]. Consider the i-th coordinate, i ∈ [N ] corresponding to a point w ∈ F
n
q .

The family Di consists of all (d + 1)-tuples of points that can be obtained by picking a
nontrivial affine line

L = {w + λv | λ ∈ F
∗
q} (2.1)

throughw and fixing some d+1 points on it. The local correction procedure is quite natural.
The decoder reads the values of the polynomial F at d + 1 points of some undamaged set
S ∈ Di. Note that such a set always exists under the assumptions of the theorem. Assume
the set S comes from line (2.1). The decoder invokes univariate polynomial interpolation to
recover the degree d polynomial f which is the restriction of F to the line L, i.e., f(λ) =
F (w + λv). The decoder outputs f(0) = F (w).

The method behind Reed Muller codes is simple and general. It yields codes for all
possible values of query complexity r, i.e., one can set r to be an arbitrary function of
the message length k by specifying an appropriate relation between n and d and letting
these parameters grow to infinity. Increasing d relative to n yields shorter codes of larger
query complexity. Below we summarize asymptotic parameters of several families of locally
decodable codes based on Reed Muller codes.

r N

O(1) exp
(
k1/(r−1)

)
(log k)t, t > 1 k1+1/(t−1)+o(1)

O(k1/t log1−1/t k), t ≥ 1 tt+o(t) · k

2.2. Applications. Interestingly, the natural application of locally decodable codes to data
storage mentioned in Section 1 is neither the historically earliest nor the most important.
LDCs have a host of applications in other areas of theoretical computer science such as
complexity theory, data structures, and derandomization. However their most prominent
application is in cryptography to the design of Private Information Retrieval schemes (PIRs).
In what follows we briefly review this application.

Private information retrieval schemes are cryptographic protocols designed to safeguard
the privacy of database users. They allow clients to retrieve records from replicated public
databases while completely hiding the identity of the retrieved records from database owners.
In such protocols, users query each server holding the database. The protocol ensures that
each individual server (by observing only the query it receives) gets no information about
the identity of the items of user’s interest. Below we demonstrate a general procedure that
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obtains an r-server PIR scheme out of any r-query smooth LDC. A locally decodable code
is called smooth if for every i ∈ [k], the r-tuples inDi cover the universe [N ] uniformly, i.e.,
each j ∈ [N ] belongs to the same number of sets in Di. Almost all known constructions of
LDCs yield smooth codes.

Let C be a smooth LDC encoding k-bit messages to N -bit codewords. At the pre-
processing stage servers S1, . . . , Sr encode the k-bit database x with the code C. Next
the user U who is interested in obtaining the i-th bit of x, picks an r-tuple of queries
(que1, . . . , quer) ∈ Di uniformly at random. For every j ∈ [r], the user sends the query
quej to the server Sj . Each server Sj responds with a one bit answer C(x)quej , which is the
value of C(x) at coordinate quej . The user combines servers’ responses to obtain x(i).

It is straightforward to verify that the protocol above is private since by the smoothness
property for every j ∈ [r] the query quej is uniformly distributed over the set of codeword
coordinates. The total communication is given by

r(logN + 1).

Thus short codes of low query complexity yield communication efficient PIR schemes in-
volving a small number of servers. For example, instantiating the reduction above with
the best known 3-query LDCs yields 3-server private information retrieval schemes with
O
(
2
√
log k log log k

)
communication to access a k-bit database.

2.3. Notes. Formal definition of locally decodable codes was given in 2000 by Katz and
Trevisan [18], who cited Leonid Levin for inspiration. See also [25]. However codes that
meet this definition have been around for much longer. The first such family of codes,
namely, Reed Muller codes [21, 23], were introduced in 1950s, and their local decodability
properties have been exploited implicitly since then. Today there are few families of locally
decodable codes that surpass Reed Muller codes in terms of query complexity vs. codeword
length tradeoff. We are going to discuss two of them (namely, multiplicity codes [20] and
matching vector codes [9, 28]) in the following sections. For a detailed survey of the locally
decodable codes see [29]. Private Information Retrieval (PIR) schemes were introduced
in [4]. See [27] for a recent survey.

3. Multiplicty codes

When dealing with codes that have low redundancy it is convenient to utilize the notion of
code rate. For an (r, δ)-locally decodable code C : Fk

q → F
N
q , the rate k/N is simply the

ratio of the number of message symbols to the number of codeword symbols. Similarly, for
a (r, δ)-locally correctable code C ⊆ F

N
q , the rate is the ratio (logq |C|)/N. In applications

to data transmission and storage one is naturally interested in codes of high rate, i.e., rate
close to 1.

In this section we review multiplicity codes. These codes generalize Reed Muller codes
(Theorem 2.3) and improve upon them in the high rate regime. Observe that with Reed
Muller codes the rate can never be too high. Recall that these codes are specified by three
parameters: alphabet size q, total degree d, and the number of variables n. The rate is highest
when n = 2, d = (1− δ)q, and q grows to infinity. In this setting we have k =

(
d+2
2

)
and

N = q2, thus the rate is
(

d+2
2

)
/q2 ≈ 1

2 and query complexity r = O(
√

k).
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Note that with Reed Muller codes, one cannot increase the rate by simply allowing eval-
uations of higher degree polynomials, as if one allows the degree to exceed the field size, one
starts getting polynomials with colliding evaluations such as z and zq. Multiplicity codes,
however, use much higher degree polynomials and thus have significantly improved rates,
and avoid the pitfall mentioned above by evaluating polynomials together with their partial
derivatives.

In what follows we review the construction of multiplicity codes. We consider the sim-
plest example of these codes based on bivariate polynomials, which have improved rate
above 1

2 , and see how to locally correct them with essentially the same query complexity
O(

√
k). Finally, we mention how general multiplicity codes are defined and discuss some of

the ideas that go into locally correcting them. Our main result gives codes that simultane-
ously have rate approaching one, and allow for local correction with arbitrary polynomially-
small number of queries.

3.1. Bivariate multiplicity codes. Let q be a prime power, let δ > 0 and let integer d =
2(1− δ)q. The multiplicity code of order two evaluations of degree d bivariate polynomials
over Fq is the code defined as follows. As before, the coordinates are indexed by F

2
q (so

N = q2) and the codewords are indexed by bivariate polynomials of degree at most d over
Fq . However the alphabet now is F3

q . The codeword corresponding the polynomialF (x1, x2)
is the vector

C(F ) =

〈(
F (w),

∂F

∂x1
(w),

∂F

∂x2
(w)

)〉
w∈F2

q

∈ (F3
q

)q2
.

In words, the w coordinate consists of the evaluation of F and its formal partial derivatives
∂F
∂x1

and ∂F
∂x2

at w. Because two distinct polynomials of degree at most d can agree with
multiplicity two on at most d/2q-fraction of the points in F

2
q no two codewords defined

above collide. Since the alphabet size is now q3, the rate of the new code is

logq3 q(
d+2
2 )

q2
=

(
d+2
2

)
3q2

≈ 2

3
(1− δ)2.

Summarizing the differences between this multiplicity code with the Reed Muller code de-
scribed earlier:

• Instead of polynomials of degree (1− δ)q, we consider polynomials of degree double
of that.

• Instead of evaluating the polynomials, we take their order two evaluation.

This yields a code with the rate improved from below 1/2 to nearly 2/3. We now argue that
the new code is still locally correctable with O(

√
k) queries.

Local correction of multiplicity codes: Given the codeword corresponding to the poly-
nomial F (x1, x2) with some (say, δ/2) fraction of coordinates erased and given a point
w ∈ F

2
q , we want to recover the symbol at coordinate w, namely(

F (w),
∂F

∂x1
(w),

∂F

∂x2
(w)

)
. (3.1)
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Similarly to the case of Reed Muller codes, the algorithm picks a direction v ∈ F
2
q such that

less than a δ fraction of coordinates in the affine line

L = {w + λv | λ ∈ Fq}
are missing. Most directions are like this. Our intermediate goal is to recover the univariate
polynomial f(λ) = F (w + λv). The important observation here is that for every λ0 ∈ Fq ,
thew+λ0v coordinate ofC(F ) completely determines both the value and the first derivative
of the univariate polynomial f(λ) at the point λ0. Indeed,

f(λ0) = F (w + vλ0),

∂f

∂λ
(λ0) =

∂F

∂x1
(w + vλ0) · v(1) + ∂F

∂x2
(w + vλ0) · v(2),

where the last identity follows by the chain rule. Thus our knowledge ofC(F ) at (1−δ)q+1
locations on the line L gives us access to (1 − δ)q + 1 evaluations of the polynomial f(λ)
and its derivative ∂f

∂λ (λ0), where f(λ) is of degree ≤ 2(1 − δ)q. This is enough to recover
the polynomial f(λ). Evaluating f(λ) at λ = 0 gives us F (w). Evaluating the derivative
∂f
∂λ (λ) at λ = 0 gives us the directional derivative of F atw in the direction v (which equals
∂F
∂x1

(w) · v(1) + ∂F
∂x2

(w) · v(2)).
We have clearly progressed towards our goal of computingC(F )w given by formula (3.1),

but we are not yet there. The final observation is that if we pick another direction v′, that
is not collinear with v and repeat the above process to recover the directional derivative of
F at w in direction v′, then the two directional derivatives of F at w in directions v,v′

together suffice to recover ∂F
∂x1

(w) and ∂F
∂x2

(w), as desired. This algorithm makes less than
2q queries, which is O(

√
k).

3.2. General multiplicity codes. The basic example of a multiplicity code above already
achieves rate above 1/2. To get codes of rate approaching 1, one needs to modify the con-
struction by considering evaluations of all derivatives of F up to an even higher order. In
order to locally recover the higher-order derivatives of F at a point w, the decoding algo-
rithm picks many lines passing through w, recovers the restriction of F to those lines, and
combines all these recovered univariate polynomials in a certain way.

To reduce the query complexity to O(kε) for small ε, one needs to modify the above
example by considering multivariate polynomials in a larger number of variables n. The
local decoding algorithm for this case, in order to locally recover at a point w ∈ F

n
q , still

decodes by picking lines passing through w; the reduced query complexity occurs because
lines (with only q points) are now much smaller relative to a higher dimensional space Fn

q .
Increasing both the maximum order of derivatives taken and the number of variables

simultaneously yields multiplicity codes with rate close to one and arbitrarily low polynomial
query complexity.

Theorem 3.1. Let q be an arbitrary prime power. For every real ε, α > 0 there exists a
real δ > 0 such that for all sufficiently large message lengths k, there exists an Fq-linear
(O(kε), δ)-locally correctable code of rate 1− α.

3.3. Notes. Multiplicity codes were introduced in [20]. The construction builds on some
technical tools from [7]. Alternative constructions with similar parameters have been given
in [13, 15]. It is plausible that the query complexity of locally decodable codes of rate close
to one can be further reduced. The only available lower bound is Ω(log k) from [18].
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4. Matching vector codes

In this section we review locally decodable codes that arise from families of matching vec-
tors. Matching Vector (MV) codes are important as they exhibit dramatically better param-
eters than Reed Muller codes in the regime of low query complexity. Any construction of
such codes naturally falls into two parts: the design of a matching vector family, and the
actual code construction. Our focus is on the second part.

4.1. The framework. MV codes inherit some structure from Reed Muller codes. A match-
ing vector code consists of a linear subspace of polynomials in Fq[z1, . . . , zn], evaluated at
all points of Cn

m, where Cm is a certain multiplicative subgroup of F∗q . The decoding algo-
rithm is similar to local decoders for Reed Muller codes. It operates by picking a line in a
certain direction and decoding along it. The difference is that the monomials which are used
are not of low degree, they are chosen according to a matching family of vectors. Further,
the lines for decoding are multiplicative, a notion that we define shortly. In what follows let
Zm denote the ring of integers modulo an integer m. Also, let u · v denote the usual dot
product of vectors u and v.

Definition 4.1. Let S ⊆ Zm \ {0}. We say that families U = {u1, . . . ,uk} and V =
{v1, . . . ,vk} of vectors in Z

n
m form an S-matching family if the following two conditions

are satisfied:

• For all i ∈ [k], ui · vi = 0;

• For all i, j ∈ [k] such that i �= j, uj · vi ∈ S.

We now show how one can obtain a matching vector locally decodable code out of a
matching family. We start with some notation.

• We assume that q is a prime power, m divides q − 1, and denote the unique subgroup
of F∗q of order m by Cm;

• We fix some generator g of Cm;

• For w ∈ Z
n
m, we define gw ∈ C

n
m by

(
gw(1), . . . , gw(n)

)
;

• Forw,v ∈ Z
n
m we define the multiplicative line Mw,v throughw in direction v to be

the multi-set
Mw,v =

{
gw+λv | λ ∈ Zm

}
; (4.1)

• For u ∈ Z
n
m, we define the monomial

monu ∈ Fq[z1, . . . , zn]/(z
m
1 = 1, . . . , zmn = 1)

by
monu(z1, . . . , zn) =

∏

∈[n]

z
u(
)

 . (4.2)

Observe that for any w,u,v ∈ Z
n
m and λ ∈ Zm we have

monu
(
gw+λv

)
= gu·w

(
gλ
)u·v

. (4.3)
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This suggests that if we set y = gλ ∈ F
∗
q in formula (4.3); then what we get is a univariate

polynomial in y. Hence the Mw,v-evaluation of a monomial monu is a Cm-evaluation of a
univariate monomial

gu·wyu·v ∈ Fq[y]. (4.4)

This observation is the foundation of all decoding algorithms for MV codes.
We now specify the encoding procedure and the most basic decoding procedure. Let

U ,V be an S-matching family in Z
n
m, where |U| = |V| = k.

Encoding: We encode a message (x(1), . . . ,x(k)) ∈ F
k
q by the C

n
m-evaluation of the

polynomial

F (z1, . . . , zn) =

k∑
j=1

x(j) ·monuj (z1, . . . , zn). (4.5)

Notice that F = Fx is a function of the message x (we will omit the subscript and treat x as
fixed throughout this section).

Decoding: The input to the decoder is an C
n
m-evaluation of F with some δ fraction of

coordinates erased and an index i ∈ [k].

1. The decoder picks w ∈ Z
n
m such that none of the values of F at points of the the

multiplicative line Mw,vi are erased. If δ < 1
m such a w exists.

2. The decoder recovers the noiseless restriction of F to Mw,vi
. To accomplish this the

decoder queries the Mw,vi -evaluation of F at |S|+ 1 locations{
gw+λvi | λ ∈ {0, . . . , s}} . (4.6)

Firstly, let us see how the Mw,vi -evaluation of F uniquely determines x(i). Observe
that by formulas (4.3), (4.4) and (4.5) the Mw,vi

-evaluation of F is the Cm-evaluation of a
polynomial

f(y) =

k∑
j=1

x(j) · guj ·wyuj ·vi ∈ Fq[y]. (4.7)

Properties of the S-matching family U ,V imply that y(uj ,vi) = 1, if j = i; and yuj ·vi =
ys, for some s ∈ S otherwise. Formula (4.7) yields

f(y) = x(i) · gui·w +
∑
s∈S

⎛
⎝ ∑

j : uj ·vi=s

x(j) · guj ·w

⎞
⎠ ys. (4.8)

For a polynomial h ∈ Fq[y] we denote by supp(h) the set of monomials with non-zero
coefficients in h, where a monomial ye is identified with the integer e. It is evident from
formula (4.8) that supp(f) ⊆ S ∪ {0} and

x(i) = f(0)/gui·w. (4.9)

Secondly, let us note that recovering the polynomial (4.8) from the values {c0, . . . , cs}
of F at locations locations (4.6) is quite straightforward. The decoder simply recovers the
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unique sparse univariate polynomial h(y) ∈ Fq[y] with supp(h) ⊆ S ∪ {0} such that for all
λ ∈ {0, . . . , s}, h(gλ) = cλ. The uniqueness of such h(y) = f(y) follows from standard
properties of Vandermonde matrices.

Putting it all together we obtain the following

Proposition 4.2. Let U ,V be a family of S-matching vectors in Z
n
m, |U| = |V| = k, |S| = s.

Suppose m | q − 1, where q is a prime power; then there exists a Fq-linear code encoding
k-long messages to mn-long codewords that is (s + 1, 1

m )-locally decodable.

As Proposition 4.2 suggests parameters of matching vector codes are governed by pa-
rameters of the underlying family of matching vectors. To get short codes of low query
complexity we need large S-matching families for small sets S. The best constructions of
such families are given by the following

Proposition 4.3. Let m = p1 . . . pt be a product of t distinct primes. There exists a set
S ⊆ Zm \ {0}, |S| = 2t − 1 such that for all sufficiently large integers n, there is an
S-matching family in Z

n
m of size

nc( log n
log log n )

t−1

,

where the constant c depends only on m.

Combing the two propositions above we get

Theorem 4.4. Let m = p1 . . . pt be a product of t distinct primes. Let q be a prime power
such that m | q − 1; then for infinitely many values of message length k there exists an
Fq-linear (2t, 1

m )-locally decodable code of codeword length

N = exp exp
(
O( t
√
log k(log log k)t−1)

)
.

Observe that for constant t the function above grows slower than any exponential func-
tion of the form 2αk though faster than any polynomial kc.

4.2. Notes. Constructions of locally decodable codes from matching vectors originated
in [28] and were developed further in [2, 6, 9]. An important progress in this line of work
has been accomplished by Klim Efremenko in [9] where the first constructions of codes
from matching vectors modulo composites (rather than primes) were considered. Proposi-
tion 4.3 is due to Grolmusz [12]. An important ingredient to his proof is the low-degree
representation of the OR-function from [1].

Despite considerable progress in constructions of locally decodable codes of small query
complexity we are still very far from closing the gap to lower bounds. It is only in the
setting of 2-query codes that we know the true codeword length of optimal LDC, which is
exponential [19]. For any other number of queries large gaps remain. For instance, in the
case of the three-query codes the best upper bound for the codeword length comes from
matching vector codes and is exp exp(

√
log k log log k) while the best lower bound is Ω(k2)

from [26]. Closing this gap is a major open problem.
Locally decodable codes are also of interest over infinite fields. Questions about these

codes relate to classical problems in combinatorial geometry [5].
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5. Local reconstruction codes

In previous sections we reviewed the state of the art in locally decodable codes, i.e., codes
that admit local recovery of individual message symbols in the regime when a linearly grow-
ing number of codeword coordinates may be unavailable. As we saw these codes are either
highly redundant or have a large query complexity. In particular, to get rate close to one the
best known LDCs need polynomially many queries, and to get constant query complexity
independent of the message length they need super-polynomial codeword length.

In the current section we turn our attention to local reconstruction codes which only allow
local recovery when just a single coordinate is unavailable, while also providing non-local
recovery guarantees after a larger number of erasures. Since LRCs are geared towards less
aggressive failure scenarios than LDCs they are considerably simpler and more efficient. We
start be reviewing the motivation behind these codes.

5.1. Applications. Modern large scale distributed storage systems such as data centers
store data in a redundant form to ensure reliability against node (e.g., individual machine)
failures. The simplest solution here is the straightforward replication of data packets across
different nodes. Alternative solution involves erasure coding: the data is partitioned into k
information packets. Subsequently, using an erasure code,N−k parity packets are generated
and all N packets are stored in different nodes.

Using erasures codes instead of replication may lead to dramatic improvements both
in terms of redundancy and reliability. However to realize these improvements one has
to address the challenge of maintaining an erasure encoded representation. In particular,
when a node storing some packet fails, one has to be able to quickly reconstruct the lost
packet in order to keep the data readily available for the users and to maintain the same
level of redundancy in the system. We say that a certain packet has locality r if it can be
recovered from accessing only r other packets. One way to ensure fast reconstruction is to
use erasure codes where all packets have low locality r 5 k. Having small value of locality
is particularly important for information packets.

These considerations lead to introduction of (r, d)-local reconstruction codes, i.e., a lin-
ear codes capable of correcting any d − 1 erasures where all information symbols have lo-
cality at most r. Storage systems based on (r, d)-codes provide fast recovery of information
packets from a single node failure (typical scenario), and ensure that no data is lost even if
up to d − 1 nodes fail simultaneously.

5.2. Structure of LRCs. We begin by introducing some basic notions. A linear code is a
linear mapping C : Fk

q → F
N
q , where k ≤ N. Every such mapping can be represented as

C(x) = (x · p1, . . . ,x · pN ), (5.1)

where p1, . . . ,pN ∈ F
k
q . We say that C is a systematic code if all for all i ∈ [k], pi is the

i-th unit vector, i.e., the vector whose unique non-zero coordinate i carries value 1. In other
words, a code is systematic if it performs encoding by appending redundant symbols to the
original message. We refer to coordinates 1 through k of a systematic code as information
coordinates.

We say that the i-th coordinate of C has locality r if, when erased, this coordinate can
be recovered by accesing at most r of the N − 1 remaining coordinates of a codeword.
This is equivalent to saying that the vector pi in (5.1) is in the span of some r vectors of



694 Sergey Yekhanin

{pj}j∈[N ]\{i}. Further we say that a systematic code C has information locality r, if all
information coordinates of C have locality r. Finally we say that a code C has distance d, if
C corrects any pattern of up to d − 1 simultaneous erasures.

Definition 5.1. A linear systematic code C : Fk
q → F

N
q that has distance d and information

locality r is called an (r, d)-local reconstruction code.

Below we present one simple family of (r, d)-local reconstruction codes, called Pyramid
codes. We assume r | k.

Pyramid codes. To define an (r, d)-Pyramid code C encoding messages of dimension k
we fix an arbitrary linear systematic code E : Fk

q → F
N
q that has distance d and codeword

length N = k − d + 1. Note that such a code always exist provided that q ≥ N − 1. Let

E(x) = (x,p0 · x,p1 · x, . . . ,pd−2 · x).
We partition the set [k] into t = k

r disjoint subsets of size r, [k] =
⊔

j∈[t] Sj . For a k-
dimensional vector x and a set S ⊆ [k] let x|S denote the |S|-dimensional restriction of x to
coordinates in the set S. We define the systematic code C by

C(x) = (x, (p0|S1
· x|S1

) , . . . , (p0|St
· x|St

) , p1 · x, . . . ,pd−2 · x.)

It is not hard to verify that the code C has distance d. We now argue that each information
symbol i ∈ [k] has locality r. Consider an arbitrary i ∈ Sj . Note that the value of x(i) can be
deduced from accessing the light parity p0|Sj

· x|Sj
and the values of information symbols

x(l) for l ∈ Sj \ {i}.
Interestingly the simple construction above yields (r, d)-LRCs of the lowest possible

redundancy.

Theorem 5.2. For any linear code C : Fk
q → F

N
q of distance d and information locality r,

N ≥ k +

⌈
k

r

⌉
+ d − 2. (5.2)

5.3. Maximal recoverability. A stronger version of Theorem 5.2 shows that under some
minor technical assumptions all (r, d)-LRCs of the lowest possible redundancy are in a cer-
tain sense very similar to Pyramid codes. In particular, such codes have the same topology,
i.e., the same set of dependency relations between information symbols and parity symbols.
Specifically, assuming r | k :

• Data symbols are partitioned into k/r groups of size r. For each such group there is
one (local) parity symbol that stores the XOR (or some other non-trivial linear combi-
nation) of respective data symbols.

• The remaining h = d − 2 (heavy) parity symbols depend on all k data symbols.

In what follows we refer to codes meeting the description above as data-local (k, r, h)-codes.
We also refer to a group of r data symbols and their local parity as a local group. (r, d)-LRCs
with optimal redundancy are instances of data-local (k, r, h)-codes with h = d − 2.

Note that the class data-local codes is fairly broad as there is a lot of flexibility is choosing
coefficients in heavy parities. All these codes have appropriate information locality. However
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they differ in terms of reliability guarantees that they provide as correctability of a particular
failure pattern obviously depends on coefficients used to define heavy parities.

We say that a data-local (k, r, h)-code isMaximally Recoverable (MR) if it corrects every
failure patterns that is correctable by some other code that has the same topology. Another
equivalent way to define maximally recoverability is as follows:

Definition 5.3. Let C be a data-local (k, r, h)-code. We say that C is maximally recoverable
if it corrects any failure pattern that can be obtained by erasing one coordinate in each of k

r
local groups as well as h arbitrary additional coordinates.

Note that maximal recoverability is a much stronger property than the mere distance
required in the definition of (r, d)-local reconstruction codes.

It is not hard to show that maximally recoverable codes exist. In fact, simply picking
coefficients of heavy parities at random from a large enough finite field with high probability
yields an MR code. However in applications we would like to have codes over small finite
fields to facilitate fast encoding and decoding. The best explicit constructions of such codes
are given by the following

Theorem 5.4. For constants r and h and for all k such that r | k, there exists a maximally

recoverable data-local (k, r, h)-code over a field of size O
(
k"(h−1)(1− 1

2r )#
)
.

5.4. Notes. Pyramid codes were introduced in [16]. General local reconstruction codes
were studied in [10]. Theorem 5.4 is from [11]. See also [3]. Local reconstruction codes
are used in practice. Instances of these codes were first deployed by Windows Azure Stor-
age [17], and have later been used in a number of other production systems. A different other
notion of local reconstruction in codes for storage has been addressed in [8].

The main open challenge in the area of local reconstruction codes is to reduce the field
size of maximally recoverable codes. The best upper bound for the field size is roughly
O(kh−1) while the only available lower bound is Ω(k) independent of h. Constructing ex-
plicit maximally recoverable codes over small finite fields in more general topologies is also
of great interest.

6. Conclusion

In this survey we reviewed two main families of codes with local decoding procedures,
namely locally decodable codes and local reconstructions codes. There is a large array of
questions that remain open. In the case of LDCs the main open questions pertain to the
true shape of the tradeoff between codeword length and query complexity. In the case of
LRCs this tradeoff is understood and the main challenges are in constructing maximally
recoverable codes over small finite fields. There is also a large area dealing with codes that
provide local recovery of message symbols after more than one but less than Ω(N) erasures
and thus bridge LDCs and LRCs. While there are some well studied families of codes that
fall in this range, e.g., projective geometry codes [22], in general this regime is not well
understood.
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On a class of high order schemes for hyperbolic
problems

Rémi Abgrall

Abstract. This paper provides a review about a family of non oscillatory and parameter free finite
element type methods for advection-diffusion problems. Due to space limitation, only the scalar hy-
perbolic problem is considered. We also show that this class of schemes can be interpreted as finite
volume schemes with multidimensional fluxes.

Mathematics Subject Classification (2010). 65, 76.

Keywords. Numerical approximation of hyperbolic problems, Non oscillatory schemes, Unstructured
meshes, High order methods

1. Introduction

We are interested in the numerical solution of parabolic type equations in which the elliptic
terms play an important role only at some locations of the computational domain. To make
things more precise, our target are the Navier-Stokes equations in the compressible regime.
These systems of partial differential equations are supplemented by initial and boundary con-
ditions. In particular, at solid walls, the velocity is set to zero and the temperature behavior is
specified. Thus depending on the Reynolds number, the viscous terms have an effect that is
sensitive on a more or large range. Far enough from the walls, where the viscous effects are
less prominent, it is mainly the hyperbolic part that plays the major role, and thus, depend-
ing on the flow conditions, thin zone with very steep gradients may exist with a shock-like
structure.

Our goal is to approximate the solution every where, with a parameter free method, so
that the solution is oscillation free, with a uniform accuracy. In addition, we want to handle
complicated geometries, so that the method use unstructured meshes.

How can this program be achieved? In the following, we focus on steady problems, and
to make things simpler, we focus on the scalar problem:

div f(u) = 0 (1a)

subjected to
min(∇uf(u) · n(x), 0)(u − g) = 0 on ∂Ω (1b)

In (1b), n(x) is the outward unit vector at x ∈ ∂Ω (thus we assume enough regularity for
Ω). The case of the advection-diffusion problem

div f(u)− div(K∇u) = 0 (2a)

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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subjected to boundary condition of the Dirichlet type

u = g on ΓD (2b)

and Neuman-like conditions

(K∇u) · n(x) = h(x) on ΓN (2c)

is done in a similar way except for some technicalities about the diffusion term, see [4].
Extensions to the system case can be found in [5] for the pure hyperbolic case and [3] for
the Navier Stokes equations.

Here the notations are standard: g and h are regular enough functions, ΓD and ΓN are
non overlapping regular enough subsets of ∂Ω, and ΓD ∪ ΓN = ∂Ω. From now on, we
assume that Ω has a polyhedric boundary, and more over Ωh = Ω for the chosen family of
triangulations in order to simplify. These assumptions are by no mean essential. We denote
by Eh the set of edges/faces of Th that are contained in ∂Ω, andK stands either for an element
K or a face/edge e.

In the finite element setting, there exists several variational formulations of this class
of problems. The classical ones can be defined in three steps. We are given a family of
meshes denoted by (Th)h∈H. These meshes are made of elements denoted generically by
K. The parameter h, as usual, denotes the maximum of the diameters of K, K ∈ Th. The
meshes can be geometrically conformal or not. Then we need to define the trial function
space, denoted by Uh and a test function Vh. The last step is to define a bi-linear form a on
Uh × Vh, as well as form � defined on Vh. As usual, we assume that the spaces Uh and Vh

encode some of the boundary conditions, while the others are encoded in �. The problem is
to find uh ∈ Uh such that a for any vh ∈ Vh, we have

a(uh, vh) = �(vh).

A first example example is given by the streamline diffusion method [12, 13] for which
there are two possible interpretations. In the first one, we consider a Petrov Galerkin formu-
lation, .i.e we take

Uh = {uh ∈ H1(Ω) such that for any K ∈ Th, uh
∣∣K ∈ P

r(K)} ∩ C0(Ω)

and

Vh ={vh ∈ L2(Ω), such that for any K ∈ Th, there exists wh ∈ Uh,

vh = wh + hKτK∇uf(uh)∇wh}
and

aSUPG1(uh, vh) =

∫
Ω

vh div f(uh) +
∑
e∈Eh

∫
e

vh
(
f̂n(g, uh)− f(uh) · n) =

∫
Ω

fvh. (3a)

Here, f̂ is a consistent upwind numerical flux. The second interpretation is to take Vh = Uh

and use, instead of aSUPG1 the form aSUP2 defined by

aSUPG2(uh, vh) =

∫
Ω

vh div f(uh) +
∑
K

hK

∫
K

(∇uf(uh)∇vh
)
τK
(∇uf(uh)∇uh

)
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+
∑
e∈Eh

∫
e

vh
(
f̂n(g, uh)− f(uh) · n). (3b)

This can be as a Galerkin approximation of a modified equation, namely

div f(u)− div
(
h∇uf(u)⊗ (τ∇uf(u))∇u

)
= 0. (3c)

In (3), the parameters τK are positive functions (typically constant per element) and in (3c)
the function τ and h are defined by their restrictions on each element.

We can play further with the trial and test spaces. If one removes the continuity assump-
tion, then we have a Discontinuous Galerkin formulation, i.e. Uh = Vh with

Uh = {uh ∈ L2(Ω), such that for any K ∈ Th, uh
∣∣K ∈ P

r(K)}

and

a(uh, vh) =
∑

K∈Th

(
−
∫
K

∇vh · f(uh) +

∫
∂K

vhf̂n
(
(uh)|K , (uh)|K−

))
(4a)

where K− denotes generically the element(s) that are on the other side of the faces of ∂K.
Another formulation is

a(uh, vh) =
∑

K∈Th

(
−
∫
K

∇vh · f(uh) +

∫
∂K

vhf̂n
(
(uh)|K , (uh)|K−

))

+
∑
K

hK

∫
K

(∇uf(uh)∇vh
)
τK
(∇uf(uh)∇uh

) (4b)

In (4), the Dirichlet boundary conditions are set weakly, as in (3), by setting uh = g on the
parts of ∂K which belongs to inflow part of ∂Ω.

The space Uh and Vh can be independently chosen, as well as a and �, provided the
variational problem is consistent with the problem (1), and of course the numerical method
is stable. Formal accuracy is obtained via the choice the polynomial degree r, and effective
accuracy is related to the stability of the scheme in suitable norm. Hence a natural question
is: can we define Uh, Vh and the forms a and � such that in addition with consistency
and accuracy, we can also have non oscillatory properties. In the case of the streamline
methods, this last property is obtained by modifying the formulation by adding a dissipation
operator which is parameter dependent. In the case of the Discontinuous Galerkin method,
this property is obtained via a proper choice of the arguments in f̂n, see [7, 8]. We note that
only the averages in K are controlled. In both cases this is obtained by introducing some
genuine non linearity in the scheme, i.e. even if (1) is a linear problem, the scheme will be
non linear.

In this paper, we show that, by introducing a solution-dependent operator χ from Uh ∩
C0(Ω) to L2(Ω), the variational problem with a defined by

a(uh, vh) =
∑
K

∫
K

χh
u(vh)div f(u

h) +
∑
e∈E

∫
e

vh(f̂n(g, uh)− f(uh) · n) (5)

enables to get all the properties. The rest of this paper is organized as follow: inspired by
a rewriting of (3), we introduce the residual distribution schemes. We provide a simple cri-
teria which guaranty a Lax-Wendroff type theorem, provide a simple criteria that guaranties
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formal accuracy, show how the choice of norms guaranty the effective accuracy, and pro-
vide several examples of schemes. In the last part, we show how these schemes can also be
interpreted as finite volume schemes and we provide explicit formula.

2. Formulation of residual distribution schemes

These schemes have been introduced by P.L. Roe in [17] in one dimension, and [18] in
the multidimensional case. As we see, there are many common points with the streamline
method, the difference is that we try to combine ideas from the finite element community
and from the finite volume one. The first scheme of this kind was probably designed by R.
Ni [16] where introduce a particular version of the Lax Wendroff scheme.

2.1. Definition, connection to finite element methods. Wemake the standard remark that,
for any internal degree of freedom σ, if ϕσ is the Lagrange basis function associated to σ,
(3b) can be written as:

aSUPG2(uh, ϕσ) =
∑
K

(∫
K

ϕσ∇ · f(uh) + hK

∫
K

(∇uf(uh)∇ϕσ

)
τK
(∇uf(uh)∇uh

))

+
∑
e∈Eh

∫
e

ϕσ(f̂n(g, uh)− f(uh) · n).

Since the support of ϕσ is made of all the elements K that share σ, we have for any degree
of freedom σ:

aSUPG2(uh, ϕσ)

=
∑
K�σ

(∫
K

ϕσ∇ · f(uh) + hK

∫
K

(∇uf(uh)∇ϕσ

)
τK
(∇uf(uh)∇uh

))
∑

e∈Eh,σ∈e

∫
e

ϕσ(f̂n(g, uh)− f(uh) · n)

and notice that

1. for any K,

∑
σ∈K

(∫
K

ϕσ∇·f(uh)+hK

∫
K

(∇uf(uh)∇ϕσ

)
τK
(∇uf(uh)∇uh

))
=

∫
∂K

f(uh)·n,

2. for any e ∈ Eh,∑
σ∈e

∫
e

ϕσ(f̂n(g, uh)− f(uh) · n) =
∫
e

(f̂n(g, uh)− f(uh) · n).

This is true because
∑

σ∈K ϕσ(x) = 1 and thus
∑

σ∈K ∇ϕσ(x) = 0 for all x ∈ K.
We define the total residual for element and edges the quantities:

ΦK :=

∫
∂K

f(uh) · n, and Φe :=

∫
e

(f̂n(g, uh)− f(uh) · n). (6)
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A residual distribution scheme is defined by the sub-residuals that are “sent” to the de-
grees of freedom σ by an elementK (resp. a boundary edge e). We denote them byΦK

σ (uh
|K)

(resp. Φe
σ(u

h
|e)). The scheme writes, for any internal degree of freedom σ,

∑
K�σ

ΦK
σ (uh

|K) = 0, (7a)

and for any degree of freedom on the boundary,∑
K�σ

ΦK
σ (uh

|K) +
∑
e�σ

Φe
σ(u

h
|e) = 0. (7b)

We assume that the following structure condition holds true:

∀σ ∈ K,
∑
σ∈K

ΦK
σ (uh

|K) =

∫
∂K

f(uh) · n (= ΦK), (8a)

∀e ∈ Eh,
∑
σ∈e

Φe
σ(u

h
|K) =

∫
e

(f̂n(g, uh)− f(uh) · n). (= Φe) (8b)

We see that the SUPGmethod is a particular case of such scheme. There is a lot of freedom in
defining the sub-residuals ΦK

σ (uh
|K) and Φe

σ(u
h
e ), we will show how we can take advantage

of this freedom to achieve our goal. Note that in the definition of the sub-residual, we have
implicitly assumed that only the degrees of freedom withK or e are necessary to define these
quantities: the stencil of the method is the most possible compact which is a good point for
the parallelization of the method.

Another example of sub-residual are the Galerkin residuals defined by: on the element
K

ΦG,K
σ =

∫
K

ϕσdiv f(uh = −
∫
K

∇ϕσ · f(uh) +

∫
∂K

ϕσf(u
h) · n, (9a)

and on the boundary face e:

ΦG,e
σ =

∫
e

ϕσ(f̂n(g, uh)− f(uh) · n) (9b)

We see that both {ΦG,K
σ }σ∈K and {ΦG,e

σ }σ∈e satisfy (8) with the same value of the total
residual. Unfortunately, the scheme (7) with the Galerkin residual is widely unstable,

2.2. Structure conditions. For any wh (not necessarily a solution of (7) if it exists), and
any test function vh, we have (setting vhσ = vh(σ)):

S :=
∑
σ �∈∂Ω

vhσ

(∑
K�σ

ΦK
σ (wh

|K)

)
+
∑
σ∈∂Ω

vhσ

(∑
K�σ

ΦK
σ (wh

|K) +
∑

e�σ,e∈Eh
Φe

σ(w
h
|e)

)

=
∑
K

(∑
σ∈K

vhσΦ
K
σ (wh

|K)

)
+
∑
e∈Eh

(∑
σ∈e

vhσΦ
e
σ(w

h
|K)

)

= −
∫
Ω

vh∇ · f(uh) +

∫
∂Ω

vhf̂n(g, w
h) (10)
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+
∑
K

∑
σ∈K

vhσ
(
ΦK

σ (wh
|K)− ΦG,K

σ (wh
|K)
)

+
∑

e,e∈Eh

∑
σ∈e

vhσ
(
Φe

σ(w
h
|K)− ΦG,e

σ (wh
|K)
)

thanks to (9). Then, since (recall K represents either a generic element or a generic member
of Eh) ∑

σ∈K

(
ΦKσ (w

h
|K)− ΦG,K

σ (wh
|K)

)
= 0,

(10) becomes, denoting by nK and ne the number of degree of freedom in K and e:

S =−
∫
Ω

∇vh · f(uh) +

∫
Ω

vhf̂n(g, w
h)

+
∑
K

1

nK !

∑
σ,σ′∈K

(
vhσ − vhσ′)

(
ΦK

σ (wh
|K)− ΦG,K

σ (wh
|K)
)

+
∑
e∈Eh

1

ne!

∑
σ,σ′∈e

(
vhσ − vhσ′

)(
Φe

σ(w
h
|e)− ΦG,e

σ (wh
|e)
)

(11)

This relation is fundamental in our analysis.

2.2.1. Conservation. In [6], we prove the following result:

Theorem 2.1. Assume the family of meshes T = (Th)h∈H is regular. We assume that the
residuals {ΦKσ }σ∈K, for K an element or a boundary element of Th, satisfy:

• For any M ∈ R
+, there exists a constant C which depends only on the family of

meshes Th and M such that for any uh ∈ Uh with ||uh||∞ ≤ M , then

∥∥ΦKσ (uh|K)
∥∥ ≤ C

∑
σ,σ′∈K

|uh
σ − uh

σ′ |

• they satisfy the conservation property (8).

Then if there exists a constant Cmax such that the solutions of the scheme (7) satisfy
||uh||∞ ≤ Cmax and a function v ∈ L2(Ω) such that (uh)h or at least a sub-sequence
converges to v in L2(Ω), then v is a weak solution of (1)

Proof. The proof can be found in [6], it uses (11) and some adaptation of the ideas of [14].

We can also state condition for entropy inequalities:

Proposition 2.2. Let (U,G) be an couple entropy-flux for (1) and Ĝn an upwind numerical
entropy flux consistent with G · n. Assume that the residuals satisfy: for any element K,

∑
σ∈K

U(uσ)Φ
K
σ ≤
∫
∂K

G(uh
|K) · n (12a)
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and for any boundary edge e,

∑
σ∈e

U(uσ)Φ
e
σ ≤
∫
e

(
Ĝn(u

h
|e, g)−G(uh

|K) · n). (12b)

Then, under the assumptions of the theorem 2.1, the limit weak solution also satisfies the
following entropy inequality: for any ϕ ∈ C1(Ω), ϕ ≥ 0,

−
∫
Ω

∇ϕ ·G(u) +

∫
∂Ω

Ĝn(u, g) ≤ 0.

Proof. The proof is similar to that of theorem 2.1.

2.2.2. Accuracy. In most cases, assuming a smooth solution of (1), the formal accuracy
analysis is done by checking how large is the error made when plugging the exact solu-
tion into the scheme. This is carried out using Taylor expansions, and the geometry of the
computational stencil plays an important role. When the mesh has no particular symmetry,
this leads to nowhere. Instead of looking to how far the numerical scheme departs from
the strong form of the PDE, it is much more flexible to look at how for it departs its weak
form, i.e. instead of checking div f(u) = 0, it is better to test, for any ϕ smooth enough,∫
Ω

ϕ div f(u) = 0, of course after using the Green formula.
In practice, we define the truncation error

E(wh, vh) =
∑
σ �∈∂Ω

vhσ

(∑
K�σ

ΦK
σ (wh

|K)

)
,

and consider
E(wh) = max

vh∈V h,||vh||W1,∞=1
E(wh, vh). (13)

We can then extend the classical definition of accuracy:

Definition 2.3 (Accuracy). We say that the scheme (7) is r + 1-th order accurate if, for any
smooth solution uex ∈ Cr+1(Ω) of (1), E(uh

ex) ≤ C hr+1. The constant C only depend on
the family T , the regularity of f , on the r + 1 derivative of u, and the boundary conditions.

Using (11), we see that, for any vh

E(uh
ex, v

h) = −
∫
Ω

∇vh · f(uh
ex) +

∫
Ω

vhf̂n(g, u
h
ex) (14)

+
∑
K

1

nK !

∑
σ,σ′∈K

(
vhσ − vhσ′)

(
ΦK

σ ((uh
ex)|K)− ΦG,K

σ ((uh
ex)|K)

)
(15)

+
∑
e∈Eh

1

ne!

∑
σ,σ′∈e

(
vhσ − vhσ′

)(
Φe

σ((u
h
ex)|K)− ΦG,e

σ ((uh
ex)|e)

)
(16)

For the steady problem (1), we have the following result:

Lemma 2.4. Let us recall that Ω ⊂ R
d and is bounded.

If the solution uex of the steady problem (1) is Cr+1, then
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(1) ΦG,K
σ ((uh

ex)|K) = O(hr+d),

(2) ΦG,e
σ ((uh

ex)|e) = O(hr+d−1)

(3) if the numerical flux f̂ is Lipschitz, − ∫
Ω
∇vh · f(uh

ex) +
∫
Ω

vhf̂n(g, u
h
ex) = O(hr+1),

Proof. We start by showing the first result. The proof of the second one is similar and is
omitted.

Since uex ∈ Cr+1, we have div f(uex) = 0 in a strong sense, thus for any K ∈ Th and
any σ, ∫

K

ϕσ div f(uex) = −
∫
K

∇φσ · f(uex) +

∫
∂K

φσf(uex) · n = 0.

We can subtract this relation to ΦG,K
σ (uh

ex) and get:

ΦG,K
σ (uh

ex) = −
∫
K

∇ϕσ ·
(
f(uh

ex)− f(ue)

)
+

∫
∂K

ϕσ

(
f(uh

ex)− f(ue)

)
.

Since the mesh is regular, we have:

|K| = O(hd), ∇ϕσ = O(h−1), |∂K| = O(hd−1)

and since the flux f is C1, we have

f(uh
ex)− f(ue) = O(hk+1).

Gathering the pieces together, we get:∣∣∣ΦG,K
σ (uh

ex)
∣∣∣ ≤ C

(
hd × h−1 × hk+1 + hd−1 × 1× hk+1

)
= O(hk+d).

The third inequality is obtained in a similar manner: From (1), we have for any vh,
setting Γ− = {x ∈ ∂Ω,∇uf(u) · n < 0},

−
∫
Ω

∇vh · f(uex) +

∫
Γ−

vhf(uex) · n = 0

so that

−
∫
Ω

∇vh · f(uh
ex) +

∫
Ω

vhf̂n(g, u
h
ex)

= −
∫
Ω

∇vh · (f(uh
ex)− f(uex)

)
+

∫
∂Ω

vh
(
f̂n(g, u

h
ex)− f(uh

ex) · n
)

= (I) + (II)

Using again the same arguments, since the numerical flux is Lipschitz continuous, we see
that both (I) and (II) are of the order of O(hk+1)× ||vh||W 1,∞(Ω).

Then, we have:

Proposition 2.5. Under the assumptions of Lemma 2.4 and assuming that the family of
meshes Th is regular, the residuals satisfy:

for all σ and all K = K or e,ΦKσ ((uex)|K) = O(hr+D) (17)

where D = d for elements and D = d − 1 for e ∈ E , then the scheme is formally r + 1
accurate.
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Proof. E(uh
ex, v

h) is the sum of

−
∫
Ω

∇vh · f(uh
ex) +

∫
Ω

vhf̂n(g, u
h
ex)

which is O(hr+1) by lemma 2.4 and

∑
K

1

nK !

∑
σ,σ′∈K

(
vhσ − vhσ′)

(
ΦK

σ (wh
|K)− ΦG,K

σ (wh
|K)
)

+
∑
e⊂Ω

1

ne!

∑
σ,σ′∈e

(
vhσ − vhσ′

)(
Φe

σ(w
h
|K)− ΦG,e

σ (wh
|K)
)

Since the mesh is regular, the number of elements in the mesh is O(h−d) and the number of
boundary elements is O(hd−1). Since v ∈ W 1,∞, its Lagrange interpolant satisfy∣∣vhσ − vhσ′

∣∣ ≤ h||vh||W 1,∞

and suph ||vh||W 1,∞ is bounded by a constant that depends on T and ||v||1,∞. Then we see
that ∣∣∣∑

K

1

nK !

∑
σ,σ′∈K

(
vhσ − vhσ′)

(
ΦK

σ (wh
|K)− ΦG,K

σ (wh
|K)
)

+
∑
e⊂∂Ω

1

Ne!

∑
σ,σ′∈e

(
vhσ − vhσ′

)(
Φe

σ(w
h
|K)− ΦG,e

σ (wh
|K)
)∣∣∣

≤ C
(
h−d × h × hd+r + h−d+1 × h × hr+d−1

)
≤ Chr+1

3. Construction of monotonicity preserving arbitrary accurate schemes

We start by a basic remark that goes at least back to A. Harten [11], and we rephrase it in the
Residual Distribution framework.

Lemma 3.1. Assume that the residual (for element and edges) write, for any degree of
freedom,

ΦKσ (uh) =
∑
σ′�K

cKσσ′(uσ − uσ′), (18)

then the iterative scheme

un+1
σ = un

σ − ωσ

(∑
K�σ

ΦK
σ +
∑
e�σ

Φe
σ)

admits a local maximum principle if

• for any σ, σ′, cKσσ′ ≥ 0,

• ωσ

(∑
K�σ
∑

σ′∈K cKσσ′ +
∑

σ′∈K cσσ′
)
≤ 1
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Proof. It is clear that:∑
K�σ

ΦK
σ +

∑
e�σ,e∈Eh

Φe
σ =
( ∑

K�σ

∑
σ′∈K

cKσσ′ +
∑
σ′∈K

cKσσ′

)
uσ

+
∑
σ′

( ∑
K,σ,σ′∈K

cKσσ′

)
uσ′

Here, in order to simplify the notations, we have set cKσ,σ′ = 0 when σ �∈ K or σ′ �∈ K.
The results holds true because cKσσ′ ≥ 0, and

∑
K�σ

∑
σ′∈K

cKσσ′ +
∑
σ′∈K

cKσσ′ =
∑
σ′

( ∑
K,σ,σ′∈K

cKσσ′

)
.

The idea is to construct schemes that satisfy the requirement cKσ,σ′ ≥ 0. It is known
since Godunov that one cannot have a scheme that is both monotonicity preserving and high
order accurate, hence some sort of non linearity must be introduced. Before showing how
we can meet the requirements, let us introduce our reference monotone scheme. It is a
multidimensional extension of the Rusanov (or local Lax-Friedrichs) scheme, namely, for
any K and σ,

ΦKσ =
1

nK
ΦK + αk

(
uσ − uK

)
, uK =

1

nK

∑
σ∈K

uσ (19)

This scheme has the form (18) and is monotone if αK ≥ maxK ||∇uf(u
h)||.

Another example of monotone residual is called the N scheme (N stands for narrow), and
it is due to P.L. Roe in the P1 case. The construction is as follows. We notice that the total
residual on K, thanks to the Gauss formula, also writes

ΦK =

∫
K

div f(uh) =

∫
K
∇fu(u

h) · ∇uh =
∑
σ∈K

(∫
K
∇fu(u

h) · ∇ϕσ)

)
uσ

We introduce the “inflow” parameters kσ =
∫
K∇fu(u

h) · ∇ϕσ), so that ΦK =
∑

σ kσuσ .
We notice that

∑
σ kσ = 0. This parameters are called the inflow parameters because in the

P
1 case and for a linear flux, their sign characterizes whether the flow ∇uf(u

h) is inflow or
outflow in the element K. The N-scheme is then defined by

ΦN
σ = max(kσ, 0)

(
uσ − u

)
(20a)

u = N

(∑
σ∈K

min(kσ, 0)uσ

)
(20b)

N−1 =
∑
σ∈K

min(kσ, 0) (20c)

The average u is defined such that the relations (8) hold true. An easy calculation shows that

cNσ′σ = min(kσ, 0)N max(kσ, 0) ≥ 0

so that the scheme is monotonicity preserving. Numerical experiments shows that this a very
good first order for P1 element (hence for triangles and tetrahedrons) and provides less good
results for higher elements.
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Similarly, one can define an upwind high order scheme, nicknamed as the LDA scheme
(Low Diffusion A schemes, there has been a LDB, less successful), it is defined by:

ΦLDA
σ = −max(kσ, 0)NΦ.

It is a very good scheme for triangular/tet P1 elements, but it reveals to be unstable for higher
elements or non triangular elements.

3.1. Explicit construction. The construction is local to an element (or boundary edge) K,
so we drop the dependency with respect to the element. We start from a monotone first order
scheme, such as the Rusanov or the N scheme, denote the first order residuals in the element
as {ΦM

σ }σ∈K and the high order residuals (to be constructed) by {ΦH
σ }σ . We then make the

following formal observation:

for all σ ∈ K,ΦH
σ =

ΦH
σ

ΦM
σ

ΦM
σ ,

so that if ΦM
σ =

∑
σ′∈K cMσσ′(uσ′ − uσ), we have

φH
σ =

ΦH
σ

ΦM
σ

( ∑
σ′∈K

cMσσ′(uσ′ − uσ)
)

=
∑
σ′∈K

(
ΦH

σ

ΦM
σ

cMσ′σ

)
(uσ′ − uσ)

)

=
∑
σ′∈K

cHσ′σ(uσ′ − uσ)
)

with cHσ′σ :=
ΦH

σ

ΦM
σ

cMσ′σ . Hence, to have cHσ′σ ≥ 0, it is enough that

ΦH
σ ΦM

σ ≥ 0

Introducing the parameters βM
σ =

ΦM
σ

Φ and βH
σ =

ΦH
σ

Φ where Φ is the total residual on the
element K, we see that:

• ΦH
σ ΦM

σ ≥ 0 is equivalent to βM
σ βH

σ ≥ 0,

• the conservation relations translates into:∑
σ∈K

βM
σ =

∑
σ∈K

βH
σ = 1. (21)

• In order to guaranty the condition (17), a sufficient condition is that : for any C, and
uh such that ||uh||∞ ≤ C, there exists C ′ such that |βH

σ | ≤ C ′(C), uniformly for all
meshes Th.

These constraints can easily be interpreted geometrically. Consider an simplex S =
(a1, . . .anK) of dimension nK − 1 points, i.e. a triangle when nK = 3, a tetrahedron
for nK = 4 and so on. These points have nothing to do with the mesh, they are only used
to represent easily the constraint (21): it is well known that any point M of an affine space
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of dimension nK − 1 can be uniquely described n in term of its barycentric coordinates with
respect to S :

M =

nK−1∑
i=1

λiai,

nK−1∑
i=1

λi = 1

so this suggest to interpret the parameters βM
σ and βH

σ as barycentric coordinates with respect
to the simplex S: we interpret a scheme as a point in this abstract affine space, and finding
the mapping (βM

σ )σ∈K �→ (βH
σ )σ∈K can be interpreted as to find a mapping from this affine

space onto itself. Then, to make the discussion more visual, we switch to nK = 3, see figure
1. The conditions βH

σ βL
σ ≥ 0 are interpreted as saying that βH

i and βL
i must be on the same

side of the line λi = 0.

a1

a2

a3
Yes

Yes����No

����No

Id

C

Figure 1. Geometrical representation of the monotonicity conditions. The invariant domain is materi-
alized by the domain inside of C.

The condition |βσ| ≤ C is materialized, on figure (1), by the domain inside curve C.
Inside the invariant domain bounded by C, the mapping is the identity, outside of C project
the point L =

∑
σ βL

σ aσ on C without crossing the lines λσi = 0. Once the βH
σ are defined,

we set simply ΦH
σ = βH

σ Φ.
The simplest invariant domain is certainly the simplex (a1, . . . ,anK) for which 0 ≤

λσ ≤ 1. In that case, the most common formula is [6, 19]:

βH
σ =

max(βM
σ , 0)∑

σ∈Kmax(βM
σ , 0)

. (22)

Note that
∑

σ∈Kmax(βM
σ , 0) ≥ 1 because

1 =
∑
σ∈K

βM
σ =

∑
σ∈K

max(βM
σ , 0) +

∑
σ∈K

min(βM
σ , 0) ≤

∑
σ∈K

max(βM
σ , 0).
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When Φ = 0, we simply set ΦH
σ = 0

In practice, this method is excellent for computing discontinuous solutions. When com-
puting smoother solutions, we can see “wiggles” appearing, see section 5. They are not a
manifestation of any instability since the scheme is perfectly L∞ stable, but it is too over
compressive, i.e. not dissipative enough.

It is quite easy to understand what is going on. We first, let us consider the problem on
[0, 1]2:

∂u

∂x
= 0 (23)

with the boundary condition u = g on {0} × [0, 1]. The grid is made of quadrangles, with
vertexes (xi, yj), xi =

i
N , yj = j

N , 0 ≤ i, j ≤ N . The function g is piecewise linear, and
g(0, yj) = (−1)j . The exact solution is independent of x.

The scheme is defined by

un+1
ij = un

ij − ωij

∑
K�(xi,yj)

ΦH,K
i,j (un

h)

with u0
ij given, and un

0j = g(0, yj). There are many ways of initializing, we consider two
initializations:

• Initialization with the exact solution: u0
ij = g(0, yj) = (−1)j

• Check-board mode: u0
ij = (−1)i+j

The solution at the n-th iteration is reconstructed with the Q1 interpolation. It is easy to see
that for both initialization, we have, for any K,

ΦK =

∫
∂K

uhnx = 0

so that in both cases, for any i, j, n, un
ij = u0

ij ! The method, as it is, is not well posed, and
there are spurious modes.

To remedy to this serious drawback, there are several possibilities, see [2]. The most
flexible one is to add a streamline diffusion term:

ΦH,K,�
σ = ΦH,K

σ + θKhK

∫
K

(∇uf(u
h) · ∇ϕσ

)
N
(∇uf(u

h) · ∇uh
)

(24)

where N is define by (20b), and θK ≈ 0 in discontinuities and θK ≈ 1 away from disconti-
nuities. When we apply this correction (with θ = 1) to (23) this corrects the problem.

To see what is the rational behind (24), let us first switch to the one dimensional problem:

∂f(u)

∂x
= 0 x ∈ [0, 1]

u(0) = u0

u(1) = u1.

(25)

The boundary conditions are imposed weakly, and to make things simple, assume f ′(u0) > 0
and f ′(u1) < 0 so that the solution is u = u0. The interval [0, 1] is discretized with the mesh
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which elements are [xi, xi+1], 0 = x0 < x1 < . . . < xn−1, xn = 1. Whatever the order, the
total residual is for Ki+1/2 = [xi, xi+1]

ΦKi+1/2 = f(ui+1)− f(ui)

so that the high order residuals are simply, for any degree of freedom σ ∈ K, ΦK
σ =

βK
σ

(
f(ui+1 − f(ui)

)
. In particular, the internal degrees of freedom play no role. Assume

now that k = 1, there is no internal degree of freedom, and let us evaluate the entropy
balance for the entropy U(u) = 1

2u
2:

E =

N−1∑
i=0

ui

(
β
Ki−1/2

i

(
f(ui+1)− f(ui)

)
+ β

Ki+1/2

i

(
f(ui+1)− f(ui)

))

=

∫ 1

0

uh ∂f

∂x
(uh) +

N−1∑
i=0

(
γ
Ki+1/2

i ui + γ
Ki+1/2

i+1 ui+1/2

)(
f(ui+1)− f(ui)

)

with γ
Ki+1/2

j = β
Ki+1/2

j − 1
2

=

∫ 1

0

uh ∂f

∂x
(uh) +

N−1∑
i=0

γ
Ki+1/2

i+1 (f(ui+1)− f(ui))(ui+1 − ui).

For the scheme to be dissipative, a sufficient condition is that for all i,

γ
Ki+1/2

i+1 (f(ui+1)− f(ui))(ui+1 − ui) ≥ 0,

i.e.

γ
Ki+1/2

i+1

f(ui+1)− f(ui)

ui+1 − ui
≥ 0

with a strict inequality for at least one interval.
The evaluation of β

Ki+1/2
σ is done with the only aim of having an L∞ stable scheme, so

that this inequality might not be true 1. Adding the streamline term, i.e.

θ(ui+1 − ui)

∫ xi+1

xi

N
(∂f

∂u

)2 ∂ϕσ

∂x
= (ui+1 − ui)

∣∣∂f

∂u

∣∣(ϕσ(xi+1)− ϕσ(xi))

will modify the entropy into

E =

∫ 1

0

uh ∂f

∂x
(uh) +

N−1∑
i=0

(
γ
Ki+1/2

i+1

f(ui+1)− f(ui)

ui+1 − ui
+ θ
∣∣∂f

∂u

∣∣)(ui+1 − ui)
2

and E ≤ ∫ 1
0

uh ∂f

∂x
(uh) provided that θ ≥ 1.

In the general case, we have the following result:

Proposition 3.2. There exists θ > 0 which depends only on the polynomial degree r such
that if f̂n is an E-flux, then (12) is true with the residuals defined by (24)

1However, in 1D it is very simple to show that the sign condition is true, let us ignore this fact however.
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Proof. We need to check (12). On the elements K, we get:

∑
σ∈K

uσ

(
ΦH,K

σ + θKhK

∫
K

(∇f(uh)∇uh
)
N
(∇f(uh)∇uh

))

=

∫
∂K

gn +
∑
σ

γK
σ (uσ − uσ1)

∫
K

div f(uh)

+ θKhK

∫
K

(∇f(uh)∇uh
)
N
(∇f(uh)∇uh

))
(26)

=

∫
∂K

gn +

(∑
σ∈K

γK
σ (uσ − uσ1)

)∫
K

∇uf(u
h) · ∇uh

+ θhK

∫
K

(∇f(uh) · uh
)2

N.

We see that the second term of the last line can be written as :

(
uσ2 − uσ1 , . . . , uσnK

− uσ1

)(
M + θKQ

)
⎛
⎜⎝

uσ2
− uσ1

...
uσnK

− uσ1

⎞
⎟⎠

with
EK = Mσσ′ = γK

σ

∫
K

∇uf(u
h) · ∇ϕσ′

and
Qσσ′ = hK

∫
K

(∇uf(u
h)∇ϕσ)N(∇uf(u

h)∇ϕσ′).

The matrix Q is positive, kerQ ⊂ kerM . Since N is constant, we see that

(
uσ2 − uσ1 , . . . , uσnK

− uσ1

)
M

⎛
⎜⎝

uσ1 − uσ1

...
uσnK

− uσ1

⎞
⎟⎠

≥−
√
|K|hK

√∑
σ

(γK
σ )2 max

K
||∇uh||

√∫
K

(∇uf(uh) · ∇uh)2.

Since Pr(K) is finite dimensional, there exists C2,∞ which depends only on r such that

√
|K|max

K
||∇uh|| ≤ C2,∞

√∫
K

(∇uh)2

so that

EK ≥− hKC2,∞

√∑
σ

(γK
σ )2

√∫
K

(∇uh)2

√∫
K

(∇uf(uh) · ∇uh)2

+ hKθN

∫
K

(∇uf(u
h) · ∇uh)2.
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The last thing to show is the existence of Cr > 0 such that
√∫

K
(∇uf(uh) · ∇uh)2 ≥

C
√∫

K
(∇uh)2 on Pr(K). Since Pr(K) = kerQ

⊕
H where the two spaces are orthogonal

with respect to the scalar product2 a(u, v) =
∫
K
∇u · ∇v, and because the space are finite

dimensional, there exists C > 0 such that

∀u ∈ Uh,

∫
K
(∇uf(u

h) · ∇uh)2∫
K
(∇uh)2

≥ Cr > 0.

Connecting all the pieces together, since βK
σ ∈ [0, 1].

∑∑
σ(γ

K
σ )2 ≤ nK , we see that

θ ≥ Cr

C2,∞
guaranties the entropy inequality.

On the boundary element, if one takes and E-flux, the inequality is also valid.

Remark 3.3. In practical simulations, θ = 1
nK

is fine.

4. A variational formulation for RD schemes

Though described only by discrete formula, it is possible to identify the mapping χ in (5).
Using the same technique, we see that

ΦK
σ =βK

σ

∫
K

div f(uh) + θhK

∫
K

(∇uf(u
h)∇ϕσ

)
N
(∇uf(u

h)∇uh
)

=

∫
K

χuh(ϕσ) div f(uh),

with

χuh(vh) =
∑
σ∈K

(
βK
σ vσ + θhK

(∇uf(u
h)∇ϕσ

)
N

)
. (27)

5. Numerical examples

In this section, we illustrate the behavior of the method on two examples: a linear transport
problem and a non linear one. In Ω = [0, 1]2, we consider

�λ = (y,−x)T and u(x, y) = ϕ0(x) if y = 0 (28)

with the boundary conditions

ϕ0(x) =

{
cos2(2πx) if x ∈ [ 14 ,

3
4 ]

0 else

The isolines of the exact solution are circles of center (0, 0). The form of the Burgers equa-
tion is the following:

∂u

∂y
+

1

2

∂u2

∂x
= 0 if x ∈ [0, 1]2

u(x, y) = 1.5− 2x on the inflow boundary.
(29a)

2if we remove the subspace of constant polynomial, which is included in kerQ, this becomes a scalar product,
thus sum is direct andH depends intrinsically on kerQ.
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The exact solution consists in a fan that merges into a shock which foot is located at (x, y) =
(3/4, 1/2). More precisely, the exact solution is

u(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

if y ≥ 0.5

{ −0.5 if − 2(x − 3/4) + (y − 1/2) ≥ 0
1.5 else

else max

(
− 0.5,min

(
1.5,

x − 3/4

y − 1/2

)) (29b)

Figure 2. Mesh for the numerical experiments.

The mesh displayed on figure 2 is used to obtain the solutions shown on figure 3 and 4.
We see, on figure 3-(a) that without the streamline term in (24), the solution looks very

wiggly. Again, it is not an instability, only a manifestation of spurious modes that are com-
pletely eliminated using (24). If one makes a convergence study on this problem using P

1,
P
2 and P3 elements, we recover the expected order of convergence.

h εL2(P1) εL2(P2) εL2(P3)

1/25 0.50493E-02 0.32612E-04 0.12071E-05
1/50 0.14684E-02 0.48741E-05 0.90642E-07
1/75 0.74684E-03 0.13334E-05 0.16245E-07
1/100 0.41019E-03 0.66019E-06 0.53860E-08

Ols
L2 =1.790 Ols

L2 =2.848 Ols
L2 =3.920

Table 1. Order of accuracy on refined mesh constructed from the mesh of figure 2, L2 norm. The
slopes are obtained by least square

Strictly speaking, the streamline in (24) destroys the maximum preserving nature of the
scheme: the operator defined by (24) is not, a priori, of the type (18) with positive coeffi-
cients. We have not been able, so far, to analyze in full detail the scheme from this point
of view, but all the numerical experiments that we have done so far, including with system
case, indicate that the streamline term (24) acts as a filter, and does not spoil the monotonic-
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ity preserving properties. Actually, this property is violated, but the over- and undershoot
are negligible, as what occurs for the ENO and WENO schemes.

(a):without streamline term in (24) (b): with the streamline term in (24)

Figure 3. Solution of (28) with (22) and (24), P2 elements

P
1

P
2

Figure 4. Solution of (29) with (24)
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6. Flux formulation of Residual Distribution schemes

In this section we show that the scheme (7) also admits a flux formulation, with an explicit
form of the flux. Hence the method is also locally conservative. This is well known for
the Finite Volume and Discontinuous Galerkin approximation, much less understood for the
RDS and continuous finite elements, despite the paper [12].

Let us consider any common edge or face Γ of K+ and K−, two elements. Let n be the
normal to Γ, see Figure 5. A flux f̂(S+, S−,n) between K+ and K− has to satisfy

K+

K−

n

Figure 5.

F (S+, S−,n) = −F (S−, S+,n). (30a)

and the consistency condition

F (S, S,n) = f(S) · n. (30b)

In (30a), the symbols S± represent set of states, where S+ is associated to K+ and S−

to K−. For a first order finite volume scheme, we have S+ = uK+
and S− = uK− , the

average values of u in K+ and K−. For the other schemes the definition is more involved.
The aim of this section is to define f̂ and S± in the RDS case.

We briefly recall finite volume schemes. Then we show that RDS can be interpreted as
finite volume schemes. To make the exposure easier, we assume that d = 2 and that the
tessellation is conformal, made of triangles. This is not essential as the analysis shows it.

6.1. Analysis.

6.1.1. A recap on Finite volume methods. We denote the list of edges/faces of the ele-
ments of K by G. Considering a numerical flux f̂ , and a cell K, the formulation is∫

∂K

f(u) · n ≈
∑
Γ∈G

f̂(u+,u−,nΓ)

so that an approximation of (1) is

|K|u
n+1
K − un

K

Δt
+
∑
Γ∈G

F (u+,u−,n) +
∑

Γ∈G,Γ⊂∂Ω+

F (u+,g,n) = 0 (31a)
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and initial conditions

u0
K =

∫
K

u0(x)dx

|K| . (31b)

In (31a), we have specialized for the MUSCL method however this is not essential. We have
chosen a simple Euler forward time stepping, more accurate solutions can be obtained using
the method of lines, for example by using SSP Runge Kutta approximations [10]. More
details can be found in [9, 15].

6.1.2. Finite volume as Residual distribution schemes. Here, we rephrase [1]. The nota-
tions are defined in Figure 6. Again, we specialize ourself to the case of triangular elements,

1 I

J
K

G

�n12

�n31

�n23

K

2

3

σ ≡ 1
K

2

3

Figure 6. Notations for the finite volume schemes. On the left: definition of the control volume for the
degree of freedom σ. The vertex σ plays the role of the vertex 1 on the left picture, etc for the triangle
K.

but clearly exactly the same arguments can be given for more general elements, provided a
conformal approximation space of the type Uh can be constructed. This is clearly the case
for triangle elements, and we can take p = 1.

The control volume in this case are defined as the median cell, see figure 6. We concen-
trate on the div f approximation. Since the boundary of C is a closed polygon, we have∑

γ⊂∂C

nγ = 0

where γ is any of the segment included in ∂C, such as IG on Figure 6. Hence∑
γ⊂∂C

f̂(u+
σ u−,nγ) =

∑
γ⊂∂C

f̂(u+
σ u−,nγ)−

( ∑
γ⊂∂C

nγ

)
· f(uh(σ))

=
∑

K,σ∈K

∑
internal boundaries around σ

(
f̂(u+

σ u−,nγ)− f(uh(σ)) · nγ

)
To make things explicit, inK, the internal boundaries are IG, JG andKG, and those around
σ ≡ 1 are IG and KG. We set

ΦK
σ =

∑
internal boundaries around σ

(
f̂(u+

σ u−,nγ)− f(uh(σ)) · nγ

)
. (32)
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If now we sum up these three quantities and get:

∑
σ∈K

ΦK
σ =

(
f̂(u+

1 , u+
2 ,n12)− f̂(u+

1 , u+
3 ,n13)− f(u1) · n12 + f(u1) · n31

)

+

(
f̂(u+

2 , u+
3 ,n23)− f̂(u+

2 , u+
1 ,n12) + f(u2) · n12 − f(u2) · n23

)

+

(
− f̂(u+

3 , u+
2 ,n23) + f̂(u+

3 , u+
1 ,n31)− f(u3) · n23 + f(u3) · n31

)
= f(u1) ·

(
n12 − n31

)
+ f(u2) ·

(− n23 + n31

)
+ f(u3) ·

(
n31 − n23

)
= f(u1) · n1

2
+ f(u2) · n2

2
+ f(u3) · n3

2

where nj is the scaled inward normal of the edge opposite to vertex σj , i.e. twice the
gradient of the P

1 basis function ϕσj
associated to this degree of freedom. Thus, we can

reinterpret the sum as the boundary integral of the Lagrange interpolant of the flux. The
finite volume scheme is then a residual distribution scheme with residual defined by (32) and
a total residual defined by

ΦK :=

∫
∂K

fh · n, fh =
∑
σ∈K

f(uσ)ϕσ. (33)

6.1.3. Residual distribution schemes as finite volume schemes.. Let K be a fixed trian-
gle. We are given a set of residues {ΦK

σ }σ∈K , our aim here is to define a flux function such
that relations similar to (32) hold true. We show the method for P1 and P2 interpolant, more
general cases can easily be handled in the same way.

Warm up: The P
1 case. Let us begin with the P

1 case: the degrees of freedom are the
vertexes of K, and we consider a linear interpolation in K. The flux across ID in the
direction n12 is denoted by f̂n12 and the flux across IG in the direction −n12 is f̂−n12 =

−f̂n12
by definition. Using similar notations, we must satisfy

Φ1 = f̂n12
− f̂n31

− f(u1) · n1

2

Φ2 = −f̂n12 + f̂n23 − f(u2) · n2

2

Φ3 = −f̂n23
+ f̂n31

− f(u3) · n3

2

(34)

Clearly, there is a compatibility relation:

ΦK =
∑
σ

f(uσ) · ∇ϕσ. (35)

We can rewrite (34) as a linear system:

⎛
⎝Φ1 + f(u1) · n1

2
Φ2 + f(u2) · n2

2
Φ3 + f(u3) · n3

2

⎞
⎠ =

⎛
⎝ 1 −1 0
−1 0 1
0 1 −1

⎞
⎠
⎛
⎝f̂n12

f̂n31

f̂n23

⎞
⎠ := A

⎛
⎝f̂n12

f̂n31

f̂n23

⎞
⎠
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The matrix A is not invertible but has rank 2. Since (35) is true, there exists one solution at
least. We can find easily one sample solution.

Let us first set f̂n31 = 0. Then we get

f̂n12 = Φ1 + f(u1) · n1

2

f̂n23 = Φ1 +Φ2 + f(u2) · n2

2 + f(u1) · n1

2

f̂n31 = 0

Thanks to (35), this can be rewritten as

f̂n12
= Φ1 + f(u1) · n1

2

f̂n23 = −Φ3 − f(u3) · n3

2

f̂n31 = 0

Then we set f̂n12 = 0, thus

f̂n12
= 0

f̂n23 = Φ2 + f(u2) · n2

2

f̂n31 = −Φ1 + f(u1) · n1

2 .

Last, we set f̂n23 = 0 and get

f̂n12
= −Φ2 − f(u2) · n2

2

f̂n23 = 0

f̂n31 = Φ3 + f(u3) · n3

2

To have a symmetric formulation, it is enough to take the average,

f̂n12 =
Φ1 − Φ2

3
+

1

6

(
f(u1) · n1 − f(u2) · n2

)

f̂n23 = −Φ2 − Φ3

3
+

1

6

(
f(u2) · n2 − f(u3) · n3

)

f̂n31 =
Φ3 − Φ1

3
+

1

6

(
f(u3) · n3 − f(u1) · n2

)

or, by introducing Ψi = Φi − f(ui) · ni

2 ,

f̂n12
=

1

3

(
Ψ1 −Ψ2

)
, f̂n23

=
1

3

(
Ψ2 −Ψ3

)
, f̂n31

=
1

3

(
Ψ3 −Ψ1

)
. (36)

Let us check the consistency of the flux. We first have to adapt the notion of consistency.
As recalled in the Introduction, two of the key arguments in the proof of the Lax-Wendroff
theorem are related to the structure of the flux, for classical finite volume schemes. In [6],
the proof is adapted to the case of Residual Distribution schemes. The property that stands
for the consistency is that if in an element, all the states are identical, then the residuals are
all vanishing. Hence, we will say that

Definition 6.1. A multidimensional flux

f̂ := f̂(u1, . . . ,un,n)
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is consistent if, when u1 = u2 = . . . = un = u then

f̂(u, . . . ,u,n) = f(u) · n.

Let us show that the flux (36) are consistent in that sense. If the three states are equal to
u, then we have

f̂n12 =
1

6
f(u) ·

(
n1 − n2

)
, f̂n23 =

1

6
f(u) ·

(
n2 + n3

)
, f̂n31 =

1

6
f(u) ·

(
n3 − n2

)

By symmetry, we only consider the first relation. Using the notations of the figure 6, we see
that n1−n2 is the normal of �BC− �CA = �BC+ �AC. SinceG is the centroid of the triangle,
we see that �GC = ( �AC + �BC)/3, and thus we get

f̂n12 = f(u) · n12.

This ends the proof.
We can state a couple of general remarks:

1. In general, the residuals depends on more than 2 arguments. For stabilized finite
element methods, or the non linear stable residual distribution schemes, see e.g. [5,
12, 19], the residuals depends on the three states of K. Thus the formula (36) shows
that the flux on more than two states in contrast to the 1D case. In the Finite volume
case however, the support of the flux function is generally larger than the three states
of K, think for example of an ENO/WENO method, of a simpler MUSCL one.

2. The formula (36) are influenced by the form of the total residual (33). We show in the
next paragraph how this can be generalized.

3. We have set at the beginning that f̂nij
= −f̂−nij

. The formula (36) are antisymmetric
with respect to the indices, and then do respect the assumed equality.

The example of the P
2 approximation and the more general case. We consider the set-

up defined by Figure 7. The triangle is splitted first into 4 sub-triangles K1, K2, K3 and
K4. From this sub-triangulation, we can construct a dual mesh as in the P

1 case and we
have represented the 6 sub-zones that are the intersection of the dual control volumes and
the triangle K. Our notations are as follow: given any sub-triangle Kξ, if γij is intersection
between two adjacent control volumes (associated to σi and σj vertices of Kξ), the normal
to γij in the direction σi to σj is denoted by n

ξ
ij . Similarly the flux across γij is denoted f̂

ξ
ij .

Following the same method as in the P1 case, we set:

Φ1 = f̂114 − f̂161 +
∫
∂C1∩K f(uh) · n

Φ2 = −f̂242 + f̂225 +
∫
∂C2∩K f(uh) · n

Φ3 = −f̂353 + f̂336 +
∫
∂C3∩K f(uh) · n

Φ4 = −f̂114 +
(
f̂146 − f̂464

)
+
(
f̂445 − f̂254

)
+ f̂242 +

∫
∂C4∩K f(uh) · n

Φ5 = −f̂225 +
(
f̂254 − f̂445

)
+
(
f̂456 − f̂365

)
+ f̂353 +

∫
∂C5∩K f(uh) · n

Φ6 = −f̂336 +
(
f̂365 − f̂456

)
+
(
f̂464 − f̂146

)
+ f̂161 +

∫
∂C6∩K f(uh) · n.

(37)

We can group the terms in (37) by sub-triangles, namely:
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1
2

3

4

5
6

K1

K2

K3

K4

�nK1
61

�nK1
14

�nK1
46

I14 I24

I25

I35I36

I16

I46

I45

I56

Figure 7. Geometrical elements for the P2 case.

Φ1 =

(
f̂114 − f̂161 +

∫
∂C1∩K1

f(uh) · n
)

Φ2 =

(
− f̂242 + f̂225 +

∫
∂C2∩K2

f(uh) · n
)

Φ3 =

(
− f̂353 + f̂336 +

∫
∂C3∩K3

f(uh) · n
)

Φ4 =

(
− f̂114 + f̂146 +

∫
∂C4∩K1

f(uh) · n
)

+

(
− f̂464 + f̂445 +

∫
∂C4∩K4

f(uh) · n
)

(38)

Φ5 =

(
− f̂225 + f̂254 +

∫
∂C5∩K2

f(uh) · n
)

+

(
− f̂445 + f̂456 +

∫
∂C5∩K4

f(uh) · n
)

+

(
− f̂365 + f̂353 +

∫
∂C5∩K3

f(uh) · n
)

Φ6 =

(
− f̂336 + f̂365 +

∫
∂C6∩K3

f(uh) · n
)

+

(
− f̂456 + f̂464 +

∫
∂C6∩K4

f(uh) · n
)

+

(
− f̂146 + f̂161 +

∫
∂C6∩K1

f(uh) · n
)
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where we have used:∫
∂C4∩K

f(uh) · n =

∫
∂C4∩K1

f(uh) · n+

∫
∂C4∩K4

f(uh) · n+

∫
∂C4∩K2

f(uh) · n∫
∂C5∩K

f(uh) · n =

∫
∂C5∩K2

f(uh) · n+

∫
∂C5∩K4

f(uh) · n+

∫
∂C5∩K3

f(uh) · n∫
∂C6∩K6

f(uh) · n =

∫
∂C6∩K3

f(uh) · n+

∫
∂C6∩K4

f(uh) · n+

∫
∂C6∩K1

f(uh) · n

Then we define the sub-residuals per sub elements:

Φ1
1 = −f̂161 + f̂114 +

∫
∂C1∩K1

f(uh) · n, Φ2
4 = −f̂254 + f̂242 +

∫
∂C4∩K2

f(uh) · n

Φ1
4 = −f̂114 + f̂146 +

∫
∂C4∩K1

f(uh) · n, Φ2
2 = −f̂242 + f̂225 +

∫
∂C2∩K2

f(uh) · n

Φ1
6 = −f̂146 + f̂161 +

∫
∂C6∩K1

f(uh) · n, Φ2
5 = −f̂225 + f̂254 +

∫
∂C5∩K2

f(uh) · n

Φ3
5 = −f̂365 + f̂353 +

∫
∂C5∩K3

f(uh) · n, Φ4
4 = −f̂464 + f̂445 +

∫
∂C4∩K4

f(uh) · n

Φ3
3 = −f̂336 + f̂365 +

∫
∂C6∩K3

f(uh) · n, Φ4
5 = −f̂445 + f̂456 +

∫
∂C5∩K4

f(uh) · n

Φ3
6 = −f̂336 + f̂365 +

∫
∂C6∩K3

f(uh) · n, Φ4
6 = −f̂456 + f̂464 +

∫
∂C6∩K4

f(uh) · n.

(39)

Clearly,

Φ1
1 +Φ1

4 +Φ1
6 =

∫
∂K1

f(uh) · n, Φ2
4 +Φ2

2 +Φ2
5 =

∫
∂K2

f(uh) · n

Φ3
5 +Φ3

3 +Φ3
6 =

∫
∂K3

f(uh) · n, Φ4
4 +Φ4

5 +Φ4
6 =

∫
∂K4

f(uh) · n
(40)

so we are back to the P1 case: in each sub-triangle, we can define flux that will depend on
the 6 states of the element via the boundary flux. This is legitimate because in the P1 case,
we have not used the fact that the interpolation is linear, we have only used the fact that we
have 3 vertices. Clearly the flux are consistent in the sense of definition 6.1.

The same argument can be clearly extended to higher degree element, as well as to non
triangular element: what is needed is to subdivide the element into sub-triangles.
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Spline differential forms

Annalisa Buffa

Abstract. We introduce spline discretization of differential forms and study their properties. We
analyse their geometric and topological structure, as related to the connectivity of the underlying mesh,
we present degrees of freedom and we construct commuting projection operators, with optimal stability
and approximation properties.
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1. Introduction

This paper is a review of the work I have done mainly in collaboration with G. Sangalli and
R. Vázquez on the definition and study of the spline approximation of differential forms, with
the aim of writing spline-based numerical techniques for the solution of partial differential
equations whose unknowns can be interpreted as differential forms. In this presentation I
follow four main contributions of ours: [1–3] and the recent review paper [4].

The idea of using splines as basic tool for the discretization of partial differential equa-
tions traces back to the seventies but spline based methods never really became a standard
practice due to several reasons: from the difficulty in setting boundary conditions, to the
limitations imposed by their tensor product structure. Only in 2005, spline-based methods,
together with the isoparametric paradigm, have been promoted in the mechanical engineer-
ing community under the name of isogeometric analysis, by T.J.R. Hughes and coauthors
in the seminal paper [5] (see also the book [6]). Since then, spline-based (or isogeometric)
methods have attracted a growing attention from the academic community.

The main challenge the authors of [5] wanted to address is to improve the interoperabil-
ity between computer aided design systems (CAD) and partial differential equation (PDE)
solvers and, for this reason, they have proposed to use CAD mathematical primitives, i.e.
splines and NURBS ([7]), also to represent PDE unknowns. As unexpected consequence, it
has been understood that the use of spline functions (or their generalizations), together with
isoparametric concepts, results in an extremely successful idea and paves the way to many
new numerical schemes enjoying features that would be extremely hard to achieve within a
standard finite element framework.

In this paper, we focus our attention on the construction of the so-called spline complex,
i.e., spline approximation spaces for the De Rham diagram. In the finite element context, the
construction of discrete De Rham complexes has been object of intense study and its various
aspects have been object of three review papers: for computational electromagnetics [8], for

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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finite element exterior calculus [9] and for eigenvalue problems [10]. It should be mentioned
finite element exterior calculus was initiated in the seminal ICM paper [11].

Along this paper, we will work in three space dimensions however the constructions and
results apply to any space dimensions with simple changes. The reason for this choice is to
adopt the language of vector fields which may be closer to the finite element language than
the language of differential forms.

In Section 2, we recall the main definition and we set our notation for spline spaces
and projections. In Section 3 we briefly recall the De Rham diagram in a simple setting,
in Section 4 we construct a subcomplex with spline spaces on the parametric domain Ω̂ =
(0, 1)3. This is called the spline complex. We also construct commuting projectors and study
the approximation properties that are obtained following the lines of [4].

Finally, we construct the spline complex on a general domain Ω that is supposed to be
a union of several “patches” (i.e., spline mappings of the parametric domain), and analyse
their approximation properties. This is the object of Section 5 and 6. Finally, we discuss our
conclusions in Section 7.

2. Basics on splines

2.1. Definition and properties of univariate B-splines. Given two positive integers p and
n, we say that Ξ := {ξ1, . . . , ξn+p+1} is a p-open knot vector if

ξ1 = . . . = ξp+1 < ξp+2 ≤ . . . ≤ ξn < ξn+1 = . . . = ξn+p+1,

where repeated knots are allowed. Without loss of generality, we assume in the following
that ξ1 = 0 and ξn+p+1 = 1.

We introduce also the vector Z = {ζ1, . . . , ζN} of knots without repetitions such that:

Ξ = {ζ1, . . . , ζ1︸ ︷︷ ︸
m1 times

, ζ2, . . . , ζ2︸ ︷︷ ︸
m2 times

, . . . , ζN , . . . , ζN︸ ︷︷ ︸
mN times

}, (2.1)

with
∑N

i=1 mi = n + p + 1, and mj ≤ p + 1 for all internal knots. Note that the points in
Z form a partition of the unit interval I = (0, 1), i.e., a mesh, and the local mesh size of the
element Ii = (ζi, ζi+1) is called hi = ζi+1 − ζi, for i = 1, . . . , N − 1.

From the knot vector Ξ, B-spline functions of degree p are defined following the well-
known Cox-DeBoor recursive formula: we start with piecewise constants (p = 0):

B̂i,0(ζ) =

{
1 if ξi ≤ ζ < ξi+1,
0 otherwise, (2.2)

and for p ≥ 1 the B-spline functions are defined by the recursion

B̂i,p(ζ) =
ζ − ξi

ξi+p − ξi
B̂i,p−1(ζ) +

ξi+p+1 − ζ

ξi+p+1 − ξi+1
B̂i+1,p−1(ζ), (2.3)

where it is here formally assumed that 0/0 = 0.
This gives a set of n B-splines that, among many other properties, are non-negative and

form a partition of unity. They also form a basis of the space of splines, that is, piecewise
polynomials of degree p with kj := p − mj continuous derivatives at the points ζj , for
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j = 1, . . . , N . Therefore, −1 ≤ kj ≤ p − 1, and the maximum multiplicity allowed,
mj = p + 1, gives kj = −1, which stands for a discontinuity at ζj .

We denote the univariate spline space spanned by the B-splines by

Sp(Ξ) = span{B̂i,p, i = 1, . . . , n}. (2.4)

Note that the definition of each B-spline B̂i,p depends only on p + 2 knots, which are
collected in the local knot vector Ξi,p := {ξi, . . . , ξi+p+1} and, clearly supp(B̂i,p) =
[ξi, ξi+p+1]. Moreover, given an interval Ij = (ζj , ζj+1) of the partition, which can also be
written as (ξi, ξi+1) for a certain (unique) i, we associate the support extension Ĩj defined as

Ĩj := (ξi−p, ξi+p+1), (2.5)

that is the interior of the union of the supports of basis functions whose support intersects Ij .
For the refinement of spline spaces, we call h− refinement the insertion of new knots

(see e.g., [12]), p-refinement the increase on the degree p while keeping the inter-regularity
fixed, and k-refinement the one obtained by applying the Cox-DeBoor formula. Clearly both
h and p refinement generates a sequence of embedded spaces and we say, in general, that
Sp(Ξ) is a refinement of Sp0(Ξ0) if

Sp0(Ξ0) ⊂ Sp(Ξ). (2.6)

Assuming the maximum multiplicity of the internal knots is less than or equal to the
degree p, i.e., the B-spline functions are at least continuous, the derivative of each B-spline
B̂i,p is given by the expression

dB̂i,p

dζ
(ζ) =

p

ξi+p − ξi
B̂i,p−1(ζ)− p

ξi+p+1 − ξi+1
B̂i+1,p−1(ζ). (2.7)

where we have assumed that B̂1,p−1(ζ) = B̂n+1,p−1(ζ) = 0. In fact, the derivative belongs
to the spline space Sp−1(Ξ

′), where Ξ′ = {ξ2, . . . , ξn+p} is a (p − 1)-open knot vector.

Moreover, it is easy to see that
d

dζ
: Sp(Ξ) → Sp−1(Ξ

′) is a surjective application. For

later use, we define the so called Curry-Schoenberg spline basis (see e.g., [13, Ch. IX]), as
follows

D̂i,p−1(ζ) =
p

ξi+p+1 − ξi+1
B̂i+1,p−1(ζ), for i = 1, . . . , n − 1.

The indices for the new basis have been shifted in order to start numbering from 1. Then
formula (2.7) becomes

dB̂i,p

dζ
(ζ) = D̂i−1,p−1(ζ)− D̂i,p−1(ζ), (2.8)

where, again, we adopt the convention D̂0,p−1 = D̂n,p−1 = 0.
We end this section, recalling the concept of Greville sites. For each B-spline basis

function B̂j,p, we associate a Greville site, also called knot average:

γj,p =
ξj+1 + . . . + ξj+p

p
, j = 1, . . . , n. (2.9)
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Greville sites are the coefficients of the identity in the expansion in B-spline basis, i.e.

ζ =
n∑

j=1

γj,p B̂j,p(ζ). (2.10)

Clearly, the Greville abscissa γj,p depends only upon the local knot vector Ξj,p. When
needed, we will adopt the notation γj,p = γ[Ξj,p]. It is immediate to see that, when the
multiplicity of the internal knots is mj ≤ p, for j = 2, . . . , n − 1, the Greville points γj,p
are all distinct and form a partition of the interval [0, 1], which we call Greville mesh.

2.2. Projections and quasi-interpolation operators. In this section we introduce interpo-
lation and projection operators onto the space of splines Sp(Ξ). There are several ways to
define projections for splines, and here we only describe the ones that will be needed in the
sequel of the paper.

In the present contribution we will often make use of the following local quasi-uniformity
condition on the knot vector, that is a classical assumption in the mathematical isogeometric
literature.

Assumption 2.1. The partition defined by the knots ζ1, ζ2, . . . , ζN is locally quasi-uniform,
that is, there exists a constant θ ≥ 1 such that the mesh sizes hi = ζi+1 − ζi satisfy the
relation θ−1 ≤ hi/hi+1 ≤ θ, for i = 1, . . . , N − 2.

Since splines are not in general interpolatory, a common way to define projections is by
defining a dual basis, i.e,

Πp,Ξ : C∞([0, 1]) → Sp(Ξ), Πp,Ξ(f) =

n∑
j=1

λj,p(f)B̂j,p, (2.11)

where λj,p are a set of dual functionals verifying

λj,p(B̂k,p) = δjk, (2.12)

δjk being the standard Kronecker symbol. It is trivial to prove that, thanks to this property,
the quasi-interpolant Πp,Ξ preserves splines, that is

Πp,Ξ(f) = f, ∀f ∈ Sp(Ξ). (2.13)

Following [12, Theorem 4.37], and [14], it holds the following.

Proposition 2.2. There exists a choice of {λj,p}j=1..n such that, for any non empty knot
span Ii = (ζi, ζi+1) it holds

‖Πp,Ξ(f)‖L2(Ii) ≤ C‖f‖L2(Ĩi)
, (2.14)

where the constant C depends only upon the degree p, and Ĩi is the support extension defined
in (2.5). Moreover, if Assumption 2.1 holds, we also have

|Πp,Ξ(f)|H1(Ii) ≤ C|f |H1(Ĩi)
, (2.15)

with the constant C depending only on p and θ, and where H1 denotes the Sobolev space of
order one, endowed with the standard norm and seminorm.
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The proof can be found in [4].
The operator Πp,Ξ can be modified in order to match boundary conditions. We can

define, for all f ∈ C∞([0, 1]):

Π̃p,Ξ(f) =

n∑
j=1

λ̃j,p(f)B̂j,p with

λ̃1,p(f) = f(0) , λ̃n,p(f) = f(1) , λ̃j,p(f) = λj,p(f), j = 2, . . . , n − 1.

(2.16)

Clearly, the L2 stability stated for Πp,Ξ cannot be valid for Π̃p,Ξ, but a similar result
holds.

Proposition 2.3. For any non empty knot span Ii = (ζi, ζi+1) it holds

‖Π̃p,Ξ(f)‖L2(Ii) ≤ C
(‖f‖L2(Ĩi)

+ h̃i|f |H1(Ĩi)

)
(2.17)

where the constant C depends upon the degree p, and Ĩi is the support extension defined
in (2.5), and h̃i its length. Moreover, if Assumption 2.1 holds, we also have

|Π̃p,Ξ(f)|H1(Ii) ≤ C‖f‖H1(Ĩi)
(2.18)

with the constant C depending only on p, θ and where the space H1 was already introduced
in the previous proposition.

For the proof of this statement, we defer the reader to [4].
We end this section with the construction of another quasi-interpolant that will be use-

ful later on, and concerns the construction of commuting projectors. In particular, given a
projector Πp,Ξ constructed as above, we define

Πc
p−1,Ξ′g (ζ) :=

d

dζ
Πp,Ξ

∫ ζ

0

g(s) ds, (2.19)

for all functions g such that f(ζ) =
∫ ζ
0

g(s) ds is in the domain of definition of Πp,Ξ. The
index c stands for commuting and it is indeed trivial to see that

Πc
p−1,Ξ′

d

dζ
f =

d

dζ
Πp,Ξf (2.20)

for all f in the domain of definition of Πp,Ξ. Moreover, and as a consequence of the spline
preserving property (2.13), it is also immediate to prove that Πc

p−1,Ξ′ preserves B-splines,
that is

Πc
p−1,Ξ′g = g ∀g ∈ Sp−1(Ξ

′). (2.21)

Thus, we have the following commuting diagram

R −−−−→ H1(0, 1)
d
dζ−−−−→ L2(0, 1) −−−−→ 0

Πp,Ξ

⏐⏐W Πc
p−1,Ξ′

⏐⏐W
R −−−−→ Sp(Ξ)

d
dζ−−−−→ Sp−1(Ξ

′) −−−−→ 0.

(2.22)

We prove the following proposition.
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Proposition 2.4. Let g ∈ L2(0, 1), and let the projector Πp,Ξ be defined as in (2.11), that
is, Πp,Ξf(ζ) =

∑n
i=1 λi,p(f)B̂i,p(ζ) for any f ∈ L2(0, 1). Then it holds:

Πc
p−1,Ξ′g(ζ) =

n−1∑
j=1

λc
j,p−1(g)D̂j,p−1(ζ),

with

λc
j,p−1(g) = λj+1,p

(∫ ζ

ξj

g(s)ds

)
− λj,p

(∫ ζ

ξj

g(s)ds

)
. (2.23)

Moreover, if Assumption 2.1 is satisfied, then for all Ii = (ζi, ζi+1), it holds:

‖Πc
p−1,Ξ′g‖L2(Ii) ≤ C‖g‖L2(Ĩi)

, (2.24)

where Ĩi is the support extension of Ii defined in (2.5).

Proof. Let f(ζ) :=
∫ ζ
0

g(s)ds. By definition of Πc
p−1,Ξ′ and Πp,Ξ, and then using the

expression for the derivative (2.8), we have

Πc
p−1,Ξ′g(ζ) =

d

dζ
Πp,Ξf(ζ) =

d

dζ

n∑
i=1

λi,p(f)B̂i,p(ζ) =

n∑
i=1

λi,p(f)(D̂i−1,p(ζ)−D̂i,p(ζ)),

and recalling the convention D̂0,p(ζ) = D̂n,p(ζ) = 0, we obtain

Πc
p−1,Ξ′g(ζ) =

n−1∑
j=1

(λj+1,p(f)− λj,p(f)) D̂j,p−1(ζ).

Due to the linearity of the functionals λj,p, we have, for any given ζ∗ ∈ R

λj,p(f) = λj,p

(∫ ζ∗

0

g(s)ds

)
+ λj,p

(∫ ζ

ζ∗
g(s)ds

)
,

and noting that the term
∫ ξj
0

g(s)ds is a constant, thanks to the partition of unity of the
B-spline functions B̂i,p it holds

λj+1,p

(∫ ξj

0

g(s)ds

)
= λj,p

(∫ ξj

0

g(s)ds

)
.

Combining the last three equations, we obtain (2.23).
To prove (2.24), we use again the definition of Πc

p−1,Ξ′ , and then the stability of the
projector Πp,Ξ from (2.15), to get

‖Πc
p−1,Ξ′g‖L2(Ii) = |Πp,Ξf |H1(Ii) ≤ C|f |H1(Ĩi)

= C‖g‖L2(Ĩi)
,

and the result is proved.
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Remark 2.5. The same construction can be repeated replacing Πp,Ξ with Π̃p,Ξ in the defi-
nition of Πc

p−1,Ξ′ , and we set:

Π̃c
p−1,Ξ′g (ζ) :=

d

dζ
Π̃p,Ξ

∫ ζ

0

g(s) ds. (2.25)

The operator Π̃c
p−1,Ξ′ enjoys the same properties as Πc

p−1,Ξ′ , i.e., the Proposition 2.4 holds
verbatim also for Π̃c

p−1,Ξ′ .

Remark 2.6. Notice that the definition of the dual functional λc
j,p−1 depends on the local

knot vectors Ξj,p and Ξj+1,p, and therefore it goes beyond the support of D̂j,p−1. Moreover,
in the estimate (2.24), the support extension Ĩi is defined for degree p, not p− 1. This means
that the projector Πc

p−1,Ξ′ looses some locality with respect to Πp−1,Ξ′ , which would be the
quasi-interpolant defined in [12, Section 4.6]. This is the “price to pay” in order to obtain
the commuting diagram.

2.3. Multivariate splines: tensorization. Multivariate B-splines are defined from univari-
ate B-splines by simple tensorization. In this section, we basically set our notation for func-
tion spaces, basis functions and indices. Since tensorization argument is quite standard, we
proceed without many details and we refer the reader to [12] and [13], or to the book [6].

Let d be the space dimension (in practical cases, d = 2, 3). Assume n
 ∈ N, the
degree p
 ∈ N and the p
-open knot vector Ξ
 = {ξ
,1, . . . , ξ
,n�+p�+1} are given, for
� = 1, . . . , d. We set the polynomial degree vector p = (p1, . . . , pd) andΞ = Ξ1× . . .×Ξd.
The corresponding knot values without repetitions are given for each direction � by Z
 =
{ζ
,1, . . . , ζ
,N�

}.
The knots Z
 form a Cartesian grid in the parametric domain Ω̂ = (0, 1)d, giving the

parametric Bézier mesh, which is denoted by M̂:

M̂ = {Qj = I1,j1 × . . . × Id,jd such that I
,j� = (ζ
,j� , ζ
,j�+1) for 1 ≤ j
 ≤ N
 − 1}.
(2.26)

For a generic Bézier elementQj ∈ M̂, we also define its support extension Q̃j = Ĩ1,j1×. . .×
Ĩd,jd , with Ĩ
,j� the univariate support extension given by (2.5). As in one space dimension,
here also we make the following assumption:

Assumption 2.7. Assumption 2.1 holds for each univariate partition , j = 1, . . . , d,

B-spline spaces are defined by tensor product. We first introduce the set of multi-indices
I = {i = (i1, . . . , id) : 1 ≤ i
 ≤ n
}, and for each multi-index i = (i1, . . . , id), we
introduce the of multivariate B-splines

Sp(Ξ) = Sp1,...,pd
(Ξ1, . . . ,Ξd) = span{B̂i1,p1

(ζ1) . . . B̂id,pd
(ζd) i ∈ I}. (2.27)

The Greville sites, as in the univariate case, are the coefficients of the identity in the
B-spline basis

ζ =
∑
i∈I

γi,pB̂i,p(ζ), ζ ∈ Ω̂ = (0, 1)d. (2.28)

and we denote by M̂G the Greville mesh obtained by joining the Greville points in a tensor
product mesh. Note that M̂G is the tensorization of the Greville mesh defined in the previous
section.
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Finally, projection operators can be defined by tensorization, but this fact will be dis-
cussed later on.

3. The De Rham complex

Let Ω be a Lipschitz domain in R
3, which we suppose for simplicity to be connected and

simply connected. L2(Ω) is the space of real valued, square integrable functions, and

H(curl; Ω) := {u ∈ L2(Ω)3 : curl u ∈ L2(Ω)3}
H(div; Ω) := {u ∈ L2(Ω)3 : div u ∈ L2(Ω)}.

On Ω, we define the spaces:

X0 := H1(Ω) , X1 := H(curl; Ω) , X2 := H(div; Ω) , X3 := L2(Ω) .

and it is well known that the sequence, known as De Rham diagram,

R −−−−→ X0 grad−−−−→ X1 curl−−−−→ X2 div−−−−→ X3 −−−−→ 0. (3.1)

is exact. When the domain Ω is indeed Ω = Ω̂ = (0, 1)d, then we will denote the corre-
sponding diagram as (X̂0, . . . , X̂3). Moreover, if there is a smoothF : Ω̂ → Ω, with smooth
inverse, then the pullbacks are defined (see [8, Sect. 2.2]):

ι0(f) := f ◦ F, f ∈ X0,
ι1(f) := (DF)T (f ◦ F), f ∈ X1,
ι2(f) := det(DF)(DF)−1(f ◦ F), f ∈ X2,
ι3(f) := det(DF)(f ◦ F), f ∈ X3,

(3.2)

where DF is the Jacobian matrix of the mapping F. Then, due to the curl and divergence
conserving properties of ι1 and ι2, respectively (see [15, Sect. 3.9], for instance), the follow-
ing commuting diagram commutes: (see [8, Sect. 2.2]):

R −−−−→ X̂0 ĝrad−−−−→ X̂1 ĉurl−−−−→ X̂2 d̂iv−−−−→ X̂3 −−−−→ 0

ι0

X⏐⏐ ι1

X⏐⏐ ι2

X⏐⏐ ι3

X⏐⏐
R −−−−→ X0 grad−−−−→ X1 curl−−−−→ X2 div−−−−→ X3 −−−−→ 0

(3.3)

where differential operators with a ·̂ stands for derivations in Ω̂.
Remark 3.1. There is an analogue of the sequence (3.1) involving spaces with boundary
conditions on a part of the boundary ΓC ⊂ ∂Ω. All the theory and construction developed
in this paper apply also to this case with minor changes.

4. The Spline complex on the parametric domain

This section is devoted to the construction of the De Rham diagram in the unit cube Ω̂ =
]0, 1[3.



Spline differential forms 735

First of all, using the expression for the derivative (2.7) in three dimensions, it is clear
that, e.g.,

∂

∂ζ1
: Sp1,p2,p3

(Ξ1,Ξ2,Ξ3) → Sp1−1,p2,p3
(Ξ′1,Ξ2,Ξ3)

where we remind that Ξ′1 is defined as the knot vector {ξ1,2, . . . , ξ1,n1+p1}.
Following the same rationale, we define the spaces on the parametric domain Ω̂:

X̂0
h := Sp1,p2,p3(Ξ1,Ξ2,Ξ3),

X̂1
h := Sp1−1,p2,p3(Ξ

′
1,Ξ2,Ξ3)× Sp1,p2−1,p3(Ξ1,Ξ

′
2,Ξ3)× Sp1,p2,p3−1(Ξ1,Ξ2,Ξ

′
3),

X̂2
h := Sp1,p2−1,p3−1(Ξ1,Ξ

′
2,Ξ

′
3)× Sp1−1,p2,p3−1(Ξ

′
1,Ξ2,Ξ

′
3)

× Sp1−1,p2−1,p3
(Ξ′1,Ξ

′
2,Ξ3),

X̂3
h := Sp1−1,p2−1,p3−1(Ξ

′
1,Ξ

′
2,Ξ

′
3).

(4.1)
In order for X̂1

h, X̂2
h and X̂3

h to be meaningful, we require 0 ≤ m
,i ≤ p
, for i =

2, . . . , N
 − 1 and � = 1, 2, 3. This means that the functions in X̂0
h are at least continuous.

Then, thanks to (2.7) it is easily seen that ĝrad (X̂0
h) ⊂ X̂1

h, and analogously, from the defi-
nition of the curl and the divergence operators we get ĉurl(X̂1

h) ⊂ X̂2
h, and d̂iv (X̂2

h) ⊂ X̂3
h.

Moreover, it is proved in [2] that the kernel of each operator is exactly the image of the pre-
ceding one. In other words, these spaces form an exact sequence:

R −−−−→ X̂0
h

ĝrad−−−−→ X̂1
h

ĉurl−−−−→ X̂2
h

d̂iv−−−−→ X̂3
h −−−−→ 0, (4.2)

that is, the first line of (3.3).

Remark 4.1. The spaces defined above do not have boundary conditions, but all what we
will present in this section can be extended with minor changes to spaces where homoge-
neous boundary conditions are applied to a set of faces Γ̂D of ∂Ω̂.

4.1. Choice of bases and topological structure. First of all, we define appropriate basis
for the spline spaces. Our choice will make evident that the topological structure of the
spline complex is closely related to the one of the Greville mesh M̂G for the space X̂0

h 1. Let
us start with a simple one-dimensional argument. Let us first remind the formula (2.8):

dB̂i,p

dζ
(ζ) = D̂i−1,p−1(ζ)− D̂i,p−1(ζ).

This means that on the segment [0, 1], if we choose {B̂i,p, i = 1, . . . , n} and {D̂i,p−1, i =
1, . . . , n − 1} as basis for Sp(Ξ) and Sp−1(Ξ

′), respectively, then the matrix representing
the derivative is the lower triangular, bidiagonal matrix which represents the vertex-to-edge
relation on the one-dimensional Greville mesh constructed from Ξ and p, i.e., with vertices
given by (2.9). This means that we are implicitly setting an association between the edges of
the Greville mesh and functions D̂i,p−1.

As in [16] and [1], inspired by this observation, we can choose the following set of basis
for the spaces in the spline complex:

X̂0
h = span

{
B̂i1,p1

(ζ1)B̂i2,p2
(ζ2)B̂i3,p3

(ζ3)with 1 ≤ i
 ≤ n
, � = 1, 2, 3
}

, (4.3)

1Note that the Greville mesh M̂G as defined in Section 2.3 is different for each space (and for each component)
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X̂1
h = span (I ∪ II ∪ III), with

I =
{
D̂i1,p1−1(ζ1)B̂i2,p2

(ζ2)B̂i3,p3
(ζ3)ê1 with

1 ≤ i1 ≤ n1 − 1, 1 ≤ i
 ≤ n
, � = 2, 3} ,

II =
{
B̂i1,p1(ζ1)D̂i2,p2−1(ζ2)B̂i3,p3(ζ3)ê2 with

1 ≤ i2 ≤ n2 − 1, 1 ≤ i
 ≤ n
, � = 1, 3} ,

III =
{
B̂i1,p1

(ζ1)B̂i2,p2
(ζ2)D̂i3,p3−1(ζ3)ê3 with

1 ≤ i3 ≤ n3 − 1, 1 ≤ i
 ≤ n
, � = 1, 2} ,

(4.4)

X̂2
h = span (I ∪ II ∪ III), with

I =
{
B̂i1,p1(ζ1)D̂i2,p2−1(ζ2)D̂i3,p3−1(ζ3)ê1 with

1 ≤ i1 ≤ n1, 1 ≤ i
 ≤ n
 − 1, � = 2, 3} ,

II =
{
D̂i1,p1−1(ζ1)B̂i2,p2(ζ2)D̂i3,p3−1(ζ3)ê2 with

1 ≤ i2 ≤ n2, 1 ≤ i
 ≤ n
 − 1, � = 1, 3} ,

III =
{
D̂i1,p1−1(ζ1)D̂i2,p2−1(ζ2)B̂i3,p3(ζ3)ê3 with

1 ≤ i3 ≤ n3, 1 ≤ i
 ≤ n
 − 1, � = 1, 2} ,

(4.5)

X̂3
h = span

{
D̂i1,p1−1(ζ1)D̂i2,p2−1(ζ2)D̂i3,p3−1(ζ3) with 1 ≤ i
 ≤ n
 − 1, � = 1, 2, 3

}
,

(4.6)

where {ê
}
=1,2,3 denote the canonical basis of R3. We remark that all basis functions
defined in (4.3)-(4.6) are non-negative.

Moreover, by using the formula (2.8) and a tensor product argument, we can analyse the
structure of the basis functions. For instance, we consider the set I in (4.4). By construction,
we have one of these functions per each edge of M̂G in the ζ1-direction, and these functions
are directed as the edges. Applying the same reasoning to the other set of basis functions in
(4.3-4.6), together with the structure of the matrices representing differential operators, we
have the following:

Proposition 4.2. With the choices (4.3-4.6), the matrices representing differential operators
ĝrad , ĉurl, and d̂iv are the incidence matrices of the tensor product mesh M̂G. Thus, the
spline complex (X̂0

h, X̂
1
h, X̂

2
h, X̂

3
h) is isomorphic to the co-chain complex associated with

mesh M̂G.

The previous proposition states that the spline complex has exactly the same structure
of the well known Whitney forms when defined on the tensor product mesh M̂G, see, e.g.
Section 3 in [8].

Remark 4.3. Let p = p1 = p2 = p3. If all knots are repeated p times, the formulae (4.4-
4.6) provide a canonical construction of basis for the standard finite element complex of
order p, see e.g., [9] on the partition M̂ counted without its repetition.
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Remark 4.4. It is also possible to study the relation between the complex (X̂0
h, . . . , X̂

3
h)

and the topological structure of the mesh M̂. This is done in the paper [1] and the following
interesting fact is true:

• when p is odd, the complex (X̂0
h, . . . , X̂

3
h) is isomorphic to the co-chain complex of

M̂, counted with its repetition,

• when p is even, the complex (X̂0
h, . . . , X̂

3
h) is isomorphic to the chain complex of M̂,

counted with its repetition. This fact has in principle a number of applications, as, for
example, to the preconditioning of integral equations [17].

4.2. Commuting projections. It is now necessary to define appropriate projectors into the
discrete spaces. This is done by using the definition of interpolants and quasi-interpolants
that we have given in Section 2.2. To alleviate notation, from this point we will not detail
the knot vector in the interpolant, that is, we will denote Πp ≡ Πp,Ξ and Πc

p−1 ≡ Πc
p−1,Ξ′ .

The choice of the interpolants follows from the definition of the spaces X̂0
h, . . . , X̂

3
h, and

precisely we set:

Π̂0 :=Πp1
⊗Πp2

⊗Πp3
, (4.7)

Π̂1 :=(Πc
p1−1 ⊗Πp2 ⊗Πp3)× (Πp1 ⊗Πc

p2−1 ⊗Πp3)× (Πp1 ⊗Πp2 ⊗Πc
p3−1), (4.8)

Π̂2 :=(Πp1
⊗Πc

p2−1 ⊗Πc
p3−1)× (4.9)

(Πc
p1−1 ⊗Πp2 ⊗Πc

p3−1)× (Πc
p1−1 ⊗Πc

p2−1 ⊗Πp3),

Π̂3 :=Πc
p1−1 ⊗Πc

p2−1 ⊗Πc
p3−1. (4.10)

Remark 4.5. It should be noted that if we replace Πp�
with Π̃p�

and Πc
p�−1 with Π̃c

p−1,
then we define another set of projectors that enjoys all the properties described here below.
Moreover, this choice will be useful to define projectors in some special case later on.

The next lemma shows that the interpolants are projectors onto the corresponding spline
spaces.

Lemma 4.6. The interpolants (4.7)-(4.10) satisfy the spline preserving property, that is

Π̂if̂h = f̂h, ∀f̂h ∈ X̂i
h, i = 0, 3,

Π̂if̂h = f̂h, ∀f̂h ∈ X̂i
h, i = 1, 2.

Proof. The result is an immediate consequence of the splines preserving property of the
interpolants Πp�

and Πc
p�−1, � = 1, 2, 3, given in (2.13) and in (2.21), respectively.

Lemma 4.7. Under Assumption 2.7, the following inequalities hold for any Q ∈ M̂:

‖Π̂if̂‖L2(Q) ≤ C‖f̂‖L2(Q̃) ∀f̂ ∈ L2(Ω̂), i = 0, 3,

‖Π̂if̂‖L2(Q)3 ≤ C‖f̂‖L2(Q̃)3 ∀f̂ ∈ L2(Ω̂)3, i = 1, 2.

Proof. The result follows immediately from (2.14) and (2.24), which state that the involved
one-dimensional operators Πp�

and Πc
p�−1, � = 1, 2, 3 are L2 stable.
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The commutativity of the interpolants with the differential operators is stated in the fol-
lowing lemma.

Lemma 4.8. It holds

ĝrad (Π̂0f̂) = Π̂1( ĝrad f̂) ∀f̂ ∈ X̂0, (4.11)

ĉurl(Π̂1f̂) = Π̂2(ĉurl f̂) ∀f̂ ∈ X̂1, (4.12)

d̂iv (Π̂2f̂) = Π̂3( d̂iv f̂) ∀f̂ ∈ X̂2. (4.13)

Proof. The proof is based on the commutativity property (2.20) and the tensor product struc-
ture of the spaces and interpolants. Consider first (4.11): let f̂ be a smooth scalar field with
compact support in Ω̂. The first component of ĝrad (Π̂0f̂) is given by

∂x̂(Π̂
0f̂) = ∂x̂((Πp1

⊗Πp2
⊗Πp3

) f̂) = ∂x̂(Πp1
(Πp2

(Πp3
f̂)))

= Πc
p1−1∂x̂(Πp2

(Πp3
f̂)) = (Πc

p1−1 ⊗Πp2
⊗Πp3

) ∂x̂f̂ ,

which is the first component of Π̂1( ĝrad f̂). A similar reasoning, using the commutativity
of the univariate interpolants, yields

∂ŷ(Π̂
0f̂) = (Πp1 ⊗Πc

p2−1 ⊗Πp3) ∂ŷ f̂ ,

∂ẑ(Π̂
0f̂) = (Πp1

⊗Πp2
⊗Πc

p3−1) ∂ẑ f̂ ,

which proves that ĝrad (Π̂0f̂) = Π̂1( ĝrad f̂). By a density argument (4.11) follows,
thanks to Lemma 4.7. The proof of (4.12)–(4.13) is similar, from the definition of the inter-
polants and the expression of the curl and divergence operators.

4.3. Approximation estimates. This section is devoted to the study of the approximation
estimates of the complex (X̂0

h, . . . , X̂
3
h). The content of this section is based on the paper

[2].
We start from the definition of the bent Sobolev spaces that we need. Since the interele-

ment regularity changes from space to space (and from component to component), we need
here to make the notation more explicit, starting from the one-dimensional definition: we
denote by Hs

k(I), I = (0, 1), the space defined as:

Hs
k(I) =

{
f ∈ L2(I) such that f |Ii ∈ Hs(Ii) ∀ i = 1, . . . , N − 1, and

Dk
−f(ζi) = Dk

+f(ζi), ∀k = 0, . . . ,min{s − 1, ki}, ∀i = 2, . . . , N − 1,

}
(4.14)

where k = (k2, . . . , kN−1) and ki is the number of continuous derivatives at the point
ζi ∈ Z.

In three dimensions, given s ∈ N
3 and the three vectors k1,k2,k3 constructed from Ξ,

we set:
Hs

k1,k2,k3
= Hs1

k1
(I)⊗Hs2

k2
(I)⊗Hs3

k3
(I),

and also:
H0,s = Hs

k1,k2,k3

H1,s = Hs
k1−1,k2,k3

×Hs
k1,k2−1,k3

×Hs
k1,k2,k3−1

H2,s = Hs
k1,k2−1,k3−1 ×Hs

k1−1,k2,k3−1 ×Hs
k−1,k2−1,k3

H3,s = Hs
k−1,k2−1,k3−1.

(4.15)
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This choice is made in order to ensure that X̂i
h ⊂ Hi,s, for all s ∈ N

3, i = 1, 2, 3, i.e., the in-
terelement regularity ofHi,s is not higher than the one of X̂i

h. The semi-norm corresponding
toH0,s is defined as |f |2H0,s(D) =

∑
Q∈M̂∩D |f |2Hs(Q). Moreover, we define

|f |2
H0,|s|(Ω̂)

= sup
r : |r|≤|s|

|f |2
H0,s(Ω̂)

; (4.16)

while the norms for H1,s and H2,s, and the corresponding norms ‖ · ‖H1,|s| and ‖ · ‖H2,|s| ,
are defined component by component in a similar way. For simplicity, we write estimates
that depends only on p = min{p1, p2, p3} and |s| = s1 + s2 + s3. The following holds:

Proposition 4.9. Let Assumption 2.7 hold, Q be an element of M̂, and Q̃ its extension. Then
it holds, for i = 0, 3,

‖(f̂ − Π̂if̂)‖Hr(Q)3 ≤ Ch
|s|−r

Q̃
|f̂ |

Hi,|s|(Q̃) (4.17)

for all f̂ ∈ Hi,t, for all t, |t| ≤ |s|, and when i = 0, 0 ≤ r ≤ |s| ≤ p+1, while when i = 3,
0 ≤ r ≤ |s| ≤ p.

And for i = 1, 2 it holds

‖(f̂ − Π̂if̂)‖Hr(Q)3 ≤ Ch
|s|−r

Q̃
|̂f |

Hi,|s|(Q̃) (4.18)

for all f̂ ∈ Hi,t for all t, |t| ≤ |s| and 0 ≤ r ≤ |s| ≤ p.

Proof. The proof of this statement can be found in e.g., [4] where indeed a more general
estimate is proposed.

Remark 4.10. A similar result holds also if we replace Πp�
with Π̃p�

and Πc
p�−1 with Π̃c

p�−1

(see Remark 4.5), with the only difference that the constraints on the allowed Sobolev index
are more restrictive. In particular, for i = 0, (4.17) holds for s > 3/2 and for i = 2, 3,
(4.18) holds only for s > 1.

5. The spline complex on general domains

We suppose that we are given a domain Ω which is an open, bounded and connected and
simply connected set, and which is defined as the union of Mp subdomains, in the form

Ω =

Mp⋃
j=1

Ω(j), (5.1)

where the subdomains Ω(j) = F(j)(Ω̂) are referred to as patches, and are assumed to be
disjoint. Each patch is obtained as a spline mapping of the reference domain Ω̂. I.e., there is
parametrization F(j) : Ω̂ → Ω(j) defined using a spline space Spj (Ξ(j)), on the parametric
mesh M̂(j). Remark that these mappings could be chosen as NURBS (see [7]) without any
change in what follows. We note that

F(j) =
∑
k

c
(j)
k B̂

(j)
k,p(ζ)
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where c
(j)
k are the control points of F(j) and the basis functions B̂

(j)
k,p(ζ) depends on the

choice of the knot vector Ξ(j).
In what follows we suppose that each F(j) verifies the following assumption:

Assumption 5.1 (Regularity ofF(j)). The parametrization F(j) : Ω̂ → Ω(j) is a bi-Lipschitz
homeomorphism. Moreover, F(j)

|Q̄ is in C∞(Q̄) for all Q ∈ M̂(j), where Q̄ denotes the

closure of Q, and (F(j))−1
|K̄ is in C∞(K̄) for all K̄ = (F(j))−1(Q̄), Q ∈ M̂(j).

In each patchΩ(j), there is a natural mesh, called Bézier mesh, as the image of the (open)
elements in M̂(j) through F(j):

M(j) := {K ⊂ Ω : K = F(j)(Q), Q ∈ M̂(j)}, (5.2)

For any element K = F(j)(Q) ∈ M(j), we define its support extension as K̃ = F(Q̃), with
Q̃ the support extension of Q, defined in Section 2.3. Moreover, we denote the element size
of any element Q ∈ M̂(j) by hQ = diam(Q), and the global mesh size is h = max{hQ :

Q ∈ M̂}. Analogously, we define the element sizes hK = diam(K) and hK̃ = diam(K̃).
Assumption 5.1 below will ensure that hQ - hK .

Moreover, each scalar basis function B̂
(j)
k,p(ζ) is mapped on Ω(j) by simple change of

variable:
B̂

(j)
k,p(ζ) = B

(j)
k,p(x) , x = F(j)(ζ).

Finally, we call control mesh, the structured meshM(j)
C obtained by joining the control point

c
(j)
k . Note that this mesh has exactly the same structure of M̂G, and we defer the reader [4]

for a discussion on this.
In order to guarantee conformity in the construction of spline spaces on Ω, we have the

following assumption:

Assumption 5.2 (Conformity). Let Γij = ∂Ω(i)∩∂Ω(j) be the interface between the patches
Ω(i) and Ω(j), with i �= j. We say that the two patches are fully matching if the two following
conditions hold.

(i) Γij is either a vertex, or the image of a full edge, or the image of a full face for both
parametric domains.

(ii) For each basis functions B
(i)
k,p such that supp(B(i)

k,p) ∩ Γij �= ∅, there exists a basis

function B
(j)
l,p such that B

(i)
k,p|Γij = B

(j)
l,p |Γij (and viceversa). Moreover, the related

control points c(i)k and c
(j)
l coincide: c(i)k = c

(j)
l .

First of all, Assumption 5.2 means that the control meshMC = ∪Mp

j=1M
(j)
C is a conform-

ing mesh.
Moreover, the physical Bézier meshes M(i) and M(j) coincide on the interface Γij , and

the coincident knot vectors are affinely related, including knot repetitions. Thus the partition

M = ∪Mp

j=1M
(j) (5.3)

is a conforming, globally unstructured, locally (to each patch) structured mesh of the com-
putational domain Ω.
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(a) Control mesh of the three separate patches (b) Control mesh of the multi-patch domain

Figure 5.1. Generation of a multi-patch domain with conforming meshes. The square control points
are associated to basis functions that match on the interface.

We focus now on the definition of spline spaces that form a complex. For each patch
Ω(j), we set:

X
0,(j)
h := {φh : ι0(φh) ∈ X̂

0,(j)
h },

X
1,(j)
h := {uh : ι1(uh) ∈ X̂

1,(j)
h },

X
2,(j)
h := {vh : ι2(vh) ∈ X̂

2,(j)
h },

X
3,(j)
h := {ψh : ι3(ψh) ∈ X̂

3,(j)
h }.

(5.4)

where the spaces on the parametric domain are indexed with (j) because they depend on
the parametric mesh M̂(j), but are the ones constructed in (4.1). As a consequence of our
choice, the spaces (X0,(j)

h , . . . , X
3,(j)
h ) form a complex and that the following holds:

R −−−−→ X̂
0,(j)
h

ĝrad−−−−→ X̂
1,(j)
h

ĉurl−−−−→ X̂
2,(j)
h

d̂iv−−−−→ X̂
3,(j)
h −−−−→ 0

ι0

X⏐⏐ ι1

X⏐⏐ ι2

X⏐⏐ ι3

X⏐⏐
R −−−−→ X

0,(j)
h

grad−−−−→ X
1,(j)
h

curl−−−−→ X
2,(j)
h

div−−−−→ X
3,(j)
h −−−−→ 0.

(5.5)

On the domain Ω, we naturally construct:

X0
h(Ω) = {f ∈ H1(Ω) : f|Ω(j) ∈ X

0,(j)
h }

X1
h(Ω) = {f ∈ H(curl; Ω) : f|Ω(j) ∈ X

1,(j)
h }

X2
h(Ω) = {f ∈ H(div; Ω) : f|Ω(j) ∈ X

2,(j)
h }

X3
h(Ω) = {f ∈ L2(Ω) : f|Ω(j) ∈ X

3,(j)
h }.

(5.6)

Having conformity of the control mesh MC , the continuity condition is implemented
very easily by generating a global numbering, in a process that resembles the generation
of the connectivity array in finite element meshes. For each non-empty interface Γij , we
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collect the pairs of coincident basis functions B
(i)
k,p and B

(j)
l,p , and identify them as one single

function, constraining their associated degrees of freedom to coincide. Note that for corners
and edges (in the three-dimensional case), the new function may be generated from the
contribution of functions coming from more than two patches.

More rigorously, we define for each patchΩ(j), and precisely for the multi-index set I(j),
an application G(j) : I(j) → I = {1, . . . , NΩ}, in such a way that G(i)(k) = G(j)(l) ⇔
Γij �= ∅ and B

(i)
k,p|Γij

= B
(j)
l,p |Γij

. The scalar NΩ is the dimension of X0
h(Ω), which is equal

to the number of vertices of the control meshMC . Moreover, we define for each global index
� ∈ I the set of pairs I
 = {(j,k) : G(j)(k) = �}, which collects the local contributions to
the global function. To conclude we define, for each � ∈ I, the global basis function

B
(x) :=

{
B

(j)
k,p(x) if x ∈ Ω(j) and (j,k) ∈ I
,

0 otherwise,
(5.7)

which is continuous due to Assumption 5.2, and it holds thatX0
h(Ω) = span{B
(x) : � ∈ I}.

Similarly, vector fields inX1
h(Ω) (orX

2
h(Ω)) are obtained by identifying the control vari-

ables associated to edges (or faces, respectively) that have been identified in the construction
of MC , with a possible change of the orientation. In Figure 5.2, we describe this identifi-
cation for the space X1

h(Ω). Finally, functions in X3
h(Ω) are discontinuous across the patch

interfaces.

(a) Control variables of the two patches. (b) Control variables of the merged patch.

Figure 5.2. Implementing continuity forX1
h(Ω) on a two-patch domain. The orientation of the degrees

of freedom associated to the interface edges (purple arrows) is chosen as that of the lower patch. The
orientation for degrees of freedom not on the interface (blue and red arrows) remains unchanged after
merging.

This construction is exactly the one that would be performed in the finite element context,
but we remind that this standard procedure when applied to the control mesh MC provides
the correct interface condition for the underlying spline complex.
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It is very easy to see that the following holds:

Proposition 5.3. Under Assumptions 5.1 and 5.2, the spaces (X0
h(Ω), . . . , X

3
h(Ω)) form a

complex:

R → X0
h(Ω)

grad−−−−→ X1
h(Ω)

curl−−−−→ X2
h(Ω)

div−−−−→ X3
h(Ω) → 0. (5.8)

We end the section with the following important remark: thanks to (5.5), to Proposition
4.2, to the choice of basis functions in the parametric space, and to the control point iden-
tification, the differential operators in (5.8) are the incidence matrices of the control mesh
MC .

This means, for example, that the spline complex is isomorphic to the complex of whit-
ney forms (or low degree finite elements) on the mesh MC , as are defined in [9], but (and
this is an important but) they deliver approximation rates of order p while the corresponding
finite element complex may provide only linear convergence.

Remark 5.4. Finally, we remark that all what results presented in the previous sections can
be generalized to domains Ω that have a non trivial topology, stating that the spline sequence
is a subcomplex of the De Rham complex and thus has the same topological structure.

6. Approximation estimates on the physical domain

The first step is the study of the approximation estimate for a single patch domain and for
the time being we drop the superindex (j), and set Mp = 1. We start by introducing the
projectors for each space Xi

h of the complex. These projectors are defined from the ones in
the parametric domain (4.7 - 4.10), and the corresponding pull-backs ιi, in such a way that
they are uniquely characterized by the equations

ιi(Πif) = Π̂i(ιi(f)) i = 0, 3,

ιi(Πif) = Π̂i(ιi(f)) i = 1, 2.
(6.1)

The following proposition is an immediate consequence of these definitions, together with
the commuting properties of Lemma 4.8.

Proposition 6.1. The following diagram commutes.

R −−−−→ X0 grad−−−−→ X1 curl−−−−→ X2 div−−−−→ X3 −−−−→ 0

Π0

⏐⏐W Π1

⏐⏐W Π2

⏐⏐W Π3

⏐⏐W
R −−−−→ X0

h

grad−−−−→ X1
h

curl−−−−→ X2
h

div−−−−→ X3
h −−−−→ 0.

(6.2)

We first prove the following proposition, see also Lemma 3.6 in [2].

Proposition 6.2. Let Assumption 2.7 and 5.1 hold. Let s ∈ N and s = (s1, s2, s3) be any
vector such that |s| = s, and f ∈ Hs(Ω), and f ∈ Hs(Ω)3. Then

ιi(f) ∈ Hi,s i = 0, 3,

ιi(f) ∈ Hi,s i = 1, 2.
(6.3)
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Moreover, there exists a constant C such that for all elements K = F(Q) ∈ M, with Q ∈ M̂,
it holds:

C−1‖f‖Hs(K) ≤ ‖ιi(f)‖Hs(Q) ≤ C‖f‖Hs(K) i = 0, 3,

C−1‖f‖Hs(K)3 ≤ ‖ιi(f)‖Hs(Q)3 ≤ C‖f‖Hs(K)3 i = 1, 2.

Proof. First of all, we show (6.3), and we focus on the case i = 1 since all other cases are
similar. For a given f ∈ Hs(Ω)3, let f̂ = ι1(f) = (DF)T (f ◦ F). Since F is regular inside
each element, we just need to check that the inter-element continuity is the one we expect. It
is easy to see that, e.g.,

∂F

∂ζ1
∈ Hs′

k1−1,k2,k3
, ∀s′ ∈ N,

and a similar result for the other partial derivatives implies that ι1(f) ∈ H1,s.
The inequalities follows by applying the chain rule.

We are know ready to write the approximation estimate for the projectors Πi, i = 1, 2, 3.

Theorem 6.3. Let Assumption 2.7 and 5.1 hold. There exists a constant C depending only
on p, θ,F such that for all elements K = F(Q) ∈ M, with K̃ = F(Q̃), it holds for i = 0
and i = 3:

|f −Πif |Hr(K) ≤ Chs−r

K̃
‖f‖Hs(K̃) (6.4)

for all f in Hs(Ω), and r, s such that: when i = 0, 0 ≤ r ≤ s ≤ p + 1; while when i = 3,
0 ≤ r ≤ s ≤ p
.

For i = 1 and i = 2 it holds:

|f −Πif |Hr(K)3 ≤ Chs−r

K̃
‖f‖Hs(K̃)3 (6.5)

for all f in Hs(Ω)3, and r, s such that 0 ≤ r ≤ s ≤ p.

Proof. We detail the proof of (6.5) for i = 1, but the reasoning is the same for all other
estimates. Let K ∈ M and Q = F−1(K). Using Proposition 6.2 and the definition of the
projectors (6.1), for f̂ = ι1(f) we have:

||f −Π1f ||Hr(K)3 ≤ C‖f̂ − Π̂1f̂‖Hr(Q)3

Then, applying Proposition 4.9 and Proposition 6.2 again, and from the definition of the
norms, we have, for s : |s| ≤ s, 0 ≤ r ≤ s ≤ p,

‖f̂ − Π̂1f̂‖Hr(Q)3 ≤ Cs−r

Q̃
‖f‖

H1,s(Q̃)

Using the definition of the norms, the Proposition 6.2 and that hQ̃ - hK̃ thanks to Assump-
tion 5.1, the result is proved.

It is easy to see that:
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Corollary 6.4. Let Assumption 2.7 and 5.1 hold, and let p = min(p1, p2, p3). Then there
exists a constant C, only dependent on p, θ,F such that

‖f −Π0f‖Hr(Ω) ≤ Chs−r‖f‖Hs(Ω) 0 ≤ r ≤ s ≤ p + 1,

‖f −Π1f‖Hr(Ω)3 ≤ Chs−r‖f‖Hs(Ω)3 0 ≤ r ≤ s ≤ p,

‖f −Π2f‖Hr(Ω)3 ≤ Chs−r‖f‖Hs(Ω)3 0 ≤ r ≤ s ≤ p,

‖f −Π3f‖Hr(Ω) ≤ Chs−r‖f‖Hs(Ω) 0 ≤ r ≤ s ≤ p,

for all f ∈ Hs(Ω) and f ∈ Hs(Ω)3.

The approximation estimates in the previous corollary are presented in high order Sobolev
norms. This gives in particular the error in the L2 norm, which together with the commuting
diagram property Lemma 4.8 will imply the approximation estimates in the graph norms for
the spaces X̂i.

Remark 6.5. Following the previous remarks 4.5 and 4.10, it should be said that the same
estimates hold when we replace Πp�

with Π̃p�
and Πc

p�−1 with Π̃c
p�−1, with some restrictions

on exponents that is made clear in the next Proposition 6.7.

We are now ready to turn to the “multipatch case”, i.e., when Mp > 1. A complete ap-
proximation theory is beyond the scope of this paper, but the following observations maybe
useful.

In particular, in order to define a projection operator locally patch by patch, we need to
make sure that it matches at the patch interfaces, in a suitable sense.

Given a patch Ω(j), let Π̃0,(j), . . . , Π̃3,(j) be the operators defined by the pull back rela-
tion (6.1), where Π̂0, . . . , Π̂3 are constructed starting from (4.7 - 4.10) but where we have
replaced Πp�

with Π̃p�
and Πc

p�−1 with Π̃c
p−1, as defined in (2.16) and (2.25).

Let then

(Π̃iu)|Ω(j) = Π̃i,(j)(u|Ω(j)) i = 0, 3 (Π̃iu)|Ω(j) = Π̃i,(j)(u|Ω(j)) i = 1, 2.

The following holds:

Proposition 6.6. Let Assumptions 5.1 and 5.2 hold. The operators Π̃i, i = 0, . . . , 3 map
regular functions onto Xi

h(Ω), i = 0, . . . , 3 and verify the following property:

R −−−−→ X0
reg

grad−−−−→ X1
reg

curl−−−−→ X2
reg

div−−−−→ X3
reg −−−−→ 0

Π̃0

⏐⏐W Π̃1

⏐⏐W Π̃2

⏐⏐W Π̃3

⏐⏐W
R −−−−→ X0

h(Ω)
grad−−−−→ X1

h(Ω)
curl−−−−→ X2

h(Ω)
div−−−−→ X3

h(Ω) −−−−→ 0

(6.6)

where Xi
reg stands for Xi ∩ C∞(Ω), i = 0, . . . 3.

Proof. From the very definition of Π̃p,Ξ in (2.16) it is clear that it is interpolatory at the
endpoints of the interval. In view of the tensorization and the definition of (4.7 - 4.10),
(Π̃0,(j)u)|Γij depends only on u|Γij , when Γij is a face of Ω(j). Analogously, (Π̃1,(j)u ×
nij)|Γij

(nij being a normal to Γij) depends only on u|Γij
× nij and (Π̃2,(j)u · nij)|Γij

depends only upon u|Γij · nij .
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Moreover, following the Remarks 4.5 and 4.10, by definition of Π̃i, the following error
estimates holds:

Proposition 6.7. Let Assumptions 2.7, 5.1 and 5.2 hold, and let p = min(p1, p2, p3). Then
there exists a constant C, only dependent on p, θ,F such that

‖f − Π̃0f‖Hr(Ω) ≤ Chs−r‖f‖Hs(Ω) 0 ≤ r ≤ s ≤ p + 1, s > 3/2 + ε

‖f − Π̃1f‖Hr(Ω)3 ≤ Chs−r‖f‖Hs(Ω)3 0 ≤ r ≤ s ≤ p, s > 1 + ε

‖f − Π̃2f‖Hr(Ω)3 ≤ Chs−r‖f‖Hs(Ω)3 0 ≤ r ≤ s ≤ p, s > ε

‖f − Π̃3f‖Hr(Ω) ≤ Chs−r‖f‖Hs(Ω) 0 ≤ r ≤ s ≤ p,

for all f ∈ Hs(Ω) and f ∈ Hs(Ω)3, where ε stands for an arbitrarily small, but positive,
number.

It should be said that this result is not satisfactory because L2 stability would be desir-
able. The study of L2 stable commuting projectors is left to future works.

7. Conclusions

We have presented here the construction and the main properties of the spline complex.
Many other mathematical properties may be studied, as, e.g., following Remark 4.4, the con-
struction of chain / co-chain dualities that may be useful for the discretization of some partial
differential equations. At today, these spaces has been applied in various contexts, starting
from the most classical one, i.e., the Maxwell equations [2, 3, 16, 18], and, more generally,
could be applied to the discretization of the Hodge Laplacian (see e.g., [9]). Thanks to the
regularity of the spline representation for vector fields, the spline complex can be exploited
also in contexts where the finite element complex would not fit. E.g., it was used to treat
Stokes and Navier-Stokes equations [19–22], and to simulate Reissner-Mindlin plates [23].
Other applications are possible and are currently under study.

Finally, the spline complex provides representation of tangential vector fields on mani-
folds that have the same regularity as the manifold itself, and this fact maybe useful also in
contexts that are far from the discretization of partial differential equations.
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Multiscale model reduction with generalized
multiscale finite element methods

Yalchin Efendiev

Abstract. Many application problems have multiscale nature. Due to disparity of scales, the simu-
lations of these problems are prohibitively expensive. Some types of upscaling or model reduction
techniques are needed to solve many multiscale problems. In this paper, we discuss a few known tech-
niques that are used for problems with scale separation and focus on Generalized Multiscale Finite
Element Method (GMsFEM) that has been recently proposed for solving problems with non-separable
scales and high contrast. The main objective of the method is to provide local reduced-order approx-
imations for linear and nonlinear PDEs via multiscale spaces on a coarse computational grid. In the
paper, we briefly discuss some main concepts of constructing multiscale spaces and applications of
GMsFEMs.

Mathematics Subject Classification (2010). Primary 65N99; Secondary 65N30.

Keywords. Multiscale, finite element, porous media, homogenization, model reduction.

1. Introduction

Many problems involve media or processes that contain multiple scales and physical prop-
erties that vary over orders of magnitude and exhibit uncertainties. As an example, solutions
to fluid flow problems in heterogeneous porous media require large-scale computations to
understand the complex physics and chemistry occurring in the subsurface. These models,
henceforth called fine-grid models, often consist of over 106 − 107 gridcells. The ability
to coarsen these highly resolved models to levels of detail appropriate for simulations, op-
timization, and uncertainty quantification, while maintaining the integrity of the model for
its fast simulation is clearly needed. Similarly, complexity makes many other, e.g., seismic,
hydrological applications to be computationally challenging. Traditional methods share a
common potential weakness in that the computational cost will be prohibitively large for
many of these multiscale problems.

There are a variety of model reduction techniques that include homogenization, upscal-
ing, perturbation approaches, multiscale methods, global model reduction techniques, and so
on. Some of them that are closely related to the proposed methods includes homogenization,
numerical upscaling, and multiscale finite element methods. Upscaling techniques (see e.g.,
[12, 13]) have been commonly used in many applications and include the re-formulation of
the global problem on a coarse grid which are called upscaled equations. The upscaled equa-
tions contain effective media properties. The calculations of these effective properties typi-
cally involve solving local problems in representative volumes or in coarse-grid blocks and

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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extracting these properties via volume averaging. Though effective in many cases, these ap-
proaches do not systematically approximate the fine-grid solution. Some recent approaches
introduced in the context of Multiscale Finite Element Methods (see [1–5, 8, 25–27, 29, 37–
39, 43]) that can systematically and effectively enrich the solution space locally on a coarse-
grid level. The main idea of these multiscale methods is to construct an approximation space
for the solution on each coarse (computational) grid. Many of these approaches have focused
on finding a limited number of basis functions for approximating the solution space. In this
paper, we discuss the recently introduced Generalized Multiscale Finite Element Method
([21]) that attempts to systematically identify local basis functions

In the paper, we give a brief overview of multiscale model reduction methods. We start
with the problems that contain scale separation and discuss homogenization and numerical
homogenization procedures. Furthermore, we discuss multiscale finite element methods that
use one basis function per coarse-element node, and then introduce Generalized Multiscale
Finite Element Method.

The Generalized Multiscale Finite Element Method (GMsFEM) is a flexible framework
that generalizes the Multiscale Finite Element Method (MsFEM) by systematically enrich-
ing the coarse spaces and taking into account small scale information and complex input
spaces. This approach, as in many multiscale model reduction techniques, divides the com-
putation into two stages: offline and online. In the offline stage, a small dimensional space
is constructed that can be efficiently used in the online stage to construct multiscale basis
functions. These multiscale basis functions can be re-used for any input parameter to solve
the problem on a coarse grid. The main idea behind the construction of offline and online
spaces is the selection of local spectral problems and the selection of the snapshot space. We
briefly discuss how the method can be used within different global finite element discretiza-
tions and applied for various applications. This paper is not intended to give many details of
the method, its implementation and its applications which can be found in the literature.

2. Preliminaries

2.1. A model problem. Throughout the paper, we will consider a model problem that de-
scribes flow in heterogeneous media. The governing equations are given by (subject to some
boundary conditions)

− div
(
κ(x)∇u

)
= − ∂

∂xi

(
κij(x)

∂

∂xj
u

)
= f, (2.1)

where κ(x) is assumed to be multiscale field representing the media properties. The sum-
mation over repeated indices is assumed throughout. The methods discussed in the paper are
applicable to a wide range of problems. One of main emphasis of the paper is on handling
multiscale features of the solution space locally.

2.2. Scales. We briefly describe some multiscale heterogeneities. One of simpler multi-
scale functions that are often used in designing multiscale methods have scale separation.
An example is a two-scale function

κ(x) = κ(x,
x

ε
),
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Background Conductivity=1High/Low conductivity regions

Figure 2.1. Schematic illustration of high-contrast heterogeneous features

where ε 5 1. Fast variable is typically denoted by

y =
x

ε
.

In this case, we can write κ = κ(x, y), where x ∈ Rd and y ∈ Rd. Such functions vary on
distinct scales.

The multiscale nature of the function can be made more complicated by introducing
additional scales. For example, one can use functions of different frequencies to form a
function of multiple frequencies

κε(x) =
∑
i

aigi(x,
x

riε
),

where gi(x, y) are periodic with respect to y and ri are incommensurable numbers that make
the functions be non-periodic. Such functions can still have scale separation while span a
variety of scales within a range.

In this paper, we will deal with spatial fields (that appear as coefficients in PDEs) that do
not have scale separation and contain high contrast. Such permeability fields arise in many
porous media applications in higher dimensions. For example, by introducing complex fine-
scale features in 2D that have irregular shapes with small width and various shapes. Such
features can represent high or low conductivity fields in the subsurface and represent an ex-
ample when one can have many scales. Moreover, the media properties (such as conductivity
field) within these features can be much larger (or lower) than the background permeability
field (such that the ratio in the contrast is of order small length scales), see Figure 2.1 for a
schematic illustration. In this case, one deals with high-contrast permeability fields and has
to exercise a caution when taking the limit with respect to the spatial length scales.
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Figure 2.2. Schematic of a coarse element and coarse neighborhood

2.3. Coarse and fine mesh description. To describe the general solution framework for
the model equations in this paper, we first introduce the notion of fine and coarse grids. We
assume that the problem under consideration can be solved on a fine grid denoted by T h,
where h is the fine-mesh size. The fine grid typically consists of usual conforming partition
of the computational domain D into finite elements (triangles, quadrilaterals, tetrahedrals,
etc.). Our objective is to avoid performing the computations on the fine grid and reduce the
problem to solving it on a coarse grid.

We let T H be a coarse grid and assume that each coarse subregion is partitioned into a
connected union of fine grid blocks. Here, H denotes the coarse-mesh size. We use {xi}Nv

i=1

(where Nv the number of coarse nodes) to denote the vertices of the coarse mesh T H , and
define the neighborhood of the node xi by

ωi =
⋃

{Kj ∈ T H ; xi ∈ Kj}. (2.2)

See Fig. 2.2 for an illustration of neighborhoods and elements subordinated to the coarse
discretization. We emphasize the use of ωi to denote a coarse neighborhood, and K to
denote a coarse element.

3. Some existing local model reduction techniques

In this section, we present some model reduction techniques (that are relevant to the methods
discussed in the paper) that use a fixed number of degrees of freedom in each coarse patch.
Traditional homogenization and numerical homogenization techniques employ a few degrees
of freedom to approximate the solution space in each patch. In a similar fashion, one can
consider multiscale finite element methods that use only one (or a fixed number of) basis
function per coarse node. In our next section, we will discuss Generalized Multiscale Finite
Element Methods (GMsFEM) that is a general strategy of identifying local approximation
space in each coarse patch for multiscale problems.

We consider a model problem (2.1) and later discuss generalizations to selected applica-
tions.

3.1. Homogenization. In this section, we present a low-order homogenization expansion
for the solution of elliptic PDE and emphasize low cost computational approximation based
on this expansion.
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We assume (see (2.1))
κ(x) = κ(x,

x

ε
).

One can show (see [40]) that the solution of (2.1) can be approximated by

ûε(x) = u0(x) + εχi(x,
x

ε
)

∂

∂xi
u0, (3.1)

where χl(x, y) (periodic in y) solves

∂

∂yi

(
κij(x, y)

∂

∂yj
χl(x, y)

)
= − ∂

∂yi
κil(x, y). (3.2)

Here u0 is the homogenized solution that satisfies (subject to some boundary conditions)

− ∂

∂xi

(
κ∗ij(x)

∂

∂xj
u0(x)

)
= f(x),

with the homogenized coefficients

κ∗ij(x) =
1

|Y |
∫
Y

κil(x, y)

(
δjl +

∂

∂yl
χj(x, y)

)
dy,

where Y is the unit period. It can be shown that [40]

‖uε − ûε‖H1(D) ≤ C
√

ε, (3.3)

where D is the domain.
The above expansion (3.1) shows that the solution of the multiscale PDE (2.1) can be

approximated in each coarse patch using the solution of cell problems (3.2). We only need d
degrees of freedom (represented by functions χi, i = 1, ..., d) to approximate the local fine-
scale features of the solution in Rd. The error of this approximation can be estimated based
on (3.3). We note that many numerical methods have been developed for solving problems
with scale separation (e.g., [6, 19, 41, 42]) that we do not discuss here. The cost of solving
the homogenized problem and the cell problems are independent of ε.

3.2. Numerical homogenization. Numerical homogenization is often based on homoge-
nization and approximates the effective (homogenized) coefficients and the solutions of the
homogenized equations in a numerical way. Though these approaches are based on homog-
enization, they are often used for cases without periodicity and even with no scale separation
(e.g., in subsurface applications, see [18]). Below, we briefly present a numerical homoge-
nization for our model problem.

The main idea of numerical homogenization is to identify the homogenized coefficients
in each coarse-grid block. The basic underlying principle is to compute the upscaled quanti-
ties such that they preserve some averages for a given set of local boundary conditions.

We again consider (2.1) though these methods can be applied to various linear and non-
linear problems. Our objective is to define an upscaled (or homogenized) conductivity for
each coarse block, in general without assuming periodicity. We follow homogenization tech-
nique and solve local problems for each coarse block subject to some boundary condition

∂

∂xi

(
κij(x)

∂

∂xj
φl

)
= 0 in K, (3.4)
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whereK is a coarse block (see Figure 2.2 for illustration). The choice of boundary conditions
is important and various boundary conditions can be used (see e.g., [44]). For example,
Dirichlet boundary conditions are often used. In this case,

φl = xl on ∂K.

The other choice for boundary condition is periodic boundary condition. In this case,

φl = xl + periodic function on ∂K.

The upscaled coefficients, κ∗,nhij , are defined by averaging the fluxes:∫
K

κ∗,nhij

∂

∂xj
φ∗l =

∫
K

κij(x)
∂

∂xj
φl. (3.5)

The motivation behind this upscaling is to state that the average flux response for the fine-
scale local problem with prescribed boundary conditions is the same as that for the upscaled
solution. Now, if we take φ∗l = xl in K, we have

κ∗,nhil =
1

|K|
∫
K

κij(x)
∂

∂xj
φl. (3.6)

Once the homogenized coefficients are computed, the upscaled solution is found by solv-
ing

∂

∂xi

(
κ∗,nhij (x)

∂

∂xj
u∗(x)

)
= f. (3.7)

The proximity of u and u∗ can be shown in the case of scale separation [44]. The error can
be reduced by using larger domains [44] and computing the effective permeabilities.

3.3. Multiscale Finite Element Method (MsFEM). In this section, we briefly present Ms-
FEM that uses one basis function per coarse-element node. This method (as presented in
this section) shares similarities with numerical upscaling techniques as it uses only one basis
function per coarse node. However, there are a number of important advantages of using
MsFEMs (see [27] for more details). We will briefly mention them at the end of the section.

MsFEM basically consists of two parts

• basis function construction

• a choice of the global formulation that couples these basis functions.

First, we discuss the basis function construction. Let φ0
i be the nodal basis of the standard

finite element space WH on a coarse grid T H , WH ⊂ H1
0 (Ω). Denote by Si the support of

φ0
i and define φi with support in Si as follows

Lφi = 0 in K, φi = φ0
i on ∂K, ∀ K ∈ T H , K ⊂ Si, (3.8)

where L is the linear elliptic operator that corresponds to (2.1). Note that even though
the choice of φ0

i can be quite arbitrary, our main assumption is that the basis functions
satisfy the leading order homogeneous equations when the right hand side f is a smooth
function. We would like to remark that MsFEM formulation allows one to take an advantage
of scale separation. In particular, K can be chosen to be a volume smaller than the coarse
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Figure 3.1. An illustration of two dimensional multiscale basis functions

grid. Indeed, in the presence of scale separation, one can use the solution in Representative
Volume Element (RVE) to represent the solution in the entire region as it is done in classical
homogenization. Once the basis functions are constructed, we let VH be the finite element
space spanned by φi.

In the above discussion, we presented simplest basis function construction and a global
formulation. In general, the global formulation can be easily modified and various global
formulations based on finite volume, mixed finite element, discontinuous Galerkin finite
element and other methods can be derived. One can also consider the applications of these
techniques to nonlinear problems [27].

3.3.1. Boundary conditions for basis functions. As for basis functions, the choice of
boundary conditions in defining the multiscale basis functions plays a crucial role in ap-
proximating the multiscale solution. Intuitively, the boundary condition for the multiscale
basis function should reflect the multiscale oscillation of the solution u across the boundary
of the coarse grid element. By choosing a linear boundary condition for the basis function,
we will create a mismatch between the exact solution u and the finite element approxima-
tion across the element boundary. This issue is studied in the literature (e.g., [28]) and an
oversampling technique (see e.g., [28, 43]) is introduced to alleviate this difficulty. This
technique enables us to remove the artificial numerical boundary layer across the coarse grid
boundary element.

We note that MsFEM has several advantages over numerical homogenization techniques.
Some of them include: (1) fine-scale recovery of the solution based on multiscale basis func-
tions; (2) imposing important global information on multiscale basis functions; (3) flexible
coarse gridding; (4) the use of enrichment which will be discussed next.
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4. Generalized Multiscale Finite Element Methods

In this section, we discuss main ingredients of GMsFEM such as snapshot space construc-
tion, local basis construction, some selected global coupling mechanisms for multiscale basis
functions, and the applications.

4.1. Basic concept. In this section we will describe some details associated with an offline-
online procedure for constructing GMsFEM basis functions on a model problem (2.1). We
note that this procedure is applicable for the general case(s) when the coefficient of a system
depends on a parameter μ. That is, we may assume that κ = κ(x;μ) for the model problems
that we consider. A general outline for the procedure is offered below.

1. Offline computations:

– 1.0. Coarse grid generation.
– 1.1. Construction of snapshot space that will be used to compute an offline space.
– 1.2. Construction of a small dimensional offline space by performing dimension
reduction in the space of local snapshots.

2. Online computations:

– 2.1. For each input parameter, compute multiscale basis functions.
– 2.2. Solution of a coarse-grid problem for any force term and boundary condi-
tion.

– 2.3. Iterative solvers, if needed.

4.2. Local basis functions. In the offline computation, we first construct a snapshot space
V τ
snap, corresponding to either the continuous Galerkin (CG) or discontinuous Galerkin (DG)

formulation. Construction of the snapshot space involves solving the local problems for
various choices of input parameters, on a specified coarse subdomain τ , where τ denotes
coarse neighborhood-based computations for a CG formulation (ωi), and coarse element-
based computations (K) for a DG formulation [23]. For brevity of notation we now omit
the superscript τ when dealing with local problems, yet it is assumed throughout this section
that the offline and online space computations are localized to respective coarse subdomains.

The choice of the snapshot space depends the global discretization and the particular
application. The choice snapshot space helps (1) achieving faster convergence rate (2) im-
posing problem relevant restriction on the coarse spaces (such as divergence free elements,
and so on) (3) reducing the computational cost of calculating offline spaces. We refer to a
number of papers in the literature where various snapshot spaces are considered. For our
model problem (Eq. (2.1)), one can consider the snapshot space to be (1) harmonic exten-
sions (2) local fine-grid functions, (3) dominant eigenvectors of local eigenvalue problems
or other choices. The snapshot space generated by harmonic extensions is constructed by
solving local problems

Lμj (ψ
τ
l,j) = 0 in τ (4.1)

with boundary conditions
ψτ
l,j = bl in ∂τ, (4.2)
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with bl being selected shape or basis functions along the boundary ∂τ . Here, Lμ is our
model problem (2.1) with κ = κ(x, μ) and {μj , for j = 1, · · · , J} is the selected parame-
ters for generation of snapshots and there are various ways to generate this set (see e.g., [21])
One can also consider local fine-grid functions or dominant eigenvectors for local eigenvalue
problems possibly formulated in oversampled regions [23]. For the numerical implementa-
tion, we reorder the snapshot functions using a single index to create the matrix

Rsnap =
[
ψsnap
1 , . . . , ψsnap

Msnap

]
,

where Msnap denotes the total number of functions to keep in the snapshot matrix construc-
tion.

In order to construct the offline space V τ
off, we perform a dimension reduction of the

snapshot space using an auxiliary spectral decomposition. The main objective is to use the
offline space to construct a set of multiscale basis functions for each μ value in the online
stage. At the offline stage the bilinear forms are chosen to be parameter-independent, such
that there is no need to reconstruct the offline space for each μ value. The choice of this
local eigenvalue problem is motivated by the analysis and depends on several factors that
include (1) the global formulation (2) the smoothness of the solution (3) the behavior of the
eigenvalues and so on.

We seek the subspace V τ
off such that for any μ and ψ ∈ V τ

snapshots(μ) (V
τ
snapshots(μ) is the

space of snapshots which are computed for a given μ), there exists ψ0 ∈ V τ
off, such that, for

all μ,
aoffτ (ψ − ψ0, ψ − ψ0;μ) % δsoffτ (ψ − ψ0, ψ − ψ0;μ), (4.3)

where aoffτ (φ, φ;μ) and soffτ (φ, φ;μ) are auxiliary bilinear forms that are motivated by the
analysis. In computations, this involves solving an eigenvalue problem with a mass matrix
and the basis functions are selected based on dominant eigenvalues. As we pointed out
earlier the choice of this eigenvalue problem is motivated by the analysis and depends on
the discretization that is used to couple basis functions and the underlying problem. In the
discrete setup, this involves solving local eigenvalue problems in the snapshot space. In the
case of our model problem, one can use

AoffΨoff
k = λoff

k SoffΨoff
k , (4.4)

where
Aoff = [aoffmn] =

∫
τ

κ(x, μ)∇ψsnap
m · ∇ψsnap

n = RT
snapARsnap

Soff = [soffmn] =

∫
τ

κ̃(x, μ)ψsnap
m ψsnap

n = RT
snapSRsnap,

where κ(x, μ), and κ̃(x, μ) are domain-based averaged coefficients with μ chosen as the
average of pre-selected μi’s, and the form for κ̃ can be found in [21].

For a given input parameter, we next construct the associated online coarse space V τ
on(μ)

for each μ value on each coarse subdomain. Note that for parameter-independent case, there
is no need for the online space and one uses the offline space to solve the problem. The online
coarse space will be used within the finite element framework to solve the original global
problem, where a continuous or discontinuous Galerkin coupling of the multiscale basis
functions is used to compute the global solution. In particular, we seek a subspace of the
offline space such that it can approximate any element of the offline space in an appropriate
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sense. We note that at the online stage, the bilinear forms are chosen to be parameter-
dependent. For each τ and for each input parameter, we will formulate a quotient for finding
a subspace of V τ

on(μ) where the space will be constructed for each μ (independent of source
terms). We seek a subspace V τ

on(μ) of V τ
off such that for each ψ ∈ V τ

off, there exists ψ0 ∈
V τ
on(μ) such that

aonτ (ψ − ψ0, ψ − ψ0;μ) % δsonτ (ψ − ψ0, ψ − ψ0;μ) (4.5)

for some prescribed error tolerance δ (different from the one in the offline stage), and the
choices of aonωi

and sonωi
that comes from the analysis. As before, the choice of the local

eigenvalue problem is motivated by the analysis and depends on the global discretization
and on the offline spaces. In a discrete setup, the following eigenvalue problem for our
model problem is solved

Aon(μ)Ψon
k = λon

k Son(μ)Ψon
k , (4.6)

where
Aon(μ) = [aon(μ)mn] =

∫
τ

κ(x;μ)∇ψoff
m · ∇ψoff

n = RT
offA(μ)Roff

Son(μ) = [son(μ)mn] =

∫
τ

κ̃(x;μ)ψoff
mψoff

n = RT
offS(μ)Roff,

and κ(x;μ) and κ̃(x;μ) are now parameter dependent. To generate the online space, we then
choose the smallestMon eigenvalues from Eq. (4.6) and form the corresponding eigenvectors
in the offline space by setting ψon

k =
∑

j Ψ
on
kjψ

off
j (for k = 1, . . . ,Mon), where Ψon

kj are the
coordinates of the vector ψon

k . We note that in the case when the coefficient is independent
of the parameter, then Von = Voff. In other words, the online space discussion is limited to
the case where the coefficient is parameter-dependent.

4.3. Global coupling.

4.3.1. Galerkin coupling. For a conforming Galerkin formulation, we need conforming
basis functions, and τ denote ωi, as defined in Eqn. (2.2) and shown in Fig. 2.2. We
modify V τ

on by multiplying the functions from this space with partition of unity functions.
The modified space has the same dimension and is given by Spanj(χiψ

τ,on
j ), where ψτ,on

j ∈
V τ
on(μ) and χi is supported in τ . Then, the Galerkin approximation can be written as

uG
ms(x;μ) =

∑
i,j

cijχi(x)ψ
τ,on
j (x;μ).

If we introduce
V G
on = Spani,j(χiψ

τ,on
j ), (4.7)

then Galerkin formulation is given by

κ(uG
ms, v;μ) = (f, v), ∀ v ∈ V G

on , (4.8)

where κ(u, v;μ) corresponds to the bilinear form associated with (2.1) with κ = κ(x, μ) and
(f, v) is the usual L2-inner product.
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4.3.2. Discontinuous Galerkin coupling. One can also use the discontinuous Galerkin
(DG) approach, in particular, interior penalty DG, to couple multiscale basis functions. This
may avoid the use of the partition of unity functions; and the local coarse region τ denotes
the coarse block K as depicted in Fig. 2.2, however, a global formulation needs to be cho-
sen carefully. We omit the parameter μ in the global formulation description. The global
formulation is given by

κDG(u, v) = f(v) for all v = {vτ ∈ V τ
on}, (4.9)

where
κDG(u, v) =

∑
τ

κDG
τ (u, v) and f(v) =

∑
τ

∫
τ

fvτdx (4.10)

for all u = {uτ}, v = {vτ}. Each local bilinear form κDG
τ is given as a sum of three bilinear

forms:
κDG
τ (u, v) := κτ (u, v) + rτ (u, v) + pτ (u, v), (4.11)

where κτ is the bilinear form,

κτ (u, v) :=

∫
τ

κr∇uτ · ∇vτdx, (4.12)

where κr is the restriction of κ(x) in τ ; the rτ is the symmetric bilinear form,

rτ (u, v) :=
∑

E⊂∂τ

1

lE

∫
E

κ̃E

(
∂uτ

∂nτ
(vτ − vτ ′) +

∂vτ
∂nτ

(uτ ′ − uτ )

)
ds,

where κ̃E is a weighted average of κ(x) near the edge E, lE is the length of the edge E, and
τ ′ and τ are two coarse-grid elements sharing the common edge E; and pτ is the penalty
bilinear form,

pτ (u, v) :=
∑

E⊂∂K

1

lE
δE

∫
E

κ̃E(uτ ′ − uτ )(vτ ′ − vτ )ds. (4.13)

Here δE is a positive penalty parameter that needs to be selected and its choice affects the
performance of GMsFEM. One can choose eigenvalue problems based on DG bilinear forms.
We refer to [22] for some results along this direction.

4.3.3. Other coupling. We note that one can use other coupling mechanisms, such as
mixed finite element methods [15], hybridized Galerkin [31, 32], and so on.

4.4. Handling nonlinearities. To handle nonlinear problems with GMsFEM, we use Dis-
crete Empirical Interpolation Method (DEIM) and identify empirical modes and correspond-
ing evaluations points (see [11]). Next, we briefly describe DEIM. Let f(ν) ∈ R

n denote
a nonlinear function where ν refers to any control parameter. We assume an approximation
of the function f obtained by projecting it onto a subspace spanned by the basis functions
(snapshots) Ψ = (ψ1 , · · · , ψm) ∈ R

n×m which are obtained by forward simulations. We
write

f(ν) ≈ Ψd(ν). (4.14)
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To compute the coefficient vector d, we select m rows of (4.14) and invert a reduced system
to compute d(ν). This can be formalized using the matrix P

P = [e℘1 , · · · , e℘m ] ∈ R
n×m,

where e℘i = [0, · · · , 0, 1, 0, · · · , 0]T ∈ R
n is the ℘thi column of the identity matrix In ∈

R
n×n for i = 1, · · · ,m. Multiplying Equation (4.14) by PT and assuming that the matrix

PTΨ is nonsingular, we obtain

f(ν) ≈ Ψd(ν) = Ψ(PTΨ)−1PT f(ν). (4.15)

To summarize, approximating the nonlinear function f(ν), as given by Equation (4.15),
requires the following:

• computing the projection basis Ψ = (ψ
1
, · · · , ψ

m
).

• identifying the indices {℘1, · · · , ℘m}.
To determine the projection basis Ψ = (ψ

1
, · · · , ψ

m
), we collect function evaluations in

an n × ns matrix F = [f(ν1), · · · , f(νns)] and employ Proper Orthogonal Decomposition
(POD) to select the most energetic modes. This selection uses the eigenvalue decomposition
of the square matrix FTF and form the important modes using the dominant eigenvalues.
These modes are used as the projection basis in the approximation given by Equation (4.14).
In Equation (4.15), the term Ψ(PTΨ)−1 ∈ R

n×m is computed once and stored. The d(ν)
is computed using the values of the function f(ν) at m points with the indices ℘1, · · · , ℘m

(identified using the DEIM algorithm). The resulting fewer evaluations of f(ν) yield signif-
icant computation savings.

We have considered the use of GMsFEM for nonlinear parabolic equations

∂u

∂t
−∇ · (κ(x;u, μ)∇u) = g(x) in Ω, (4.16)

where we employed Newton method for the nonlinear solution strategy. When solving non-
linear PDEs, one writes the residual on the fine grid as

R(u) = 0, (4.17)

where R(u) is the residual of nonlinear PDE and u is the fine-grid solution. Here, both
u and R(u) are n-dimensional vectors defined on a fine grid. Using GMsFEM projection
operator Φ, we project (4.17) onto the coarse degrees of freedom (noting that u = Φz is an
approximation of the fine-grid solution)

ΦTR(Φz) = 0. (4.18)

This equation is formulated on the coarse degrees of freedom constructed on the coarse-grid;
however, computing the residualR(Φz) requires fine-grid evaluations. Moreover, computing
the Jacobians in Newton iterations, defined as

J(z) = ∇zR(Φz),

also requires fine-grid evaluations. Here, our main goal is to use the multiscale DEIM to
compute R(Φz) and J(z) efficiently. In particular, using the multiscale DEIM approxima-
tion, we can write

R(Φz) ≈ Ψd.
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Consequently, the residual computation involves

ΦTΨd(z), (4.19)

which can be efficiently computed by pre-computing ΦTΨ. A similar procedure can be done
for the Jacobian J(z).

We detailed the multiscale Discrete Empirical Interpolation Methods (multiscale DEIM)
in [11]. We stress the following main observations that are explored and ultimately are the
motivations for the design of the multiscale DEIM procedure.

• In applications to multiscale PDEs, the nonlinear functional f needs to be evaluated at
vectors u that are solutions obtained by reduced-order models. Thus, f(Φz) needs to
be computed in the span of coarse-grid snapshot vectors which has a reduced dimen-
sion.

• Due to the fact that multiscale basis functions are supported on a coarse-grid neigh-
borhood, the DEIM approximation is obtained in each coarse-node neighborhood.

• More elaborate spectral selections are formulated to identify the elements of empirical
interpolation vectors such that the resulting multiscale DEIM approximation is accu-
rate in adequate norms that depend on physical parameters such as the contrast and
small scales.

We refer to [7, 10] for more details and numerical results.

4.5. Applications. The applications of GMsFEM in various fields are studied in the litera-
ture. Below, we briefly describe some of these applications.

• Compressible flow.
∂p

∂t
− div

(
κ(x)∇p

)
= q, (4.20)

where p(x, t) denotes the time-varying pressure within a specified domain D. Here,
κ(x) is a heterogeneous permeability field. We refer to [20].

• Wave equation.
∂2

∂t2
p − κ∇ · (ρ−1∇p) = q, (4.21)

where p = p(x, t) is the pressure wavefield, κ = κ(x) is the bulk modulus of the
media which may vary greatly below the dominant seismic wavelength, ρ = ρ(x) is
the density of medium, and q = q(x, t) is the external force term. Assuming constant
κ and normalizing the density ρ with it, so that (4.21) may be written as

∂2

∂t2
p −∇ · (c2∇p) = q, (4.22)

where c2 = κ/ρ. We refer to [17, 35] for the development of continuous and discon-
tinuous Galerkin methods and their applications to seismic wave propagation.

• Elasticity equations.

−divσ(u) = f

σ(u) = C : e(u)
(4.23)
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where σ is the stress tensor, e is defined as e = e(u) = 1
2 (∇u+∇uT ), C = C(x), x ∈

Ω is the fourth order elasticity multiscale tensor, and u is the displacement field. We
refer to [14, 34] for further discussions for static and elastic wave equations.

• Brinkman equation.

∇p(x)− μΔu(x) + κ−1u(x) = f(x)

div(u(x)) = 0.
(4.24)

The application of GMsFEM to Brinkman equation is studied in [33].

• Two-phase incompressible flow and transport.

Multi-phase fluid flow is another area where GMsFEMmay be used as an effective so-
lution technique. For this selected application we consider a heterogeneous oil reser-
voir which is confined to a global domain D. We consider an immiscible two-phase
system containing water and oil (where the respective subscripts w and o are often
used) that is incompressible. We also assume a gravity-free environment and that the
pore space is fully saturated. Then, a statement of conservation of mass combined
with Darcy’s law allows us to write the governing equations of the flow as

div(v) = q, where v = −λ(S)κ(x)∇p, (4.25)

and
∂S

∂t
+ div(f(S)v) = qw, (4.26)

where p(x, t) denotes the pressure, v(x, t) is the Darcy velocity, S(x, t) is the water
saturation, and κ(x) is the high-contrast permeability coefficient. The total mobility
λ(S) and the flux function f(S) are respectively given by

λ(S) =
κrw(S)

μw
+

κro(S)

μo
, and f(S) =

κrw(S)/μw

λ(S)
, (4.27)

where κrj (j = w, o) is the relative permeability of the phase j, and μj (j = w, o)
is the respective fluid viscosity. We refer to [9] for more details on applications of
GMsFEM to two-phase flow models.

• Monotone nonlinear operators.

divκ(x,∇u) = f.

We have studied the case κ(x,∇u) = κ(x)|∇u|ν−2∇u in [24].

• Uncertainty quantification in flow.

We have developed multi-level Monte Carlo and multi-level Markov chain Monte
Carlo using GMsFEM framework for flow problems in [30]

4.6. Adaptivity. The adaptivity in GMsFEM is studied in [16] where we derive an a-
posteriori error indicator for the Generalized Multiscale Finite Element Method (GMsFEM)
framework. This error indicator is further used to develop an adaptive enrichment algorithm
for the linear elliptic equation with multiscale high-contrast coefficients. We consider two
kinds of error indicators where one is based on the L2-norm of the local residual and the
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other is based on the weighted H−1-norm of the local residual where the weight is related
to the coefficient of the elliptic equation. We show that the use of weighted H−1-norm
residual gives a more robust error indicator which works well for cases with high contrast
media. The convergence analysis of the method is given. Numerical results are presented
that demonstrate the robustness of the proposed error indicators.

4.7. Global-local model reduction techniques. We have developed global-local model re-
duction techniques that use GMsFEM to speed-up global model reduction techniques. In
these techniques, the main idea is to solve for global snapshots using adaptive multiscale
methods and perform model reduction for a global problem using solutions on a coarse grid.
Some results for linear and nonlinear problems can be found in [7, 20, 36].

5. Conclusions

In this paper, we discuss multiscale model reduction through the use of the Generalized
Multiscale Finite Element Method (GMsFEM). We outline the basic concepts associated
with the systematic enrichment of coarse solution spaces, and describe the offline-online
procedure that is used in the construction of multiscale basis functions. We discuss various
applications. For further details regarding each application, we direct the interested reader
to pertinent references.
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Discontinuous Galerkin method for time-dependent
convection dominated partial differential equations

Chi-Wang Shu

Abstract. In this lecture we give an introduction to discontinuous Galerkin (DG) methods for solving
time-dependent convection dominated partial differential equations (PDEs). DG methods form a class
of finite element methods. Differently from classical finite element methods, which are built upon
spaces containing continuous, piecewise polynomial functions, DG methods are built upon function
spaces containing piecewise polynomials (or other simple functions) which are allowed to be com-
pletely discontinuous across element interfaces. Using finite element terminologies, DG methods are
the most extreme case of nonconforming finite element methods. DG methods are most natural and
most successful for solving hyperbolic conservation laws which have generic discontinuous solutions.
Moreover, in recent years stable and convergent DG methods have also been designed for convection
dominated PDEs containing higher order spatial derivatives, such as convection diffusion equations
and KdV equations. We will emphasize the guiding principles for the design and analysis, and recent
development and applications of the DG methods for solving time-dependent convection dominated
PDEs.

Mathematics Subject Classification (2010). Primary 65M60, 65M20, 65M12, 65M15.

Keywords. Discontinuous Galerkin method, time-dependent convection dominated partial differential
equations, hyperbolic equations, convection-diffusion equations, stability, error estimates, supercon-
vergence, limiters.

1. Introduction

Discontinuous Galerkin (DG) methods form a class of finite element methods. Differently
from classical finite element methods, which are built upon spaces containing continuous,
piecewise polynomial functions, DG methods are built upon function spaces containing
piecewise polynomials (or other simple functions) which are allowed to be completely dis-
continuous across element interfaces. Using finite element terminologies, DG methods are
the most extreme case of nonconforming finite element methods. In this lecture we concen-
trate on DGmethods for time-dependent, convection dominated partial differential equations
(PDEs).

The earliest DG method was introduced in 1973 by Reed and Hill in a Los Alamos tech-
nical report [65], in which the equations for neutron transport, which are time-independent
linear hyperbolic equations, were solved. A major development of DG methods was car-
ried out in a series of papers [15, 17, 19–21], in which the authors established a framework
to easily solve nonlinear time-dependent hyperbolic equations, such as the Euler equations

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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of compressible gas dynamics. The DG methods in [15, 17, 19–21] belong to the class of
method-of-lines, namely the DG discretization is used only for the spatial variables, and ex-
plicit, nonlinearly stable high order Runge-Kutta methods [73] are used to discretize the time
variable. Important features of the DG methods in [15, 17, 19–21] include the usage of finite
volume methodologies, such as exact or approximate Riemann solvers as interface fluxes
and total variation bounded (TVB) nonlinear limiters [71] to control spurious oscillations in
the presence of strong shocks.

In recent years there has been an explosion of activities related to the development, anal-
ysis and applications of DG methods. Among the areas of applications we could mention
aeroacoustics, electro-magnetism, gas dynamics, granular flows, magneto-hydrodynamics,
meteorology, modeling of shallow water, oceanography, oil recovery simulation, semicon-
ductor device simulation, transport of contaminant in porous media, turbomachinery, tur-
bulent flows, viscoelastic flows and weather forecasting. For earlier work on DG methods,
we refer to the survey paper [16], and other papers in that Springer volume, which contains
the conference proceedings of the First International Symposium on Discontinuous Galerkin
Methods held at Newport, Rhode Island in 1999. The lecture notes [13] is a good reference
for many details, as well as the extensive review paper [23]. The review paper [91] covers the
local DGmethod for PDEs containing higher order spatial derivatives. There are three recent
special journal issues devoted to the DG method [24, 25, 27], which contain many interest-
ing papers on DGmethod in all aspects including algorithm design, analysis, implementation
and applications. There are also a few recent books and lecture notes [32, 43, 49, 67, 72] on
DG methods.

2. DG method for hyperbolic conservation laws

DG methods are most successful for solving hyperbolic conservation laws. As mentioned in
the previous section, the first DG method [65] was designed to solve steady state hyperbolic
conservation laws. We concentrate on time-dependent PDEs in this lecture. In one-space
dimension, a hyperbolic conservation law is given by

ut + f(u)x = 0. (2.1)

In the system case u is a vector, then the Jacobian matrix f ′(u) is required to be diagonaliz-
able with real eigenvalues. In two-space dimensions, the equation is

ut + f(u)x + g(u)y = 0.

Important properties for the solutions of hyperbolic conservation laws include:

• The solution u may become discontinuous regardless of the smoothness of the initial
condition. Therefore, we must consider weak solutions instead of classical strong
solutions.

• Weak solutions may not be unique. The unique, physically relevant weak solution,
also referred to as the entropy solution, satisfies additional entropy inequalities

U(u)t + F (u)x ≤ 0 (2.2)

in the distribution sense, where U(u) is a convex scalar function of u and the entropy
flux F (u) satisfies F ′(u) = U ′(u)f ′(u).
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For more properties of entropy solutions of hyperbolic conservation laws, we refer to
[74].

The starting point for the design of DG methods can be described as follows. Suppose
we are solving the equation (2.1) over the interval [0,1], with periodic boundary condition
for simplicity, then we first divide [0,1] into N cells

0 = x 1
2

< x 3
2

< · · · < xN+ 1
2
= 1,

and denote

Ij =
(
xj− 1

2
, xj+ 1

2

)
, xj =

1

2

(
xj− 1

2
+ xj+ 1

2

)
, hj = xj+ 1

2
− xj− 1

2

as the cells, cell centers and cell lengths respectively. We also define h = hmax = maxj hj

and hmin = minj hj , and we consider only regular meshes, that is hmax ≤ λhmin where
λ ≥ 1 is a constant during mesh refinement. If λ = 1, then the mesh is uniformly distributed.
If we multiply the equation (2.1) with an arbitrary smooth test function v, integrate over the
cell Ij = [xj− 1

2
, xj+ 1

2
], and integrate by parts, we obtain

∫
Ij

utvdx −
∫
Ij

f(u)vxdx + f(uj+ 1
2
)vj+ 1

2
− f(uj− 1

2
)vj− 1

2
= 0. (2.3)

Here, we have used the short notation uj+ 1
2
= u(xj+ 1

2
, t) etc. Notice that (2.3) is not a

scheme yet, rather it is an equality satisfied by the exact solution u of (2.1) and any smooth
test function v. We now attempt to convert it to a numerical scheme. For this purpose we
define the DG finite element space as

V k
h = {v : v|Ij ∈ Pk(Ij), j = 1, · · · , N}, (2.4)

where Pk(Ij) denotes the space of polynomials in Ij of degree at most k. This polynomial
degree k can actually change from cell to cell, but we assume it is a constant in this lecture
for simplicity. We now attempt to replace u and v in the equality (2.3) by uh and vh, both of
them taken from the DG space V k

h . However, the intercell boundary terms f(uj+ 1
2
), vj+ 1

2

etc. are not well defined when u and v are replaced by uh and vh in V k
h , since in this space

the functions are discontinuous at the cell interfaces. This is an inconvenience but also an
opportunity for the design of DG methods. A good choice to resolve these ambiguities leads
to good DG schemes which are stable and optimal rate accurate. It is also here that one of the
important concepts from finite volume schemes is borrowed, namely monotone numerical
fluxes (for the scalar case), or exact or approximate Riemann solvers (for the system case).
We refer to [47] for more details. Thus we take

• a single valued monotone numerical flux to replace f(uj+ 1
2
):

f̂j+ 1
2
= f̂((uh)

−
j+ 1

2

, (uh)
+
j+ 1

2

) (2.5)

where the numerical flux f̂ satisfies consistency f̂(u, u) = f(u); monotonicity f̂(↑, ↓)
(non-decreasing in the first argument and non-increasing in the second argument, for
the scalar case only), and Lipschitz continuity with respect to both arguments;
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• values from inside Ij for the test function vh

(vh)
−
j+ 1

2

, (vh)
+
j− 1

2

.

Hence the DG scheme for solving (2.1) is: find the unique function uh = uh(·, t) ∈ V k
h

such that, for all test functions vh ∈ V k
h and all 1 ≤ j ≤ N , we have∫

Ij

(uh)t vhdx −
∫
Ij

f(uh)(vh)xdx + f̂j+ 1
2
(vh)

−
j+ 1

2

− f̂j− 1
2
(vh)

+
j− 1

2

= 0 (2.6)

where the numerical flux f̂j+ 1
2
is defined by (2.5).

The semi-discrete DG scheme (2.6) can be discretized in time by the total variation di-
minishing (TVD) Runge-Kutta methods [73], also referred to in later literature as the strong-
stability-preserving (SSP) time discretizations [29, 30]. For the semi-discrete scheme:

du

dt
= L(u)

where L(u) is a discretization of the spatial operator, the third order TVD Runge-Kutta
method in [73] is simply:

u(1) = un +ΔtL(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
ΔtL(u(1)) (2.7)

un+1 =
1

3
un +

2

3
u(2) +

2

3
ΔtL(u(2)).

We now briefly discuss several important properties and advantages of the DG method
for solving hyperbolic conservation laws.

• The DG method allows an easy handling of complicated geometry and boundary con-
ditions. Arbitrary triangulations allow an easy fit to general geometry, and the local
nature of the method (communication with the neighbors only through the numerical
fluxes) allows an easy implementation of commonly used boundary conditions. While
these advantages are mostly common to all finite element methods, the DG method
has the additional advantage of allowing “hanging nodes” naturally, which are also
referred to as non-conforming meshes in finite elements.

• The DG method has a compact stencil. Communication is needed only with imme-
diate neighbors through numerical fluxes on cell interfaces, regardless of the order
of the scheme. In comparison, high order finite difference or finite volume schemes
would need a wide stencil in order to obtain high order polynomial interpolations or
reconstructions.

• The DG method is explicit. Because of the discontinuous basis, the mass matrix is
local to the cell, resulting in an explicit time stepping for which no large linear system
needs to be solved.

• The DG method has excellent parallel efficiency, largely because of its compact sten-
cil, minimum communication with neighbors and explicit time discretization. It can
achieve up to 99% parallel efficiency for static mesh and over 80% parallel efficiency
for dynamic load balancing with adaptive meshes, see, e.g. [4, 66]. The method is
also friendly to the GPU environment and can achieve amazing speedup there [44].
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• The DG method is one of the very few high order numerical methods for which a
cell entropy inequality for the square entropy and consequently an L2 stability can be
proved, for arbitrary nonlinear equations in any spatial dimension and any triangula-
tions, for any polynomial degrees, without limiters or assumption on solution regular-
ity. For the entropy U(u) = u2

2 , we can find a consistent entropy flux F̂j+1/2 such
that

d

dt

∫
Ij

U(uh)dx + F̂j+1/2 − F̂j−1/2 ≤ 0, (2.8)

which is a direct approximation to the analytic entropy inequality (2.2) in the cell Ij ,
hence we refer to it as the cell entropy inequality. Summing the cell entropy inequality
(2.8) over j, we obtain

d

dt

∫ b

a

(uh)
2dx ≤ 0,

which establishes the L2 stability of the DG solution. The proof of the cell entropy
inequality and the associated L2 stability of the DG method for scalar equations is
given in [40]. The conclusion also holds for symmetric hyperbolic systems as shown
in [33]. The cell entropy inequality also holds for fully discrete Runge-Kutta DG
(RKDG) methods with the third order TVD Runge-Kutta time discretization (2.7), at
least for the linear equations [101].

• The DG method can be proved to converge in the optimal rate of (k + 1)-th order ac-
curacy or at least in the rate of (k + 1

2 )-th order accuracy in the L2-norm, for smooth
solutions when piecewise polynomials of degree k are used, regardless of the structure
of the meshes. The earlier work in such error estimates include those in [42, 46], for
linear, steady state hyperbolic equations. Error estimates for fully discretized RKDG
schemes for linear and nonlinear scalar conservation laws and symmetrizable hyper-
bolic systems can be found in [56, 57, 99–101].

• The DG method has excellent superconvergence properties for linear and nonlinear
hyperbolic equations. It is proved in [18] that the DG solution is (2k + 1)-th order su-
perconvergent in the negative norm for general meshes, and a post-processed solution
based on convolution of the DG solution with a locally defined kernel [5] is (2k + 1)-
th order superconvergent in the strong L2-norm on translation invariant meshes, for
smooth solutions when piecewise polynomials of degree k are used. These results
have been generalized to one-sided post-processing near the boundaries [68], struc-
tured triangular meshes [59], non-uniform meshes [26], and nonlinear problems [38].
It has also been applied to aeroacoustics [69] and computer graphics [75].

• The DG solution has been proved to be (k+3/2)-th or (k+2)-th order superconvergent
to a special projection of the exact solution, as a consequence the error does not grow
in time up to t = O( 1√

h
) or t = O( 1h ), for both linear and nonlinear hyperbolic

equations, for smooth solutions when piecewise polynomials of degree k are used.
In [10], Cheng and Shu started this line of study by obtaining (k + 3/2)-th order
superconvergence for linear, time-dependent hyperbolic equations in one-dimension,
with uniform meshes and periodic boundary conditions. The proof is based on Fourier
analysis and is carried out only for the piecewise linear k = 1 case, however numerical
results confirm the validity for higher k’s. Another important consequence of this
superconvergence result is that the constant C in front of the hk+3/2 error term only
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grows at most linearly with time t, therefore the standard L2 error does not grow for a
very long time t ∼ 1/

√
h. This analysis verifies an observation by practitioners, that

the error of the DG solution for wave propagation does not seem to grow much with
time. The result in [10] is improved in [12] to general polynomial degree k, on non-
uniform regular meshes, and without periodic boundary conditions. The technique
used in [12] is a finite element type, not a Fourier analysis. In [96], the result in [12]
is further improved to (k + 2)-th order superconvergence. This half-order increase
in the analysis is highly non-trivial and involves subtle handling of cancellation of
errors during time evolution. The result in [96] is optimal. In [58], (k + 3/2)-th order
superconvergence is proved for scalar nonlinear conservation laws with a fixed wind
direction in one space dimension.

• Besides error estimates for smooth solutions, it is perhaps more relevant to study error
estimates for discontinuous or otherwise singular solutions, which are generic for hy-
perbolic partial differential equations. Optimal L2 error estimates of the DG method
for discontinuous solutions of linear hyperbolic equations in a region O(

√
h log h)

away from the discontinuities are proved in [14] for piecewise linear DG method
on uniform meshes, and in [102] for general RKDG methods with third order TVD
Runge-Kutta time discretization.

• Bound preserving limiters, which can preserve strict maximum principle for scalar
hyperbolic equations and positivity of relevant physical quantities for hyperbolic sys-
tems (e.g. density and pressure for Euler systems for gas dynamics and water height
for shallow water equations) while maintaining the original high order accuracy of the
DG schemes, have been designed in a series of recent papers [76, 81, 103–107]. These
limiters have significantly improved the robustness of DG solutions while maintaining
their originally designed high order accuracy.

• Even though the DG schemes for conservation laws areL2 stable, for solving problems
with strong discontinuities, the DG solution may still generate spurious numerical os-
cillations. In practice, especially for nonlinear problems containing strong shocks,
we often need to apply nonlinear limiters to control these oscillations. Most of the
limiters studied in the literature come from the methodologies of finite volume high
resolution schemes. Earlier limiters include the TVD and TVB limiters [31, 71], and
the moment-based limiters [4, 6]. More recently, limiters based on the weighted es-
sentially non-oscillatory (WENO) methodology are designed with the objective of
maintaining the high order accuracy even if they take effect in smooth cells. These
limiters are based on the WENO methodology for finite volume schemes [41, 52], and
involve nonlinear reconstructions of the polynomials in troubled cells using the infor-
mation of neighboring cells. The WENO reconstructed polynomials have the same
high order of accuracy as the original polynomials when the solution is smooth, and
they are (essentially) non-oscillatory near discontinuities. Qiu and Shu [63] and Zhu
et al. [111] designed WENO limiters using the usual WENO reconstruction based on
cell averages of neighboring cells as in [34, 41, 70]. This limiter needs to use the infor-
mation from not only the immediate neighboring cells but also neighbors’ neighbors,
making it complicated to implement in multi-dimensions, especially for unstructured
meshes [34, 109, 111]. It also destroys the local data structure of the base DG scheme
(which needs only to communicate with immediate neighbors). The effort in [61, 62]
attempts to construct Hermite type WENO approximations, which use the informa-
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tion of not only the cell averages but also the lower order moments such as slopes, to
reduce the spread of reconstruction stencils. However for higher order methods the
information of neighbors’ neighbors is still needed. More recently, Zhong and Shu
[110] developed a new WENO limiting procedure for RKDG methods on structured
meshes. The main advantage of this limiter is its simplicity in implementation, as it
uses only the information from immediate neighbors and the linear weights are al-
ways positive. This simplicity is more prominent for multi-dimensional unstructured
meshes, which is studied in [112] for two-dimensional unstructured triangular meshes.
The WENO limiters are typically applied only in designated “troubled cells”, in or-
der to save computational cost and to minimize the influence of accuracy in smooth
regions. Therefore, a troubled cell indicator is needed, to correctly identify cells near
discontinuities in which the limiters should be applied. Qiu and Shu in [64] have
compared several troubled cell indicators. In practice, the TVB indicator [71] and the
KXRCF indicator [45] are often the best choices.

• Because of the local nature and discontinuous basis functions, DG methods are ex-
tremely flexibility for both h (refining meshes) and p (adjusting polynomial degrees
in different cells) adaptivity. An example of the application of such adaptivity can be
found in [66].

3. DG method for convection diffusion equations

While the DG method is most natural and highly successful for solving hyperbolic equations
which have generic discontinuous solutions, in applications one often encounters convection
dominated PDEs which contain higher order spatial derivatives. A typical example would be
a convection dominated convection diffusion equation, for example the compressible Navier-
Stokes equations in gas dynamics with high Reynolds numbers. It would be desirable to have
a DG method which is stable and accurate for such equations.

Let us look at the simple heat equation

ut − uxx = 0 (3.1)

as an example. A straightforward generalization of the DG method from the hyperbolic
equation (2.1) is to write down the same scheme (2.6) and replace f(u) by−ux everywhere:
find uh ∈ V k

h such that, for all test functions vh ∈ V k
h and all 1 ≤ j ≤ N , we have∫

Ij

(uh)tvhdx +

∫
Ij

(uh)x(vh)xdx − ûxj+ 1
2
(vh)

−
j+ 1

2

+ ûxj− 1
2
(vh)

+
j− 1

2

= 0. (3.2)

Of course, we still need to define the numerical flux ûxj+ 1
2
. Lacking an upwinding con-

sideration for the choice of this numerical flux and considering that diffusion is isotropic, a
natural choice for the flux could be the central flux

ûxj+ 1
2
=

1

2

(
((uh)x)

−
j+ 1

2

+ ((uh)x)
+
j+ 1

2

)
. (3.3)

However, numerical experiments show that the scheme (3.2) with the numerical flux (3.3) is
terrible! The errors do not decay with mesh refinement, and the numerical solution, although
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seemingly convergent with mesh refinement, does not converge to the correct solution of the
PDE with the given initial condition.

It is proven in [98] that this “bad" DG method for the heat equation is actually consistent
with the heat equation (3.2) but is (very weakly) unstable.

This “bad" DG scheme reminds us that we have to be cautious in designing DG schemes
for solving PDEs containing higher than first order spatial derivatives, such as the heat equa-
tion (3.1). A “good” DG method for the heat equation (3.1) is the local DG (LDG) method
[2, 22]. First, we rewrite the heat equation (3.1) as

ut − qx = 0, q − ux = 0, (3.4)

and formally write out the DG scheme as: find uh, qh ∈ V k
h such that, for all test functions

vh, wh ∈ V k
h and all 1 ≤ j ≤ N , we have∫
Ij

(uh)tvhdx +

∫
Ij

qh(vh)xdx − q̂j+ 1
2
(vh)

−
j+ 1

2

+ q̂j− 1
2
(vh)

+
j− 1

2

= 0 (3.5)

∫
Ij

qhwhdx +

∫
Ij

uh(wh)xdx − ûj+ 1
2
(wh)

−
j+ 1

2

+ ûj− 1
2
(wh)

+
j− 1

2

= 0.

Notice that, by the second equality in (3.5), qh can be locally (within the cell Ij) solved and
eliminated, hence the method is referred to as a local DG method.

A key ingredient in the design of the LDG method is the choice of the numerical fluxes
û and q̂ (remember: no upwinding principle exists for a guidance). The best choice for the
numerical fluxes is the following alternating flux

ûj+ 1
2
= (uh)

−
j+ 1

2

, q̂j+ 1
2
= (qh)

+
j+ 1

2

. (3.6)

The other way around also works

ûj+ 1
2
= (uh)

+
j+ 1

2

, q̂j+ 1
2
= (qh)

−
j+ 1

2

.

With such choice of numerical fluxes, the scheme (3.5) is L2 stable and has optimal conver-
gence of O(hk+1) in the L2 norm for P k elements [22, 72].

The conclusions are valid for general nonlinear multi-dimensional convection diffusion
equations

ut +

d∑
i=1

fi(u)xi −
d∑

i=1

d∑
j=1

(aij(u)uxj )xi = 0, (3.7)

where aij(u) are entries of a symmetric and semi-positive definite matrix. LDG methods
which are L2 stable and convergent can be obtained, see [22, 86].

Regarding superconvergence, similar results as those for hyperbolic equations are avail-
able for the LDG schemes solving convection-diffusion equations, either in the negative
norm [39] or in the error to a special projection of the exact solution [11, 12, 97].

Maximum-principle preserving uniformly second order (P 1) LDG method for nonlin-
ear convection-diffusion equations including two-dimensional incompressible Navier-Stokes
equations in vorticity-streamfunction formulation, for arbitrary two-dimensional regular tri-
angulations without acute-angle restrictions, has been obtained in [108].
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One major advantage of LDG method for convection-diffusion equations is that it works
well for convection-dominated situation with small or even locally vanishing diffusion coef-
ficients. A typical example is the porous medium equation

ut = Δ(um), m > 1.

The solution to this PDE may contain singularities (discontinuities in the first derivative)
which has a finite propagation speed, similar to hyperbolic conservation laws. Negative den-
sity u leads to ill-posedness and instability of the code. Our maximum-principle preserving
DG scheme however works well, see [108].

Besides LDG methods, there are also a few other types of DG methods for convection-
diffusion equations:

• Internal penalty DG methods, including the symmetric internal penalty DG (SIPG)
method [1, 77] and the non-symmetric internal penalty DG (NIPG) method [3, 60]. A
penalty parameter is involved which should be chosen in suitable ranges. There are
other types of DG methods involving the internal penalty methodology, for example
the direct discontinuous Galerkin (DDG) methods [50, 51].

• Ultra weak DG methods, which is based on integration by parts twice to put all deriva-
tives on test functions, and then introducing numerical fluxes for both the function and
its first derivative. A penalty term is still needed. See [9].

4. DG method for higher order convection dominated PDEs

DG methods can be designed for higher (than second) order PDEs. We will concentrate on
LDG methods and will discuss dispersive wave equations (usually odd order) and diffusive
equations (usually even order) separately below.

4.1. LDG method for dispersive wave equations. Let us look at the Korteweg-de Vries
(KdV) equation:

ut + (αu + βu2)x + σuxxx = 0.

More generally, we can look at the fully nonlinear version in one-dimension

ut + f(u)x + (r′(u)g(r(u)x)x)x = 0

and in multi-dimensions

ut +

d∑
i=1

fi(u)xi +

d∑
i=1

⎛
⎝r′i(u)

d∑
j=1

gij(ri(u)xi)xj

⎞
⎠

xi

= 0 (4.1)

Stable and convergent LDG methods can de designed for such equations [94]. Let us
first look at the simple equation

ut + uxxx = 0.

We again rewrite it into a first order system

ut + px = 0, p − qx = 0, q − ux = 0.
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At this time we follow the idea of LDG methods for convection-diffusion equations and for-
mally use the DG method: find uh, ph, qh ∈ V k

h such that, for all test functions vh, wh, zh ∈
V k
h , ∫

Ij

(uh)tvhdx −
∫
Ij

ph(vh)xdx + p̂j+ 1
2
(vh)

−
j+ 1

2

− p̂j− 1
2
(vh)

+
j− 1

2

= 0,

∫
Ij

phwhdx +

∫
Ij

qh(wh)xdx − q̂j+ 1
2
(wh)

−
j+ 1

2

+ q̂j− 1
2
(wh)

+
j− 1

2

= 0,

∫
Ij

qhzhdx +

∫
Ij

uh(zh)xdx − ûj+ 1
2
(zh)

−
j+ 1

2

+ ûj− 1
2
(zh)

+
j− 1

2

= 0.

Again, a key ingredient of the design of the LDG method is the choice of the numerical
fluxes û, q̂ and p̂. Now, the upwinding principle is partially available. After all, the solution
with the initial condition sin(x) is sin(x + t), hence the wind blows from right to left. The
following choice of alternating plus upwinding

p̂j+ 1
2
= p+

j+ 1
2

, q̂j+ 1
2
= q+

j+ 1
2

, ûj+ 1
2
= u−

j+ 1
2

,

would guarantee stability. The choice is not unique,

p̂j+ 1
2
= p−

j+ 1
2

, q̂j+ 1
2
= q+

j+ 1
2

, ûj+ 1
2
= u+

j+ 1
2

,

would also work. Optimal (k + 1)-th order L2 error estimates for not only u but also its
derivatives can be proved [93]. Superconvergence to a special projection of the exact solution
is proved in [35].

The scheme can be designed for the general nonlinear case along the same lines. For the
general multi-dimensional nonlinear case (4.1), we can prove the cell entropy inequality for
the square entropy and consequently L2 stability, just as for the hyperbolic equations [94].
A sub-optimal L2 error estimate of order O(hk+1/2) is also proved in [86].

LDG methods have been designed for the following dispersive wave equations contain-
ing higher order (usually odd order) derivatives, usually with stability proof and error esti-
mates:

• PDE with five derivatives [93, 95].

• The K(m,n) equation with compactons solutions [48].

• Fifth-order KdV type equations [82].

• Fifth-order fully nonlinear K(n, n, n) equations [82].

• Generalized nonlinear Schrödinger (NLS) equation and the coupled nonlinear Schrödin
ger equation [83].

• Kadomtsev-Petviashvili (KP) equation [84].

• Zakharov-Kuznetsov (ZK) equation [84].

• Camassa-Holm (CH) equation [87].

• Hunter-Saxton (HS) equation, its regularization with viscosity and its regularization
with dispersion [88, 90].

• Generalized Zakharov system, which is originally introduced to describe the Langmuir
turbulence in a plasma [80].

• Degasperis-Procesi (DP) equation [92].
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4.2. LDG method for diffusive equations. LDG methods have been designed for the fol-
lowing diffusive equations containing higher even order derivatives, usually with stability
proof and error estimates:

• The bi-harmonic type equation and higher even order linear diffusive PDEs [28].

• The Kuramoto-Sivashinsky type equations [85].

• Device simulation models in semi-conductor device simulations: drift-diffusion, hy-
drodynamic, energy transport, high field, kinetic and Boltzmann-Poisson models [7,
8, 53–55].

• Cahn-Hilliard equation and the Cahn-Hilliard system [78, 79].

• The surface diffusion equation and the Willmore flow [36, 37, 89].

5. Concluding remarks and future work

In this lecture we have given a brief survey for the algorithm formulation, analysis and re-
cent developments and applications of discontinuous Galerkin (DG) methods for solving
convection dominated partial differential equations (PDEs). DG methods are very flexible to
geometry, boundary condition and h-p adaptivity, and hold a good potential for applications
in diverse fields of computational science and engineering. Stable and accurate DG meth-
ods can be designed for a wide spectrum of PDEs including conservation laws, convection
dominated convection-diffusion equations and dispersive wave equations. Future research is
needed for the design of stable DG methods for more nonlinear PDEs in applications, for ef-
ficient time discretization (preconditioning, multigrid, exponential type time discretization,
deferred correction, etc.), and for a posteriori error estimates to guide adaptivity.
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Singular stochastic computational models,
stochastic analysis, PDE analysis, and numerics

Denis Talay

Abstract. Stochastic computational models are used to simulate complex physical or biological phe-
nomena and to approximate (deterministic) macroscopic physical quantities by means of probabilistic
numerical methods. By nature, they often involve singularities and are subject to the curse of dimen-
sionality. Their efficient and accurate simulation is still an open question in many aspects. The aim of
this lecture is to review some recent developments concerning the numerical approximation of singular
stochastic dynamics, and to illustrate novel issues in stochastic analysis and PDE analysis that they
lead to.
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Secondary: 60J55, 60J60.

Keywords. Stochastic numerics; applications of stochastic analysis to partial differential equations
and numerical analysis.

1. Introduction

In fields such as biology, ecology, turbulent fluid mechanics, geophysics and environmen-
tal sciences, physical laws are not fully known or suffer from the curse of dimensionality.
Adding noise to deterministic models or randomizing parameters may not be enough to de-
scribe complex phenomena such as cancerous tumor expansions, protein folding, neuron
system activity, time evolution of winds, waves, complex flows, movement of groundwater,
dynamics of populations, and creation of financial bubbles.

Stochastic computational models (versus models which are fully derived from physical
laws) are developed to simulate such phenomena and to approximate (deterministic) macro-
scopic physical quantities by means of probabilistic numerical methods.

The preceding motivations mean that, by nature, stochastic computational models often
inherit singularities from the physical laws they are aimed to mimic. Therefore their efficient
and accurate simulation is questionable and actually is still an open question in many aspects.

The numerical analysis of stochastic differential equations with smooth coefficients is
now well understood. Optimal convergence rates for efficient numerical methods have been
obtained in various theoretical and applied frameworks owing to techniques based on PDE
analysis, Malliavin calculus, propagation of chaos and ergodic theories, etc. Although diffi-
cult to obtain, these fundamental results in numerical probability are far from being sufficient
to tackle singular stochastic computational models.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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The aim of this lecture is to review some recent developments concerning the numerical
approximation of singular stochastic dynamics and to illustrate novel issues in stochastic
analysis and PDE analysis that they lead to.

2. A short reminder on discretizations of stochastic systems with smooth coef-
ficients

2.1. Standard stochastic differential equations. A stochastic process (Xt, t > 0) is a
family of random variables indexed by time. It enjoys the Markov property if

E[g(Xt) | Xθ, 0 ≤ θ ≤ s] = E[g(Xt) | Xs]

for all bounded measurable functions g and all times 0 ≤ s ≤ t. These Markov processes are
key tools to model random physical phenomena and to obtain probabilistic representations
of deterministic partial differential equations. Solutions to Brownian stochastic differential
equations (SDEs) form a rich class of Markov processes which provide probabilistic inter-
pretations to linear and non-linear parabolic and elliptic PDEs.

Given a vector valued function b and a matrix valued function σ, a weak solution to the
Brownian stochastic differential equation with coefficients b and σ is a process (Xt) defined
on some probability space (Ω,F ,P) equipped with an increasing family {Ft} of sub-σ-
algebras of F and a Brownian motion (Wt) such that: Xt is ‘adapted’ i.e. Ft-measurable
for all t and, almost surely,

Xt = X0 +

∫ t

0

b(Xs)ds +

∫ t

0

σ(Xs)dWs, ∀t ≥ 0. (2.1)

The last term in the right-hand side is a stochastic integral. For the construction of stochastic
integrals, see, e.g., Revuz and Yor [42]. When X0 = x a.s., we denote the solution to (2.1)
by (Xx

t ).
Denote by a the matrix σ · σ∗, where σ∗ is the transpose of σ, and by L the second order

differential operator

L :=
∑
k

bk(x)∂k +
1

2

∑
j,k

ajk(x)∂jk.

Consider the parabolic PDE

d

dt
u(t, x) = Lu(t, x) (2.2)

with initial condition u(0, x) = f(x). Stochastic analysis techniques (stochastic differential
calculus, Malliavin calculus, stochastic flows analysis) allow one to prove that the function

u(t, x) := Ef(Xx
t ) (2.3)

is the (classical or viscosity) unique solution to (2.2) and that the flow of the probability
distributions μt of Xt is a solution in the sense of the distributions to the linear Fokker-
Planck equation

d

dt
μt = L∗μt = −

∑
k

∂k[b
k(x)μt] +

1
2

∑
jk

∂jk[a
j
k(x)μt], (2.4)
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notably in cases which are not studied in the classical PDE analysis literature. For example,
when the differential operatorL is hypoelliptic, Malliavin calculus is a dramatically powerful
tool to prove that μt has a smooth density for all strictly positive t and to obtain local sharp
estimates on partial derivatives of this density (see Kusuoka and Stroock [26]).

These analytical results sustain stochastic numerical methods which combine the approx-
imation of the unknown process (Xt) with an easy to simulate discrete time Markov process
(Xt), and the approximation of Ef(XT ) by means of Monte Carlo methods.

Given a fixed time horizon T , a good candidate for (Xt) is the Euler scheme with initial
condition X0 and discretization step T

n :

X(p+1)T/n = XpT/n+ b(XpT/n)
T
n +σ(XpT/n)(W(p+1)T/n−WpT/n), p = 0, . . . , n−1.

The simulation of this scheme involves the independent Gaussian random vectors
(W(p+1)T/n −WpT/n) only. The resulting time discretization error is

ed(n) := Ef(XT )− Ef(XT ).

The standard Monte Carlo method consists in approximating

E[f(XT )] by 1
N

N∑
i=1

f(X
(i)

T ),

where the (X
(i)

T )’s are independent samples of XT . The resulting statistical error is

es(n,N) := Ef(XT )− 1

N

N∑
i=1

f(X
(i)

T ).

The statistical error es(n,N) can be estimated by using non-asymptotic versions of the cen-
tral limit theorem (e.g., the Bikelis theorem [23, 40]): for example, under mild assumptions
one has

∃C > 0, ∀n > T, ∀N ≥ 1, E|es(n,N)| ≤ C√
N

. (2.5)

For more precise estimates, see Section 7.
In various contexts ([3, 21, 27, 37, 44]) the discretization error ed(n) can be expanded

w.r.t. n:

ed(n) =
C1

nK1
+

C2

nK2
+

C3

nK3
+ . . . +O

(
1

nKm

)
. (2.6)

This justifies the use of low numerical cost Romberg-Richardson extrapolation procedures
to exponentially decrease the time discretization error: see [44].

The following formal calculation gives an intuition for the equality (2.3) and for the
methodology to get (2.6). To simplify, suppose that b, σ and f are bounded and of class C∞
with bounded derivatives. Then u(t, x) enjoys the same properties.

Notice first that, as the Brownian motion has independent Gaussian increments,

E[X(p+1)T/n − XpT/n] = Eb(XpT/n)
T
n ,

E[(X(p+1)T/n − XpT/n) · (X(p+1)T/n − XpT/n)
∗] = Ea(XpT/n)

T
n +O ( 1

n2

)
.
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Denoting by X
x

pT/n the Euler scheme with initial condition X0 = x, we thus have

Ef(X
x

T )− u(T, x)

=

n−1∑
p=0

E

[
u(T − (p + 1)Tn , X

x

(p+1)T/n)− u(T − pT
n , X

x

pT/n)
]

=

n−1∑
p=0

E

[
u(T − (p + 1)Tn , X

x

pT/n)− u(T − pT
n , X

x

pT/n)
]

+
T

n

n−1∑
p=0

ELu(T − (p + 1)Tn , X
x

pT/n) +
n−1∑
p=0

O ( 1
n2

)

=
T

n

n−1∑
p=0

E

[
−∂u

∂t
(T − pT

n , X
x

pT/n) + Lu(T − pT
n , X

x

pT/n)

]
+

n−1∑
p=0

O ( 1
n2

)
= O ( 1n) ,

(2.7)

since ∂u
∂t (t, x) = Lu(t, x). In the preceding equalities the main difficulty is hidden: one has

to justify that the remaining terms are of the prescribed order w.r.t. n. This requires accurate
pointwise estimates on the partial derivatives of u(t, x).

2.2. McKean-Vlasov stochastic differential equations. Stochastic particle systems with
McKean–Vlasov interactions arise in physics, fluid mechanics, economy, biology, etc.

Given N independent Brownian motions (W (i)
t ), multi-dimensional coefficients B and

S, and McKean interaction kernels b and σ, consider the following system

X
(i)
t = X

(i)
0 +

∫ t

0

B(s,X(i)
s ,
∫
b(X

(i)
s , y)νN

s (dy))ds

+

∫ t

0

S(s,X(i)
s ,
∫
σ(X

(i)
s , y)νN

s (dy))dW
(i)
s ,

(2.8)

where νN
s is the marginal distribution at time s of the empirical distribution νN of the tra-

jectories of the particles

ν̄N :=
1

N

N∑
j=1

δX(j) .

Notice that the processes (X(i)
t ) are dependent. However, seminal works by McKean and

Sznitman [43] show that the particle system propagates chaos in the sense that the probabil-
ity distribution of ν̄N converges weakly when N goes to infinity. The limit distribution is
concentrated at the probability law of the process (Xt), solution to the McKean-Vlasov SDE⎧⎪⎨

⎪⎩
Xt = X0 +

∫ t
0
B(s,Xs,

∫
b(Xs, y)νs(dy))ds

+
∫ t
0
S(s,Xs,

∫
σ(Xs, y)νs(dy))dWs,

νs(dy) := probability distribution of Xs.

(2.9)

In addition, the flow of the probability distributions νt solves the non-linear McKean-Vlasov-
Fokker-Planck equation

d

dt
νt = L∗νt

νt, (2.10)
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where, A denoting the matrix S · S∗ , L∗ν is the formal adjoint of the non-linear differential
operator

Lν :=
∑
k

Bk(t, x,
∫
b(x, y)ν(dy))∂k +

1

2

∑
j,k Aj

k(t, x,
∫

σ(x, y)ν(dy))∂jk. (2.11)

This construction has important analytical and numerical consequences.
From an analytical point of view, the McKean-Vlasov SDEs (2.9) allow one to construct

probabilistic interpretations for a wide family of macroscopic equations including smoothed
versions of the Navier-Stokes and Boltzmann equations. The theory is well developed for
smooth functions B, S, and smooth McKean interaction kernels b, σ, and also for some par-
ticular irregular kernels, often under strong ellipticity conditions on the differential operator
Lν (see for example Sznitman’s survey [43], Osada [39], Méléard [36]).

From a numerical point point of view, whereas the time discretization of (Xt) does not
lead to an algorithm since νt is unknown, the particle system {(X(i)

t ), i = 1, . . . , N} is a
Markov process which can be discretized in time (e.g., by using the Euler scheme) and thus
simulated: for all T , the solution νT to (2.10) is approximated by the empirical distribution
of the simulated particles at time T .

When the functions B, S, b, σ are smooth, optimal convergence rates have been ob-
tained, e.g. in [2, 6, 10]. For example, given a differentiable function Π, consider the scalar
conservation law

∂V

∂t
(t, x) =

1

2

∂2V

∂x2
(t, x)− ∂

∂x
Π ◦ V (t, x).

A formal identification of V (t, x) as the distribution function of the solution νt to (2.10)
leads to the following particle system:

X
(i)
t = X

(i)
0 +

∫ t

0

Π′

⎛
⎝ 1

N

N∑
j=1

H(X(i)
s − X(j)

s )

⎞
⎠ ds + W

(i)
t , (2.12)

where H is the Heaviside function. Let X
(i)

pT/n be the Euler discretization of the sys-
tem (2.12). Set

V (T, x) :=
1

N

N∑
i=1

H(x − X
(i)

T ).

In [7] the following error estimate is obtained:

Theorem 2.1. Suppose that the X
(i)
0 are independent and have the same twice continuously

differentiable probability distribution function V0(x) satisfying V ′
0(x) ≤ Ke−cx2

for some
strictly positive constants c and K.

Suppose also that Π is of class C3(R). Then

∃C > 0, ∀n > T, ∀N ≥ 1,

sup
x∈R

|V (T, x)− V (T, x)|+ |V (T, ·)− V (T, ·)|L1(R) ≤ C

n
+

C√
N

.

Notice that the statistical error is of order 1√
N

as in the case when the particles are
independent (cf. (2.5)) and that the discretization error is of order 1

n as in the case of standard
SDEs (cf. (2.7)).
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3. SDEs with discontinuous coefficients

In [28] Equation (2.1) is considered with bounded measurable drift coefficient b and con-
tinuous diffusion coefficient σ. The only additional assumption is that the operator L is
uniformly strongly elliptic, that is,

∃0 < λ < Λ, λ|ξ|2 ≤ ξ∗a(x)ξ ≤ Λ|ξ|2, ∀ξ. (3.1)

No convergence rate analysis from the literature can be applied in this framework because
of the lack of regularity of the coefficients: estimates for partial derivatives of u(t, x) cannot
be obtained by classical PDE analysis techniques, Malliavin calculus, or differentiation of
stochastic flows.

Instead, the technique in [28] consists at smoothing the drift coefficient and discretizing
the smoothed SDE. Let (Xε

t ) be the solution to

Xε
t = Xε

0 +

∫ t

0

bε(X
ε
s)ds +

∫ t

0

σ(Xε
s)dWs, ∀t ≥ 0.

Suppose that, given two families of functions F and M, for all test functions f in F and
smoothed coefficients Bε inM one has

|Ef(XT )− Ef(Xε
T )| ≤ Cεγ

and
|Ef(Xε

T )− Ef(X
ε

T )| ≤
C

nδεβ

for some constants C, γ, β and δ depending on T , F and M uniquely. Then, for some
possibly new positive number C,

|Ef(XT )− Ef(X
ε

T )| ≤
C

nκ

with κ = δ − δβ
γ+β .

The authors exhibit several classes of functions F andM for which the above conditions
hold true. In short, suitable functions bε approximate B in Lp norm for some p > 1; suitable
functions f are those which satisfy

∃c > 0, lim
|x|→∞

|f(x)|e−c|x|2 = 0

and, for some r large enough,

E

∫ T

0

|∇u(s,Xs)|rds < ∞,

where u(t, x) is the solution to the PDE (2.2).
In addition, if bε, a and f are of class C3(R) then

|Ef(Xε
T )− Ef(X

ε

T )| ≤
C

n
,

where C depends on the L∞ norms of bε and its partial derivatives up to order 3.
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Another interesting approach is due to Alfonsi [1] for the particular case of the Cox-
Ingersoll-Ross (CIR) model in financial mathematics. See also Deaconu and Herrmann [16]
for the construction and analysis of an extension of the Walk on Spheres method to approxi-
mate hitting times of the CIR process.

Other techniques may be used to estimate the effects of smoothing the coefficients around
singularities. We here present a useful result to localize the discontinuities of the coefficients.
More general results hold true: see Bossy et al. [4].

Theorem 3.1. Suppose that the functions b and σ are bounded.
Let g be a positive and increasing function in C1([0, T );R+) such that gα is integrable

on [0, T ) for all 1 ≤ α < 2. Suppose also that there exists 1 < β < 1 + η, where
η := 1

4(|B|∞∧1)4 , such that

∫ T

0

g2β−1(v)g′(v)
(T − v)1+η

vη
dv < +∞.

Then there exists a constant C, depending only on β, K and T , such that, for all vector
ξ, real number 0 < ε < 1/2, and integer n large enough,

1

n

n∑
p=0

P

[
|XpT/n − ξ| ≤ 1

n1/2−ε

]
g(pT/n) ≤ C

n1/2−ε

and
1

n

n∑
p=0

P

[
|XpT/n − ξ| ≤ 1

n1/2−ε

]
g(pT/n) ≤ C

n1/2−ε
.

As noticed in [34] the constraint on n is that

exp(−nε) ≤ C

n3/2−ε
.

An example of a suitable function g is g(t) = 1√
T−t

. This is of interest since (remember
the comment after (2.7)) typically one would like to take g as a suitable norm of a partial
derivative of u(t, x) which has this type of singularity in time when the data of the PDE (2.2)
are irregular.

4. SDEs with weighted local times and interface PDE

Many physical conservation laws involve operators of the type ∇.(a(x)∇v(x)) where a(x)
is a discontinuous function along hypersurfaces: transport equations in geophysics, Poisson-
Boltzmann equations in molecular dynamics, diffraction problems, etc.

From a stochastic point of view the situation differs from the preceding section since a
formal expansion of the definition of the operator leads to the definition of the coefficient B
as a singular measure rather than a function. Dirichlet form theory, Itô–Fukushima’s decom-
position and Portenko’s approach involve abstract processes whose numerical simulation
does not seem possible: see Lejay’s survey [30].
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We thus here follow another approach for which [30] is a good introduction. To this
end, we need to introduce the notion of local time. For all process Z := (Zt) which can be
written as

Zt = Z0 +

∫ t

0

φsdWs + A+
t − A−t

for some adapted process (φt) and some adapted continuous increasing processes (A+
t ) and

(A−t ), the right-sided local time Lξ
t (Z) of Z at point ξ is the increasing continuous process

such that

|Zt − ξ| = |Z0 − ξ|+
∫ t

0

sgn(Zs − ξ)dZs + Lξ
t (Z),

where sgn(x) := 1 for x > 0 and sgn(x) := −1 for x ≤ 0 (see, e.g., Revuz and Yor [42]).
At fixed ξ, the Stieljes measure in t, dLξ

t (Z), is carried by the set {t; Zt = ξ}:∫ ∞

0

IZs �=ξdL
ξ
s(Z) = 0.

In addition, almost surely

Lξ
t (Z) = lim

ε→0

1

ε

∫ t

0

φ2
s Iξ≤Xs≤ξ+εds. (4.1)

4.1. The one-dimensional case. The results of this section come from Martinez and Ta-
lay [34].

Consider the real valued function a(x) = (σ(x))2 defined on R and the interface (or
diffraction) PDE with boundary transmission condition⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tu(t, x)− 1

2∂x(a(x)∂xu(t, x)) = 0, (t, x) ∈ (0, T ]× (R− {0}),
u(t, 0+) = u(t, 0−), t ∈ [0, T ],

u(0, x) = f(x), x ∈ R,

a(0+)∂xu(t, 0+) = a(0−)∂xu(t, 0−), t ∈ [0, T ].

(4.2)

Assume the uniform strong ellipticity condition

∃0 < λ < Λ, λ ≤ a(x) = (σ(x))2 ≤ Λ, ∀ x ∈ R. (4.3)

Consider the one-dimensional SDE with weighted local time

Xt = x +

∫ t

0

σ(Xs)dWs +

∫ t

0

σ(Xs)σ
′
−(Xs)ds +

a(0+)− a(0−)

2a(0+)
L0
t (X), (4.4)

where σ′− is the left derivative of σ.
By considering the SDE (4.4), one can prove the existence and uniqueness of smooth

solutons to (4.2):

Theorem 4.1. Let us assume condition (4.3) and that the function σ is of class C3
b (R−{0}).

Moreover, we assume that σ and its derivatives have finite left and right limits at 0. Let (Xt)
be the solution to (4.4). Let the bounded function f be in the set

W2 :={g ∈ C2
b (R− {0}), g(i) ∈ L2(R) ∩ L1(R) for i = 1, 2;

a(0+)g′(0+) = a(0−)g′(0−)}. (4.5)
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Then the function
u(t, x) := Ef(Xx

t ), (t, x) ∈ [0, T ]× R,

is the unique solution in C1,2
b ([0, T ]× (R− {0}))⋂ C0([0, T ]× R) to (4.2).

The next pointwise estimates on the partial derivatives of u(t, x) are crucial to analyze
convergence rates for time discretizations of (4.4).

Theorem 4.2. In addition to the hypotheses made in Theorem 4.1, suppose that the function
σ is of class C4

b (R − {0}) and that its three first derivatives have finite left and right limits
at 0. Set

W4 :={g ∈ C4
b (R− {0}), g(i) ∈ L2(R) ∩ L1(R) for i = 1, . . . , 4;

a(0+)g′(0+) = a(0−)g′(0−) and a(0+)(Lg)′(0+) = a(0−)(Lg)′(0−)},
(4.6)

where, for all x �= 0,

Lg(x) := σ(x)σ′(x)∂xg(x) +
1

2
a(x)∂2

xxg(x). (4.7)

Then, for all j = 0, 1, 2 and i = 1, . . . , 4 such that 2j + i ≤ 4,

∃C > 0, ∀x ∈ R, ∀t ∈ (0, T ], ∀f ∈ W4, |∂j
t ∂

i
xu(t, x)| ≤

C√
t
, (4.8)

where the constant C only depends on T and the L1(R) norm of f (i) (1 ≤ i ≤ 3).

A transformed Euler scheme. The numerical approximation of the process L0
t (X) is a

critical issue: on the one hand, it is the local time of the unknown process (Xt); on the other
hand, Equality (4.1) shows that time discretizations of local times are numerically unstable.

We thus apply a transformation introduced by Le Gall [29] to get existence, unique-
ness and the Markov property for the solution to an equation more general than (4.4). This
one-to-one transformation leads to a new stochastic differential equation with discontinuous
coefficients but without local time, which can be discretized by the standard Euler scheme.

In our context, set

β+ := 2a(0−)
a(0+)+a(0−) and β− := 2a(0+)

a(0+)+a(0−) , (4.9)

and {
β(x) := x(β−Ix≤0 + β+Ix>0),

β−1(x) := x
β−

Ix≤0 +
x
β+

Ix>0.
(4.10)

Set also {
σ̃(x) := σ ◦ β−1(x)(β−Ix≤0 + β+Ix>0),

b̃(x) := σ ◦ β−1(x)σ′− ◦ β−1(x)(β−Ix≤0 + β+Ix>0).
(4.11)

From Itô–Tanaka’s formula (see, e.g., Revuz and Yor [42, Chap.VI]) applied to β(Xt) we
see that the process Y := β(X) satisfies the SDE with discontinuous coefficients:

Yt = β(X0) +

∫ t

0

σ̃(Ys)dBs +

∫ t

0

b̃(Ys)ds. (4.12)
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Let Y be the Euler approximation of (Yt), and the transformed Euler scheme for (Xt)
be defined as

XpT/n = β−1(Y pT/n). (4.13)

We have the following convergence rate result.

Theorem 4.3. Under the hypotheses made in Theorem 4.2, there exists a positive number C
such that, for all initial conditions f in W4, all 0 < ε < 1

2 and all n large enough,

|Ef(XT )− Ef(XT )| ≤ C

n(1−ε)/2
. (4.14)

Random walk methods. Other numerical methods have recently been developed which
involve a space discretization, random walks on the grid, and flips of a coin at point 0 to
mimic the effect of the weighted local time in (4.4). For their convergence rate analysis, see,
e.g., Etoré [20] and Lejay and Martinez [31].

4.2. The linear 3D Poisson-Boltzmann PDE in molecular dynamics. The results in this
section come from Bossy et al. [11].

The Poisson-Boltzmann PDE in molecular dynamics describes the electrostatic potential
around a biomolecular assembly and is used to compute the solvatation free energy and the
electrostatic forces exerted by the solvent on the molecule. In its linearized version, it reads{

−∇ · (ε(x)∇u(x)) + κ2(x)u(x) =
∑N

i=1 qiδxi , x ∈ R
3,

εint∇intu(y) · n(y) = εext∇extu(y) · n(y), y ∈ Γ,
(4.15)

where ε(x) is the permittivity of the medium, κ2(x) is the ion accessibility parameter, and
x1, . . . , xN are the positions of the atoms in the molecule with charges qi. We here deal with
the simplified coefficients and geometry

ε(x) :=

{
εint > 0 if x ∈ Ωint,

εext > 0 if x ∈ Ωext,
κ(x) =

{
0 if x ∈ Ωint,

κ̄ > 0 if x ∈ Ωext,

Ωint and Ωext being two open subsets of R3. We suppose that Ωint is bounded with boundary
Γ, Ωint ∩ Ωext = ∅, and Ωint ∪ Ωext = R

3. To formulate the boundary condition we have
denoted by n(y) the unit outward normal to Γ at y in Γ, and set

∇intϕ(x) := lim
y∈Ωint, y→x

∇ϕ(y) and ∇extϕ(x) := lim
y∈Ωext, y→x

∇ϕ(y), ∀x ∈ Γ.

Let χ be a C∞ function with compact support in Ωint such that χ(x) = 1 in the neigh-
borhood of the points {x1, . . . , xN}. Consider the function

G(x) :=
∑
i

1

4π

qi
εint

1

|x − xi| , x ∈ R
3.

The function v := u − χG solves the Poisson-Boltzman equation with regularized source
term

−∇ · (ε(x)∇v(x)) + κ2(x)v(x) = g(x), x ∈ R
3, (4.16)
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where here
g(x) = εint (G(x)Δχ(x) +∇G(x) · ∇χ(x)) .

Assume that Γ is a smooth manifold of class C3. Denote by π(x) the orthogonal pro-
jection of x on Γ and by ρ(x) the signed distance between x and Γ, that is, ρ(x) :=
(x − π(x)) · n(π(x)).

The following theorem is the foundation of the probabilistic interpretation of the linear
and non-linear Poisson–Boltzmann equations. The technical difficulties of its proof come
from the fact that the dynamics of the unknown process (Xt) depends on the local time of
the auxiliary process (ρ(Xt)).

Theorem 4.4. The SDE with weighted local time⎧⎨
⎩Xt = x +

∫ t
0

√
2ε(Xs)dWs +

εext − εint
2εext

∫ t
0
n(Xs)dL

0
s(Y ),

Yt = ρ(Xt),
(4.17)

where L0
t (Y ) is the right-sided local time at 0 of the process (Yt), has a unique weak solu-

tion.

One then can prove the following result which extends Theorem 4.1 to Poisson-Boltzmann
equation.

Theorem 4.5. Let g be a smooth function and v be the solution to (4.16). Then, for all
x ∈ R

3,

v(x) = E

[∫ +∞

0

g(Xx
t ) exp

(
−
∫ t

0

κ2(Xx
s )ds

)
dt

]
. (4.18)

The key ingredient for the preceding theorem is the following, which extends the classi-
cal Itô-Meyer formula.

Proposition 4.6. For all functions ϕ in C0
b (R

d) ∩ C2
b (R \ Γ) such that

εint∇intϕ(x) · n(x) = εext∇extϕ(x) · n(x), ∀x ∈ Γ,

one has

ϕ(Xt) = ϕ(X0) +

∫ t

0

IXs �∈Γ
√
2ε(Xs)∇ϕ(Xs) · dBs +

∫ t

0

I{Xs �∈Γ}Lϕ(Xs)ds,

where Lϕ(x) := ∇ · (ε(x)∇ϕ(x)).

The stochastic representation (4.18) does not suffice for the construction of an efficient
stochastic numerical method to solve the Poisson–Boltzmann equation because the approxi-
mation of L0

t (Y ) and thus the discretization of (Xt) is a critical issue. However the process
(Xt) allows us to exhibit another representation which is open to the derivation of numerical
methods.

For h > 0 define the following sequence of random times

τk = inf{t ≥ τ ′k−1 : ρ(Xx
t ) = −h},

τ ′k = inf{t ≥ τk : Xx
t ∈ Γ}.
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Since Δ(u − G) = 0 in Ωint, for all x such that ρ(x) ≤ −h,

u(x) = E[u(Xx
τ ′
1
)− G(Xx

τ ′
1
)] + G(x).

For all x ∈ Ωext,

u(x) = E

[
u(Xx

τ1) exp

(
−
∫ τ1

0

κ2(Xx
t )dt

)]
.

Recursively applying the two preceding formulas leads to the following result.

Theorem 4.7. One has

u(x) = E

[
+∞∑
k=1

(G(Xx
τk
)− G(Xx

τ ′
k
)) exp

(
−
∫ τk

0

κ2(Xx
t )dt
)]

.

When κ(x) and a(x) are constant in Ωint and Ωext (which implies that (Xt) behaves as a
Brownian motion outside neighborhoods of Γ), the preceding formula justifies the Walk on
Spheres algorithm introduced in this context by Mascagni and Simonov [35], which is based
on the sampling of (τk,Wτk). It also allows one to get accurate convergence rate estimates
in terms of h: see [11].

4.3. The general multi-dimensional case. Consider the differential operator

Lv(x) :=
1

2
∇ · (a(x)∇v(x)) + b(x)∇v(x), (4.19)

and the general interface problem with transmission boundary condition at the boundary Γ
of a bounded domain D in Rd:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tu(t, x)− Lu(t, x) = 0, (t, x) ∈ (0, T ]× (Rd \ Γ),
u(0, x) = f(x), x ∈ R

d,

[u(t, x)] = 0, (t, x) ∈ (0, T ]× Γ,

[n(π(x))ta(x)∇u(t, x)] = 0, (t, x) ∈ (0, T ]× Γ,

(4.20)

where [f(x)] := limy→x,y∈Ωext f(y)− limy→x,y∈Ωint f(y).
Suppose that a(x) is continuous except along Γ with finite limits aext(x) and aint(x) on

each side of Γ. Consider the SDE with weighted local time⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xt = x +
∫ t
0
b(Xs)ds +

∫ t
0
σ(Xs)dWs

+
∫ t
0

(aext(π(Xs))− aint(π(Xs)))n(π(Xs))

n(π(Xs))t(aext(π(Xs)) + aint(π(Xs))n(π(Xs))
dL0

s(Y ),

Yt := ρ(Xt),

(4.21)

where ρ is the signed distance to the surface Γ. The next theorem comes from Niklitschek-
Soto and Talay [38].

Theorem 4.8. Let Γ ⊂ R
d be a bounded simply connected manifold of class C3. Suppose

that the σi
j(x) and bi(x) respectively are of class C3

b (R
d−Γ) and C2

b (R
d−Γ), these functions

and their partial derivatives having finite limits on each side of Γ. Suppose also that a(x)
satisfies the strong ellipticity condition (3.1). Then there exists a unique weak solution to the
SDE (4.21) and the function u(t, x) := Ef(Xx

t ) is the unique solution to (4.20) in a space
which is the multi-dimensional version of (4.6).
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The construction of a numerically efficient discretization of (4.21) is in progress: the
simple one-to-one transformation β in Section 4.1 has no multi-dimensional equivalent and
the Walk on Spheres numerical method does not extend to non locally constant functions
a(x) and κ(x).

5. Stochastic computational models for complex flows in boundary layers

Many stochastic computational models have been designed to take into account the fact that
the Reynolds number for flows is close to 0 in the vicinity of boundaries. We here focus on
some particular models.

5.1. Stochastic Lagrangian models. In the statistical approach of turbulent flows, the ve-
locity U(t, x), the pressure, and other fundamental quantities, are random fields which are
described by their Reynolds decomposition: for example, the Reynolds decomposition of
the velocity field writes

U(t, x, ω) = 〈U〉(t, x) + u(t, x, ω),

where the Reynolds average part 〈U〉 is deterministic, and u is the fluctuating part. To com-
pute the average and higher moments of the velocity field, one needs to model the average
part and moments of the fluctuating part. Pope’s approach to this modelling issue consists
at describing, through a stochastic model, the Lagrangian properties of the flow. In a series
of papers initiated in the eighties, S. Pope has proposed Lagrangian stochastic models to
describe the position Xt and the instantaneous velocity Ut of a fluid particle. Depending on
the flow, other Lagrangian characteristics of the turbulence are added to the model. For a
fluid with constant mass density, Lagrangian and Eulerian quantities are related as follows:
for all suitable measurable functions g, the Reynolds average 〈g(U)〉 is defined as

〈g(U)〉(t, x) = E[g(Ut) | Xt = x].

The covariance of the velocity field, that is, its Reynolds stress tensor, is then supposed to
satisfy

〈uiuj〉 = 〈U iU j〉 − 〈U i〉〈U j〉.
Assuming that (Xt, Ut) is a McKean process, the coefficients of its generator are designed
such that the Lagrangian laws are consistent with closed Reynolds Average Navier-Stokes
equations and other relevant physical laws. The probability distributions of the Lagrangian
velocity, the pressure, etc., are suitably related to the corresponding Eulerian fields. For
example, in [41] the simplified Langevin model characterizes the position Xt and velocity
Ut of a fluid particle as a McKean process whose dynamics involves functions of the type
〈g(U)〉(t, x) and therefore singular McKean interaction kernels (compared to the coefficients
in the equation (2.9), the new coefficient 〈g(U)〉 is obtained by integrating, not w.r.t. the law
νt of the solution, but w.r.t. the conditional law of some components knowing the other
ones). These dynamics also involve non-smooth coefficients and wall laws at the boundary
of the domain (see, e.g., Dresden and Pope [19]). A computational model of interest is thus



800 Denis Talay

of the type⎧⎪⎪⎨
⎪⎪⎩

Xt = X0 +
∫ t
0
Us ds,

Ut = U0 −
∫ t
0

1

�
∇xP(s,Xs) ds +

∫ t
0

εL(s,Xs)

kL(s,Xs)
(E [Us | Xs]− Us) ds

+
∫ t
0

√
C0εL(s,Xs) dWs + 2

∑
0<s≤t (V (s,Xs)− Us−) I{Xs∈Γ},

(5.1)

where
:xP(s, x) = −

∑
i,j

∂ijE[U
i
sU

j
s | Xs = x]. (5.2)

Pope’s simulation method for his model can be interpreted as the time discretization of
the stochastic interacting particle system related to the McKean process (Xt, Ut) coupled
with other equations induced by physical constraints.

The analysis and discretization of (5.1) face many difficulties: the coefficients are not
smooth and depend on the probability distribution of the solution in a singular way (through
conditional expectations), the particles obey a specular reflection at the boundary Γ, the
dynamics are coupled with the Poisson equation (5.2), and the variance of the particle system
simulation is quite large.

Bossy et al. [9] established existence and uniquess of the solution to the following sim-
plified version of Pope’s model in the whole space:⎧⎪⎨

⎪⎩
Xt = X0 +

∫ t
0
Usds,

Ut = U0 +
∫ t
0
B(s,Xs, Us)ds + σWt,

B(s, x, u) := E[b(Us − u) | Xs = x],

where b is a bounded continuous function. Propagation of chaos was also established for
the corresponding particle system. The proof uses estimates on the density of fundamental
solutions of ultraparabolic PDEs obtained by Di Francesco and Polidoro [18].

Bossy and Jabir [7] studied the well-posedness of the simplified model enriched with the
specular boundary condition at the boundary Γ of an hyperplane, which means that

Ut = U0 +

∫ t

0

B(s,Xs, Us)ds + σWt − 2
∑

0<s≤t

(Us− · n(Xs)) n(Xs) I{Xs∈Γ},

and they proved the crucial no-permeability boundary condition

E[Ut · n(x) | Xt = x] = 0 a.e. in [0, T ]× Γ.

The same authors recently extended this result to general geometries owing to a complex
combination of PDE techniques for the analysis of the Fokker-Planck-McKean-Vlasov equa-
tion with specular boundary condition and stochastic calculus techniques to construct the
process (Xt, Ut): see [8].

We conclude this subsection by mentioning another stochastic Lagrangian model for the
Navier-Stokes equation in the whole Euclidean space: see Iyer and Mattingly [24].

5.2. Boundary conditions for Navier-Stokes equation. The vortex sheet and vortex blob
methods were introduced by A. J. Chorin in a series of seminal papers (e.g., [13] and the list
of references in [14]). Originally, they aim to approximate the Prandtl equation for turbulent
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flows in boundary layers by means of a stochastic grid free numerical method. Interacting
particles have dynamics of the type (2.8); their interaction kernel is the singular Biot and
Savart kernel. In order to satisfy the no-slip condition at the boundary, artificial vorticity
elements are created and added to the particle system.

Similar approaches have been developed in various directions to take more and more
physics into account. For example, Goodman and Long (see references in Long [33]) have
obtained convergence results for simplified models. Jourdain and Méléard [25] have proved
the propagation of chaos of a particle system and established a stochastic representation for
the vorticity solution to the Navier–Stokes equation with a simplified Neumann boundary
condition. Benachour et al. [5] have constructed a random vortex method for the 2D Navier–
Stokes equation for the vorticity by interpreting the no-slip boundary condition in terms of
births or deaths of the particles of a non-linear branching diffusion process. Constantin and
Iyer [15] have constructed another stochastic representation of Navier–Stokes equations with
no-slip condition at the boundary of a domain, which might be the key tool to interpret and
analyze the random vortex methods for boundary layers.

The convergence rate analysis of efficient simulation methods derived from the preceding
representations is an open issue. To give an example of the difficulties to overcome, let us
briefly comment on the stochastic representation obtained in [5] for the vorticity ω(t, x)
under the constraint of the no-slip condition for the flow velocity at the boundary: D being
the domain in R2 in which the flow is confined, for all bounded Borel functions h defined on
D, one has ∫

D

h(x)ω(t, x)dx = E

[
h(Xt) exp

(∫ t

0

φ (ω (s,Xs)) dAs

)]
.

Here, φ is a non-signed non-linear function of the vorticity, (At) is the local time of X at the
boundary of D, and

Xt = X0 −
∫ t

0

(∇⊥G ∗ ω)(s,Xs)ds −
∫ t

0

n(Xs)dAs,

where G is the Green function for the Laplace operator in D, n(x) is the unit outer normal
vector to the boundary, and ω(t, x) is the probability density of the process (Xt) modified
by the multiplicative functional

exp

(∫ t

0

φ (ω (s,Xs)) dAs

)
.

This probability density is proven to solve the 2D Navier Stokes equation for the vorticity.
As proposed by the authors, the corresponding particle system would interact by means of
destruction or birth of particles at each time one of them hits the boundary; the complex
rule to create or kill particles is expressed in terms of the vorticity which is approximated by
means of the empirical distribution of the particles.

5.3. A model in population dynamics. Another interesting situation where particle inter-
actions are governed by geometric rule, and for which a full numerical analysis is an open
problem, was recently tackled by Villemonais [45] (see also references therein). The moti-
vation comes from the study of Yaglom limits of biological populations.
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Consider the particle system

X
(i)
t = X

(i)
0 −

∫ t

0

qNi (X(i)
s )ds + W

(i)
t , 1 ≤ i ≤ N,

where the coefficients qNi are locally Lipschitz. The particles start independently in the
domain D which here may be unbounded, and are absorbed at Γ. It is easy to prove that,
almost surely, two particles cannot be absorbed at the same time.

For all (x1, . . . , xN ) such that one of the xi belongs to Γ, we are given a jump measure
J (x1, . . . , xN ) supported by D. At each time one particle hits Γ it jumps to a new position
inside D: more precisely, if the particle i hits Γ at time τ , then its new position in D is
sampled according to a jump measure J (X

(1)
τ , . . . , X

(N)
τ ).

Under fairly general assumptions on the functions qNi and the collection of jump mea-
sures J (x1, . . . , xN ) the particle system is well defined. Numerical experiments show that
its simulation allows one to achieve accurate numerical approximations of Yaglom limits.
However the convergence rate analysis is an open issue.

6. A singular stochastic computational model in neuroscience

Consider a finite size network of N -neurons. The following model for the membrane poten-
tial X(i)

t of neuron i (i = 1, . . . , N) is widely admitted in the neuroscience literature:

X
(i)
t = X0 +

∫ t

0

b(X(i)
s )ds +

α

N

∑
j �=i

M
(j)
t − M

(i)
t + W

(i)
t , (6.1)

where W
(i)
t are independent Brownian motions, M (i)

t is the number of times X
(i)
t passes

the threshold value of 1, i.e. the number of ‘spikes’, and α > 0 is the strength of synaptic
connection. After each spike, the membrane potential is reset below the threshold (at 0 when
the particle is the only one to spike).

Delarue et al. [17] recently studied the mean field limit of this model as N tends to∞:⎧⎪⎨
⎪⎩

Xt = X0 +
∫ t
0
b(Xs)ds + αE(Mt)− Mt + Wt,

Mt =
∑

k≥1 I[0,t](τk),

τk = inf{t > τk−1 : Xt− ≥ 1}, τ0 = 0.

(6.2)

Notice that Mt is the number of times Xt passes the threshold value 1 and that (6.2)
is a non-trivial McKean-Vlasov equation since the dynamics depends on the probability
distribution of (Xt) through the expectation of the singular functional Mt of the continuous
trajectories of (Xt). The definition of a solution needs thus to be suitably formulated. For
example, one may require that instantaneous firing rate has to remain finite:

e′(t) =
d

dt
E(Mt) < ∞, ∀t > 0,

since otherwise the dynamics may blow-up (intuitively, in view of (6.1), a large number of
neurons may fire at same time).
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Set p(t, y) = P(Xt ∈ dy). Itô’s formula gives the Fokker–Planck equation⎧⎪⎨
⎪⎩

∂tp(t, y) + ∂y[(b(y) + αe′(t))p(t, y)]− 1

2
∂2
yyp(t, x) = δ0(y)e

′(t), y < 1,

e′(t) = −1

2
∂yp(t, 1),

with boundary conditions p(t, 1) = p(t,−∞) = 0 and initial condition p(0, y) = p0(y).
This non-classical non-linear PDE has been studied by Carrillo et al. [12] (see also references
therein). Solutions may blow-up if α ≥ 1. In addition, for any α > 0 there exists an initial
condition X0 such that blow-up occurs in finite time.

The stochastic approach developed in [17] provides an answer to the converse question:
given an initial condition X0 = x0, can one find α > 0 such that blow-up does not occur?

Theorem 6.1. Suppose that the function b is globally Lipschitz. For any ε > 0 there exists
an α0 > 0 such that whenever X0 = x0 < 1 − ε and α ∈ (0, α0), there exists a unique
process (Xt,Mt) which is a solution to the limit equation (6.2) on any [0, T ] that does not
blow-up.

Delarue et al. are now studying the propagation of chaos effect for the computational
particle system (6.1) and the convergence rate of the empirical distribution to the probability
distribution of (Xt). The construction and analysis of numerical methods for (6.2) are open
questions.

7. Estimates for the statistical error

As noticed in Section 2 the statistical error can be estimated by using non-asymptotic ver-
sions of the central limit theorem. More accurate estimates can be derived from concentra-
tion inequalities. An important result has recently been obtained by Lemaire and Menozzi
[32] under weak assumptions. To simplify the notation we here limit ourselves to the case
of time homogeneous coefficients.

Theorem 7.1. Suppose that the drift coeffcient b is bounded and that the matrix a(x) satisfies
the ellipticity condition (3.1). Suppose also that A is Hölder continuous. Then there exist
constants c, C, α such that, for all Lipschitz functions f with Lipschitz constant less than 1,

∀r > 0, ∀N ≥ 1, P[|es(n,N)| ≥ r + 2
√

α log(C)] ≤ 2e−
N
α r2 .

In addition, the constant α is explicit in terms of T , c, C, and the constant c and C are
related to Gaussian lower and upper bounds for the probability density ofXT . These bounds
are obtained by adapting the parametrix method for fundamental solutions of parabolic
PDEs.

8. Conclusion

We have summarized a few recent analytical and numerical advances related to continu-
ous stochastic computational models with singular dynamics. A less succinct presentation
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should for example include stochastic kinetic models, stochastic particle systems with co-
agulation, fragmentation or coalescence, branching stochastic dynamics and their various
computational applications in biology and ecology, computational models for free energies,
stochastic partial differential equations, etc.

All these problems are connected to important open theoretical and algorithmic questions
such as sensitivity of the results to model uncertainties, variance reduction methodologies,
and efficient dimension reduction methods.
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A review on subspace methods for nonlinear
optimization

Ya-xiang Yuan

Abstract. In this paper, we review various subspace techniques that have been used in constructing
numerical methods for solving nonlinear optimization problems. As large scale optimization problems
are attracting more and more attention in recent years, subspace methods are getting more and more
important since they do not require solving large scale subproblems in each iteration. The essential
parts of a subspace method are how to construct subproblems defined in lower dimensional subspaces
and how to choose the subspaces in which the subproblems are defined. Various subspace methods for
unconstrained optimization, constrained optimization, nonlinear equations and nonlinear least squares,
and matrix optimization problems are given respectively, and different proposals are made on how to
choose the subspaces.
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1. Introduction

Nonlinear optimization problems have the following form:

min
x∈$n

f(x) (1.1)

subject to ci(x) = 0, i = 1, ...,me , (1.2)
ci(x) ≥ 0, i = me + 1, ...,m , (1.3)

where m and me are integers satisfying m ≥ me ≥ 0, f(x) and ci(x)(i = 1, ...,m) are
real functions defined in 4n and at least one of functions f(x) and ci(x)(i = 1, ...,m)
is nonlinear. If there is no constraint, namely m = me = 0, problem (1.1) is called an
unconstrained optimization problem, otherwise problem (1.1)-(1.3) is called a constrained
optimization problem.

Numerical methods for nonlinear optimization are iterative. At the k−th iteration, if
the current iterate point xk is not a solution, we try to compute a “better” point xk+1 and
continue the process so that it will stop at a solution or generate a sequence which, hopefully,
converges to a solution.

There are mainly two classes of numerical methods for nonlinear optimization. One class
is line search methods in which the next iterate point is obtained by searching along a search
direction. Namely, we let

xk+1 = xk + αkdk (1.4)
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808 Ya-xiang Yuan

where dk ∈ 4n is a search direction and αk > 0 is a step-length. The other class of methods
are trust region algorithms, where a trial step sk in a trust region is computed and then the
algorithm decides whether the trail step should be accepted. The trust region is normally a
small neighbourhood centered at the current iterate point xk. Generally, the search direc-
tion or the trial step are obtained by solving a subproblem which is an approximation to the
original nonlinear optimization problem. Convergence results of numerical methods for non-
linear optimization are normally based on the reduction of a penalty function. For example,
the step-length αk in a line search algorithm is chosen in such a way that sufficient reduction
in the penalty function is achieved. Trial steps in a trust region algorithm will be accepted if
the penalty function is reduced. A penalty function can be viewed as a combined measure
for the two tasks of nonlinear optimization: reducing the objective function and satisfying
the constraints. Another approach for ensuring global convergence of numerical methods
for nonlinear optimization is the filter technique, which measures the constraint violation
and objective function value as a two dimensional array. Detailed discussions on numerical
methods for nonlinear optimization can be found in [32].

Due to their broad applications in many fields, large scale optimization problems are at-
tracting more and more attention in recent years. However, even though the subproblems
for computing search directions and trial steps are simpler than the original nonlinear opti-
mization problems, they are still linear or quadratic problems large-scale in nature, as they
are also defined in the same dimensional space as the original nonlinear problem. For ex-
ample, in the k−th iteration, the sequential quadratic programming method for nonlinear
optimization needs to solve the following quadratic programming subproblem:

min
x∈$n

Qk(d) (1.5)

s. t. ci(xk) + dT∇ci(xk) = 0, i = 1, ...,me , (1.6)

ci(xk) + dT∇ci(xk) ≥ 0, i = me + 1, ...,m , (1.7)

where Qk(d) is a quadratic approximation to the Lagrangian function. Though the above
quadratic programming subproblem is simpler than the original nonlinear optimization prob-
lem, it is still large scale when the original nonlinear problem is large scale.

Therefore, it is important to study subspace techniques [9, 17, 41] due to the fact that
subspace methods do not need to solve large scale subproblems in each iteration. In general,
a subspace method searches in a lower dimensional subspace to obtain the search direction
or the trust region step. Thus, in each iteration, we only need to solve a subproblem that is
defined in a lower dimensional subspace.

In addition to the practical computation considerations, there are other reasons that mo-
tivated us to study numerical methods based on subspace techniques. First, let us consider
a standard full space line search method. The search direction dk is normally obtained by
solving an approximation model based on the full space. For example, the search direction
of the Newton’s method is obtained by minimizing the second order Taylor expansion of a
general nonlinear function in the whole space. Therefore, one can view that the computa-
tion of dk is very aggressive as it is obtained through an optimistic approach by trusting the
corresponding approximate model in the whole space. Once dk is obtained, the line search
procedure of computing the step-length αk tries to minimize the one dimensional function
f(xk+αdk). Thus, the computation of αk is very conservative as it is obtained by searching
in a one dimensional subspace. Thus, a standard full space line search algorithm swings
between full space approximations and one-dimensional subspace searches.
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Another motivation is from our long time studies on nonlinear conjugate gradient meth-
ods [10]. The search direction of a nonlinear conjugate gradient method for unconstrained
optimization problem (1.1) has the form

dk = −∇f(xk) + βkdk−1 , (1.8)

where βk is defined by certain conjugate conditions. Typical choices of βk are as follows:

βHS
k =

gTk+1(gk+1 − gk)

dTk (gk+1 − gk)
, βFR

k =
||gk+1||22
||gk||22

, (1.9)

βPRP
k =

gTk+1(gk+1 − gk)

||gk||22
, βDY

k =
||gk+1||22

dTk (gk+1 − gk)
. (1.10)

We have two observations on the nonlinear conjugate gradient methods. Firstly, no matter
which βk is used, the new point xk+1 = xk +αkdk is always in the 2-dimensional subspace
xk + span{−gk, dk−1}. Secondly, the conjugacy property is a good property only when it
is associated with exact line searches. Therefore, instead of studying which formulae for
βk would lead to a good nonlinear conjugate gradient method, we should ask ourselves a
different question: which point x in the two-dimensional space xk+ span{−gk, dk−1} is the
best point?

The third motivation for us to study subspace algorithms is the famous limited mem-
ory quasi-Newton method. Quasi-Newton methods for nonlinear optimization use quadratic
models in which the Hessian is a quasi-Newton matrix updated from iteration to iteration
and satisfies the following quasi-Newton equation:

Bksk−1 = yk−1 , (1.11)

where sk−1 = xk − xk−1 and yk−1 = ∇f(xk)−∇f(xk−1). An example of quasi-Newton
update is the famous Broyden-Fletcher-Goldfarb-Shanno (BFGS) update:

Bk = UBFGS(Bk−1, sk−1, yk−1)

= Bk−1 −
Bk−1sk−1s

T
k−1Bk−1

sTk−1Bk−1sk−1
+

yk−1y
T
k−1

sTk−1yk−1
. (1.12)

For extremely large scale optimization problems, such as those derived from numerical
weather prediction and data assimilation, we can not afford to store a full quasi-Newton
matrix. To overcome such difficulties, Liu and Nocedal[21] proposed the limited memory
BFGS method, which generates the quasi-Newton matrix by using the vectors s and y in the
previous m iterations. Namely, B(0)

k = σkI and

B
(i)
k = UBFGS(B

(i−1)
k , sk−m−1+i, yk−m−1+i) ,

for i = 1, ...,m. Eventually, the quasi-Newton matrix in the limited memory BFGS method
has the following representation:

Bk = B
(m)
k = σkI + [Sk Yk]Tk

[
ST
k

Y T
k

]
,

where Tk is a 2m × 2m symmetric matrix and

[Sk Yk] = [sk−1, sk−2, ...sk−m, yk−1, yk−2, ..., yk−m] ∈ 4n×2m .
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In a line search method we have sk = αkdk = −αkB
−1
k gk for some αk > 0, while in a trust

region algorithm sk = −(Bk + λkI)
−1gk for some λk ≥ 0. Thus, in either case, we have

xk+1 − xk ∈ span{gk, sk−1, ..., sk−m, yk−1, ..., yk−m} . (1.13)

This shows that limited memory quasi-Newton methods always produce a step in a lower
dimensional subspace.

The block coordinate descent (BCD) method is a technique that is widely used in com-
putational mathematics. From subspace point of view, the BCD method is a very special
subspace method whose subspaces are spanned by coordinate directions. The method parti-
tions the variables into a few blocks and then minimizes the objective function with respect
to each block by fixing all other blocks at each iteration. It has been studied in convex pro-
gramming [25], nonlinear programming [2], semidefinite programming [35], compressive
sensing [11, 24], etc. A popular extension of the BCD method is the alternating direction
method of multipliers (ADMM) by minimizing the augmented Lagrangian function blocks
by blocks and then updating the Lagrangian multipliers. It dates back to optimization prob-
lems arising from partial differential equations (PDEs) [14–16], and has been applied to
semidefinite programming [37], compressive sensing [40], distributed computation [5] and
many other areas.

Parallel computation methods can also be viewed as subspace techniques. For exam-
ple, the domain decomposition technique of Tai and Xu[39] decomposes the n dimensional
space into p lower dimensional subspaces using the domain decomposition technique, and p
processors search in parallel in the corresponding subspaces.

A general subspace approach requires

xk+1 − xk ∈ Sk , (1.14)

where Sk is a subspace in 4n with the good feature that the dimension τk of Sk being much
less than n. An advantage of subspace approaches is that the subproblems for computing
searching directions or trust region trial steps are defined in lower dimensional subspaces,
which enables us to solve the corresponding subproblems quickly. Moreover, for many
cases, we could show that subspace approaches attain good theoretical properties as full
space models.

In a subspace method, the dimension of the subspace τk is either fixed or updated from
iteration to iteration. Sk+1 is normally updated from Sk. Often Sk+1 is obtained by adding
some new directions d

(k)
i (i = 1, ...,m):

Sk+1 = span{Sk, d
(k)
1 , ..., d(k)m } .

The directions d
(k)
i to be added can be randomly generated or constructed based on the

iteration information at the current iterate in order to improve the subspace. Sometimes,
it is reasonable to remove some directions from the current subspace to avoid redundancy
or to prevent the dimension of the subspace from increasing too rapidly. Moreover, it is
reasonable for us to delete directions along which significant function reductions are not
possible to obtain.
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2. Subspace algorithms for unconstrained optimization

Consider a trust region algorithm for unconstrained optimization

min
x∈$n

f(x) . (2.1)

The trust region subproblem (TRS) is normally

min
d∈$n

Qk(d) = gTk d +
1

2
dTBkd (2.2)

s. t. ‖d‖2 ≤ Δk , (2.3)

where gk = ∇f(xk), Bk is an approximate to ∇2f(xk) and Δk > 0 is the trust region
bound.

When the approximate Hessian Bk is generated by quasi-Newton updates, the trust re-
gion subproblem has subspace properties. First, we have the following result

Lemma 2.1 ([34]). Suppose B1 = σI, σ > 0. The matrix updating formula is any one
chosen from amongst SR1, PSB and Broyden family, and Bk is the k-th updated matrix. sk is
the solution of TRS, xk+1 = xk + sk, gk = ∇f(xk). Let Gk = span{g1, g2, · · · , gk}. Then
sk ∈ Gk and for any z ∈ Gk, w ∈ G⊥k , we have

Bkz ∈ Gk, Bku = σu . (2.4)

The above lemma shows that quasi-Newton matrices have very nice subspace properties.
Similar results for line search QN methods are given by Gill and Leonard[13].

From the above lemma, it is not difficult to prove the following theorem.

Theorem 2.2 ([34]). If Sk = span{g(x1), ..., g(xk)}. The subspace trust region algorithm
will generate the same sequences as the full space trust region quasi-Newton algorithm for
unconstrained optimization if the B1 = σI and Bk is updated by SR1, PSB and Broyden’s
family.

Based on the above results, a subspace trust region quasi-Newton method for large scale
unconstrained optimization is presented by Wang and Yuan[34].

Now, we discuss a special trust region subproblem which makes good use of subspace
properties. If we replace the ||.||2 by a general norm ||.||W in (2.3), we obtain a general TRS
subproblem

min
s∈$n

gT s +
1

2
sTBs (2.5)

s. t. ‖s‖W ≤ Δ , (2.6)

where ‖.‖W is any norm in 4n. A natural question is which norm ||.||W we should use.
Intuitively, we should choose the norm ‖.‖W properly so that the trust region subproblem
can easily be solved by using the corresponding subspace properties of the objective function
gT s+ 1

2s
TBs. Assume that B is a limited memory quasi-Newton matrix which is expressed

as B = σI + PDPT , where P ∈ 4n×l satisfies PTP = I . If we define a cylinder norm:

‖s‖P = max{‖PT s‖∞, ‖PT
⊥ s‖2} , (2.7)
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where PT
⊥ is the projection onto the space orthogonal to range(P ). Due to the definition of

||.||P , the solution s of the P norm trust region subproblem

min
s∈$n

gT s +
1

2
sTBs (2.8)

s. t. ‖s‖P ≤ Δ , (2.9)

can be expressed by Ps1+P⊥s2, where s1 is the solution of the bound-constrained quadratic
programming problem

min
s∈$l

sT (PT g) +
1

2
sT (σI + D)s (2.10)

s. t. ‖s‖∞ ≤ Δ , (2.11)

and s2 is solution of the 2-norm constrained quadratic programming problem

min
s∈$n−l

sT (PT
⊥ g) +

1

2
σsT s (2.12)

s. t. ‖s‖2 ≤ Δ . (2.13)

It is easy to see that both s1 and s2 have closed form solutions:

(s1)i =

{−(PT g)i
σ+Dii

if |(PT g)i| < (σ + Dii)Δ ,
Δsign(−(PT g)i) otherwise ,

(2.14)

i = 1, ..., l, and

s2 = −min

(
1

σ
,

Δ

||PT
⊥ g||
)

PT
⊥ g . (2.15)

Numerical results based on a trust region algorithm that uses the P-norm trust region sub-
problem are given by [6].

In a general line search type subspace algorithm for unconstrained optimization, we ob-
tain the search direction by solving a subproblem defined in the subspace:

min
d∈Sk

mk(d) , (2.16)

wheremk(d) is an approximation to f(xk+d) for d in the subspace Sk It would be desirable
that the approximation model mk(d) has the following properties: it is easy to minimize in
the subspace Sk, it is a good approximation to f and the solution of the subspace subproblem
will yield a sufficient reduction in the original objective function f .

It is natural to use quadratic approximations to the objective function. This leads to
quadratic models in subspaces. Let dim(Sk) = τk and

Sk = span{p1, p2, ..., pτk} .

Define Pk = [p1, p2, ..., pτk ]. Thus, the subspace condition d ∈ Sk is satisfied if we let d =
Pkd̄ for d̄ ∈ 4τk . The quadratic function Qk(d) defined in the subspace can be expressed as
a function Q̄k in a lower dimension space 4τk : Qk(d) = Q̄k(d̄).
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Now, we discuss possible choices for the subspace Sk. First, we consider the special
subspace

Sk = span{−gk, sk−1, ..., sk−m} . (2.17)

In this case, any vector d in the subspace Sk has the following form:

d = αgk +

m∑
i=1

βisk−i = (−gk, sk−1, · · · , sk−m)d̄ (2.18)

where d̄ = (α, β1, · · · , βm)T ∈ 4m+1. By using the secant conditions, we estimate all the
second order terms of the Taylor expansion of f(xk + d) in the subspace Sk

sTk−i∇2f(xk)sk−j ≈ sTk−iyk−j , sTk−i∇2f(xk)gk ≈ yTk−igk , (2.19)

except one term gTk ∇2f(xk)gk. Therefore, it is reasonable to use the following quadratic
model in the subspace Sk:

Q̄k(d̄) = (−‖gk‖2, gTk sk−1, · · · , gTk sk−m)d̄ +
1

2
d̄T B̄kd̄ , (2.20)

where

B̄k =

⎛
⎜⎜⎜⎝

ρk −gTk yk−1 . . . −gTk yk−m

−gTk yk−1 yTk−1sk−1 . . . yTk−msk−1

...
...

. . .
...

−gTk yy−m yTk−msk−1 . . . yTk−msk−m

⎞
⎟⎟⎟⎠ (2.21)

with ρk ≈ gTk ∇2f(xk)gk. Hence, once we have a good estimate to the term gTk ∇2f(xk)gk,
we obtain a good quadratic model in the subspace Sk.

There are different ways to choose ρk. Similarly to Stoer and Yuan[31], we let

ρk = 2
(sTk−1gk)

2

sTk−1yk−1
, (2.22)

due to the fact that the mean value of cos2(θ) is 1
2 , which gives

gTk ∇2f(xk)gk =
1

cos2 θk

(sTk−1∇2f(xk)gk)
2

sTk−1∇2f(xk)sk−1
≈ 2

(sTk−1gk)
2

sTk−1yk−1
, (2.23)

where θk is the angle between (∇2f(xk))
1
2 gk and (∇2f(xk))

1
2 sk−1. Another way to esti-

mate gTk (∇2f(xk))gk is to replace ∇2f(xk) by a quasi-Newton matrix. We can also obtain
ρk by computing an extra function value f(xk + tgk) and setting

ρk =
2(f(xk + tgk)− f(xk)− t‖gk‖22)

t2
. (2.24)

By letting the second order curvature along gk to be the average of those along sk−i (i =
1, ...,m), we get

ρk =
‖gk‖22

m

m∑
i=1

sTk−iyk−i

sTk−isk−i
. (2.25)
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Suppose gTk ∇2f(xk)gk = ρ, we have d(ρ) =

(−gk, sk−1, . . . , sk−m)

⎛
⎜⎜⎜⎝

ρ −gTk yk−1 . . . −gTk yk−m

−gTk yk−1 yTk−1sk−1 . . . yTk−msk−1

...
...

. . .
...

−gTk yy−m yTk−msk−1 . . . yTk−msk−m

⎞
⎟⎟⎟⎠
−1⎛
⎜⎜⎝

−‖gk‖2
gTk sk−1

. . .
gTk sk−m

⎞
⎟⎟⎠

Using
(B + ρeeT )−1 = B−1 − ρ

1 + ρeTB−1e
B−1eeTB ,

we could show that the solution set is on a line:

d(ρ) = d(+∞) + α(ρ)d̂ .

Thus, instead of estimating an ideal ρ, we can carry out a line search for ρ to achieve sufficient
reduction in the objective function.

Similar to (2.17), a slightly different subspace is

Sk = span{−gk, yk−1, ..., yk−m} . (2.26)

In this case, any vector in Sk is represented as

d = αgk +

m∑
i=1

βiyk−i = Wkd̄ (2.27)

where Wk = [−gk, yk−1, ..., yk−m] ∈ 4n×(m+1). The Newton’s step in the subspace Sk is
Wkd̄k with

d̄k = − [WT
k ∇2f(xk)Wk

]−1
WT

k ∇f(xk) . (2.28)

Thus, the remaining issue we need to consider is to obtain a good estimate of d̄k, us-
ing the fact that all the elements of

[
WT

k (∇2f(xk))
−1Wk

]
is known except one entry

gk∇2f(xk)
−1gk.

Due to the property of (1.13), it is reasonable to use

Sk = span{−gk, sk−1, ..., sk−m, yk−1, ..., yk−m} . (2.29)

This subspace is used by [33] where a subspace trust region limited memory quasi-Newton
method is presented.

Now, we consider subspaces spanned by coordinate directions. Such subspaces have
sparsity structures. First, let us sort |(gk)i| by the descending order

|(gk)i1 | ≥ |(gk)i2 | ≥ |(gk)i3 | ≥ · · · . (2.30)

We call the subspace
Sk = span{ei1 , ei2 , ..., eiτ } (2.31)

the τ -steepest coordinates subspace. One good property of the steepest coordinates subspace
is that the steepest descent direction in the subspace is a sufficiently descent direction, namely

min
d∈Sk

dT gk
||d||2||gk||2 ≤ − τ

n
. (2.32)
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If (gk)2iτ+1
≤ ε
∑τ

j=1(gk)
2
ij
, we obtain the following estimate:

min
d∈Sk

dT gk
||d||2||gk||2 ≤ − 1√

1 + ε(n − τ)
. (2.33)

By sequentially adding steepest coordinate directions into the subspace, we obtain a
sequential steepest coordinates search (SSCS) technique. As an example, let us consider
applying the sequential steepest coordinates search to the minimization of a convex quadratic
function

Q(x) = gTx +
1

2
xTBx .

Algorithm 2.3. (Sequential steepest coordinates search for quadratic functions)

Step 1 Given x1. k := 1.

Step 2 Compute gk = ∇Q(xk), if ||gk|| = 0 then stop;
Choose ik = argmini{|(gk)i|}.

Step 3 Let Sk = span{ei1 , ..., eik},
Find xk+1 = argminx∈x1+Sk

Q(x);
Go to Step 2.

The sequential steepest coordinates search could be used to obtain an approximate sparse
solution of linear least square problems. For example, consider the following sparsity con-
straint linear least squares problem:

min
x∈$n

||Ax − b||22 (2.34)

s. t. ||x||0 ≤ r , (2.35)

where A ∈ 4n×m, b ∈ 4m, r is a positive integer less than n, and ||x||0 is the number of
non-zero elements of vector x. If Algorithm 2.3 is applied to minQ(x) = 1

2 ||Ax − b||22, it
will give a greedy algorithm for (2.34)-(2.35).

Algorithm 2.4. (SSCS for linear least squares)

Step 1 x1 = 0, g = AT b, i1 = argmax{|(g)i|}, p1 = ei1 , given ε > 0.

Step 2 αk = argminα Q(xk + αpk),
xk+1 = xk + αkpk,

Step 3 If k ≥ r then stop; g := g − αATApk;
If ||g||2 ≤ ε then stop;

Step 4 let ik+1 = argmaxi{|(g)i|};
let pk+1 ∈ span{p1, ..., pk, eik+1

} conjugate to p1, ..., pk.

Step 5 k := k + 1, go to Step 2.

If ε = 0, the solution obtained by the above algorithm is a local solution of problem
(2.34)-(2.35). Let S(r, A, b) be the set of all global solutions of (2.34)-(2.35), we are inter-
ested in studying what conditions would imply xr+1 ∈ S(r, A, b). If A = I , it is easily to
see that xr+1 ∈ S(r, I, b). For general A, if r = 1 or 2 we have the following results.
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Lemma 2.5. Let A = (a1, ..., an). If ||ai|| = 1 for all i, the iterate point xk+1 obtained by
the SSCS algorithm has the following properties:

(1) x2 ∈ S(1, A, b);

(2) There exists a y ∈ S(2, A, b) such that x3 and y share one non-zero element index.

The subproblems in the SSCS algorithm have the form

min
x∈$n

||Ax − b||22 (2.36)

s. t. xi = 0 , i ∈ Ik (2.37)

for some active set Ik. Thus, general subspaces spanned by coordinate directions for sparsity
constraint problems should have the form Sk = {d | di = 0, i ∈ Ik}. Such subspaces
are used by many methods for compressive sensing. One particular optimization model in
compressive sensing is the l0 minimization problem

min
x∈$n

||x||0 (2.38)

s. t. Ax = b . (2.39)

For more detailed discussions, please refer to [38] and the references given there.
Another possible subspace is the steepest descent τ−subspace, which is a τ dimensional

subspace which forces τ elements of the gradient vector to be zero. Instead of requiring
the whole vector g(x) = 0, which is the optimality condition for min f(x), we require τ
elements of g(x) to be zero, namely

ḡ(x) = ((g(x))i1 , (g(x))i2 , ..., (g(x))iτ )
T = 0 ,

at the current iteration. This should be achievable by searching in a subspace spanned by τ
coordinate directions, since there are only τ equations. Let the Jacobian of ḡ(x) to be Ā(x),
a Newton’s step d satisfies

(Ā(xk))
T d + ḡ(xk) = 0 . (2.40)

Because the above system has τ equations with n unknowns, it is possible to consider d in
any subspace spanned by τ coordinate directions. There are Cm

n such choices, and we call
the one which makes the length of the solution of (2.40) in the subspace the shortest as the
steepest descent τ -subspace. Intuitively, this subspace has the nice property of forcing τ
elements of the gradient vector to zero by moving a τ−coordinate step as small as possible.
However, such a definition of the subspace seems to be too theoretical and may not be easy
to be implemented in practice, as it needs to solve linear least squares problem with linear
constraints and a sparsity constraint:

min
d∈$n

||d||22
s. t. (Ā(xk))

T d + ḡ(xk) = 0, ||d||0 = τ .

3. Subspace techniques for constrained optimization

Now we consider subspace techniques for constrained optimization. In order to simplify the
presentation, instead of considering the general problem (1.1)-(1.3), we focus on the equality
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constrained problem:

min
x∈$n

f(x) (3.1)

s. t. c(x) = 0 , (3.2)

where c(x) = (c1(x), · · · , cm(x))T .
The sequential quadratic programming method (SQP) is an important numerical method

for solving constrained optimization. The main idea of the SQP method is to solve the
nonlinearly constrained problem (3.1)-(3.2) by successively minimizing quadratic approxi-
mations to the Lagrangian function subject to the linearized constraints. The search direction
dk of a line search type SQP method is obtained by solving the following quadratic program-
ming subproblem

min
d∈$n

Qk(d) = gTk d +
1

2
dTBkd (3.3)

s. t. c(xk) + AT
k d = 0 , (3.4)

where Ak = ∇c(xk) and Bk is an approximation to the Hessian of the Lagrangian function.
The SQP step dk can be decomposed into two parts dk = hk + vk where vk ∈ range(Ak)
and hk ∈ null(AT

k ). Thus, vk is a solution of the linearized constrained constraints (3.4) in
the range space of Ak, while hk is the minimizer of the quadratic function Qk(vk +d) in the
null space of AT

k .
One good property of the SQP method is that it converges superlinearly, namely when

xk is close to a KKT point x∗ we have the following relation

xk + dk − x∗ = o(‖xk − x∗‖) . (3.5)

But, the superlinearly convergent step dk may lead to a point that seems “bad” as it may
increase both the objective function and the constraint violations. The famous Marotos effect
shows that it is possible for the SQP step dk to have both f(xk + dk) > f(xk) and ‖c(xk +
dk)‖ > ‖c(xk)‖, even though (3.5) holds. A remedy for overcoming the Marotos effect is
the second order correction step method[12, 26], where the step is obtained by resolving the
quadratic programming subproblem with the constraints (3.4) are replaced by

c(xk + dk) + AT
k (d − dk) = 0 (3.6)

because the left hand side of (3.6) is a better approximation to c(xk + d) near the point
d = dk. Since the change of the constraints is a second order term, the new step can be
viewed as the SQP step dk adding a second order correction step d̂k. For detailed discussions
on the SQP method and the second order correction step, please see [32].

Now, let us examine the second order correction step from subspace point of views. The
second order correction step d̂k is a solution of

min
d∈$n

Qk(dk + d) (3.7)

s. t. c(xk + dk) + AT
k d = 0 . (3.8)

Assume that the QR factorization ofAk is [Yk, Zk]

[
Rk

0

]
andRk is nonsingular. Thus, the

second order correction step is represented as d̂k = v̂k+ĥk, where v̂k = −YkR
−T
k c(xk+dk)
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and ĥk is the minimizer of

min
h∈null(AT

k )
Q(dk + v̂k + h) . (3.9)

Since dk is the SQP step, it follows that gk + Bkdk ∈ range(Ak), which implies that the
minimization problem (3.9) is equivalent to

min
h∈null(AT

k )

1

2
(v̂k + h)TBk(v̂k + h) . (3.10)

If Y T
k BkZk = 0, we have that ĥk = 0, which shows that the second order correction step

d̂k ∈ range(Ak) is also a range space step. In this case, the second order correction uses two
range space steps and one null space step. This is an undesirable property because a range
space step is a fast convergent step as it is a Newton’s step while a null space step is normally
a slower convergent step due to the fact that it is normally a quasi-Newton step becauseBk is
generally a quasi-Newton approximation to the Hessian of the Lagrangian function. Hence,
examining the SQP method with subspace properties helps us to understand the insights of
the method. Intuitively, it would be more reasonable to have two steps in the slower space
with one step in the fast space. Thus, it might be better to investigate a modified SQP method
with a correction step d̂k ∈ null(AT

k ).
We can also consider subspaces other than the null space and the range space. In general,

a subspace SQP method obtains the search direction dk by solving a QP in a subspace:

min
d∈$n

Qk(d) (3.11)

s. t. ck + AT
k d = 0, d ∈ Sk , (3.12)

where Sk is a subspace. Lee[20] considered the following choice:

Sk = span{−gk, d1, ..., dk−1,−∇cki
} ,

where |cki | = ‖ck‖∞.
In some trust region algorithms for constrained optimization, the subproblem that needs

to be solved in each iteration is the Celis-Dennis-Tapia subproblem[7]

min
d∈$n

Qk(d) = gTk d +
1

2
dTBkd (3.13)

s. t. ||ck + AT
k d||2 ≤ ξk, ||d||2 ≤ Δk . (3.14)

Recently, It is shown that the CDT subproblem has certain subspace properties[18]:

Lemma 3.1 ([18]). Let Sk = span{Zk}, ZT
k Zk = I , span{Ak, gk} ⊂ Sk and Bku =

σu, ∀u ∈ S⊥k . Then the CDT subproblem is equivalent to

min
d̄∈$r

Q̄k(d̄) = ḡTk d̄ +
1

2
d̄T B̄kd̄ (3.15)

s. t. ||ck + ĀT
k d̄||2 ≤ ξk, ||d̄||2 ≤ Δk , (3.16)

where ḡk = ZT
k gk, B̄k = ZT

k BkZk and Āk = ZT
k Ak.
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Based on the above result, a subspace version of the Powell-Yuan trust algorithm[28]
was given in [18].

Subspace techniques can also be used with other methods for constrained optimization.
For example, interior methods for nonlinearly constrained optimization basically use a New-
ton’s step to the KKT system based on the log-barrier function. If we solve the derived linear
system in a lower dimensional subspace, it will give us a subspace version of an interior point
method.

There are many subspace techniques for bound-constrained problems, where the con-
straints are

l ≤ x ≤ u , (3.17)

where l and u are two given vectors in 4n. For example, A subspace adaptation of the
Coleman-Li trust region and interior method[8] is proposed for solving large-scale bound-
constrained minimization problems[3], and another subspace version of the Coleman-Li trust
region algorithm was presented in [41]. Ni and Yuan[27] proposes a subspace limited mem-
ory quasi-Newton method for solving large-scale optimization with bound constraints (3.17),
in which the limited memory quasi-Newton method is used to update the variables with in-
dices outside of the active set, while the projected gradient method is used to update the
active variables.

4. Subspace techniques for nonlinear equations and nonlinear least squares

In this subsection, we consider systems of nonlinear equations

Fi(x) = 0, i = 1, ...,m; x ∈ 4n , (4.1)

and nonlinear least squares:

min
x∈$n

m∑
i=1

(Fi(x))
2 . (4.2)

Because nonlinear least squares problem (4.2) is a special unconstrained optimization
problem, all the subspace techniques discussed in Section 2 can be applied. Due to the spe-
cial structures of nonlinear equations and nonlinear least squares, there are special subspace
approaches. For example, several implementations of Newton-like iteration schemes based
on Krylov subspace projection methods for solving nonlinear equations are considered in
[4]. The Gauss-Seidel iteration for linear equations can be extended for nonlinear equations.
In the following, we will discuss some possible subspace approaches including incomplete
sum, partition of variables, and steepest descent τ−subspace.

First, we explain the technique of incomplete sum for nonlinear least squares. At iteration
k, we minimize the sum of squares of some selected terms instead of all terms. Namely,
define an index set Jk which is a subset of {1, ...,m}, and consider

min
x∈$n

∑
i∈Jk

(Fi(x))
2 . (4.3)

The incomplete sum approach works quite well for certain class of problems, for exam-
ple the distance geometry problem which has lots of applications including protein struc-
ture prediction, where the nonlinear least squares of all the terms would have lots of local
minimizers[30].
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For nonlinear equations, the incomplete approach is to ignore some equations. Instead
of requiring the original system (4.1), we consider

Fi(x) = 0, i ∈ Jk , (4.4)

which is an incomplete set of equations. It is easy to see the incomplete approach is a
subspace technique. Define the vector

F =

⎛
⎜⎜⎜⎝

F1(x)
F2(x)

...
Fm(x)

⎞
⎟⎟⎟⎠ ∈ 4m .

To solve the nonlinear equations (4.1) is to find a x at which F maps to the origin. Let PT
k

be a mapping from Rm to a lower dimensional subspace, solving the reduced system

PT
k F (x) = 0 (4.5)

is exactly replacing F = 0 by requiring its mapping to the subspace spanned by Pk to be
zero. In particular, if the columns of Pk are chosen to be coordinate vectors {ei, i ∈ Jk}, we
obtain the incomplete set of equations (4.4).

Now, we consider partition of variables, which is clearly a subspace technique. Let Ik
be a subset of {1, ..., n}. We partition the variables into two group x = (x̄ , x̂), where
x̄ = {xi, i ∈ Ik} and x̂ = {xi , i �∈ Ik}. At the k−th iteration, we fix the variables x̂ and
allow x̄ to change in order to obtain a better iterate point. To be exact, we try to solve

min
x̄∈$|Ik|

m∑
i=1

(Fi(x̄, x̂k))
2 . (4.6)

The above problem has fewer variables. It is easy to see that partition of variables use special
subspaces that spanned by coordinate directions. An obvious generalization of partition of
variables is decomposition of the space which uses subspaces spanned by any given direc-
tions. For example, assume that we have ik vectors {q(k)1 , q

(k)
2 , ..., q

(k)
ik

} which spans Sk.
Similar to (4.6), we consider the subspace subproblem

min
d∈Sk

m∑
i=1

(Fi(xk + d))2 . (4.7)

When the above subproblem is combined with the reduced system technique, it gives the
general subspace subproblem for nonlinear least squares

min
d∈Sk

||PT
k F (xk + d)||22 . (4.8)

For nonlinear equations, a similar subproblem is

PT
k F (xk + Qkz) = 0, (4.9)

where Qk = [ q
(k)
1 , q

(k)
2 , ..., q

(k)
ik

] and Pk = [ p
(k)
1 , p

(k)
2 , ..., p

(k)
ik

]. Let Jk be the Jacobian
of F at xk, the linearized system for subproblem (4.9) is

PT
k [ F (xk) + JkQkz ] = 0 . (4.10)
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Of course, the efficiency of such an approach depends on how to select Pk and Qk. We can
borrow ideas from subspace techniques for large scale linear systems[29]. Instead of using
(4.10), we construct a subproblem of the following form:

PT
k F (xk) + Ĵkz = 0 , (4.11)

where Ĵk ∈ 4ik×ik is an approximation to PT
k JkQk. The reason for preferring (4.11)

over (4.10) is that in (4.11) we do not need the Jacobian matrix Jk, whose size is normally
significantly larger than that of Ĵk.

The τ−steepest descent coordinate subspace discussed in Section 2 can also be extended
to nonlinear equations and nonlinear least squares. Here we only discuss nonlinear equa-
tions. Assume we have

|Fi1(xk)| > · · · > |Fiτ (xk)| > · · · (4.12)

at the k−th iteration. A direct extension of the τ− steepest descent coordinate subspace
method discussed in Section 2 would solve

Fij (xk) + dT∇Fij (xk) = 0 j = 1, ..., τ . (4.13)

in the subspace spanned by the corresponding coordinate directions {eij , j = 1, ..., τ}.
This approach is reasonable if F (x) is a monotone operator. For general nonlinear functions
F (x), it seems that we should replace eij by the coordinate direction which is the steepest
descent coordinate direction of the function Fij (x) at xk. Namely, we should replace ij by
an index lj such that

lj = argmaxt=1,...,n

∣∣∣∣∂Fij (xk)

∂(x)t

∣∣∣∣ .
However, such a choice may lead to one lj for two different j, which makes subproblem
(4.13) has no solution in the subspace spanned by {el1 , ..., elτ }.

A good subspace spanned by τ− coordinate directions might be the steepest descent
τ−subspace as discussed in Section 2, which should contain the shortest vector d from all so-
lutions of (4.13) satisfying ||d||0 = τ . However, such a subspace is not easy to obtain, an ap-
proximation could be derived by finding τ row indices of the matrix [∇Fi1(xk), ...,∇Fiτ (xk)]
such that the corresponding τ × τ sub-matrix Γk makes ||(Γk)

−1|| as small as possible.
More detailed discussions on subspace methods for nonlinear equations and nonlinear

least squares are given in [42].

5. Subspace techniques for matrix optimization

Matrix optimization problems have stimulated lots of researches in recent years due to their
broad applications. The one million dollar Netflix prize problem[1] may be formulated as
the following problem

min
X∈$n×m

rank(X) (5.1)

s. t. (X)ij = Mij , (i, j) ∈ T , (5.2)

where T is a subset of {(i, j) | i = 1, ..., n; j = 1, ...,m}, and Mij((i, j) ∈ T ) are given
data. A second example of matrix optimization problem is the semidefinite programming
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problem

min
X∈$n×n

〈C , X〉 (5.3)

s. t. 〈Ai, X〉 ≥ bi, i = 1, ...,m, (5.4)
X ( 0, (5.5)

where 〈X , Y 〉 = trace(XTY ). Another example is solving the Kohn-Sham equation in
density functional theory from physics and quantum chemistry, where the total energy of a
system needs to be minimized. This leads to the minimization of a nonlinear matrix function
with orthogonality constraints:

min
X∈$n×m

E(X) (5.6)

s. t. XTX = I , (5.7)

where E(X) is the energy function [22, 36].
A general nonlinear matrix optimization has the following form

min
X∈X

f(X) (5.8)

s. t. c(X) = 0, (5.9)

where f : 4n×m → 4, X ⊆ 4n×m and c : 4n×m → 4p. The constraints have been
split into the set X and the general constraints c(X) = 0 according to their structures and
roles in the targeted subspace subproblems. For example, some simple constraints such as
orthogonality and positive semidefiniteness can be put in X and the subspace subproblems
still have a computable closed form solution. Specifically, for a suitably chosen subspace
Sk ⊂ 4n×m, mk(X) ≈ f(X) and an linear operator Ak such that Ak(X) ≈ c(X) for
X ∈ Sk, the subspace subproblem is:

min
X∈Sk∩X

mk(X) (5.10)

s. t. Ak(X) = 0. (5.11)

Then, a model subspace algorithm for the general matrix optimization problem (5.8)-(5.9)
can be given as follows.

Algorithm 5.1. (Model subspace method for nonlinear matrix optimization)

Step 1 Given X1. Let k := 1.

Step 2 If Xk is a stationary point of (5.8)-(5.9) then stop.
Choose a low-dimensional subspace Sk ⊂ 4n×m,
build an approximate model mk(X) ≈ f(X) for X ∈ Sk, and an linear operator
Ak such that Ak(X) ≈ c(X) for X ∈ Sk.

Step 3 Solve (5.10)-(5.11) to obtain X̂ .

Step 4 Choose a suitable map h(X) : 4n×m → 4n×m to construct
the next iteration: Xk+1 := h(X̂k); Go to Step 2.
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Most of the techniques for choosing subspaces in subsection 2.1 can be extended here.
For example, we can choose the subspace mainly spanned by the gradients at the first k
iterations:

Sk = span{Xk,∇f(X1), · · · ,∇f(Xk)} , (5.12)

or use the conjugate gradient type subspace

Sk = span{∇f(xk) , Xk, Xk−1} . (5.13)

There are various ways for defining subspaces when the matrix optimization problems have
special structures. For example, for the low rank matrix optimization problems we can search
in subspaces of low dimensional manifolds of low rank matrices. In particular, consider the
following problem

min
X∈$n×p

||A(X)− b||22 (5.14)

s. t. rank(X) ≤ r . (5.15)

One special subspace is
Sk = {Xk + Y | rank(Y ) ≤ τ} . (5.16)

If τ = 1, we update the iterate matrix with the increment being a rank-1 matrix.
Computing the dominate singular value decomposition of a given matrix A ∈ 4n×m

leads to a matrix optimization problem with orthogonality constraints:

max
X∈$n×p

||ATX||2F (5.17)

s. t. XTX = I. (5.18)

Let X = {X ∈ 4n×p | XTX = I} and c(X) = ∅. The locally optimal block precondi-
tioned conjugate gradient method (LOBPCG) [19] chooses h(·) as the identity map and the
following conjugate gradient type of subspace:

Sk = span{Xk−1, Xk, AATXk} , (5.19)

The corresponding subspace problem is a 3p-dimensional generalized eigenvalue problem
which can be solved fast due to the fact that p 5 min{n,m}. The limited memory block
Krylov subspace optimization method (LMSVD, [23]) selects the subspace

Sk = span{Xk, Xk−1, ..., Xk−q} (5.20)

with an adaptive way to adjust the size of Sk and takes

h(X) := orth(AATX), (5.21)

which reduces the probability to be trapped by saddle points of (5.17)-(5.18). A general
global convergence analysis for both LOBPCG and LMSVD is established in [23] by requir-
ing some minimal assumptions.
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6. Summary

In this paper, we review subspace techniques for nonlinear optimization. Compared to full
space algorithms which normally convert nonlinear problems to linear/quadratic systems
without reducing the size of the problem, subspace algorithms aim to to take a short-cut from
large scale nonlinear problem to small scale linear/quadratic systems. This is illustrated by
the following diagram:

Full-space via Sub-space

Subspace techniques are suitable for problems where function values are difficult to com-
pute and problems that are highly nonlinear for which normally line searches are very ex-
pensive. Though we have given quite a few suggestions on how to choose subspaces, there
are still many issues to be investigated further, including how to balance between null space
and range space for constrained optimization for null-space type methods and how to choose
subspaces depending on constraints for general subspace methods for constrained optimiza-
tion.

The subspace techniques discussed in the paper show that large scale problems can be
approximated by lower dimensional subspace subproblems, and we believe that the nice
properties of subspace techniques will enable them to play an important role in the develop-
ment of numerical methods for large scale optimization.
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Recent results around the diameter of polyhedra

Friedrich Eisenbrand

Abstract. The diameter of a polyhedron P is the largest distance of a pair of vertices in the edge-
graph of P . The question whether the diameter of a polyhedron can be bounded by a polynomial in
the dimension and number of facets of P remains one of most important open problems in convex
geometry. In the last three years, there was an accelerated interest in this famous open problem which
has lead to many interesting results and techniques, also due to a celebrated breakthrough of Santos
disproving the Hirsch conjecture. Here, I want to describe a subset of these recent results and describe
some open problems.
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1. Introduction

Linear programming is among the most important concepts in applied mathematics, theoret-
ical computer science and optimization. The task is to maximize a linear objective function
subject to linear constraints

max{cTx : Ax ≤ b}, (1.1)

where A ∈ R
n×d, b ∈ R

n and c ∈ R
d are the constraint matrix, right-hand-side and

objective-function vector respectively.
The classical simplex method, described by George Dantzig [14], see also [11, 13, 37,

40] is one of the most effective methods to solve linear programming problems in practice.
The algorithm is readily described but we need some terminology. A set of the form P =
{x ∈ R

d : Ax ≤ b} is called a polyhedron. Thus the set of feasible solutions of (1.1) is a
polyhedron. A vertex of P is an element x∗ ∈ P such that there exist d linearly independent
constraints of Ax � b that are tight at x∗, i.e., satisfied by x∗ with equality. Two vertices
x∗ �= y∗ are neighbors of each other, if there exist d−1 linearly independent constraints that
are tight at both.

Let us now assume that the polyhedron P of feasible solutions has vertices and that the
linear program (1.1) is bounded. The simplex algorithm then starts at a vertex of P and
moves to a neighbor with strictly larger objective function value. If no such neighbor exists,
then the current vertex is an optimal solution of (1.1).

Linear programming can be solved in polynomial time with the ellipsoid method [27]
or interior-point methods [26], see also [21]. The running time bound of these algorithms
is however polynomial in n, d and the largest binary encoding length of a coefficient of
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the input. The encoding length of the intermediate rational numbers in the course of the
algorithm also remains polynomial.

There are computational problems where a dependence on the binary encoding length
seems natural. The Euclidean algorithm, for example, requires a linear number of arith-
metic operations to compute the greatest common divisor of two integers. In fact, Man-
sour et al. [32] show that a dependence on the binary encoding length is necessary in the
computation-tree-model. Is such a dependence of the running time on the binary encoding
length also necessary for linear programming? This is one of the most visible open problems
in computer science and optimization, see also [42]. In complexity jargon, the question is
whether there exists a strongly polynomial-time algorithm for linear programming. This is
an algorithm that solves a linear program in time polynomial in n and d. Here the complexity
of basic arithmetic operations does not count in the analysis. Yet the intermediate numbers
should have binary encoding length that is polynomial in the encoding length of the input,
see [21].

A vertex x∗ might have several neighbors with better objective function value and there
are pivoting rules that determine which improving neighbor to chose. There are determin-
istic, as well as randomized pivoting rules. For many of these pivoting rules, researchers
were able to derive superpolynomial lower bounds on the (expected) number of iterations
of the simplex algorithm [3, 20, 28, 34]. Still, more than 65 years after its publication, the
simplex method continues to be a candidate for a strongly polynomial time algorithm for
linear programming.

The simplex algorithm performs a walk on the polyhedral graph G = (V,E) of P . The
set of vertices V ofG is the set of vertices of the polyhedron P and two vertices are joined by
an edge e = uv ∈ E if u and v are neighbors of P . This graph is connected. The diameter of
P is the smallest natural number that bounds the length of a shortest path between any pair
of vertices in this graph. The simplex algorithm that we described above can only terminate
in polynomial time in d and n if this diameter can be bounded by a polynomial in d and
n. This gives rise to the diameter problem which is one of the most prominent mysteries in
convex and discrete geometry. It is in the focus of our interest.

Can the diameter of a polyhedron P = {x ∈ R
d : Ax � b} be bounded by a

polynomial in d and n?

The belief in a positive answer to this question is called the polynomial Hirsch conjecture.
In the following, we denote the smallest upper bound on the diameter of a polyhedron in
dimension d described by n inequalities by Δ(d, n).

The classical Hirsch conjecture itself, stated in 1957, was proposing the explicit linear
bound

Δ(d, n) ≤ n− d. (1.2)

This conjecture was disproved for unbounded polyhedra by Klee and Walkup [29] and it
remained a very highly visible conjecture for polytopes (bounded polyhedra) since then. In
a celebrated paper by Santos [38] it was recently disproved. As of today, the known counter
examples for the Hirsch conjecture [33, 38] violate the Hirsch bound only by a small constant
factor.

While, when the dimension d is fixed, the diameter can be bounded by a linear function
of n [6, 30], for the general case the best upper bound is only quasipolynomial. Kalai and
Kleitman [25] showed thatΔ(d, n) ≤ n1+log d holds. This was the best bound for more than
20 years. Recently, Todd [44] has provided an improvement of this bound. He shows that
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Δ(d, n) ≤ (n−d)log d by strengthening the arguments applied in the Kalai-Kleitman bound.
Still, the gap between the linear lower bound and the quasi-polynomial upper bound is huge.

Research on the diameter problem has been very active recently and we cannot be ex-
haustive in our treatment of the subject. Instead we will focus on the following topics. The
diameter problem was the subject of a recent polymath project [23]. Here, the idea was
consider abstractions of polyhedral graphs for which the proof method of Kalai and Kleit-
man still applies. The project stipulated several nice results but also here, the gap between
polynomial (quadratic in this case) and quasi-polynomial nlog d+1 also still stands. There
is an explicit conjecture of Hähnle that is tantalizing and we will describe it here. Also,
we describe a recent result of Bonifas et al. [7]. Here, the authors have shown that the
Δ(d, n) is bounded by O

(
μ2d4 log dμ

)
, where A ∈ Z

n×d is an integral matrix whose ab-
solute value of any sub-determinant is bounded by μ. This is a generalization of a result
of Dyer and Frieze [17] for polyhedra that are described by a totally unimodular constraint
matrix, i.e., μ = 1. However, we describe this result in a more geometric setting proposed
by Brunsch and Röglin [10] who were able to describe a strongly polynomial time algorithm
to find a path joining two given vertices of a polyhedron if the constraint matrix satisfies a
certain geometric property. We then describe a recent algorithmic result of Eisenbrand and
Vempala [19] who found a randomized simplex algorithm to solve linear programs whose
expected running time is polynomial in the parameter of Brunsch and Röglin and the dimen-
sion d.

2. Abstractions

Combinatorial abstractions of polyhedral graphs have been studied in the literature for a
long time [1, 2, 24, 43]. Here we describe an abstraction that was presented by Eisenbrand
et al. [18], see also [23]. Throughout we assume that the polyhedra we discuss have vertices.

A polyhedron P ⊆ R
d described by n inequalities whose diameter is largest among

all those can be assumed to be non-degenerate. This means that each vertex of P satisfies
exactly d of the inequalities defining P with equality. If P is degenerate, then one can perturb
the right-hand-side vector b a bit such that the diameter of the new polyhedron is at least as
large. This technique is for example described in [40].

The vertices of a non-degenerate polyhedron are thus uniquely described by d linearly
independent inequalities that are tight at the vertex. Thus, from now on, we can identify each
vertex by a d-element subset of [n] = {1, . . . , n}.

The following is now crucial. Suppose u ∈ ([n]d ) and v ∈ ([n]d ) are two vertices. Then
there exists a path in the polyhedral graph of P with endpoints u and v such that each
intermediate vertex on this path contains u ∩ v. This gives rise to the following abstraction
from [18].

Definition 2.1. A base abstraction of dimension d with n facets is a graph G = (V,E),
where V ⊆ ([n]d ) such that each pair of vertices u, v ∈ V is connected by a path such that
each intermediate vertex on that path contains u ∩ v.

Notice that we do not specify the edges of the base abstraction. Instead one only requires
the connectivity condition that is present in polyhedral graphs. This is one single feature that
is common to the previously studied abstractions [1, 2, 24]. But already here, one can prove
a Kalai-Kleitman bound.
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Let G = (V,E) be a base abstraction of dimension d with n facets and let u and v be
two vertices that are furthest apart from each other. Let us consider a run of the breadth-first-
search algorithm initiated with S1 = {u}. Then breath first search finds the set S2 ⊆ V , the
set of vertices at distance one from u, S3 ⊆ V the set of vertices at distance 2 from u and so
on, until it discovers v which is then in the set S
+1, where � is the distance of u and v.

Lemma 2.2. Let x, y be vertices of the base abstraction where x ∈ Si and y ∈ Sj with
i < j, then each set Sk i � k � j contains a vertex z with z ⊇ x ∩ y.

The following argument, proving Lemma 2.2 is from [18]. Since G = (V,E) is a base
abstraction, there exists a path with endpoints x and y such that each vertex on that path
contains x ∩ y. Following this path, the distance labels (distances from u) cannot jump up
or down by more than 1. Thus each distance label between i and j must be observed. This
implies the lemma.

Such collections of sets S1, . . . , S
+1 are called connected layer families. A formal
definition is as follows.

Definition 2.3. A d-dimensional connected layer family with n symbols is a collection of
sets S1, . . . , S
+1 such that

1. each Si is a set of d-element subsets of [n], i.e., Si ⊆
(
[n]
d

)
,

2. the Si are disjoint and

3. for each 1 � i < k < j � � + 1 and each x ∈ Si and y ∈ Sj there exists a z ∈ Sk

with z ⊇ x ∩ y.

The height of the connected layer family is �+1. Let D(d, n) be the maximum diameter
of a d-dimensional base abstraction and h(d, n) be the maximum height of a d-dimensional
connected layer family. It is easy to see that h(d, n) − 1 = D(d, n). The Kalai-Kleitman
bound is easy to prove for connected layer families. We follow the presentation given in [18].

Theorem 2.4 (Kalai & Kleitman[25]). The maximum height h(d, n) of a d-dimensional
connected layer family with n symbols is bounded by n1+log d.

Proof. Let S1, . . . , S
 be a connected layer family. Let i � 0 be maximal such that the
union of the d-sets in S1 ∪ · · · ∪ Si contains at most n/2 symbols. Likewise, let j � � + 1
be minimal such that the union of the d-sets in S
 ∪ · · · ∪ Sj contains at most n/2 symbols.
There must be a symbol s ∈ [n] that is contained in some d-set in each set Sj+1, . . . Sj−1.

Now we observe that S1, . . . , Si and Sj , . . . , S
 are d-dimensional connected layer fami-
lies with at most 	n/2
 symbols each. Also, Si+1, . . . Sj−1 is a connected layer family. This
also remains to be the case if we delete each d-set from the family Sj+1, . . . Sj−1 that does
not contain the symbol s and then delete s from each remaining d-set. This shows that the
following recursion holds

h(d, n) � 2 · h(d, 	n/2
) + h(d− 1, n− 1). (2.1)

The bound is then proved by induction on n. Note that h(1, n) = n and h(d, n) = 0 if
d > n. Suppose now that d, n � 2. Applying (2.1) repeatedly, one obtains

h(d, n) � 2 · h(d, 	n/2
) + h(d− 1, n)
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� 2 ·
d∑

i=2

h(i, 	n/2
) + h(1, n).

By induction, this is bounded by

h(d, n) � 2(d− 1)(2d)logn−1 + n

= (2d)logn−1
(
2(d− 1) + n/((2d)logn−1)

)
� (2d)logn

In the last inequality one uses d � 2 and thus (2d)logn−1 � n2/4. Since n � 2 one can
conclude n/((2d)logn−1) � 4/n � 2.

As far as lower bounds are concerned, Eisenbrand et al. [18] show the following theorem.

Theorem 2.5 ([18]). The diameter of a d-dimensional base abstraction with n symbols
D(n/4, n) = Ω(n2/ log n).

Also the linear bound on the diameter for fixed d of Barnette [6] and Larman [30] holds
for the base abstractions [18]. Todd [44] has recently improved the Kalai-Kleitman bound in
the setting of polyhedra. He showed that the bound can be tightened to (n− d)log d.

2.1. The Hähnle conjecture. It turns out that the base-abstraction can be further gener-
alized such that the Kalai-Kleitman bound still holds. We describe this generalized base
abstraction now. The vertices of the graph G = (V,E) are now a subset of the degree-d
monomials in Z[x1, . . . , xn]. For any xα, xβ ∈ V we require that there exists a path such
that gcd(xα, xβ) divides each vertex on that path. If no monomial is divisible by some x2

i ,
then we are in the setting of our previous base-abstraction. The following examples have
been discussed in [23].

Example 2.6. The set of vertices is the set of degree-d monomials that involve only two and
consecutive variables. In other words

V = {xk
i x

d−k
i+1 : 1 � i � n− 1, 0 � k � d}.

Two monomials xα, xβ form an edge, if and only if xα/xβ = xi/xi+1 for some i ∈
1, . . . , n− 1. In other words, the graph is a path of the form

xd
1, x

d−1
1 x2, x

d−2
1 x2

2, . . . , x
1
n−1x

d−1
n , xd

n.

The diameter of this graph is n · (d− 1).

Example 2.7. The set of vertices is complete, i.e., comprises all monomials of degree d.
We group these vertices into sets Vi for i = d, . . . , n · d where Vi consists of all monomials
xα with i =

∏n
j=1 j · αj . Each group Vi is a clique and we totally connect each pair of

groups Vi, Vi+1, for i = d, . . . n ·d−1. Clearly, this satisfies the connectivity condition. The
diameter of this graph is (n− 1) · d.

So far, no example of a generalized base abstraction is known, whose diameter is larger
than (n− 1) · d. Nicolai Hähnle [23] proposed the following conjecture.
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Conjecture 2.8 (Hähnle conjecture). The diameter of a generalized base abstraction with n
symbols in dimension d is bounded by (n− 1) · d.

Santos [39] considered the following relaxation of the base abstraction. A pure simplicial
complex of dimension d − 1 is a family of d-subsets of [n]. Again, interpreting vertices of
a polyhedron P ⊆ R

d with n facets via their defining inequalities, one obtains a simplicial
complex of dimension d − 1 on n vertices, where the vertices of the complex are the labels
{1, . . . , n} of the facets of the polyhedron.

Two d-sets of the complex are adjacent if their intersection has d − 1 elements. The
connectivity condition of the base abstraction can be cast as follows. If one fixes a set
u ⊆ [n], then the sub-complex consisting of all d-sets containing u is connected.

Santos [39] shows that the diameter of pure simplicial complexes can be exponential in
n and d. This proves that the connectivity condition is essential to derive the aforementioned
upper bounds.

3. Diameter bounds for special cases

We now turn to the diameter problem for certain classes of polytopes. Combinatorial opti-
mization problems can often be modeled as a linear programming problem over the convex
hull of the characteristic vectors of the solutions. These characteristic vectors are vectors
with components in {0, 1}. A polytope that is the convex hull of 0/1-vectors is called a 0/1
polytope. Naddef [35] proved that the Hirsch conjecture holds true for 0/1-polytopes. Or-
lin [36] provided a quadratic upper bound for flow-polytopes. Brightwell et al. [9] showed
that the diameter of the transportation polytope is linear in n and d, and a similar result holds
for the dual of a transportation polytope [5] and the axial 3-way transportation polytope [15].

The results on flow polytopes and classical transportation polytopes concern polyhedra
defined by totally unimodular matrices, i.e., integer matrices whose sub-determinants are
0,±1. For such P = {x ∈ R

d : Ax � b} with A totally unimodular, Dyer and Frieze [17]
have shown that the diameter is bounded by a polynomial in d and n. Interestingly, this bound
holds independent of the right-hand-side vector b ∈ R

n. The vector b can be irrational even.
The bound isO(n16d3(log nd)3). Their result is also algorithmic: they show that there exists
a randomized simplex-algorithm that solves linear programs defined by totally unimodular
matrices in polynomial time.

In [7] the authors improve and generalize the aforementioned bound of Dyer and Frieze.
The authors show that the diameter of a polyhedron P = {x ∈ R

d : Ax � b}, with A ∈
Z
n×d is bounded by O

(
Δ2d4 log dΔ

)
. Here,Δ denotes the largest absolute value of a sub-

determinant of A. If P is bounded, i.e., a polytope, then they show that the diameter of P is
at most O

(
Δ2n3.5 log nΔ

)
. Notice that this bound is independent of n, i.e., the number of

rows of A. On the other hand, if A is totally unimodular, then n = O(d2) [22]. If the sub-
determinants of an integer matrix are bounded byΔ, then n = O(dt) with t = Ω(Δ) [4, 31].

3.1. A geometric generalization. Recently, Brunsch and Röglin [10] suggested the fol-
lowing generalization of integer matrices with bounded sub-determinant. Consider again a
polyhedron

P = {x ∈ R
d : Ax � b},

where A ∈ R
n×d is of full-column-rank and has the following property.
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The sign of the angle of a row of A to a subspace of Rd that is generated by
d− 1 other rows of A is at least δ.

How large is δ in terms of d and the largest sub-determinant? Let A ∈ Z
n×d and suppose

that all sub-determinants are bounded byΔ and let a1, . . . , ad be d linearly independent rows
of A. The adjoint matrix C̃ = (b1, . . . , bd) of the matrix with rows a1, . . . , ad is an integer
matrix with all components in {−Δ, . . . ,Δ}. The vector b1 is orthogonal to a2, . . . , ad and
|aT1 b1| � 1, since the vectors are integral. The distance of a1 to the sub-space generated by
a2, . . . , ad is thus at least 1/‖b1‖ � 1/(Δ

√
d) which means that δ � 1/(Δ2d).

Brunsch and Röglin [10] have shown how to compute a path between two given vertices
of P in time polynomial in n, d and 1/δ. The expected length of their path is bounded by
O(nd2/δ2). Their algorithm is as follows.

Suppose that the rows of A are scaled in such a way that they are of unit length and
suppose the two given vertices of P are u and v. In a first step, one computes index sets
Bu, Bv ⊆ {1, . . . , d} such that the sub-matrices ABu and ABv are linearly independent and
the corresponding inequalities ABux � bBu and ABvx � bBv are satisfied with equality
by u and v respectively. Now let λ, μ ∈ [0, 1]d be chosen independently and uniformly at
random. This yields two vectors cTu = λTAu and cT v = μTAv .

Brunsch and Röglin use the shadow-vertex pivoting rule [8] to walk from u to v along
the edges of P . Consider the image of P under the projection p(x) = (cTux, cTv x). Walking
upwards from p(u) to p(v) in this projection along the edges of this convex polygon corre-
sponds to a walk on the polyhedral graph of P from u to v. Brunsch and Röglin [10] show
that the expected number of different slopes of this projection is bounded by O(nd2/δ2).
They also argue that w.h.p. no two edges have the same slope in this projection.

3.2. Bounding the diameter in terms of δ and d. In the following, we prove the bound
of Bonifas et al. in the setting of Brunsch and Röglin, thereby obtaining a bound on the
diameter that is polynomial in d and 1/δ. Let u and v be two vertices of P . We estimate
the maximum number of iterations of two breadth-first-search explorations of the polyhedral
graph, one initiated at u, the other initiated at v, until a common vertex is discovered. The
diameter of P is at most twice this number of iterations. The main idea in the analysis is to
reason about the normal cones of vertices of P and to exploit a certain volume expansion
property.

Again, we can assume that P = {x ∈ R
d : Ax � b} is non-degenerate, i.e., each vertex

has exactly d tight inequalities. Let v ∈ V now be a vertex of P . The normal cone Cv of
v is the set of all vectors c ∈ R

d such that v is an optimal solution of the linear program
max{cTx : x ∈ R

d, Ax � b}. The normal cone Cv of a vertex of v is a full-dimensional
simplicial polyhedral cone. Two vertices v and v′ are adjacent if and only if Cv and Cv′

share a facet. No two distinct normal cones share an interior point. Furthermore, if P is a
polytope, then the union of the normal cones of vertices of P is the complete space Rd.

We now define the volume of a set U ⊆ V of vertices as the volume of the union of the
normal cones of U intersected with the unit ball Bd = {x ∈ R

d : ‖x‖2 � 1}, i.e.,

vol(U) := vol

(⋃
v∈U

Cv ∩Bd

)
.

From now on, we will denote the normal cone of a vertex v intersected with Bd by Cv itself
and call it cone of v.
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Figure 3.1. A polytope P , a vertex v of P and the cone Cv .

Consider an iteration of breadth-first-search. Let I ⊆ V be the set of vertices that have
been discovered so far. Breadth-first-search will next discover the neighborhood of I , which
we denote by N (I). The key observation is that the volume is rapidly expanding. This is
captured in the next lemma.

Lemma 3.1 (Bonifas et al. [7]). Let P = {x ∈ R
d : Ax � b} be a polytope and let I ⊆ V

be a set of vertices with vol(I) � (1/2) · vol(Bd). Then the volume of the neighborhood of
I is at least

vol(N (I)) �
√

2

π
(δ/d1.5) · vol(I).

Proof. Consider the vertices of I and the union of their cones⋃
v∈I

Cv.

This set has exposed facets, that are not covered by other cones of vertices. In the next itera-
tion of breadth-first-search all these exposed facets must be covered by cones of neighbors.
LetA(I) be the area of these exposed facets and letA(v) be the area of the facets of the cone
Cv . One has the relation ∑

v∈N (I)

A(v) � A(I).

In order to show rapid expansion of volume, we thus must bound the volume the cone of one
vertex by its area from below and we must bound the volume of a set of vertices by its area
from above.

Lets begin with the volume of one vertex. Consider a facet F of Cv . Since the distance
of the vertex opposite to F is at least δ, we have

vol(Cv) �
∫ 1

0

(x
δ

)d−1

A(F ) dx = δ/d ·A(F ),

where A(F ) denotes the area of the facet F . Thus vol(Cv) � δ/d2 ·A(Cv).
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How large can vol(I) be compared to A(I)? By a classical isoperimetric inequality this
volume is largest for the convex hull of a spherical cap and 0. The area-to-volume ratio of
such a spherical cone is smallest for the half-ball (remember that we require the volume of I
to be at most the volume of the half-ball) and thus at least

√
2 · n/π.

Thus

∑
v∈N (I)

vol(Cv) �
∑

v∈N (I)

δ/d2 ·A(Cv) � δ/d2A(I) � δ/d2
√

2 · d
π

vol(I),

and the bound follows.

With this volume expansion lemma, we can prove a bound on the diameter of P that is
polynomial in 1/δ and d.

Theorem 3.2 (Bonifas et al. [7]). Let P = {x ∈ R
d : Ax � b} be a polytope where the sign

of the angle of any row of A to the subspace generated by d − 1 other rows of A is at least
δ. The diameter of P is bounded by O

(
d2.5/δ · ln(d/δ)).

Proof. We begin breadth-first-search with the vertex u and estimate the number of steps until
the volume of visited vertices exceeds 1/2 · vol(Bd). To this end, let I0 = {u} and let Ij be
the set of vertices that have been discovered in the first j iterations of breadth-first-search.

From Lemma 3.1 one has

vol(Ij) �
(
1 +

√
2

π
(δ/d1.5)

)j

· vol(Cv).

The volume of Ij cannot exceed the volume of the ±1 cube which is 2d. Also the volume of
the cone Cv is at least vol(Cv) � δd/d!. This is, because the determinant of the d rows of A
that generate Cv is at least δd and the simplex generated by these rows and 0 is contained in
Cv . Thus, one has

(2 · d/δ)d �
(
1 +

√
2

π
(δ/d1.5)

)j

and thus

d · ln(2 · d/δ) � j · ln
(
1 +

√
2

π
(δ/d1.5)

)
.

For 0 � ξ � 1 one has ln(1 + ξ) � ξ/2 and thus the inequality above implies

d · ln(2 · d/δ) � j ·
(√

1

2 · π (δ/d1.5)

)
,

from which the bound follows.
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3.3. A simplex algorithm that is polynomial in d and 1/δ. In a recent paper [19], the
authors have described a simplex algorithm to solve linear programs

max{cTx : x ∈ R
d, Ax � b}

that has expected running time being polynomial in 1/δ and d. The algorithm can be under-
stood as an algorithmic realization of the diameter bound of Bonifas et al. [7] and extends a
previous randomized dual-simplex algorithm of Dyer and Frieze [17] for the case of totally-
unimodular constraint matrices.

Theorem 3.3 ([19]). There is a variant of the simplex algorithm that solves a linear program
with n constraints in R

d with probability at least 3/4 using poly(d, 1/δ) pivots. The pivot
probabilities can be computed in time poly(d, log(1/δ)).

The algorithm performs a random walk on a sub-division of the cones of the polytope.
If one starts at a cone of a given feasible solution, then the direct goal would be to walk to
the cone that contains the objective function vector c. Here, we assume that c is a vector of
�2-norm one. Instead, the algorithm stops already if it is in a cone that is sufficiently close to
c. It finds a point c′ in the unit sphere such that:

a) ‖c− c′‖ < δ/(2 · n), and
b) we know a vertex v of P with c′ ∈ Cv .

Once such a c′ has been identified, one can identify at least one element of the optimal basis
of the linear program by applying a sensitivity-result of Cook et al. [12]. This inequality can
then be set to equality. The δ of the resulting d − 1-dimensional linear program can only
grow.

Consider the function f : Rd → R defined as f(x) = e(c
T x)/t0 . For a cone C, let

f(C) =
∫
x∈C f(x) dx. The random walk described in [19], if run for a polynomial number

of steps, is located in the coneCv with probability proportional to its measure f(Cv)/f(Bd).
By choosing t0 = δ2/(16n3) the cone in which the walk stops contains a point close to c
satisfying a) and b) with high probability and one can identify an element of the optimal
basis.

The sub-division of the original cones is carried out in such a way that the ratios of
measures of neighboring cones is bounded from below by a polynomial in 1/d and δ. Then,
again using an isoperimetric inequality [16] the conductance of the random walk is also
bounded from below by a polynomial in δ and 1/d. This implies [41] that the random walk
is rapidly mixing.

We believe that it is an interesting open problem to find a deterministic simplex algorithm
that runs in time that is polynomial in d and 1/δ.
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Optimization over polynomials: Selected topics

Monique Laurent

Abstract. Minimizing a polynomial function over a region defined by polynomial inequalities mod-
els broad classes of hard problems from combinatorics, geometry and optimization. New algorithmic
approaches have emerged recently for computing the global minimum, by combining tools from real
algebra (sums of squares of polynomials) and functional analysis (moments of measures) with semidef-
inite optimization. Sums of squares are used to certify positive polynomials, combining an old idea of
Hilbert with the recent algorithmic insight that they can be checked efficiently with semidefinite opti-
mization. The dual approach revisits the classical moment problem and leads to algorithmic methods
for checking optimality of semidefinite relaxations and extracting global minimizers. We review some
selected features of this general methodology, illustrate how it applies to some combinatorial graph
problems, and discuss links with other relaxation methods.

Mathematics Subject Classification (2010). Primary 44A60, 90C22, 90C27, 90C30; Secondary
14P10, 13J30, 15A99.

Keywords. Positive polynomial, sum of squares, moment problem, combinatorial optimization, semidef-
inite optimization, polynomial optimization.

1. Introduction

Polynomial optimization. We consider the following polynomial optimization problem:
given multivariate polynomials f, g1, . . . , gm ∈ R[x1, . . . ,xn], compute the infimum of the
polynomial function f over the basic closed semialgebraic set

K = {x ∈ R
n : g1(x) ≥ 0, . . . , gm(x) ≥ 0} (1.1)

defined by the polynomial inequalities gj(x) ≥ 0. That is, compute

fmin := inf
x∈K

f(x) = inf{f(x) : g1(x) ≥ 0, . . . , gm(x) ≥ 0}. (P)

This is a in general hard, nonlinear and nonconvex optimization problem which models
a multitude of problems from combinatorics, geometry, control and many other areas of
mathematics and its applications.

Well established methods from nonlinear optimization can be used to tackle problem
(P), which however can only guarantee to find local minimizers. Exploiting the fact that the
functions f, gj are polynomials, new algorithmic methods have emerged in the past decade
that may permit to find global minimizers. These methods rely on using algebraic tools

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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(sums of squares of polynomials) and analytic tools (moments of measures) combined with
semidefinite optimization.

In a nutshell, sums of squares of polynomials are used to certify positive polynomials,
the starting point being that finding fmin amounts to finding the largest scalar λ for which the
polynomial f − λ is nonnegative on the set K. The key insight is that, while it is hard to test
whether a polynomial f is nonnegative, one can test whether f can be written as a sum of
squares of polynomials using semidefinite optimization.

Moments of measures are used to model the nonlinearities arising in polynomial func-
tions, the starting point being that finding fmin amounts to finding a positive measure μ on the
set K minimizing the integral

∫
K

f(x)dμ =
∑

α fα
∫
K

xαdμ. These moments are used to
build certain positive semidefinite Hankel type matrices. The key feature of these matrices is
that they permit to certify optimality and to find the global minimizers of problem (P) (under
certain conditions).

Semidefinite optimization is a wide generalization of the classical tool of linear opti-
mization, where vector variables are replaced by matrix variables constrained to be positive
semidefinite. In other words semidefinite optimization is linear optimization over affine sec-
tions of the cone of positive semidefinite matrices. The crucial property is that there are
efficient algorithms for solving semidefinite programs (to any arbitrary precision).

Sums of squares and moment based methods permit to construct convex relaxations for
the original problem (P), whose optimal values can be computed with semidefinite optimiza-
tion and provide hiearchies of bounds for the global minimum fmin. Convergence properties
rely on real algebraic results (giving sums of squares certificates for positive polynomials),
and optimality conditions and techniques for extracting global minimizers rely on functional
analytic results for moment sequences combined with commutative algebra. Hence these
methods have their roots in some classical mathematical results, going back to work of
Hilbert about positive polynomials and sums of squares and to work on the classical moment
problem in the early 1900’s. They also use some recent algebraic and functional analytic
developments combined with some modern optimization techniques that emerged since a
few decades.

Some combinatorial examples. When all polynomials in (P) are linear, problem (P) boils
down to linear programming:

min{cTx : Ax ≥ b}, (LP)

well known to be solvable in polynomial time. However, when adding in (LP) the quadratic
conditions x2

i = xi on the variables, we get 0/1 integer linear programming (ILP), which
is hard. Instances of polynomial optimization problems arise naturally from combinatorial
problems.

Consider for instance the partition problem, which asks whether a given sequence a1, . . . ,
an of integers can be partitioned into two classes with equal sums, well known to be NP-
complete [31]. This amounts to deciding whether the minimum over Rn of the polynomial
f = (

∑n
i=1 aixi)

2 +
∑n

i=1(x
2
i − 1)2 is equal to 0.

We now mention other NP-hard problems, dealing with cuts, stable sets, graph colorings,
and matrix copositivity, to which we will come back later in the paper.

Max-cut. Consider a graph G = (V,E) with edge weights w = (wij) ∈ R
E . The max-cut

problem asks for a partition of the vertices of G into two classes in such a way that the total
weight of the edges crossing the partition is maximum. Encoding partitions by vectors in
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{±1}V , we obtain the following polynomial optimization problem:

mc(G,w) = max
x∈RV

{
∑

{i,j}∈E
(wij/2)(1− xixj) : x

2
i = 1 (i ∈ V )}, (1.2)

which models the max-cut problem. A basic idea to arrive at a semidefinite relaxation of
problem (1.2) is to observe that, for any x ∈ {±1}V , the matrix X = xxT is positive
semidefinite and all its diagonal entries are equal to 1. This leads to the following problem:

sdp(G,w) = max
X∈RV ×V

{
∑

{i,j}∈E
(wij/2)(1− Xij) : Xii = 1 (i ∈ V ), X ( 0}, (1.3)

where the notation X ( 0 means that X is symmetric positive semidefinite (i.e., xTXx ≥ 0
for all x ∈ R

V ). Of course if we would add the condition that X must have rank 1, then this
would be a reformulation of the max-cut problem, thus intractable. The program (1.3) is an
instance of semidefinite program and it can be solved in polynomial time (to any precision) as
will be recalled below. This is the semidefinite program used by Goemans and Williamson
[34] in their celebrated 0.878-approximation algorithm for max-cut. They show that for
nonnegative edge weights the integrality gap mc(G,w)/sdp(G,w) is at least 0.878 and they
introduce a novel rounding technique to produce a good cut from an optimal solution to the
semidefinite program (1.3). This is a breakthrough application of semidefinite optimization
to the design of approximation algorithms, which started much of the research activity in
this field (see e.g. [32]).

Stable sets and colorings. A stable set in a graph G = (V,E) is a set of vertices that does
not contain any edge. The stability number α(G) ofG is the maximum cardinality of a stable
set in G. It can be computed with any of the following two programs:

α(G) = max
x∈RV

∑
i∈V

xi s.t. xixj = 0 ({i, j} ∈ E), x2
i = xi (i ∈ V ), (1.4)

1

α(G)
= min

x∈RV
xT (I + AG)x s.t.

∑
i∈V

xi = 1, xi ≥ 0 (i ∈ V ), (1.5)

where AG is the adjacency matrix of G (see [24] for (1.5)). As computing α(G) is NP-hard,
we find again that problem (P) is hard as soon as some nonlinearities occur, either in the
constraints (as in (1.4)), or in the objective function (as in (1.5)). Both formulations are
useful to construct hierarchies of bounds for α(G).

The chromatic number χ(G) of G is the minimum number of colors needed to color the
vertices so that adjacent vertices receive distinct colors. There is a classic reduction to the
stability number. Consider the cartesian product G�Kk of G and the complete graph on k
nodes, whose edges are the pairs {(i, h), (j, h′)} with i = j ∈ V and h �= h′ ∈ [k], or with
{i, j} ∈ E and h = h′ ∈ [k]. Then a stable set in the cartesian product G�Kk corresponds
to a subset of vertices ofG that can be properly colored with k colors. Hence k colors suffice
to properly color all the vertices of G precisely when α(G�Kk) = |V |. Therefore, χ(G) is
the smallest integer k for which α(G�Kk) = |V |. This reduction will be useful for deriving
hierarchies of bounds for χ(G) from bounds for α(G).

A well known bound for both α(G) and χ(G) is provided by the celebrated theta number
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ϑ(G) of Lovász [70], defined by the following semidefinite program:

ϑ(G) = max
X∈RV ×V

{
∑
i,j∈V

Xij : Tr(X) = 1, Xij = 0 ({i, j} ∈ E), X ( 0}. (1.6)

The following inequalities hold, known as Lovász’ sandwich inequalities:

α(G) ≤ ϑ(G) ≤ χ(G) and ω(G) ≤ ϑ(G) ≤ χ(G). (1.7)

Here,G is the complement ofG and ω(G) = α(G) is the maximum cardinality of a clique (a
set of pairwise adjacent vertices) inG. The inequality α(G) ≤ ϑ(G) is easy: any stable set S
of G gives a feasible solution X = χS(χS)T/|S| of the program (1.6), where χS ∈ {0, 1}V
is the characteristic vector of S.

A graph G is called perfect if ω(H) = χ(H) for every induced subgraph H of G.
Chudnovsky et al. [14] showed that a graph G is perfect if and only if it does not contain
an odd cycle of length at least five or its complement as an induced subgraph. In view
of (1.7), we have α(G) = ϑ(G) and χ(G) = ϑ(G) for perfect graphs. Therefore, both
parameters α(G) and χ(G) can be computed in polynomial time for perfect graphs, via
the computation of the theta number, using semidefinite optimization. Moreover, maximum
stable sets and minimum graph colorings can also be found in polynomial time [36]. This is
an early breakthrough application of semidefinite optimization to combinatorial optimization
and as of today no other efficient algorithm is known for these problems.

One can strengthen the theta number toward α(G) by adding in program (1.6) the non-
negativity constraintX ≥ 0 on the entries ofX (leading to the parameter ϑ′(G)), and toward
χ(G) by replacing the constraint Xij = 0 by Xij ≤ 0 for all edges (leading to the parameter
ϑ+(G)). Thus we have:

α(G) ≤ ϑ′(G) ≤ ϑ(G) ≤ ϑ+(G) ≤ χ(G). (1.8)

We will see how to build hierarchies of bounds toward α(G) and χ(G) strenghtening the
parameters ϑ′ and ϑ+, using the sums of squares and moment approaches.

Copositive matrices. Another interesting instance of unconstrained polynomial optimiza-
tion is testing matrix copositivity, which is a hard problem [27, 74]. Recall that a symmetric
n × n matrix M is called copositive if the quadratic form xTMx is nonnegative over the
nonnegative orthant Rn

+ or, equivalently, the polynomial fM =
∑n

i,j=1 Mijx
2
ix

2
j is nonneg-

ative over Rn. Starting with the formulation (1.5) of the stability number α(G), it follows
that α(G) can also be computed with the following copositive program:

α(G) = min
λ∈R

{λ : λ(I + AG)− J is copositive}, (1.9)

where J is the all-ones matrix. By using sums of squares certificates for certifying matrix
copositivity, one can define a hierarchy of cones approximating the copositive cone, which
can also be used to define hierarchies of semidefinite bounds for the parameters α(G) and
χ(G).

This paper. The field of polynomial optimization has grown considerably in the recent
years. It has roots in early work of Shor [97] and later of Nesterov [75], and the foundations
were laid by the groundworks of Lasserre [53, 54] and Parrilo [82, 83]. The monograph of



Optimization over polynomials: Selected topics 847

Lasserre [56], our overview [68] and the handbook [1] can serve as a general source about
polynomial optimization. We also refer to the monographs [72, 85] and to the overview [91]
for an in-depth treatment of real algebraic aspects, and to the monograph [9] for links to
convexity.

In this paper we will discuss only a small selection of results from this field. Inevitably
we cannot make full references to the literature and we apologize for all omissions. We will
treat some subjects where we have done some (modest) contributions and our choices are
biased, in particular, toward properties of the moment relaxations and toward hierarchies of
semidefinite bounds for combinatorial problems. Our interest in polynomial optimization
was stirred by the work [54] of Lasserre explaining how his method applies to 0/1 linear
programming and we are grateful to Jean Lasserre for his inspiring work. We realized that
his approach has tight links with lift-and-project methods for combinatorial optimization.
This in turn inspired us to show finite convergence for polynomial optimization over finite
varieties, to give simple real algebraic proofs for several results about flat extensions of
moment matrices, and to investigate hierarchies for combinatorial graph parameters.

The paper is organized as follows. We begin with preliminaries about semidefinite op-
timization and sums of squares of polynomials. Then we present the sums of squares and
moment approaches for polynomial optimization, with a special focus on the properties of
moment matrices that allow to certify optimality and extract global optimizers. Then some
selected applications are discussed: for computing real roots of polynomial equations, for
designing hierarchies of semidefinite approximations for the stability number and the chro-
matic number, and for approximating matrix copositivity, again with application to approx-
imating graph parameters. We conclude with mentioning some other research directions
where hierarchies of semidefinite relaxations are also being increasingly used.

2. Preliminaries

Notation. N = {0, 1, 2, . . .} is the set of nonnegative integers, Nn
t consists of the sequences

α ∈ N
n with |α| :=

∑n
i=1 αi ≤ t for t ∈ N and, for α ∈ N

n, xα denotes the mono-
mial xα1

1 · · ·xαn
n with degree |α|. (We use boldface letters x,xi, .. to denote variables.)

R[x1, . . . ,xn] = R[x] is the ring of polynomials in n variables and R[x]t its subspace of
polynomials with degree ≤ t. The vector [x]t = (xα)α∈Nn

t
lists the monomials of degree at

most t (in some given order) and, for a polynomial f ∈ R[x]t, the vector f = (fα)α∈Nn
t
lists

the coefficients of f (in the same order), so that f =
∑

α fαx
α = fT[x]t.

Given polynomials g1, . . . , gm, we let I = (g1, . . . , gm) denote the ideal that they gen-
erate and, for an integer t, It denotes its truncation at degree t, which consists of all polyno-
mials

∑m
j=1 pjgj with pj ∈ R[x] and deg(pjgj) ≤ t.

A polynomial f is a sum of squares (sos) if f = g21 + . . . + g2m for some polynomials
g1, . . . , gm. Σ[x] contains all sums of squares of polynomials and we set Σ[x]t = Σ[x] ∩
R[x]t. P(K) contains all polynomials f that are nonnegative over a given set K ⊆ R

n, i.e.,
f(x) ≥ 0 for all x ∈ K, also abbreviated as f ≥ 0 on K.

Ideals and varieties. Consider an ideal I ⊆ R[x]. The sets
√
I := {f ∈ R[x] | fk ∈ I for some integer k ≥ 1},

R
√
I := {f ∈ R[x] | f2k + p21 + . . . + p2m ∈ I for some k ≥ 1, p1, . . . , pm ∈ R[x]}
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are called, respectively, the radical and the real radical of I. Moreover, the sets

V (I) = {x ∈ C
n : f(x) = 0 ∀f ∈ I}, VR(I) = V (I) ∩ R

n

are, respectively, the (complex) variety and the real variety of the ideal I. If I = (g1, . . . , gm)
is the ideal generated by a set of polynomials g1, . . . , gm, then V (I) consists of all their com-
mon complex roots while VR(I) consists of their common real roots. The vanishing ideal of
a set V ⊆ C

n is the set of polynomials

I(V ) = {f ∈ R[x] : f(x) = 0 ∀x ∈ V }.
The sets I(V ),

√I and R
√I are all ideals in R[x] and they satisfy the inclusions:

I ⊆
√
I ⊆ I(V (I)) and I ⊆ R

√
I ⊆ I(VR(I)).

The ideal I is called radical if I =
√I and real radical if I = R

√I. For instance, the ideal
I = (x2) is not radical since x ∈ √I \ I, while the ideal I = (x2

1 + x2
2) is radical but not

real radical since x1,x2 ∈ R
√I \ I. The following celebrated results relate (real) radical and

vanishing ideals.

Theorem 2.1 ([16, 52, 98]). Let I be an ideal in R[x]. Then,
√I = I(V (I)) (Hilbert’s

Nullstellensatz) and R
√I = I(VR(I)) (Real Nullstellensatz).

As I ⊆ I(V (I)) ⊆ I(VR(I)), I real radical implies I radical and, moreover, V (I) =
VR(I) ⊆ R

n if the real variety VR(I) is finite. Moreover, an ideal I is zero-dimensional
precisely when V (I) is finite. Then there is a well known relationship between the cardinal-
ity of the variety V (I) and the dimension of the quotient space R[x]/I (see e.g. [16]).

Proposition 2.2. An ideal I in R[x] is zero-dimensional (i.e., the variety V (I) is finite) if
and only if the vector space R[x]/I is finite dimensional. Moreover, we have the inequality:
|V (I)| ≤ dimR[x]/I, with equality if and only if the ideal I is radical.

The eigenvalue method for computing the variety V (I). We now recall how to find the
variety V (I) of a zero-dimensional ideal I by computing the eigenvalues of the multipli-
cation operator in the quotient algebra R[x]/I, since this technique is used for finding the
global minimizers of problem (P) (see [44]). Given a polynomial h ∈ R[x], consider the
‘multiplication by h’ linear map in R[x]/I:

mh : R[x]/I −→ R[x]/I
f + I �−→ fh + I

and let Mh denote its matrix in a given linear basis B = {b1, . . . , bN} of R[x]/I.
Theorem 2.3. Assume N = dimR[x]/I < ∞, let B = {b1, . . . , bN} be a linear basis of
R[x]/I, and let [v]B = (b1(v), . . . , bN (v))T be the vector of evaluations at v ∈ V (I) of the
polynomials in B. For any h ∈ R[x], the eigenvalues of the multiplication matrix Mh are the
evaluations h(v) of h at the points v ∈ V (I), with corresponding (left) eigenvectors [v]B.
That is, MT

h [v]B = h(v)[v]B for all v ∈ V (I).
If I is radical then |V (I)| = N (by Proposition 2.2) and the matrix Mh has a full set
of linearly independent eigenvectors ([v]B for v ∈ V (I)). These vectors can be found by
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computing the eigenvalues of MT
h (assuming the values h(v) are pairwise distinct which can

be achieved e.g. by selecting a random linear polynomial h) and it is then easy to recover
the points v ∈ V (I) from these vectors [v]B.

We illustrate this method applied to the univariate case. Say I = (p), where p is the
polynomial: p = xd − pd−1x

d−1 − . . . − p0. The set B = {1,x, . . . ,xd−1} is a basis of
R[x]/(p) and with respect to this basis the ‘multiplication by x’ matrix has the form

Mx =

⎛⎜⎝0 . . . 0 p0

Id−1

...
pd−1

⎞⎟⎠ .

Its characteristic polynomial is det(Mx − tI) = (−1)dp(t), hence the eigenvalues of the
matrix Mx are the roots of p and indeed MT

x [v]B = v[v]B holds if p(v) = 0.

Semidefinite optimization. Sn is the set of real symmetric n × n matrices, equipped with
the trace inner product 〈X,Y 〉 = Tr(XTY ) =

∑n
i,j=1 XijYij . The notation X ( 0 means

that X is positive semidefinite (i.e., xTXx ≥ 0 for all x ∈ R
n) and Sn

+ ⊆ Sn is the cone of
positive semidefinite matrices. The cone Sn

+ is self-dual: X ∈ Sn is positive semidefinite if
and only if 〈X,Y 〉 ≥ 0 for all Y ∈ Sn

+.
Given matrices C,A1, . . . , Am ∈ Sn and a vector b ∈ R

m, a semidefinite program in
standard primal form and its dual semidefinite program read:

p∗ = sup
X∈Sn

{〈C,X〉 : 〈Aj , X〉 = bj (j ∈ [m]), X ( 0}, (P-SDP)

d∗ = inf
y∈Rm

{bTy :
m∑
j=1

yjAj − C ( 0}. (D-SDP)

Weak duality holds: p∗ ≤ d∗ (since X,Y =
∑m

j=1 yjAj − C ( 0 implies 〈X,Y 〉 ≥
0). Moreover, if (P-SDP) is bounded and has a positive definite feasible solution X , then
strong duality holds: p∗ = d∗. Semidefinite programs can be solved (approximatively) in
polynomial time, using the ellipsoid method (since one can test if a rational matrix is positive
semidefinite using Gaussian elimination). However, the ellipsoid method is not efficient in
practice, and efficient algorithms used in practical implementations rely on interior-point
algorithms. (See e.g. [5, 21, 99, 100].) On the other hand, the exact complexity is not
known of the problem of testing feasibility of a semidefinite program: given integral matrices
C,A1, . . . , Am ∈ Sn,

decide whether there exists y ∈ R
n such that C + y1A1 + . . . + ymAm ( 0. (F)

An obvious difficulty is that there might be only irrational solutions. It is known that (F)
belongs to NP if and only if it belongs to co-NP ([88], see also [51]). Moreover, (F) can be
solved in polynomial time when fixing eitherm or n [46] and, when fixingm, one can check
in polynomial time if (F) has a rational solution [46].

Recognizing sums of squares of polynomials. It turns out that checking whether a poly-
nomial f =

∑
α∈Nn

2t
fαx

α can be written as a sum of squares of polynomials amounts to
checking whether the following semidefinite program:∑

β,γ∈Nn
t :β+γ=α

Xβ,γ = fα (α ∈ N
n
2t), X ( 0, (2.1)
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(in the matrix variable X = (Xβ,γ)β,γ∈Nn
t
) admits a feasible solution. To see this, as-

sume f =
∑k

j=1 p2j . Then each pj has degree at most t and can be written as pj =∑
α(pj)αx

α = pj
T[x]t, where pj = ((pj)α) is the vector of coefficients of pj in the mono-

mial basis. Therefore, f =
∑k

j=1 p2j = [x]Tt (
∑k

j=1 pjpj
T)[x]t = [x]Tt P [x]t, where the

matrix P =
∑k

j=1 pjpj
T is positive semidefinite. Moreover, by equating the coefficients of

both polynomials f and [x]TdP [x]d in the identity f = [x]Tt P [x]t, it follows that P satisfies
the system (2.1). The argument can be easily reversed: any feasible solution of (2.1) gives
rise to a sum of squares decomposition of f .

More generally, given polynomials f, g1, . . . , gm ∈ R[x], the problem of finding a de-
composition of the form f = σ0 + σ1g1 + . . . + σmgm, where σ0, σ1, . . . , σm are sums
of squares with a given degree bound: deg(σ0), deg(σjgj) ≤ 2t, can also be cast as a
semidefinite program. This program is analogue to (2.1), but it now involves m+ 1 positive
semidefinite matrices X0, X1, . . . , Xm, where X0 is indexed by N

n
t (corresponding to σ0)

and Xj by Nn
t−"deg(gj)/2# (corresponding to σj). Of course one should adequately define the

affine constraints in the semidefinite program.

3. Positive polynomials and sums of squares

3.1. Positivity certificates. Understanding the link between positive polynomials and sums
of squares is a classic question which goes back to work of Hilbert around 1890. Hilbert
realized that not every nonnegative polynomial is a sum of squares of polynomials and he
characterized when this happens.

Theorem 3.1 (Hilbert [45]). Every nonnegative polynomial of degree 2d in n variables is
a sum of squares of polynomials if and only if we are in one of the following three cases:
(n = 1, 2d), (n, 2d = 2), and (n = 2, 2d = 4).

In all other cases, Hilbert showed the existence of a nonnegative polynomial which is
not sos. The first explicit construction was found only sixty years later by Motzkin: the
Motzkin polynomial M = x2

1x
2
2(x

2
1+x2

2−3)+1 is nonnegative but not a sum of squares of
polynomials. However, the polynomial (1+x2

1+x2
2)M is a sum of squares of polynomials,

which certifies the positivity of M . We refer to [89] for an historic account and for more
examples. We also refer to [7] for an in-depth study of the two smallest cases (n = 2, 2d =
6) and (n = 3, 2d = 4) when not all nonnegative polynomials are sums of squares.

If we are not in one of the special three cases of Theorem 3.1, then the inclusionΣ[x]2d ⊆
P(Rn) ∩ R[x]2d is strict. Are these two sets far apart or not? That is, are there few or many
sums of squares within nonnegative polynomials? The answer depends whether the degree
and the number of variables are fixed or not.

On the one hand, sums of squares are dense within nonnegative polynomials if we allow
the degree to grow. Lasserre and Netzer [60] show the following explicit sums of squares
approximation: if f is nonnegative over the box [−1, 1]n then for any ε > 0 there exists
k ∈ N such that the perturbed polynomial f + ε(1 +

∑n
i=1 x

2k
i ) is a sum of squares of

polynomials. (See also Lasserre [55]).
On the other hand, if we fix the degree but let the number of variables grow, then there

are significantly more nonnegative polynomials than sums of squares: Blekherman [6] shows
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that the ratio of volumes of (sections of) the cone of sums of squares and the cone of non-
negative polynomials tends to 0 as n goes to∞.

At the 1900 International Congress of Mathematicians in Paris, Hilbert asked whether
every nonnegative polynomial can be written as a sum of squares of rational functions. This
question, known as Hilbert’s 17th problem, was answered in the affirmative in 1927 by Artin,
whose work led the foundations of the field of real algebraic geometry.

Sums of squares certificates (also known as Positivstellensätze) are known for charac-
terizing positivity over a general basic closed semialgebraic set K of the form (1.1). They
involve weighted combinations of the polynomials g1, . . . , gm describing the set K. The
quadratic module generated by g = (g1, . . . , gm) is the set

Q(g) = {σ0 + σ1g1 + . . . + σmgm : σ0, . . . , σm ∈ Σ[x]} , (3.1)

the truncated quadratic module Qt(g) is its subset obtained by restricting the degrees:
deg(σjgj) ≤ 2t (setting g0 = 1), and the preordering T (g) is the quadratic module gener-
ated by the 2m polynomials ge = ge11 · · · gemm for e ∈ {0, 1}m.

Theorem 3.2 (Krivine [52], Stengle [98]). Let f ∈ R[x] and K be as in (1.1).

(i) f > 0 on K if and only if fq = 1 + p for some p, q ∈ T (g).

(ii) f ≥ 0 on K if and only if fq = f2k + p for some p, q ∈ T (g) and k ∈ N.

(iii) f = 0 on K if and only if −f2k ∈ T (g) for some k ∈ N.

In each case it is clear that the ‘if part’ gives a certificate that f is positive (nonnegative, or
vanishes) onK, the hard part is showing the existence of such a certificate. These certificates
use polynomials in T (g) and thus they can be checked with semidefinite optimization, once a
bound on the degrees has been set. However they are not directly useful for our polynomial
optimization problem (P). Indeed, in view of Theorem 3.2 (i), one would need to search
for the largest scalar λ for which there exist p, q ∈ T (g) such that (f − λ)q = 1 + p,
thus involving a quadratic term λq which cannot be dealt with directly using semidefinite
optimization.

To go around this difficulty one may instead use the simpler “denominator free" positivity
certificates of Schmüdgen and Putinar, which hold in the case when the semialgebraic set K
is compact. The following condition:

∃R > 0 such that R − x2
1 − . . . − x2

n ∈ Q(g), (A)

known as the Archimedean condition, allows easier positivity certificates using the quadratic
module Q(g). Note that K is compact if (A) holds.

Theorem 3.3 (Schmüdgen [92]). Assume that the set K in (1.1) is compact. If the polyno-
mial f is positive on K (i.e., f(x) > 0 for all x ∈ K), then f ∈ T (g).

Theorem 3.4 (Putinar [86]). Assume that the Archimedean condition (A) holds. If the poly-
nomial f is positive on K, then f ∈ Q(g).

3.2. Semidefinite relaxations for (P). Motivated by Putinar’s result, Lasserre [53] intro-
duced the following relaxations for the polynomial optimization problem (P). For any integer
t ≥ df = 2deg(f)/23, consider the parameters

f sos
t = sup

λ∈R
{λ : f − λ ∈ Qt(g)}, (SOSt)
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which form a monotone nondecreasing sequence: f sos
t ≤ f sos

t+1 ≤ . . . ≤ fmin.
Each program (SOSt) can be written as a semidefinite program (recall Section 2). More-

over, the dual semidefinite program can be expressed as follows:

fmom
t = inf

L∈R[x]∗2t
{L(f) : L(f) = 1, L(p) ≥ 0 ∀p ∈ Qt(g)}, (MOMt)

where R[x]∗2t denotes the set of linear functionals on R[x]2t. The parameters fmin, f sos
t and

fmom
t satisfy:

f sos
t ≤ fmom

t ≤ fmin. (3.2)

The inequality f sos
t ≤ fmom

t is easy (by weak duality) and fmom
t ≤ fmin is explained below

in Section 4.1. There is no duality gap: f sos
t = fmom

t , for instance if the set K has an interior
point. In the compact case the asymptotic convergence of the bounds to the infimum of f is
guaranteed by Putinar’s theorem.

Theorem 3.5. (Lasserre [53]) Assume that assumption (A) holds (and thus K is compact).
Then, limt→∞ f sos

t = limt→∞ fmom
t = fmin.

Proof. For any ε > 0, the polynomial f − fmin + ε is positive on K and thus, by Theorem
3.4, it belongs to Qt(g) for some t, which implies f sos

t ≥ fmin − ε.

In order to discuss further properties of the dual (moment) programs (MOMt), we need
to go in some detail about the moment problem. This is what we do in the next sections and
we come back to the hierarchies later in Section 4.4.

4. Moment sequences and moment matrices

4.1. The moment problem. Given a (positive Borel) measure μ on a setK ⊆ R
n, consider

the linear functional Lμ ∈ R[x]∗ defined by

Lμ(f) =

∫
K

f(x)dμ =
∑
α

fα

(∫
K

xαdμ

)
for f ∈ R[x], (4.1)

which thus depends linearly on the moments
∫
K

xαdμ of the measure μ. The classical
moment problem asks to characterize the linear functionals L ∈ R[x]∗ admitting such a rep-
resenting measure μ, i.e., being of the form L = Lμ. The following result (due to Haviland)
makes the link to polynomial positivity: L = Lμ for some measure μ on K if and only if L
is nonnegative on P(K).

Let us go back to problem (P). Following Lasserre [53], we observe that the infimum of
f over the set K can be reformulated as

fmin = inf
μ
{Lμ(f) : μ is a probability measure on K}.

Indeed, as f(x) ≥ fmin for all x ∈ K, by integrating both sides over K for an arbitrary
probability measure μ on K, we obtain that Lμ(f) ≥ fmin. For the reverse inequality,
choose μ to be the Dirac measure at an arbitrary point x ∈ K, so that Lμ(f) = f(x) and
thus infμ Lμ(f) ≤ f(x).
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If μ is a probability measure on K, then Lμ is nonnegative on P(K) and thus on its
subsetQt(g), which implies the inequality fmom

t ≤ fmin from (3.2). Moreover, the relaxation
(MOMt) is exact, i.e., fmom

t = fmin, if it has an optimal solution of the form Lμ where μ is
a probability measure on K. This observation motivates searching for sufficient conditions
for existence of a representing measure. This is treated in the rest of the section.

If L ∈ R[x]∗ has a representing measure then L must be nonnegative on P(K) and thus
on the subcone Σ[x] of all sums of squares. The nonnegativity condition of L over Σ[x] can
be conveniently expressed using the following ‘Hankel type’ matrix M(L):

M(L) = (L(xαxβ))α,β∈Nn ,

which is indexed by N
n and called the moment matrix of L.

Indeed, note that L(pq) = pTM(L)q for any p, q ∈ R[x]. Therefore, L is nonnegative
over Σ[x] if and only if M(L) ( 0. Moreover, for g ∈ R[x], L is nonnegative on the set
gΣ[x] = {gσ : σ ∈ Σ[x]} if and only if M(gL) ( 0, where gL ∈ R[x]∗ is the new linear
functional defined by (gL)(p) = L(gp) for p ∈ R[x].

For example, in the univariate case, L has a representing measure on R if and only if
M(L) ( 0 (Hamburger’s theorem), L has a representing measure on R+ if and only if
M(L),M(xL) ( 0 (Stieltjes’ theorem), and L has a representing measure on [0, 1] if and
only if M(xL),M((1− x)L) ( 0 (Hausdorff’s theorem).

Both Theorems 3.3-3.4 have counterparts for the moment problem. If K is compact,
then L has a representing measure on K if and only if L ≥ 0 on T (g) (Schmüdgen [92]) or,
equivalently, L ≥ 0 on Q(g) if (A) holds (Putinar [86]).

4.2. Finite rank moment matrices. Aswe saw above, a necessary condition forL ∈ R[x]∗

to have a representing measure is positive semidefiniteness of its moment matrix. Although
not sufficient in general, it turns out that this condition is sufficient in the case when M(L)
has finite rank ([17], see Theorem 4.1 below). As this result plays a crucial role for studying
the finite convergence of the relaxations (MOMt) for (P), we discuss it in detail.

In what follows, KerM(L) denotes the kernel of M(L), which consists of the polyno-
mials p ∈ R[x] for which L(pq) = 0 for all q ∈ R[x]. Hence KerM(L) is an ideal in R[x].
Moreover, KerM(L) is real radical if M(L) ( 0 (since, when M(L) ( 0, a polynomial p
belongs to KerM(L) if and only if L(p2) = 0).

Consider a measure μ and the corresponding linear functional Lμ as in (4.1). Its support
is contained in the real variety of the polynomials in the kernel of M(Lμ): Supp(μ) ⊆
VR(KerM(Lμ)). When μ = δv is the Dirac measure at a point v ∈ R

n, Lμ is the evaluation
Lv at v, defined by Lv(p) = p(v) for all p ∈ R[x]. If the suppport of μ is finite (i.e., μ is
finite atomic), say Supp(μ) = {v1, . . . , vr}, then Lμ is a conic combination of evaluations
at the vi’s: Lμ =

∑r
i=1 λiLvi for some scalars λi > 0. The following theorem shows that

this describes all the linear functionals L ∈ R[x]∗ with M(L) ( 0 and rank M(L) < ∞.
We present our simple real algebraic proof from [64] (see also [68]).

Theorem 4.1. (Curto and Fialkow [17]) Let L ∈ R[x]∗. Assume that M(L) ( 0 and that
M(L) has finite rank r. Then L has a (unique) representing measure μ. Moreover, μ is finite
atomic with r atoms and supported by V (KerM(L)).

Proof. As M(L) ( 0, its kernel I := KerM(L) is a real radical ideal in R[x].
Moreover, the quotient space R[x]/I has finite dimension r. This is because we have:

rank M(L) = r and any set of monomials B indexing a maximal linearly independent set
of columns of M(L) is also maximal linearly independent in R[x]/I.
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Applying Proposition 2.2, we can conclude that the variety of the ideal I is contained in
R

n and has cardinality r. Set V (I) = {v1, . . . , vr} ⊆ R
n.

We consider interpolation polynomials pv1 , . . . , pvr ∈ R[x] at the points of V (I), i.e.,
satisfying pvi(vj) = δi,j . As the polynomial pvi − p2vi

vanishes on the variety V (I), it
belongs to the ideal I(V (I)), which is equal to I (since I is real radical). Hence, L(pvi

) =
L(p2vi), since pvi

− p2vi
∈ I = Ker M(L). Moreover, L(p2vi

) ≥ 0 since M(L) ( 0.
Furthermore, L(p2vi) �= 0, since otherwise pvi would belong to KerM(L) and thus it would
vanish at vi, a contradiction.

We now claim that L =
∑r

i=1 L(pvi)Lvi . Indeed, any p ∈ R[x] can be written as p =∑r
i=1 p(vi)pvi + q, where q ∈ I. Hence, L(q) = 0 and thus L(p) =

∑r
i=1 p(vi)L(pvi) =∑r

i=1 Lvi
(p)L(pvi

). Hence we have shown that L has a finite r-atomic representing mea-
sure: μ =

∑r
i=1 L(pvi)δvi , which concludes the proof.

4.3. Flat extensions of truncated moment matrices. Tomake the link with the relaxations
(MOMt) for problem (P), we introduce the truncated moment matrix of L ∈ R[x]∗2t, which
is the following matrix indexed by Nn

t :

Mt(L) = (L(xαxβ))α,β∈Nn
t
.

Following Curto and Fialkow [17] we say that Mt(L) is a flat extension of (its principal
submatrix) Mt−1(L) if

rank Mt(L) = rank Mt−1(L). (4.2)

The following result claims that any such moment matrix can be extended to an infinite
moment matrix of the same rank.

Theorem 4.2 ([17]). Let L ∈ R[x]∗2t. If Mt(L) is a flat extension of Mt−1(L), i.e., (4.2)
holds, then there exists L̃ ∈ R[x]∗ which extends L (i.e., L = L̃ on R[x]2t) and has the
property that M(L̃) is a flat extension of Mt(L): rank M(L̃) = rank Mt(L).

The proof is elementary, exploiting the fact that the kernel of M(L̃) is an ideal. Indeed
the relations expressing the monomials of degree t in terms of polynomials of degree at most
t − 1 (modulo the kernel of Mt(L)) can be used to express recursively any monomial of
degree at least t+1 in terms of polynomials of degree at most t (modulo the ideal generated
by the kernel ofMt(L)). Combining Theorems 4.1 and 4.2, we arrive at the following result.

Theorem 4.3. Let L ∈ R[x]∗2t and assume that Mt(L) ( 0 and (4.2) holds. Then L has
a finite atomic representing measure μ, whose support is given by the variety of the kernel
of Mt(L): V (KerMt(L)) = Supp(μ) ⊆ R

n. Moreover, the ideal generated by the kernel
of Mt(L) is equal to the kernel of M(Lμ): (KerMt(L)) = KerM(Lμ), and it is a real
radical ideal.

To be able to claim that the representing measure μ is supported within a given semial-
gebraic set K like (1.1), it suffices to add the localizing conditions Mt−dgj

(gjL) ( 0 (for
j ∈ [m]), where gj are the polynomials defining K and dgj = 2deg(gj)/23, and to assume
a stronger flatness condition:

rankMt(L) = rankMt−dK
(L), where dK = max{dgj : j ∈ [m]}. (4.3)

Theorem 4.4 ([18]). Assume L ∈ R[x]∗2t satisfies Mt(L) ( 0, Mt−dgj
(gjL) ( 0 for

j ∈ [m], and the flatness condition (4.3). Then L has a representing measure whose support
is contained in the set K.
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Proof. We give our simple proof from [64]. We already know that L has a representing mea-
sure μ with Supp(μ) =: {v1, . . . , vr} ⊆ R

n, where r = rankMt(L) and L =
∑r

i=1 λiLvi

with λi = L(pvi) > 0. It suffices now to show that each point vi ∈ Supp(μ) belongs
to K, i.e., that gj(vi) ≥ 0 for all j ∈ [m]. For this, the simple but crucial observation
is that we can choose the interpolation polynomials pvi at the vi’s in such a way that they
all have degree at most t − dK (which follows using condition (4.3)). As each polynomial
pvi has degree at most t − dK ≤ t − dgj and Mt−dgj

(gjL) ( 0, we can conclude that
0 ≤ (gjL)(p

2
vi
) = L(p2vi

gj), which implies directly that gj(vi) ≥ 0.

4.4. The moment relaxations for (P). We now return to the moment relaxation (MOMt)
for problem (P) introduced earlier in Section 3.2. First, using truncated moment matrices, it
can be reformulated as follows:

fmom
t = inf

L∈R[x]∗2t
{L(f) : L(1) = 1, Mt(L) ( 0, Mt−dgj

(gjL) ( 0 (j ∈ [m])}, (MOMt)

(explaining the name ‘moment’ and the notation ‘fmom
t ’). Recall that fmom

t ≤ fmin from
(3.2). Using the preceding results about flat extensions of moment matrices, we can now
present the following optimality certificate for the relaxation (MOMt), which permits to
claim that the infimum of f is reached: fmom

t = fmin.

Theorem 4.5. Let Kf denote the set of global minimizers of problem (P) and set df =
2deg(f)/23, dgj = 2deg(gj)/23, dK = max{dgj : j ∈ [m]}. Let L ∈ R[x]∗2t be an optimal
solution of the program (MOMt). Assume that L satisfies the following flatness condition:

rankMs(L) = rankMs−dK
(L) for some s satisfying max{df , dK} ≤ s ≤ t. (4.4)

Then, fmom
t = fmin and V (KerMs(L)) ⊆ Kf . Moreover, if rankMs(L) is maximum among

all optimal solutions of (MOMt), then equality: V (KerMs(L)) = Kf holds and I(Kf ) =
(KerMs(L)).

Proof. Assume s = t (to simplify notation). By Theorem 4.4, L has a representing mea-
sure μ with Supp(μ) ⊆ K. That is, L =

∑r
i=1 λiLvi , where λi > 0,

∑
i λi = 1, and

{v1, . . . , vr} = V (KerMt(L)) ⊆ K. Then, fmom
t = L(f) =

∑r
i=1 λif(vi) ≥ fmin. This

implies equality fmom
t = fmin and f(vi) = fmin for all i ∈ [r], and thus we can conclude that

V (KerMt(L)) = {v1, . . . , vr} ⊆ Kf .
Assume now thatMt(L) has maximum rank among the optimal solutions of (MOMt). As

the evaluation Lv at any point v ∈ Kf is also an optimal solution of (MOMt), we deduce that
rank Mt(Lv) ≤ rank Mt(L), which implies that KerMt(L) ⊆ KerMt(Lv) ⊆ I(v) for all
v ∈ Kf . Hence, KerMt(L) is contained in ∩v∈Kf

I(v) = I(Kf ). By taking the varieties
on both sides, we obtain that Kf ⊆ V (KerMt(L)), which implies Kf = V (KerMt(L))
and thus I(Kf ) = (KerMs(L)) (since (KerMt(L)) is real radical by Theorem 4.3).

The above result is the theoretical core of the moment approach for problem (P). It has
been implemented in the numerical algorithm GloptiPoly. There are several other imple-
mentations of the sos/moment approach, including SOSTOOLS, YALMIP, and SparsePOP
(tuned to exploit sparsity structure). We conclude with some comments and pointers to a few
additional results from the growing literature.



856 Monique Laurent

• The maximality assumption on the rank of the optimal solution is not restrictive. On
the contrary, most interior point algorithms currently used to solve semidefinite pro-
grams return an optimal solution lying in the relative interior of the optimal face and
thus one with maximum possible rank (see [21]).

• Under the assumptions of Theorem 4.5, problem (P) has finitely many global minimiz-
ers and they can be found using the eigenvalue method from Section 2. Indeed, we
know that the set of global minimizers is Kf = V (KerMs(L)) and that the quotient
space R[x]/(KerMs(L)) has dimension rank Ms(L) = rank Ms−dK

(L). Hence
any set of monomials indexing a maximal linearly independent set of columns of the
matrix Mt−dK

(L) is a linear basis of R[x]/(KerMs(L)). So we can construct the
multiplication matrices in R[x]/(KerMs(L)) and their eigenvalues/eigenvectors per-
mit to extract the points in V (KerMs(L)) = Kf .

• The flatness condition (4.4) can be used as a concrete optimality stopping criterion: if
it is satisfied at a certain order t then the relaxation is exact and the algorithm stops
after returning the infimum fmin and the set Kf of global minimizers. Otherwise one
may compute the next relaxation of order t + 1.

• In general, information about the global minimizers can be gained asymptotically from
optimal solutions Lt to the relaxations (MOMt). In particular, if (P) has a unique
minimizer x∗, then x∗ can be found asymptotically as limit point as t → ∞ of the
sequences (Lt(x1), . . . , L

t(xn)) [95]. See [77] for an extension to the case of finitely
many global minimizers.

In the compact case, the bounds f sos
t , fmom

t converge asymptotically to fmin (Theorem
3.5). What about finite convergence?

• By Theorem 4.5, the flatness condition (4.4) implies the finite convergence of the mo-
ment hierarchy (MOMt). Conversely, if the set of global minimizers is nonempty and
finite, the flatness condition (4.4) is also necessary for finite convergence of (MOMt)
under some genericity assumptions on the polynomials f, gj [77].

• Finite convergence holds in the case when the description of the set K involves some
polynomial equations g1(x) = 0, . . . , gk(x) = 0 which have finitely many common
real roots (since the flatness condition holds) [66, 68, 78].

• Finite convergence also holds in the convex case, when f,−g1, . . . ,−gm are convex,
the set K has a Slater point x0 (i.e., gj(x0) > 0 if gj is not linear), and the Hessian of
f is positive definite at the (unique) global minimizer [23].

• Nie [80] shows that, under the Archimedean condition (A), the Lasserre hierarchy
applied to problem (P) has finite convergence generically. More precisely, finite con-
vergence holds when the classic nonlinear optimality conditions (constraint qualifica-
tion, strict complementarity, and second order sufficient condition) hold at all global
minimizers, and these conditions are satisfied generically.

• Finally we refer to [81] for degree bounds and estimates on the quality of the mo-
ment/sos bounds (see [22] for refined results when K is the hypercube).



Optimization over polynomials: Selected topics 857

5. Application to real roots and real radical ideals

The above strategy for computing the global minimizers of (P) was developed and applied
by Lasserre, Laurent and Rostalski [57] to the problem of computing the common real roots
of a system of polynomial equations: g1(x) = 0, . . . , gk(x) = 0.

Computing all complex roots is a well studied problem. Several methods exist, including
symbolic-numeric methods, which combine symbolic tools (like Gröbner or border bases)
with numerical linear algebra (like computing eigenvalues, or univariate root finding), and
homotopy continuation methods. As there might be much less real roots than complex ones
it is desirable to have methods able to extract directly the real roots without dealing with
the complex nonreal ones. This is precisely the feature of the real algebraic method of [57],
which can be summarized as follows.

Consider the following instance of (P):

min{0 : g1(x) = 0, . . . , gk(x) = 0},

which asks to minimize the zero polynomial on the real algebraic variety of the ideal I =
(g1, . . . , gk), so that the set of global minimizers is precisely VR(I).

Consider the moment relaxations (MOMt) for this problem. [57] shows that the flatness
condition (4.4) holds for t large enough, assuming that the set VR(I) is finite. Hence, by
Theorem 4.5, it follows that the real radical ideal of I is found: R

√I = (KerMs(L)) and
that the variety VR(I) can be computed using the eigenvalue method applied to the quotient
space R[x]/(KerMs(L)) (as explained in the previous section). The fact that the kernel of
Ms(L) generates the vanishing ideal of VR(I) is crucial, since this is the key property which
permits to filter out all complex nonreal roots.

We point out that the equality R
√I = (KerMt(L)) holds for t large enough, even if the

variety VR(I) is infinite. The difficulty, however, is to detect when one has reached such
order t, since it is not clear how to detect it algorithmically (as the flatness condition cannot
hold when the real variety is not finite).

We refer to [57, 58], [1, Chap.2] for details and extensions. The recent work [59] devel-
ops a sparse version of the moment method able to work with smaller matrices, indexed by
smaller sets of monomials, rather than the full set of monomials of degree at most t. This
approach combines the border base method from [73] with the generalized flatness condition
from [69].

We conclude with illustrating the method on a small example. Consider the polynomial
equation: x2

1 + x2
2 = 0, with a unique real root (0, 0) and infinitely many complex roots.

Then the moment relaxation of order t = 1 has the constraints

M1(y) =

⎛
⎝ 1 y10 y01

y10 y20 y11
y01 y11 y02

⎞
⎠ ( 0, y20 + y02 = 0,

which imply yα = 0whenever α �= 0. Therefore the flatness condition holds: rankM1(y) =
rankM0(y) = 1. Moreover the kernel of M1(y) is spanned by the two polynomials x1,x2,
which indeed generate the real radical of the ideal (x2

1 + x2
2).
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6. Application to some combinatorial problems

Lift-and-project methods. The polynomial optimization problem (P) contains the general
0/1 linear programming (ILP), asking to optimize a linear function over the 0/1 solutions to
a linear system Ax ≥ b. Let P denote the integral polytope defined as the convex hull of
all x ∈ {0, 1}n satisfying Ax ≥ b and let K = {x : Ax ≥ b} denote its linear relaxation,
which can be assumed to lie in the hypercube [0, 1]n. A well studied approach in polyhedral
combinatorics is to find a (partial) linear inequality description of the polytope P , leading
to a new relaxation P ′ nested between P and K: P ⊆ P ′ ⊆ K, strengthening the initial
relaxation K. Several methods have been investigated that construct in a systematic way
hierarchies of relaxations nested between P and K, with the property that P is found in
finitely many steps. For instance, the classic method in integer programming, which consists
of iteratively adding Gomory-Chvátal cuts, finds the integral polytope P inO(n2 log n) steps
[30], but linear optimization over the first Gomory-Chvátal closure is a hard problem [29].
On the other hand, the lift-and-project methods of Sherali and Adams [96] and of Lovász
and Schrijver [71] produce hierarchies of LP and SDP relaxations Pt that find the integral
polytope in n steps and with the property that linear optimization over the t-th relaxation Pt

is polynomial time for any fixed t. They are all based on the following basic strategy:

(a) Generate new polynomial constraints by multiplying the polynomial inequalities aTj x−
bj ≥ 0 of the system Ax ≥ b by xi or 1 − xi (and their products) and eliminate all
squared variables replacing each x2

i by xi.

(b) Linearize all monomials
∏

i∈I xi by introducing new variables yI , so that the con-
straints generated in (a) form a linear system in the variables (x, y).

(c) Project back on the x-variables space, which gives a polyhedron P ′ nested between P
and K.

The construction may allow the addition of positive semidefiniteness constraints, leading
to stronger semidefinite relaxations. This is the case for the construction of Lovász and
Schrijver [71], which we now briefly describe.

Suppose the vector x ∈ {0, 1}n satisfies the system Ax ≥ b. Consider the new vector
x̂ = (1, x) ∈ R

n+1 (where the additionnal entry is indexed by ‘0’) and the matrix Y =
x̂x̂T ∈ Sn+1. Then the matrix Y satisfies the following conditions: (i) Y ( 0, (ii) Y00 = 1,
(iii) Y0i = Yii for all i ∈ [n], and (iv) the vectors Y (i), Y (0) − Y (i) (for i ∈ [n]) satisfy
the linear system: Ax − bx0 ≥ 0 (where Y (i) ∈ R

n+1 denotes the i-th column of Y ). Let
M+(K) denote the set of matrices Y ∈ Sn+1 satisfying the above conditions (i)-(iv), define
its projection

N+(K) = {x ∈ R
n : ∃Y ∈ M+(K) such that xi = Y0i (i ∈ [n])},

and define analogously N(K) by omitting the positive semidefiniteness condition (i) in
the definition of M+(K). Then, P ⊆ N+(K) ⊆ N(K) ⊆ K. For an integer t ≥ 2,
one can iteratively define Nt(K) = N(Nt−1(K)), N+

t (K) = N+(N+
t−1(K)) (setting

N1(K) = N(K) and N+
1 (K) = N+(K)). This leads to hierarchies of linear and semidef-

inite relaxations, that find P in n steps: P ⊆ N+
t (K) ⊆ Nt(K), with equality for t = n.

From the optimization point of view, these hierarchies behave well: if linear optimization
over K can be done in polynomial time then the same holds for linear optimization over
Nt(K) and N+

t (K) for any fixed t ≥ 1 [71].
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The paper [71] also investigates in detail how the construction applies to the stable set
problem. Given a graph G = (V = [n], E), let K ⊆ R

n be defined by nonnegativity x ≥ 0
and the edge inequalities xi + xj ≤ 1 ({i, j} ∈ E), so that the corresponding polytope
P = conv(K ∩ {0, 1}n) is the stable set polytope of G. The first linear relaxation N(K)
is completely understood: N(K) is the polyhedron defined by nonnegativity x ≥ 0 and the
odd cycle inequalities

∑
i∈O xi ≤ (|O| − 1)/2 for all O ⊆ V inducing an odd cycle in G.

The relaxation N+(K) is much stronger. Indeed, for any clique C of G, the corresponding
clique inequality

∑
i∈C xi ≤ 1 is valid for N+(K), while the first order t for which it is

valid for the linear relaxation Nt(K) is t = |C| − 2. Moreover the stable set polytope P is
found after α(G) steps of the semidefinite hierarchy, compared to n−α(G)− 1 steps of the
linear hierarchy. These results have motivated much of the interest in these lift-and-project
semidefinite relaxations for combinatorial optimization.

The Lasserre approach. The general moment approach applied to (ILP) also produces a
hierarchy of semidefinite relaxations Lt(K) converging to P [54]. As explained in [61],
the relaxation Lt(K) can easily be described in a direct way following the above lift-and-
project strategy. We just indicate here how to apply the previously described general moment
method. We start with the set K defined by the polynomial inequalities gj = aTj x− bj ≥ 0

(j ∈ [m]) and the polynomial equations x2
i − xi = 0 (i ∈ [n]). Then Lt(K) is defined as

the set of all vectors x ∈ R
n of the form x = (L(x1), . . . , L(xn)) for some linear functional

L ∈ R[x]∗2t satisfying the moment relaxation (MOMt), i.e., the conditions (i) L(1) = 1, (ii)
Mt(L) ( 0, (ii) Mt−1(gjL) ( 0 (j ∈ [m]), and (iii) L(f) = 0 for all polynomials f in the
truncated ideal (x2

1 − x1, . . . ,x
2
n − xn)2t.

What the above condition (iii) says is that one can simplify the Lasserre relaxation by
eliminating variables and working with smaller moment matrices. Indeed, instead of con-
sidering the moment matrix Mt(L) indexed by all monomials of degree at most t, it suffices
to consider its principal submatrix indexed by all square-free monomials of degree at most
t (of the form

∏
i∈I xi for I ∈ ( V≤t

)
), and to consider only variables yJ := L(

∏
i∈J xi) for

sets J ∈ ( V
≤2t

)
. Here

(
V
≤t

)
denotes the collection of subsets of V = [n] with cardinality at

most t.
As a direct consequence, the flatness condition (4.3) holds at order t = n + 1:

rank Mn+1(L) = rank Mn(L).

Hence the Lasserre relaxation of order n + 1 is exact: Ln+1(K) = P (which follows by
applying Theorem 4.5). There is also a simple direct proof for this claim or, alternatively,
this claim follows from the fact that the Lasserre hierarchy refines the Lovász-Schrijver
hierarchy. Namely, for any t ≥ 2, we have: Lt(K) ⊆ N(Lt−1(K)), which thus implies
the inclusion Lt(K) ⊆ Nt−1(K). Moreover, the Lasserre hierarchy also refines the Sherali-
Adams hierarchy. We refer to [61] for the above results, and we refer e.g. to the recent work
[2] for a comprehensive treatment and further references, also about other lift-and-project
hierarchies. We now indicate how the Lasserre hierarchy applies to maximum stable sets,
minimum graph colorings and max-cut.

Lasserre hierarchies for α(G) and χ(G). As an illustration, the moment relaxation
(MOMt) for the stable set problem (1.4) reads:

last(G) = max
y∈( V

≤2t)
{
∑
i∈V

yi : (yI∪J)I,J∈( V
≤t)

( 0, yij = 0 ({i, j} ∈ E), y∅ = 1}. (6.1)
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For t = 1, we find Lovász’ theta number from (1.6): las1(G) = ϑ(G). Moreover, the
Lasserre bound is exact: last(G) = α(G) for t ≥ α(G). On the dual side, the sos relaxation
(SOSt) asks for the smallest scalar λ for which the polynomial λ −∑i∈V xi can be written
as a sum of squares of degree at most 2tmodulo the ideal generated by the polynomials xixj

(for {i, j} ∈ E) and x2
i −xi (for i ∈ V ). We refer to Gouveia et al. [35] for a detailed study

of the hierarchies from this point of view of sums of squares, also in the setting of general
polynomial ideals.

In [39] we investigate Lasserre type bounds for the chromatic number χ(G). A first
possibility is to consider the following analogue of the bounds in (6.1):

ψt(G) = min
y∈( V

≤2t)
{y∅ : (yI∪J)I,J∈( V

≤t)
( 0, yij = 0 ({i, j} ∈ E), yi = 1 (i ∈ V )}. (6.2)

Then, ψ1(G) = ϑ(G) ≤ ψt(G) ≤ χ(G). However, these bounds cannot in general reach
the chromatic number since they all remain below the fractional chromatic number χf (G):
ψt(G) ≤ χf (G), with equality if t ≥ α(G).

To define a hierarchy of semidefinite bounds able to reach the chromatic number χ(G),
one can use the reduction of χ(G) to the stability number of the cartesian product G�Kk

described in the Introduction. Namely, χ(G) is equal to the smallest integer k for which
α(G�Kk) = |V (G)|. This motivates defining the parameter Last(G) as the smallest integer
k for which last(G�Kk) = |V (G)|. Then, we have the inequality: Last(G) ≤ χ(G),
with equality for t = n. Note that, for t = 1, we find again the (rounded) theta number:
Las1(G) = 2ϑ(G)3.

An easy way to strengthen the various bounds is by adding the nonnegativity constraint
y ≥ 0 to the program (6.1), call las′t(G) the resulting parameter. Analogously, define
Las′t(G) as the smallest integer k for which las′t(G�Kk) = |V |. Then, we have: α(G) ≤
las′t(G) ≤ last(G) and Last(G) ≤ Las′t(G) ≤ χ(G). It turns out that the parameters
las′1(G) and Las′1(G) coincide, respectively, with the parameters ϑ′(G) and ϑ+(G) (recall
(1.8)).

The bounds last(G) (and las′t(G)) have been used in particular to upper bound the car-
dinality of error correcting codes. When dealing with binary codes of length N , one needs
to find the stability number of a Hamming graph G, with vertex set V = {0, 1}N and where
two vertices u, v ∈ V are adjacent if their Hamming distance does not belong to some pre-
scribed set. Thus this graph G has 2N vertices. Fortunately it has a large automorphism
group which can be used to compute the parameter last(G) with a semidefinite program
involving smaller matrices of size O(N2t−1) (polynomial in N for fixed t), while the orig-
inal formulation (6.1) involves matrices of size O(|V |t = 2tN ) (exponential in N ). This
is shown in [67] using symmetry reduction techniques from [25]. Moreover, Schrijver [93]
shows that the semidefinite bound las′1(G) = ϑ′(G) of order t = 1 coincides with the well
known linear programming bound of Delsarte, which is expressed by a linear program of size
N . Furthermore, Schrijver [94] shows that the semidefinite bound of the next order 2 (more
precisely, some variation in-between the bounds of order 1 and 2) can be computed with a
semidefinite program involving (roughly) N/2 matrices of size at most N , which he shows
using block-diagonalization techniques for matrix algebras. Numerical computations using
these parameters and some strengthenings give the currently best known bounds for codes
(see [33, 67, 94] and references therein). Computations for the chromatic number using the
bounds Last(G) (and variations) can be found in [39, 41].
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The Lasserre hierarchy for max-cut. As another illustration let us apply the Lasserre hi-
erarchy to the max-cut problem (1.2). The equations x2

i = 1 permit to express the relaxation
(MOMt) as

max
y∈R(

V
≤2t)

{
∑

{i,j}∈E
(wij/2)(1− yij) : (yIΔJ)I,J∈( V

≤t)
( 0, y∅ = 1}.

For t = 1 this is the relaxation (1.3) used by Goemans and Williamson [34] for their
0.878-approximation algorithm for max-cut. More details about geometric properties of
the Lasserre hierarchy for max-cut can be found in [63]. A natural question is how many
steps are needed to solve max-cut using the hierarchy. In [62] we show that, for the all-ones
weight function, the relaxation is exact if and only if t ≥ tn := 2n/23 and we conjecture
that tn iterations suffice for arbitrary weights w. Equivalently, we conjecture that the poly-
nomial fw = mc(G,w) −∑{i,j}∈E(wij/2)(1 − xixj) can be written as a sum of squares
of degree at most 2tn modulo the ideal (x2

i − 1 : i ∈ [n]). Recently, Blekherman et al. [8]
show that this is indeed true when allowing “denominators", i.e., they show that there exists
a polynomial p such that p2fw has such a decomposition.

Copositive based hierarchies. Let Cn denote the copositive cone, consisting of all matrices
M ∈ Sn for which the polynomial fM =

∑n
i,j=1 Mijx

2
ix

2
j is nonnegative over Rn. As

mentioned in the Introduction, the stability number α(G) of a graph G can be obtained from
the program (1.9), which is linear optimization over the copositive cone Cn. As we indicate
below this formulation leads to another type of hierarchies.

Motivated by the fact that testing matrix copositivity is a hard problem, Parrilo [82]
introduced a hierarchy of sufficient conditions, which can be tested using semidefinite opti-
mization and leads to the hierarchy of cones Kt considered by de Klerk and Pasechnik [24].
Namely, Kt consists of the matrices M ∈ Sn for which the polynomial fM (

∑n
i=1 x

2
i )

t is
a sum of squares. The cone K0 consists precisely of the matrices M that can be written as
the sum of a positive semidefinite matrix and an entrywise nonnegative matrix. Clearly, the
cones Kt form a hierarchy of subcones of Cn: Kt ⊆ Kt+1 ⊆ Cn. Parrilo [82] shows that
they cover the interior of Cn: if fM (x) > 0 for all nonzero x ∈ R

n then M belongs to some
Kt. His proof uses the following result of Pólya: if g ∈ R[x] is a homogeneous polynomial
satisfying g(x) > 0 for all nonzero x ∈ R

n
+, then there exists an integer t ∈ N for which all

the coefficients of the polynomial (
∑n

i=1 xi)
tg are nonnegative.

The conesKt lead to another hierarchy of bounds for the stability number α(G). Starting
from relation (1.9), De Klerk and Pasechnik [24] define the parameter

ϑt(G) = min{λ : λ(I + AG)− J ∈ Kt}. (6.3)

They show that the first bound is the theta number: ϑ0(G) = ϑ′(G), and they show con-
vergence after rounding: *ϑt(G)+ = α(G) for t ≥ α(G)2. Moreover, they conjecture that
finite convergence: α(G) = ϑt(G) holds for t ≥ α(G)− 1, which would mirror the known
finite convergence in α(G) steps for the Lasserre bounds last(G). In [38] we give a partial
proof and prove this conjecture for all graphs with α(G) ≤ 8.

This approach also gives lower bounds Θt(G) for the chromatic number χ(G). Namely,
defineΘt(G) as the smallest integer k for which ϑt(G�Kk) = |V (G)|. In [38] we compare
both types of hierarchies and we show that the Lasserre hierarchies refine these ‘coposi-
tive based’ hierarchies. Namely, we show that las′t(G) ≤ ϑt−1(G) and thus Θt−1(G) ≤
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Las′t(G) for any t ≥ 1. Hence, the Lasserre hierarchy may give better bounds and moreover
it seems much easier to handle. For instance its finite convergence is easy, while the finite
convergence of the copositive hierarchy is still open. A reason might be that the Lasserre
construction uses explicitly the presence of binary variables, while the copositive based con-
struction does not. Nevertheless copositive based approximations have gained popularity in
the recent years and they open the way to other types of approaches for approximating hard
problems. We refer e.g. to [11, 28] and references therein.

7. Conclusions

We have presented the general approach permitting to construct semidefinite relaxations for
polynomial optimization problems by using sums of squares representations for positive
polynomials and moment matrices. We reviewed some basic properties regarding in particu-
lar their convergence properties. We also discussed how the general methodology applies for
building hierarchies of semidefinite relaxations for combinatorial problems in graphs. We
have only discussed a small piece of this rapidly expanding research area. We now mention
a few other research areas, where this type of methods are also being increasingly used.

Semidefinite optimization and in particular the Lasserre hierarchy are playing a growing
role in theoretical computer science for the design of efficient approximation algorithms.
Understanding the power and limitations of the Lasserre hierarchy is a fundamental ques-
tion, which has tight links with complexity theory. For instance, assuming the unique game
conjecture [48], Khot et al. [49] show that one cannot beat the Goemans-Williamson 0.878-
approximation guarantee for max-cut, which is based on the Lasserre relaxation of smallest
order. Yet recent results of Guruswami and Sinop [37] exploit higher order relaxations to
give improved approximation algorithms for graph partition problems, depending on spec-
tral properties of the graph. We refer e.g. to [32, 65], the recent overview by Chlemtac and
Tulsiani [1, Chap. 6] and references therein.

Semidefinite bounds are also used to attack geometric problems, like the kissing number
problem and the problem of coloring the Euclidean space [3, 4]. These problems lead to
maximum stable set and minimum coloring problems in infinite graphs. For instance, the
kissing number problem is finding a maximum stable set, where the vertex set is the unit
sphere with two points being adjacent depending on their spherical distance. Bachoc and
Vallentin [3] use low order bounds in the Lasserre hierarchy to give the best known bounds
for the kissing number problem, a crucial ingredient in their approach is exploiting symmetry
in order to get computable semidefinite programs.

Hierarchies of semidefinite relaxations have also been used recently to attack polynomial
optimization problems in noncommutative variables. Such problems arise when, instead of
instantiating variables to scalars, one allows variables to be matrices (or bounded operators
on some Hilbert space) and they have applications in many areas of quantum phsyics. Given
a symmetric polynomial f in n noncommutative variables, one can consider the following
two kinds of positivity: f is said to be matrix-positive if f(X1, . . . , Xn) ( 0 when evalu-
ating f at arbitrary matrices X1, . . . , Xn ∈ Sd (d ≥ 1), and f is said to be trace-positive if
Tr(f(X1, . . . , Xn)) ≥ 0 for all X1, . . . , Xn ∈ Sd (d ≥ 1). These two notions lead to dif-
ferent noncommutative polynomial optimization problems. For both problems analogues of
the moment and sums of squares approaches have been investigated, we refer to [12, 20, 84]
and references therein.
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By Hilbert’s theorem, not all nonnegative polynomials are sums of squares. However,
Helton [42] shows the following remarkable result: a symmetric polynomial is matrix-
positive if and only if it is a sum of Hermitian squares. Moreover, Helton and McCullough
[43] show a result characterizing matrix-positivity on a compact set which can be seen as an
analogue of Putinar’s result (Theorem 3.4). On the other hand, the analogue result for trace-
positive polynomials is still open, and it is in fact related to a deep conjecture of Connes
[15] in operator algebra. Indeed, Klep and Schweighofer [50] show that Connes’ embed-
ding conjecture is equivalent to a real algebraic conjecture characterizing the trace-positive
polynomials on all contraction matrices.

Problems in quantum information have led in the recent years to some quantum ana-
logues of the classical graph parameters α(G) and χ(G). These quantum parameters require
to find positive semidefinite matrices satisfying certain polynomial conditions and, as in the
classical case, the theta number serves also as bound for them (see [10, 13] and further ref-
erences therein). Investigating how to construct hierarchies of stronger semidefinite bounds
for these quantum graph parameters is a natural direction that we are currently investigating.
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Nonsmooth optimization: conditioning,
convergence and semi-algebraic models

Adrian S. Lewis

Abstract. Variational analysis has come of age. Long an elegant theoretical toolkit for variational
mathematics and nonsmooth optimization, it now increasingly underpins the study of algorithms, and
a rich interplay with semi-algebraic geometry illuminates its generic applicability. As an example,
alternating projections – a rudimentary but enduring algorithm for exploring the intersection of two
arbitrary closed sets – concisely illustrates several far-reaching and interdependent variational ideas.
A transversality measure, intuitively an angle and generically nonzero, controls several key properties:
the method’s linear convergence rate, a posteriori error bounds, sensitivity to data perturbations, and
robustness relative to problem description. These linked ideas emerge in a wide variety of compu-
tational problems. Optimization in particular is rich in examples that depend, around critical points,
on “active” manifolds of nearby approximately critical points. Such manifolds, central to classical
theoretical and computational optimization, exist generically in the semi-algebraic case. We discuss
examples from eigenvalue optimization and stable polynomials in control systems, and a prox-linear
algorithm for large-scale composite optimization applications such as machine learning.
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Keywords. variational analysis, nonsmooth optimization, inverse function, alternating projections,
metric regularity, semi-algebraic, convergence rate, condition number, normal cone, transversality,
quasi-Newton, eigenvalue optimization, identifiable manifold.

1. Introduction: the Banach fixed point theorem

Our topic — sensitivity and iterative algorithms for numerical inversion and optimization —
has deep roots in the Banach fixed point theorem, so we begin our quick introduction there.
Given a Euclidean space E (a finite-dimensional real inner product space), we seek to invert
a map F : E → E. In other words, given a data vector y ∈ E, we seek a solution vector
x ∈ E satisfying F (x) = y. We analyze this problem around a particular solution x̄ ∈ E for
data ȳ = F (x̄). A good exposition on the idea of inversion, close in spirit to our approach
here, is the monograph of Dontchev and Rockafellar [26].

Given a constant ρ such that the map I − ρF (where I is the identity) has Lipschitz
modulus τ = lip(I − ρF )(x̄) < 1 (meaning that the map is locally a strict contraction),
Banach’s 1922 argument [2] shows that the Picard iteration

xk+1 = xk − ρ(F (xk)− y) (for k = 0, 1, 2, . . .)
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converges linearly to a solution x̂ of the equation F (x) = y, for any data vector y near ȳ,
when initiated near x̄. Furthermore, by starting sufficiently near x̄, we can ensure an upper
bound on the linear rate arbitrarily close to τ : in other words, for any constant τ̄ > τ
we know τ̄−k|xk − x̂| → 0. This construction shows that the inverse map F−1 agrees
(graphically) around the point (ȳ, x̄) with a single-valued function having Lipschitz modulus
ρ

1−τ . We thus see the sensitivity of solutions to data perturbations, and error bounds on the
distance from approximate solutions x to the true solution in terms of the a posteriori error
F (x)− y.

Similar classical arguments show robustness in the problem description: for linear maps
A : E → E with norm less than the bound ρ

1−τ , the perturbed map F + A retains (locally)
a Lipschitz inverse. Less classically, as we shall see (though related to the Eckart-Young
theorem [40]), the bound ρ

1−τ is optimal.
Consider the even simpler case when the map F is linear, self-adjoint, and positive

semidefinite, with maximum and minimum eigenvalues Λ and λ respectively. In the generic
case when F is actually positive definite, we could choose ρ = 1

Λ , and then τ = 1 − λ
Λ .

The Picard iteration becomes simply the method of steepest descent for the convex quadratic
function 1

2 〈x, Fx〉 − 〈y, x〉, with constant step size. The key constant 1
1−τ controlling the

algorithm’s convergence rate, sensitivity, error bounds and robustness, is just Λ
λ , the con-

dition number of F . This constant is also closely associated with the linear convergence
rate of other algorithms, such as steepest descent with exact line search, and the method of
conjugate gradients.

A broad paradigm, originating with Demmel [22], relates the computational difficulty
of a problem instance (here indicated by convergence rate) with the distance to the nearest
“ill-posed” instance (in this case one where Lipschitz invertibility breaks down). An ex-
tensive theory of Renegar (see [65]), analogous to the theory above for convex quadratic
minimization, concerns feasibility and optimization problems with constraints of the form
y ∈ Fx+K, for linear maps F and convex cones K: in that case, the algorithms in question
are interior-point methods [60].

Over the next couple of sections, we illustrate and study these ideas more broadly. In
each case, we consider a computational problem involving inversion or optimization (which
amounts to inverting a gradient-type mapping), and study a “regularity” modulus at a par-
ticular solution. We observe how that modulus controls error bounds, sensitivity analysis,
robustness in the problem description, and the local linear convergence rate of simple itera-
tive algorithms.

2. Variational analysis and alternating projections

We next consider the problem of set intersection: given two nonempty closed sets X and
Y in the Euclidean space E, we simply seek a point z ∈ X ∩ Y . Like our first example,
this problem involves a kind of inversion: we seek a point z such that (0, 0) lies in the set
(X − z)× (Y − z), a set we can view as a function of z.

We denote the distance from a point y ∈ E to X by dX(y), and the set of nearest points
(or projection) by PX(y). We consider the method of alternating projections, which simply
repeats the iteration

xk+1 ∈ PX(yk), yk+1 ∈ PY (xk+1).
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For convex sets, this method has a long history dating back at least to a 1933 work of von
Neumann [76], with a well understood convergence theory: a good survey is [3]. While
typically slow, its simplicity lends it enduring appeal, even for nonconvex sets. Robust
control theory, for example, abounds in low-rank matrix equations, and projecting a matrix
M onto the (nonconvex) set of matrices of rank no larger than r is easy: we simply zero out
all but the r largest singular values in the singular value decomposition of M (an approach
tried in [38], for example). Furthermore, for our current purposes, the method of alternating
projections perfectly illustrates many core ideas of variational analysis, as well as our broad
thesis.

Central to our discussion is the notion of transversality. If x is a nearest point in the set
X to a point y ∈ E, then any nonnegative multiple of the vector y − x is called a proximal
normal to X at x: such vectors comprise a cone Np

X(x). We say that X and Y intersect
transversally at a point z̄ in their intersection when there exists an angle θ > 0 such that the
angle between any proximal normal to X and proximal normal to Y , both at points near z̄,
is always less than π − θ. The supremum of such θ is the transversality angle. When X and
Y are smooth manifolds, transversality generalizes the classical notion [47]. We then have
the following special case of a result from [28].

Theorem 2.1 (Convergence of alternating projections). Initiated near any transversal inter-
section point for two closed sets, the method of alternating projections converges linearly to
a point in the intersection. If the transversality angle is θ̄ > 0, then we can ensure an upper
bound on the convergence rate arbitrarily close to cos2( θ̄2 ) by initiating sufficiently near the
intersection point.

Notable in this result (unlike all previous analysis, such as [52]) is the absence of any as-
sumptions on the two intersecting sets, such as convexity or smoothness. Central to the
proof is the Ekeland variational principle [35].

Modern variational analysis grew out of attempts to expand the broad success of convex
analysis — an area for which Rockafellar’s seminal monograph [67] remains canonical —
and to unify it with classical smooth analysis. Classical analysis relies crucially on limiting
constructions: for example, the definition of transversally intersecting smooth manifolds
(a special case of our property) involves their tangent spaces. The more general property
described above also has a limiting flavor, and we can express it more succinctly using a
limiting construction. This construction originated in Clarke’s 1973 thesis [16, 17], in a
convexified form, and a couple of years later, in the raw form we describe here (including
implications for transversality) in work reported in Mordukhovich’s paper [57] along with
contemporaneous joint studies with Kruger ranging from [59] to [45]. It is fundamental
to variational analysis: the expository monographs [8, 18, 58, 68] each provide excellent
surveys and historical discussion, [7] is a gentler introduction, and [43, p. 112] recounts
some early history. The monograph [26] is particularly attuned to our approach here.

A limit of proximal normals to the set X at a sequence of points approaching a point
x ∈ X is simply called a normal at x. Such vectors comprise a closed cone NX(x), possibly
nonconvex, called the normal cone. With this notation, transversality at the point z̄ is simply
the property

NX(z̄) ∩ −NY (z̄) = {0},
and the transversality angle is the minimal angle between pairs of vectors in the conesNX(z̄)
and −NY (z̄).
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The idea of a normal vector to a closed set X ⊂ E is a special case of the idea of a
“subgradient” of a lower semicontinuous extended-real-valued function onE. For simplicity
of exposition, in this essay we confine ourselves to properties of normals, but many of the
results that we present extend to subgradients.

The terminology of “normals” we use here is consistent with classical usage for smooth
manifolds and convex sets, a fact fruitfully seen in a broader context. A set X ⊂ E is
nonempty, closed and convex if and only if its projection mapping PX is everywhere single-
valued. More generally [64], X is prox-regular at a point x ∈ X when PX is everywhere
single-valued nearby. In that case, the limiting construction above is superfluous: all normals
are proximal, so the cones NX(x) and Np

X(x) coincide (and are closed and convex). Prox-
regularity applies more broadly than convexity, to smooth manifolds, for example. A set
M ⊂ E is a C(2) manifold around a point x̄ ∈ M if it can be described locally as F−1(0),
where the map F : E → F is twice continuously differentiable, with surjective derivative at
x̄. In that case, classical analysis showsM is prox-regular at x̄.

For convex setsX and Y , transversality fails at a common point exactly when there exists
a separating hyperplane through that point; a small translation of one set then destroys the
intersection. The following result [45], a local generalization of the separating hyperplane
theorem, hints at the power of transversality.

Theorem 2.2 (Extremal principle). On any neighborhood of a point where two closed sets
intersect transversally, all small translations of the sets must intersect.

This principle is a unifying theme in the exposition [58], for example. One proof proceeds
constructively, using alternating projections [52].

Another consequence of transversality is the existence of an error bound, discussed in
[41, p. 548], estimating the distance to the intersection of the two sets in terms of the dis-
tances to each separately. Notice, in the product space E × E, we have the relationship
dX×Y (z, z) =

√
d2X(z) + d2Y (z) for any point z ∈ E.

Theorem 2.3 (Error bound). If closed sets X and Y intersect transversally at a point z̄, then
there exists a constant ρ > 0 such that all points z near z̄ satisfy

dX∩Y (z) ≤ ρdX×Y (z, z).

Intuitively, when the transversality angle is small, we expect to need a large constant ρ in
the error bound above. We can make this precise through a single result, discussed in [52],
subsuming the preceding two.

Theorem 2.4 (Sensitivity). Sets X and Y intersect transversally at a point z̄ if and only if
there exists a constant ρ > 0 such that all points z near z̄ and all small translations X ′ of
X and Y ′ of Y satisfy

dX′∩Y ′(z) ≤ ρdX′×Y ′(z, z).

The infimum of such ρ is (1− cos θ̄)−
1
2 , where θ̄ is the transversality angle.

We see a pattern of ideas analogous to those for inversion via the Picard iteration: an
algorithm whose linear convergence rate is governed by a sensitivity modulus. To pursue the
analogy intuitively a little further, when the transversality angle θ̄ is small, we expect a small
change in the problem description to destroy transversality. To illustrate, suppose z̄ = 0,
and at that point choose unit normals u and v to the sets X and Y respectively with an angle
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of π − θ̄ between them. Now consider the orthogonal map R on the space E rotating the
u-v plane through an angle θ̄ and leaving its orthogonal complement invariant, and so that
Ru = −v. The sets RX and Y are no longer transversal at zero, since Ru is normal to
RX . A natural way to measure the change in the problem description is to view the original
problem as (I, I)z ∈ X × Y , and the perturbed problem as (R−1, I)z ∈ X × Y , the size
of the change being the norm ‖I − R−1‖ = 2 sin θ̄

2 . In Section 4, where we consider the
broader pattern, we see that in fact a somewhat smaller change will destroy transversality.
However, rather than pursue the analogy further now, we first consider whether transversality
is a realistic assumption in concrete settings.

3. Generic transversality of semi-algebraic sets

Like most areas of analysis, the reach of general variational analysis is limited by patholog-
ical examples. In our present context, for example, consider the set intersection problem in
R3 = R2 ×R, for the two sets X = R2 × {0} and

Y =
{
(w, r) : r ≥ f(w)

}
,

where the function f is a famous 1935 example of Whitney [77] that is continuously differ-
entiable and has an arc of critical points with values ranging from −1 to 1. Thus for every
number s in the interval [−1, 1] there exists a critical point w with f(w) = s: hence the
vector (0,−1) is normal to Y at the point (w, s), so clearly the intersection of the translated
set X + (x, s) (for any point x ∈ R2) and the set Y is not transversal at the point (w, s).
We have arrived at an example of two closed sets for which, after translations, the failure of
transversality is not uncommon.

On the other hand, in concrete computational settings we do not expect to encounter
Whitney’s example. To be more precise, we take as an illustrative model of “concrete”
computation the world of semi-algebraic sets. We view the Euclidean spaceE as isomorphic
to the space Rn (for some dimension n), and consider finite unions of sets, each defined
by finitely-many polynomial inequalities. This world, and its generalizations in models of
“tame” geometry first promoted by Grothendieck [39], strike happy compromises between
broad generality and good behavior. Concise and clear surveys appear in [19, 20, 74].

On the one hand, semi-algebraic sets comprise a rich class: in particular, they may be
neither convex nor smooth. They are, furthermore, often easy to recognize without recourse
to the basic definition, due to the Tarski-Seidenberg Theorem: the projection of a semi-
algebraic set onto a subspace is semi-algebraic. Applying this principle repeatedly shows
that sets like the cone of real positive semidefinite symmetric matrices and sets of matrices
of bounded rank are semi-algebraic.

On the other hand, semi-algebraic sets cannot be too pathological (or “wild”, in
Grothendieck’s terminology). For example, although nonsmooth in general, they stratify
into finite unions of analytic manifolds, so have a natural notion of dimension, namely the
largest dimension of any manifold in a stratification. Another important example for us con-
cerns the term “generic”. In this essay, we call a property that depends on a data vector y
in a Euclidean space E generic when it holds except for y in a set Z ⊂ E of measure zero.
Unlike the general case, if Z is semi-algebraic, then the following properties are equivalent:

• Z has measure zero.



876 Adrian S. Lewis

• Z has dimension strictly less than that of E.

• the complement of Z is dense.

• the complement of Z is topologically generic.

We call semi-algebraic sets Z with these properties negligible.
No semi-algebraic analog can exist of the example we constructed from Whitney’s func-

tion. Specifically, we have the following result [28], a special case of a powerful generaliza-
tion we discuss later.

Theorem 3.1 (Generic transversality). Suppose X and Y are semi-algebraic subsets of E.
Then for all vectors z outside a negligible semi-algebraic subset of E, transversality holds
at every point in the intersection of the sets X − z and Y .

Practical variational problems are often highly structured, involving sparse data, for ex-
ample. Nonetheless, this result is reassuring: it suggests that, for concrete intersection prob-
lems with sets subject to unstructured perturbations, transversality is a reasonable assump-
tion.

4. Measuring invertibility: metric regularity

Our sketch hints at an intriguing web of ideas concerning computational inversion:

• Sensitivity of solutions to data perturbation

• Linear error bounds for trial solutions in terms of measured error

• Robustness in problem description

• Local linear convergence of simple solution algorithms.

A single modulus (a condition number or angle in our examples) quantifies all four prop-
erties. We call problem instances well-posed when the modulus is finite, and, within broad
problem classes, this property is generic. As we now describe, these interdependent ideas
are very pervasive indeed.

To capture the abstract idea of computational inversion, we consider two Euclidean
spaces E and F and a set-valued mapping Φ on E whose images are subsets of F: we
write Φ: E →→ F. Given a data vector ȳ ∈ F, our problem is to find a solution x ∈ E to the
generalized equation ȳ ∈ Φ(x). This model subsumes, of course, the example of a classical
equation, when Φ is single-valued and smooth, but it is much more versatile than its abstract
simplicity might suggest, modeling inequalities rather than just equations, for instance.

To illustrate the power of the approach, among many further examples, we keep in mind
two in particular. The first we have seen already. Given two sets X and Y in the space E, if
we consider the mapping

Φ: E →→ E2 defined by Φ(z) = (X − z)× (Y − z), (4.1)

then the problem 0 ∈ Φ(z) is just set intersection.
For the second example, we return to the normal cone NX(x) to a nonempty closed set

X in E, but now thought of as a mapping NX : E →→ E (defining NX(x) = ∅ for x �∈ E).
Solutions x ∈ E of the generalized equation ȳ ∈ NX(x) are critical points for the linear
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optimization problem supX〈ȳ, ·〉. This terminology is in keeping with the classical notion
when X is a smooth manifold, while for convex X , critical points are just maximizers. For
simplicity, this essay concentrates on linear rather than general optimization. However, that
restriction involves little loss of generality: for example, minimizing a function f : E → R
is equivalent to a linear optimization problem over the epigraph of f :

inf{τ : (x, τ) ∈ epi f}, where epi f =
{
(x, τ) ∈ E×R : τ ≥ f(x)

}
.

The fundamental idea, unifying the kinds of error bounds and sensitivity analysis we
have illustrated so far, is metric regularity of the mapping Φ at a point x̄ ∈ E for a data
vector ȳ ∈ Φ(x̄): the existence of a constant ρ > 0 such that

dΦ−1(y)(x) ≤ ρdΦ(x)(y) for all (x, y) near (x̄, ȳ). (4.2)

We call ȳ a critical value if Φ is not metrically regular for ȳ at some point in E.
Inequality (4.2) is a locally uniform linear bound on the error between a trial solution

x and the true solution set Φ−1(y) for data y, in terms of the measured error from y to
the trial image Φ(x). It captures both error bounds (where y = ȳ) and sensitivity analysis
(where y varies). In highlighting metric regularity, we are implicitly supposing inversion to
be computationally hard: the set Φ(x) is more tractable than the set Φ−1(y).

The mapping Φ is closed when its graph

gphΦ =
{
(x, y) ∈ E× F : y ∈ Φ(x)

}
is closed. It is semi-algebraic when its graph is semi-algebraic, and then its graphical di-
mension is the dimension of its graph. Around any point (x̄, ȳ) ∈ gphΦ we define three
constants:

• The modulus is the infimum of the constants ρ > 0 such that the metric regularity
inequality (4.2) holds.

• The radius is the infimum of the norms of linear maps G : E → F such that the
mapping Φ+ G is not metrically regular at x̄ for ȳ + Gx̄.

• The angle is the transversality angle for the sets gphΦ andE×{ȳ} at the point (x̄, ȳ).
These quantities are strongly reminiscent of the linked ideas opening this section. The first
constant quantifies error bounds and sensitivity. The second concerns how robust the prob-
lem is under linear perturbations: within that class, it measures the distance to the nearest
ill-posed (metrically irregular) instance. By Theorem 2.1, the third quantity controls the lo-
cal linear convergence rate of at least one simple conceptual algorithm for finding a solution
x near x̄ to the generalized equation ȳ ∈ Φ(x): alternating projections on the sets gphΦ and
E× {ȳ}.

In this essay we concentrate on what we loosely call “simple” algorithms, relying only
on basic evaluations and properties of the mapping Φ. By contrast, Newton-type schemes
use, or assume and approximate, tangential (“higher-order”) properties of gphΦ. For an
extensive discussion relating metric regularity and the convergence of Newton-type methods,
see [26]. The conceptual algorithm above belongs to the class of proximal point methods,
which minimize functions f using the iteration

xk+1 ∈ argmin
{
f(x) + |x − xk|2

}
.



878 Adrian S. Lewis

In this case, f(x) = d2Φ(x)(ȳ).
Between the three diverse quantities we have introduced, we have the following extraor-

dinarily simple and general relationship.

Theorem 4.1 (Metric regularity). At any point in the graph of any closed set-valued mapping
we have

radius =
1

modulus
= tan(angle).

The first equality is [25, Theorem 1.5], while the second is a version of the “coderivative
criterion” for metric regularity (whose history is discussed in [68, p. 418]). For reasons
of space, we omit a dual “derivative criterion”, expressible using tangents in the place of
normals: see [24] for a discussion.

For instance, consider our motivating example, the intersection problem for two sets X
and Y discussed in Section 2. Equation (4.1) describes the corresponding mapping. Theorem
2.4 (Sensitivity) and a calculation [52] shows that the modulus is (1 − cos θ̄)−

1
2 , where θ̄

is the transversality angle for X and Y at the intersection point. The radius is therefore√
2 sin θ̄

2 . The proximal point method above is that for minimizing the function d2X + d2Y .
We consider our earlier example of normal cone operators shortly. First, however, we re-

turn to the classical single-valued case. When the mapping Φ is linear, standard linear alge-
bra shows that metric regularity is equivalent to surjectivity, and the Eckart-Young Theorem
identifies the radius as just the smallest singular value ofΦ. More generally, for continuously
differentiable Φ, the Lusternik-Graves Theorem amounts to the fact that the modulus of Φ
at any point x̄ agrees with that of its linear approximation there (see [26]), and hence equals
the reciprocal of the smallest singular value of the derivative of Φ at x̄.

This classical case also guides us on the question of whether metric regularity is a generic
property. In this case, the set of critical values C ⊂ F is just the image under the mapping
Φ of the set in E where the derivative of Φ is not surjective. The example of Whitney that
we discussed earlier shows that C may be large (in that case an interval in R) even for
continuously differentiable Φ. However, assuming Φ is sufficiently smooth, Sard’s theorem
[69] guarantees that C has measure zero. In this sense, metric regularity is typical.

To address this question for set-valued mappings, we consider the semi-algebraic world,
in which we have the following striking result of Ioffe [42].

Theorem 4.2 (Semi-algebraic Sard). The set of critical values of any semi-algebraic set-
valued mapping is semi-algebraic and negligible.

In computational practice, generic results like this one may often be of limited consequence,
since generalized equations often involve highly structured data. Nonetheless, like its spe-
cial case, Theorem 3.1 (Generic transversality), the result provides a reassuring baseline:
for concrete generalized equations with unstructured data, metric regularity is a reasonable
assumption.

5. Interlude: nonsmooth optimization via quasi-Newton methods

Metric regularity spans a broad range of inversion and optimization problems. Its suggestive
links to convergence rates tempt us to study linearly convergent algorithms, whenever we
encounter them, through the lens of metric regularity. An important recurrent theme in the
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work of the late Paul Tseng, for example, was the use of error bounds in linear convergence
results [56].

An intriguing case is the popular BFGS method [61] (named for its inventors, Broyden,
Fletcher, Goldfarb and Shanno) for minimizing a function f : Rn → R. The BFGS al-
gorithm is a quasi-Newton method, so called by association with the Newton iteration for
minimizing a C(2) function f :

xk+1 = xk −∇2f(xk)
−1∇f(xk).

The BFGS method replaces the inverse Hessian by an approximation Hk in the space of
n-by-n symmetric matrices Sn, and involves a step length αk > 0:

xk+1 = xk − αkHk∇f(xk).

We then choose Hk+1 to be the minimizer over the positive-definite matrices of the strictly
convex function

H �→ trace(H−1
k H)− ln detH (5.1)

(see [36]), subject to a linear constraint called the secant condition:

H
(∇f(xk+1)−∇f(xk)

)
= xk+1 − xk.

The secant condition forces Hk+1 to behave like the true inverse Hessian in the direction
of the last step taken, while the objective (5.1) keeps Hk+1 close to Hk, since its uncon-
strained minimizer is at Hk. A simple formula [61] expresses Hk+1 explicitly as a rank-two
perturbation of Hk.

The step length αk is chosen by a line search on the univariate function

α �→ h(α) = f
(
xk − αHk∇f(xk)

)
,

aiming to satisfy two conditions (called the Armijo and Wolfe conditions):

h(α) < h(0) + c1h
′(0)α and h′(α) > c2h

′(0).

The constants c1 < c2 in the interval (0, 1) are fixed at the outset. The Armijo condition re-
quires the decrease in the value of h to be a reasonable fraction of its instantaneous decrease
at zero, while the Wolfe condition prohibits steps that are too small, by requiring a reason-
able reduction in the rate of decrease in h, and ensures the existence of a positive-definite
Hk+1 satisfying the secant condition. A simple bisection scheme finds a suitable step αk

by maintaining the endpoints of a search interval such that the Armijo condition holds on
the left and fails on the right, checking both conditions at the midpoint, and then halving the
interval accordingly. For a thorough description, see [53].

The BFGS algorithm has been a method of choice for smooth minimization for several
decades. It is robust and fast, typically converging superlinearly to a local minimizer. Given
its motivation — approximating a Hessian — it seems astonishing that the algorithm also
serves as an excellent general-purpose method for nonsmooth nonconvex minimization. In
principle the algorithm might encounter a point xk at which the function f is not differen-
tiable, and thereby break down, but with generic initialization, no such breakdowns seem to
occur.

A systematic study [53] investigated this phenomenon, and we return to an example
from that study later in this work. In general, the BFGS method, when applied to minimize a
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semi-algebraic Lipschitz function and with generic initialization, always seems to generate a
sequence of function values (including all those computed in the line search) that converges
to a stationary value — the value of the function at a point near which convex combinations
of gradients are arbitrarily small. Furthermore, for nonsmooth stationary values, that con-
vergence is linear! Our current context demands the obvious question: does some condition
number or modulus of metric regularity govern the convergence rate of the BFGS method
on nonsmooth problems? We seem far from any understanding of this question.

6. Strong regularity and second-order properties

One way to strengthen the metric regularity property is especially important for sensitivity
analysis and numerical methods. A set-valued mapping Φ: E →→ F is clearly metrically
regular at a point x̄ for a value ȳ when the graph of the inverse mapping Φ−1 coincides
locally with the graph of a single-valued Lipschitz map G : F → E around the point (ȳ, x̄).
In that case, we call Φ strongly metrically regular (terminology deriving from Robinson
[66]); the regularity modulus coincides with the Lipschitz modulus lipG(ȳ). We call ȳ a
weakly critical value if there exists a point in E at which Φ is not strongly metrically regular
for ȳ.

We began, in Section 1, with an example of strong metric regularity: a single-valued
map Φ: E → E such that I − ρΦ is, locally, a strict contraction. A related example derives
from the setting of the classical inverse function theorem: a continuously differentiable map
Φ: E → E is strongly metrically regular at points where the derivative of Φ is invertible.

Less classically, suppose the set M ⊂ E is a C(2) manifold around a point x̄ ∈ M, and
consider the mapping Φ defined in terms of the normal cone NM by

Φ(x) =

{
x + NM(x) (x ∈ M)

∅ (x �∈ M).

Strong metric regularity holds at x̄ for x̄, because around the point (x̄, x̄), the inverse map-
ping Φ−1 agrees graphically with the projection operator PM, which is single-valued and
Lipschitz.

The previous section included a conceptual algorithm for solving metrically regular gen-
eralized equations, whose convergence rate is controlled by the modulus. Assuming, instead,
strong metric regularity (of the mappingΦ at the point x̄, for the value 0, say), Pennanen [62]
linked the modulus to the convergence rates of algorithms closer to computational practice
(in “multiplier methods”). For example, for any constant c larger than twice the modulus,
there exists a neighborhood U of x̄ such that, with initial point x0 ∈ U , the proximal-point-
type iteration

xk − xk+1 ∈ cΦ(xk+1), with xk+1 ∈ U (6.1)

always generates sequences converging linearly to a solution of the generalized equation
0 ∈ Φ(x). (The bound on the rate behaves, as c → ∞, like

√
5
c times the modulus.) In

keeping with our focus on simple algorithms, we pass by the strong connections between
strong metric regularity and Newton methods (most importantly in numerical optimization
via sequential quadratic programming). That line of investigation, first pursued in [44], is
discussed at length in the monograph [26].
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Unlike critical values, weakly critical values may be common, even for semi-algebraic
mappings. For example, mapping every point to the whole range space F results in every
value being weakly critical. As the next result [32] makes clear, however, this behavior can
only result from a large graph.

Theorem 6.1 (Strong semi-algebraic Sard). If a set-valued mapping Φ:E →→ F is semi-
algebraic and has graphical dimension no larger than dimF, then its set of weakly critical
values is semi-algebraic and negligible.

This result applies to single-valued semi-algebraic maps Φ: E → E in particular. More
interesting for optimizers, however, is the following corollary [27, 30].

Theorem 6.2 (Normal cone mapping). For any closed semi-algebraic set X ⊂ E, the nor-
mal cone mapping NX : E →→ E has graphical dimension equal to dimE, and hence its set
of weakly critical values is semi-algebraic and negligible.

This result suggest that, for concrete linear optimization problems over a set X ⊂ E
with unstructured objective 〈ȳ, ·〉 and solution x̄, strong metric regularity of the normal cone
mapping NX is a reasonable assumption. As the next result [31] reveals, this type of prop-
erty is closely related to second-order conditions in optimization, classically guaranteeing
quadratic growth via a Hessian condition. Following our pared-down approach, we focus on
linear optimization, but, as before, we could consider a more general problem of the form
infX f as seeking a point (x, τ) in the set epi f ∩ (X ×R) to maximize the linear function
−τ .

Theorem 6.3 (Strong regularity and quadratic growth). Given a closed set X and a vector
ȳ ∈ E, suppose that the point x̄ ∈ X is a local maximizer of the linear function 〈ȳ, ·〉 over
X . Consider the following three properties:

• The normal cone mapping NX is strongly metrically regular at x̄ for ȳ.

• For some scalar κ > 0 and neighborhood U of x̄, “uniform quadratic growth” holds:
for all vectors y near ȳ, there exists a point x ∈ X ∩ U so

〈y, x′〉 ≤ 〈y, x〉 − κ|x′ − x|2 for all x′ ∈ X ∩ U. (6.2)

• The “negative definite” condition holds:

(z, w) ∈ NgphNX
(x̄, ȳ) and w �= 0 =⇒ 〈z, w〉 < 0.

In general, the first condition implies the second two, and so, if X is semi-algebraic, then for
all ȳ outside a negligible semi-algebraic set, all three conditions hold. If, on the other hand,
X is prox-regular at x̄, then all three conditions are equivalent.

This result has multiple roots, and deserves some comments. Bonnans and Shapiro
include a careful study of uniform quadratic growth in their monograph [6]. Geometri-
cally, condition (6.2) describes a ball with surface containing the point x, center on the ray
x − R+y, and containing the set X around x. It is natural to include the final special case
of a prox-regular set, because the first condition alone turns out to imply a local form of
prox-regularity [31]. Assuming prox-regularity, a fourth equivalent notion is tilt stability
[63].
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The link with second-order conditions is not surprising, because the regularity modulus
of the normal cone mapping is related via Theorem 4.1 (Metric regularity) to the transver-
sality angle at the intersection point (x̄, ȳ) for the sets gphNX and E × {ȳ}, which in turn
is just the minimal angle between the subspace {0} × F and the cone

NgphNX
(x̄, ȳ)

appearing in the third condition. Mordukhovich [58] uses exactly this iterated normal cone
construction to define his generalized Hessian.

For a semi-algebraic set X , the result above, while interesting, dramatically understates
the good behavior of N−1

X : it will typically be single-valued and not just Lipschitz but ana-
lytic. We explore far-reaching consequences next.

7. Identifiability and the active set philosophy

Given a closed set X ⊂ E and a data vector ȳ ∈ E, consider once again the linear optimiza-
tion problem

sup
X

〈ȳ, ·〉. (7.1)

Recall that a point x ∈ X is critical when ȳ ∈ NX(x).
A wide variety of iterative methods for the linear optimization problem generate asymp-

totically critical sequences (xk) in X for ȳ, meaning that some sequence of normals yk ∈
NX(xk) converges to ȳ (implying in particular that any limit point of (xk) is critical for
the problem (7.1)). We aim to profit from this behavior by simplifying the possibly compli-
cated underlying set X . We first illustrate with two examples: alternating projections, and
proximal point methods.

Suppose we seek a critical point for our linear optimization problem by applying the
proximal point method (6.1) to the mapping defined on E by x �→ Φ(x) = NX(x) − ȳ.
Assume the normal cone mapping NX is strongly metrically regular at x̄ for ȳ. We arrive at
the following relationship between iterates, in a neighborhood of a solution x̄:

1

c
(xk − xk+1) + ȳ ∈ NX(xk+1).

This uniquely defines a sequence in a neighborhood of any fixed solution that converges,
providing the constant c is large enough. Since the left-hand side must therefore converge to
ȳ, the sequence of iterates (xk) is asymptotically critical.

As another example, given two closed sets X and Y in E, we could rewrite the set
intersection problem as the linear optimization problem sup{−τ : (x, y, τ) ∈ S}, where
S ⊂ E2 × R is the set defined by the constraint τ ≥ 1

2 |x − y|2. A quick calculation
shows that the method of alternating projections generates two sequences of points, xk ∈ X
and yk ∈ Y , satisfying

(0, xk − xk+1,−1) ∈ NS(sk), where sk =
(
xk+1, yk,

1

2
|xk+1 − yk|2

)
.

Under reasonable conditions — those of Theorem 2.1 (Convergence of alternating projec-
tions), for example — we know that both sequences converge to a point z ∈ X ∩ Y . Hence
the sequence (sk) is asymptotically critical for the problem.
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We now introduce a simple but powerful variational idea for the set X . We call a subset
M ⊂ X identifiable at a point x̄ ∈ X for the vector ȳ ∈ E if every asymptotically critical
sequence for ȳ converging to x̄ must eventually lie in M. If M is also a C(2) manifold at x̄,
then we simply call it an identifiable manifold at x̄ for ȳ. Such a subset hence balances two
competing demands: as a subset of the typically nonsmooth set X , it must be small enough
to be a smooth manifold, and yet large enough to capture the tail of every asymptotically
critical sequence.

The existence of an identifiable manifold seems, at first sight, a demanding condition.
The next result [29], on the other hand, shows that such a manifold uniquely captures im-
portant sensitivity information about how critical points for the linear optimization problem
(7.1) vary under data perturbation. Furthermore, its existence forces the critical point x̄ ∈ X
for the vector ȳ ∈ E to be nondegenerate: ȳ must lie not just in the normal cone NX(x̄),
but in its relative interior — its interior relative to its span. It also forces a local form of
prox-regularity [29], rather as in the Section 6, so for transparency we simply assume prox-
regularity.

Theorem 7.1 (Identifiability, uniqueness, and sensitivity). Suppose the set X ⊂ E is prox-
regular at the point x̄ ∈ X . If X has an identifiable manifold M at x̄ for the vector ȳ ∈ E,
then that manifold is locally unique. Indeed, for any sufficiently small neighborhood U of ȳ,
the manifold M coincides locally around x̄ with the set N−1

X (U). Furthermore, x̄ must then
be a nondegenerate critical point for ȳ.

To illustrate, consider the case when the set X is a polyhedron. If x̄ is a nondegenerate
critical point for the problem supX〈ȳ, ·〉, then the set of maximizers (or in other words the
face of X exposed by the vector ȳ) is an identifiable manifold at x̄ for ȳ. We discuss more
varied examples in the following sections.

A set X may easily have no identifiable manifold at the critical point x̄ in question, even
when X is closed, convex and semi-algebraic, and x̄ is nondegenerate. An example is the
set

X =
{
(u, v, w) ∈ R3 : w2 ≥ u2 + v4, w ≥ 0

}
,

at the point x̄ = (0, 0, 0) for the vector ȳ = (0, 0,−1). However, as we shall see shortly, at
least for semi-algebraic examples such as this one, such behavior is unusual. Furthermore,
as the next result [29] makes clear, the existence of an identifiable manifold has broad and
powerful consequences for optimization.

Theorem 7.2 (Identifiability, active sets, and partial smoothness). Suppose the set X ⊂ E
is prox-regular at the point x̄ ∈ X , and has an identifiable manifold M there for the vector
ȳ ∈ E. Then the following properties hold:

• Smooth reduction: The graphs of the normal cone mappings NX and NM coincide
around the point (x̄, ȳ).

• Sharpness: The normal cone NX(x̄) spans the normal space NM(x̄).

• Active set philosophy: For any small neighborhood V of x̄, if the vector y ∈ E is
near ȳ, then the two optimization problems of maximizing the linear function 〈y, ·〉
over the sets X ∩ V and M∩ V are equivalent.

• Second-order conditions: The rate of quadratic growth

lim inf
x→x̄

〈ȳ, x̄ − x〉
|x̄ − x|2
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is independent of whether the limit is taken over x ∈ X or x ∈ M.

Given the multiple flavors of this result, some commentary is useful. Perhaps most strik-
ing is the “active set” result, which reduces the original optimization problem over the poten-
tially nonsmooth and high-dimensional set X to the restricted optimization problem over the
smooth and potentially lower-dimensional subset M. Exactly this phenomenon drives the
elimination of inequality constraints inherent in classical active set methods for optimization
[61], and also the big reduction in dimension crucial to “sparse optimization” in contempo-
rary machine learning and compressed sensing applications. In a huge recent literature, a
particularly pertinent example is [80].

Underlying the active set assertion is the “smooth reduction” result that the mappingsNX

and NM graphically coincide, locally. SinceM is a smooth manifold, its normal cone map-
ping is easy to understand through classical analysis. In particular, second-order properties
like the negative definite condition in Theorem 6.3 (Strong regularity and quadratic growth),
which may in general appear formidably abstract, now become purely classical [55]. For
example, the lim inf in the final second-order condition above, when computed over M,
simply involves a Hessian computation for the function 〈ȳ, ·〉 restricted to the manifoldM.

The “sharpness” property at the point x̄ is geometric in essence: we call the set X sharp
(or “V-shaped”) there around the manifold M. In [50], extending Wright’s notion of an
“identifiable surface” for active set methods in convex optimization [79], the set X is called
partly smooth at the point x̄ relative to the C(2) manifold M when this sharpness property
holds, the normal cone mapping NX is continuous at x̄ when restricted to M , and Clarke
regularity holds on M. This latter property concerns tangent directions z ∈ E at any point
x ∈ X (limits of directions to nearby points in X): it requires 〈y, z〉 ≤ 0 for all normals
y ∈ NX(x).

Partial smoothness is closely related to identifiability. In general, consider a point x̄ in a
set X and a proximal normal ȳ ∈ Np

X(x̄). On the one hand, suppose that the critical point
x̄ is nondegenerate for ȳ, and partial smoothness holds relative to a C(2) manifold M. In
particular, X must then be Clarke regular at x̄. However, if we strengthen this assumption
slightly, from Clarke to prox-regularity, then M must be an identifiable manifold. On the
other hand, suppose conversely thatM is an identifiable manifold. As we have seen, x̄ must
then be nondegenerate, and furthermore a local version of partial smoothness must hold [29].

The existence of an identifiable manifold, as Theorem 7.2 makes clear, is a powerful
property. Remarkably, according to the following result [32], for semi-algebraic optimiza-
tion this property holds generically.

Theorem 7.3 (Generic identifiability). Given any closed semi-algebraic set X ⊂ E, there
exists an integer K such that, for all vectors y ∈ E outside some negligible semi-algebraic
subset of E, the following properties hold. The linear optimization problem

sup
X

〈y, ·〉.

has no more than K local maximizers. At each local maximizer x ∈ X , the normal cone
mapping is strongly metrically regular for y; there exists an identifiable manifold M at
x for y, and the normal cone mappings NX and NM coincide around the point (x, y).
Furthermore, x is a nondegenerate critical point, and X is sharp around M there: in other
words, y lies in the interior of the normal cone NX(x) relative to its span, which is just the
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normal space NM(x). In addition, the following quadratic growth condition holds:

lim inf
x′→x
x′∈X

〈y, x − x′〉
|x − x′|2 > 0.

The key ingredients of the proof have appeared through our discussion. Generic strong
metric regularity follows from Theorem 6.2, and in that case, the inverse image of a small
neighborhood of y under the normal cone mapping NX (or in other words the set of nearby
approximately critical points) will generically comprise an identifiable manifold. The conse-
quences then flow from Theorems 6.3, 7.1, and 7.2. For convex sets X , this result appeared
in [5].

In this result, we can view the existence of an identifiable manifold in conjunction with
nondegeneracy and the quadratic growth condition as comprising the natural “second-order
sufficient conditions” for our optimization problem. Classically, the generic validity of such
conditions has a long history, dating back to [70]. Here we have taken a fresh, abstract
approach, assuming nothing about the structure of the problem beyond its concrete (semi-
algebraic) nature.

8. Optimization over stable polynomials

We have argued that ideas of identifiable manifolds and active set methods in optimization
merge seamlessly. Less standard, but an elegant computational illustration of the appearance
of an identifiable manifold, is a problem of Blondel [4]. The original question (with generous
prizes of Belgian chocolate) highlighted the difficulty of simultaneous plant stabilization in
continuous-time control.

The crucial idea of stability in dynamical systems and control theory involves stable and
strictly stable polynomials p(z) (for the complex variable z ∈ C): polynomials with all
zeroes in the closed or open left half-planes respectively. Blondel’s problem seeks stable
polynomials p, q, r with real coefficients and satisfying

r(z) = (z2 − 2δz + 1)p(z) + (z2 − 1)q(z),

for a real parameter δ ∈ [0.9, 1). If δ = 1, then r(1) = 0, so no solution exists.
An optimization approach to this problem in [10], for any fixed parameter value δ, varies

a cubic polynomial p and scalar q to minimize numerically a real variable α under the con-
dition that the two polynomials z �→ p(z + α) and z �→ r(z + α) are both stable. The
numerical results in [10] strongly suggest that when δ ∈ [0.9, 0.96], the minimum value ᾱ is
negative, as required for stability. If, furthermore, δ is close to, and no larger than, the value
δ̄ = 1

2

√
2 +

√
2 ≈ 0.924, then the optimal polynomials p̄ and r̄ are not only stable but have

a persistent structure: p̄ is strictly stable, and r̄ is a multiple of the polynomial z �→ (z− ᾱ)5.
This structure defines a manifold M in the space of variables (α, p, q, r), which, once di-
vined numerically, leads to a solution to Blondel’s problem in closed form for such δ. Not
surprisingly, M is the identifiable manifold for our optimization problem.

Underlying this striking appearance of an identifiable manifold is a remarkable property
of stable polynomials. To understand this property, we first identify monic polynomials p
of degree n with vectors p̃ in the space Cn (with the usual inner product), via the corre-
spondence p(z) = zn +

∑
j<n p̃jz

j , and thereby consider them as constituting a Euclidean



886 Adrian S. Lewis

space. Within that space, we then consider the set of stable polynomials Δn. The basic
variational geometry of this nonconvex set is challenging. Around any polynomial with a
multiple imaginary zero, Δn is nonsmooth, and indeed, with a suitable interpretation, non-
lipschitz. Notice, for example, that monic polynomials p(z) near the polynomial zn have
zeroes whose dependence on the coefficient vector p̃ is nonlipschitz.

On the other hand, despite these structural challenges, the set of monic stable polynomi-
als is certainly semi-algebraic. Theorem 7.3 (Generic identifiability) therefore implies the
generic existence of an identifiable manifold around solutions of linear optimization prob-
lems over stable polynomials. However, the following beautiful result of Burke and Overton
[13] holds not just generically, but always.

Theorem 8.1. The set of monic stable polynomials of degree n is Clarke regular everywhere.

The techniques of [13] (which treat regions more general than the left half-plane) show
more. For any monic stable polynomial p, the normal coneNΔn(p) depends on the “pattern”
of imaginary zeroes of p (which we specify simply by listing the multiplicities of those
zeroes as we move down the imaginary axis). Using the language of partial smoothness
from Section 7, we arrive at the following result.

Theorem 8.2 (Partial smoothness of the stable polynomials). Around any polynomial in
the set of monic stable polynomials Δn, the subset of polynomials with the same pattern of
imaginary zeroes constitute a manifold, with respect to which Δn is partly smooth.

It is exactly this property that underlies the identifiable manifold in [10] for Blondel’s prob-
lem. The set of stable n-by-nmatrices— those whose eigenvalues all lie in the left half plane
— enjoys parallel properties around any stable nonderogatory matrix (one whose eigenval-
ues all have geometric multiplicity one) [11, 12]. One explanation [51] is to note that the
characteristic polynomial map from the space of matrices to monic polynomials has surjec-
tive derivative at any nonderogatory matrix, enabling a standard calculus rule.

9. An eigenvalue optimization example

We can be confident of the generic existence of an identifiable manifold for a semi-algebraic
optimization problem, by Theorem 7.3 (Generic identifiability), under no assumptions what-
soever about the problem’s presentation. Optimization algorithms sometimes reveal clues
about the identifiable manifold as they proceed. For the polynomial stabilization exam-
ple in Section 8, numerical results from a simple general-purpose nonsmooth optimization
method point to the identifiable manifold, helped along by our understanding of the poten-
tial structure for such manifolds. The BFGS method that we discussed in Section 5 naturally
accumulates identifiable manifold information as it nears an optimal solution.

Suppose the BFGS method for minimizing a function f : Rn → R converges to a local
minimizer x̄ ∈ Rn at which there exists an identifiable manifold M. By this, we mean that
the set

{(
x, f(x)

)
: x ∈ M} is an identifiable manifold of the epigraph epi f , at the point(

x̄, f(x̄)
)
, for the vector (0,−1). We deduce a dichotomy: on the one hand, the restriction of

f to the manifold M is smooth, and on the other hand, the sharpness condition in Theorem
7.2 (Identifiability, active sets, and partial smoothness) shows that the gradient ∇f jumps
as we move orthogonally across M. The inverse Hessian approximation Hk should reflect
this dichotomy: a basis of eigenvectors spanning an approximation to the tangent space to
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M at x̄ corresponds to a well-scaled set of eigenvalues, whereas the eigenvectors spanning
the orthogonal complement correspond to eigenvalues converging to zero. In numerical
experiments on semi-algebraic Lipschitz functions, we indeed see exactly this behavior [53].

The following example from [1] is illuminating:

inf
{ q∏

i=1

λi(A ◦ X) : X ∈ Sp
+, Xii = 1 for all i

}
.

Here, Sp
+ denotes the cone of p-by-p positive semidefinite matrices, A ∈ Sp is a given

data matrix, ◦ denotes the componentwise (Hadamard) matrix product, and λi denotes the
ith largest eigenvalue (counted by multiplicity). It is not hard to frame this optimization
problem as the unconstrained minimization of a suitable function f , expressed in terms of
the nonsmooth nonconvex function

∏q
i=1 λi on the space Sp: see [53] for the modeling

details.
The results from multiple runs of the BFGS method on an example with p = 20 and q =

10 are typical for eigenvalue optimization [53]. Generic symmetric matrices have no multiple
eigenvalues, but optimal solutions of semidefinite programs (see [72]) and more general
eigenvalue optimization problems usually do, precisely due to their identifiable manifolds.
That is the case here: as observed in Section 5, the BFGS trial function values consistently
converge linearly, and at termination, the nine eigenvalues λ6, λ7, λ8, . . . , λ14 of the matrix
A ◦ X are coalescing.

Given a permutation-invariant function h : Rp → R, that function of the vector λ(Z) ∈
Rp with components the eigenvalues of a matrix variable Z ∈ Sp inherits many proper-
ties from h. One important example is convexity [48], a generalization of von Neumann’s
characterization of unitarily invariant matrix norms [75], but the list of such properties is
extensive [49]. In particular [21], given a matrix Z̄ ∈ Sp, if h has an identifiable manifold
M at the point λ(Z̄), then at Z̄ the composite function h

(
λ(·)) has an identifiable manifold

{Z ∈ Sn : λ(Z) ∈ M}.
The permutation-invariant function h : Rp → R here is h(x) =

∏q
i=1[x]i, where the

map x �→ [x] rearranges the components of the vector x ∈ Rp into nonincreasing order. For
this function h we can easily check in the example that the set{

x ∈ R20 : [x]5 > [x]6 = [x]7 = · · · = [x]14 > [x]15
}

is an identifiable manifold. Hence{
Z ∈ S20 : λ5(Z) > λ6(Z) = λ7(Z) = · · · = λ14(Z) > λ15(Z)

}
is an identifiable manifold for our objective function

∏10
i=1 λi. Classical matrix analysis [46,

p. 141] shows that this manifold of symmetric matrices with an eigenvalue of multiplicity
nine has codimension 1

29(9 + 1)− 1 = 44.
Examining the BFGS output [53] and counting the number of eigenvalues of the inverse

Hessian approximations Hk that converge to zero reveals the answer 44 — exactly the codi-
mension of the identifiable manifold at the optimal solution. To confirm, around the final
iterate we can plot the behavior of the objective function along the eigenvectors of Hk. Sure
enough, along those eigenvectors corresponding to the vanishing eigenvalues, the objective
function is V-shaped; along other eigenvectors, it is smooth. To summarize, with no a priori
input about the underlying structure of the problem, and no a posteriori interpretation, the
BFGS method nonetheless accurately approximates the geometry of the identifiable mani-
fold.
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10. Identifiability and a prox-linear algorithm

We have argued that, independent of the presentation of an optimization problem, an identi-
fiable manifold is typically there to be found, and is a powerful tool once known. However,
the manner in which a particular algorithm profits from such knowledge will likely depend
on the explicit structure of the underlying problem. The classical example is the active
set methodology for optimization under inequality constraints, which considers equality-
constrained subproblems based on an estimate of the “active set” of constraints — those that
are tight at optimality. We end this survey with a discussion of a practical algorithm [54],
designed for large-scale applications in areas such as machine learning, and well-suited to
the application of identifiability.

Given two Euclidean spaces E and F and a closed set Y ⊂ F, we consider optimization
problems of the following form:

inf
x∈E
{
f(x) : g(x) ∈ Y

}
, (10.1)

where the functions f : E → R and g : E → F are C(2) smooth. Crucially, we suppose that
the set Y is, in some sense, simple. We define “simple” operationally: we assume that we
can solve relatively easily prox-linear subproblems of the form

inf
d∈E
{
f̃(d) + μ|d|2 : g̃(d) ∈ Y

}
, (10.2)

for affine functions f̃ : E → R and g̃ : E → F, and a prox parameter μ > 0. In the algorithm
we describe, f̃ and g̃ are the linear approximations to f and g at the current iterate xk:

f̃(d) = f(xk) + Df(xk)d and g̃(d) = g(xk) + Dg(xk)d.

Consider again the example of optimization under inequality constraints, when the set
Y is just a positive orthant. The corresponding prox-linear subproblem reduces to projec-
tion onto a polyhedron, a relatively easy problem computationally. Simpler still is the l1-
constrained least squares problem

inf
x∈Rn

{|Ax − b|2 : |x|1 ≤ τ
}
,

for given τ > 0, used to find sparse approximate solutions to huge linear systems Ax = b in
popular procedures such as LASSO and LARS [15, 23, 34, 71]. Corresponding prox-linear
subproblems at the point x have the form

inf
d∈Rn

{
2〈Ax − b, Ad〉+ μ|d|2 : |x + d|1 ≤ τ

}
. (10.3)

This problem reduces to projection onto the l1-ball, for which very fast algorithms are avail-
able: simple O(n log n) methods appear in [33, 73], and [33] describes an approach in ex-
pected linear time. (The computational simplicity of the singly-constrained convex program
(10.3) is not surprising: its Lagrangian is separable in the components di, so can be min-
imized in linear time.) The nuclear-norm-constrained least squares approach for low-rank
matrix equations is similar [14]. This time the corresponding subproblem is projection onto
the nuclear-norm-ball (consisting of matrices whose singular values sum to at most one),
which again is relatively easy: we simply replace the vector of singular values appearing in
the singular value decomposition by its projection onto the l1-ball.
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Returning to the general problem (10.1), we consider a local minimizer x̄ at which the
set Y is prox-regular and satisfies the following standard constraint qualification:

spanNY

(
g(x̄)
) ∩ Null

(
Dg(x̄)∗

)
= {0}. (10.4)

This condition implies that x̄ must satisfy the natural first-order optimality condition: there
exists a Lagrange multiplier y ∈ F (in fact unique) such that

y ∈ NY

(
g(x̄)
)
and Df(x̄) + Dg(x̄)∗y = 0. (10.5)

Furthermore, for any point x ∈ E near x̄, if the prox parameter μ is large enough, then the
prox-linear subproblem (10.2) has a unique small local minimizer d(x), and in fact d(x) =
O(|x − x̄|).

The basic structure of the algorithm we describe is standard in optimization. The prox
parameter μ controls the size of the trial step suggested by the prox-linear subproblem. When
μ is large enough, we can correct the trial step to generate a reasonable fraction of the
improvement predicted by linearization. If that proves impossible, we retrench, rejecting the
trial step and increasing μ.

To be more precise, suppose the current iterate is x ∈ E, and the current value of the
prox parameter is μ > 0. We first calculate the trial step d = d(x), the appropriate local
minimizer for the prox-linear subproblem (10.2), so in particular

g(x) + Dg(x)d ∈ Y (10.6)

holds. We then calculate the new iterate x+ ∈ E by trying to correct the trial point x + d,
aiming at three conditions. First, the correction should be not too large relative to the step:

∣∣x+ − (x + d)
∣∣ ≤ 1

2
|d|.

Secondly, the new iterate should be feasible: g(x+) ∈ Y . Thirdly, the actual decrease in the
objective should be at least a reasonable fraction of that predicted by linearization:

f(x)− f(x+)

f(x)− f(x + d)
≥ 1

2
.

Assuming μ is sufficiently large, the constraint qualification (10.4) ensures that such a cor-
rection x+ exists. If we find it, we accept it as our new current iterate and proceed; if not, we
reject it, double μ, and try the whole process again. A standard argument shows a rudimen-
tary convergence result: any limit point of the sequence of iterates must satisfy the first-order
optimality condition.

The ideas behind this algorithm date back three decades [9, 37]. An implementable ver-
sion in general must overcome two hurdles. The first — that the prox-linear subproblem may
have several local minimizers — may arise, but only for nonconvex sets Y . The second con-
cerns the correction mechanism, which we leave unspecified. When the map g is linear, or in
particular just the identity, the algorithm is workable without correction. The algorithm we
have described for the special case infY f , for closed convex Y and smooth f (which covers
l1-constrained least squares, for example), is closely related to the successful SPARSA code
for compressed sensing [78]. Some kind of correction step is crucial when the map g is
nonlinear, no matter how large the prox parameter μ. In particular, the linearized constraint
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(10.6) does not guarantee the feasibility condition g(x+ d) ∈ Y . Even when the trial step is
feasible, we may want to enhance it using second-order information, leading us back to the
idea of identifiability.

The basic prox-linear algorithm that we have described is versatile: it is often simple to
implement and applicable to large-scale problems. In general, however, its convergence is
slow. For example, consider unconstrained minimization of a strictly convex quadratic: in
this simple case, f(x) = 〈x,Ax〉 for a positive-definite self-adjoint map A : E → E , the
map g is just the identity, and the set Y is just E. The prox-linear algorithm then becomes
the method of steepest descent for f with a fixed step size, an algorithm that, as we observed
in the introduction, converges linearly but slowly when the map A is ill-conditioned. If
our algorithm can readily access second-order information, we might hope to accelerate
convergence.

So far we have supposed that the set Y is simple enough to render the prox-linear sub-
problems relatively easy. Now assume we know more, namely the structure of the set’s
identifiable manifolds. For example, the identifiable manifolds of the l1-ball in Rn are sim-
ply its interior along with the sets of vectors x with norm |x|1 = 1 and constant sign pattern
(sgnxi), where sgn γ = γ/|γ|, or zero if γ = 0.

This structural information about the set Y allows us to impose a second-order optimal-
ity condition of the kind guaranteed generically by Theorem 7.3 (Generic identifiability).
Specifically, consider any point x̄ ∈ E satisfying feasibility (g(x̄) ∈ Y ), the constraint qual-
ification (10.4), and the first-order optimality condition (10.5), and now suppose furthermore
that Y has an identifiable manifold M at the point g(x̄) for the normal vector y and that the
objective f grows quadratically on the manifold g−1(M) around x̄. This latter condition is
classical, amounting to the requirement that the Hessian of the Lagrangian function f+〈y, g〉
at x̄ be positive definite on the tangent space to M at x̄.

From the second-order optimality condition we deduce powerful consequences. First,
around the critical point x̄, the objective f must in fact grow at least quadratically not just
on the identifiable manifoldM but on the whole set Y . Secondly, initiated nearby, the prox-
linear algorithmmust converge to x̄. Thirdly, the sequence of trial iterates g(xk)+Dg(xk)dk
in Y generated by the prox-linear subproblems is asymptotically critical for the Lagrange
multiplier y, and hence eventually lies in M. The algorithm thus identifies M, in principle
allowing an eventual reduction of the original optimization problem to the classical equality-
constrained problem inf{f(x) : g(x) ∈ M}, and thereby opening up the possibility of
second-order methods and accelerated convergence, as in [80] for the LASSO problem.

11. Afterthoughts and acknowledgements

Variational analysis and nonsmooth optimization deserve a wide audience. A flourishing
toolkit of elegant theory for several decades, the discipline’s more computational impact is
only now coming into focus. In its full generality (skirted here) the field can seem at first
formidably technical. However, as this essay has tried to emphasize, the core ideas — the
normal cone and metric regularity, for example — are intuitive and powerful in both the-
ory and algorithms. Semi-algebraic variational analysis makes for an illuminating concrete
testing ground for the theory. The reach of variational analysis in applications ranges from
its historical roots in optimal control and the calculus of variations, through more recent do-
mains such as eigenvalue optimization and robust control, and on to burgeoning areas like
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compressed sensing and machine learning. The field is thriving.
The material in this essay strongly reflects what I have tried to learn from the many

co-authors and mentors with whom I have been lucky enough to work. Among them, I
would especially like to mention Jon Borwein (who taught me variational analysis), Jim
Burke and Michael Overton (my enthusiastic companions watching theory made manifest
on a computer screen), Jim Renegar (an inspiring source of encouragement), Jérôme Bolte
and Aris Daniilidis (with whom I first explored the semi-algebraic world), and most recently
Dima Drusvyatskiy and Alex Ioffe. Thanks too to Asen Dontchev, Mike Todd, and Steve
Wright for their broad support, and their helpful suggestions on this manuscript.

The author is grateful to the Dipartimento di Ingegneria Informatica Automatica e Ges-
tionale at the Università di Roma La Sapienza for its hospitality during the writing of this
paper.
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stabilization for partial differential equations
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Abstract. In this survey we give some results based on Carleman estimates. We recall the classical
uniqueness result based on interior Carleman estimate. We give Carleman estimate up the boundary
useful for the applications. The main applications are, approximative control for wave equation, null
control for heat equation, stabilization for wave equation for an interior damping or for a boundary
damping and local energy decay for wave equation in exterior domain.
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1. Introduction

The Carleman estimates play an important role in the study of the uniqueness problem for
operator with non analytic coefficients since Carleman [37]. He proved estimates in L1

norm but the most part of Carleman estimates was later proven in L2 norm. Nevertheless
Carleman estimates in Lp norm was proven to study unique continuation (see [16, 43, 50, 79,
129, 132, 140]) or strong uniqueness (see [4, 5, 12, 38, 39, 74, 80, 83, 117, 118, 130, 141])
for operators with coefficients in Lq , where p is related to q, but it is not the main subject of
this survey.

The general results on unique continuation was obtained first by Calderón [34] and Hör-
mander [64] who has found two conditions almost necessary to obtain Carleman estimates.
The first, the principal normality (this condition was precise later by Lerner [94]) concerns
the operators with complex valued principal symbols, the second is the pseudo-convexity
condition. We may find the proofs of Calderón result and the Hörmander’s result in the
book [66, Chapter 28]. We shall recall these results in section 2 and some references on non
uniqueness results.

For the applications to control problem, stabilisation and other related problems, we
need Carleman estimates up the boundary. In section 3 we shall give two kinds of Carleman
estimates up the boundary, first when the norms of boundary data and the operator applied
on a function estimate the interior norm of the function, second when the boundary data are
estimated only by the operator applied on the function. In second case we need boundary
conditions, for instance Dirichlet or Neumann boundary conditions.

In section 4 we shall give some applications using Carleman estimates. Using a Fourier
Bros Iagolnitzer (FBI) transform in time variable, we can transform a wave equation in
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elliptic equation. With Carleman estimate for elliptic operators, this allows to prove that
the wave equation is always approximatively controllable and we can give a quantitative
estimate of this result. Actually we can estimate the cost function, i.e. the L2 norm of the
control, to reach a small ball around the target.

For heat equation we shall give results on null controllability, first by a spectral approach
and second by the method developed by Fursikov and Imanuvilov using a new kind of Car-
leman estimate adapted to the heat equation.

We give results on stabilization for wave equation, first if the damping is localized in the
domain and second if the damping acts on the boundary. In both cases we estimate the decay
of the energy. In the same spirit we give some results on the decay of local energy for wave
equation in exterior domain.

Carleman estimates was applied to others problems. At the end of this section we shall
give some references on such applications for degenerate parabolic equations, equations
obtain by discretization of partial differential equation, stochastic equations, optimal control
in time and inverse problems.

2. Local continuation results and interior Carleman estimates

The traditional classification in partial differential equation, hyperbolic equations, elliptic
equations, parabolic equations, etc. is not relevant for local unique continuation. The two
important notions are the principal normality and the pseudo-convexity. We shall give the
definitions of these notions, next we shall give the results on local unique continuation.

We recall some notations. Let P =
∑
|α|≤m aα(x)D

α be a differential operator where
α = (α1, · · · , αn) ∈ N

n, m ∈ N
∗, x ∈ R

n, Dα = Dα1
1 · · ·Dαn

n and Dj = −i∂xj . The
functions aα are complex valued, defined and C∞ in a neighborhood W of x0 ∈ R

n. For
ξ = (ξ1, · · · , ξn) ∈ R

n, we denote by p(x, ξ) =
∑
|α|=m aα(x)ξ

α, where ξα = ξα1
1 · · · ξαn

n ,
the principal symbol of P . Let ϕ be a real valued function, C∞ inW , we assume dϕ(x) �= 0
for x ∈ W . We define the surface S = {x ∈ W, ϕ(x) = ϕ(x0)}.
Definition 2.1 (Principal normality). We say that P or p are principally normal if there exists
C > 0 such that

|{p, p̄}(x, ξ)| ≤ C|p(x, ξ)||ξ|m−1, (2.1)

for all x ∈ W and ξ ∈ R
n \ 0.

Remark 2.2. If we denote p = p1 + ip2, where pj are real valued, we have {p, p̄}(x, ξ) =
2i{p2, p1}(x, ξ) then we can replace (2.1) by the condition |{p1, p2}(x, ξ)| ≤ C(|p1(x, ξ)|+
|p2(x, ξ)|)|ξ|m−1.

Remark 2.3. For operators with real coefficients in principal symbol, this definition is empty
since {p, p̄}(x, ξ) = 0

Definition 2.4 (pseudo-convexity). We say that S is strongly pseudo-convex with respect to
P at x0 if

∀ξ ∈ R
n \ {0}, p(x0, ξ) = 0, {p, ϕ}(x0, ξ) = 0 ⇒ Re{p̄, {p, ϕ}}(x0, ξ) > 0 (2.2)

and

∀ξ ∈ R
n \ {0}, ∀τ > 0, p(x0, ξ + iτdϕ(x0)) = 0, {p, ϕ}(x0, ξ + iτdϕ(x0)) = 0
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⇒ Im{p̄(x, ξ − iτdϕ(x)), p(x, ξ + iτdϕ(x))} > 0 at (x, ξ) = (x0, ξ). (2.3)

Remark 2.5. If we denote by pϕ(x, ξ) = p(x, ξ + iτdϕ(x)), where τ is a parameter, we
have

{p̄ϕ, pϕ}(x, ξ) = {p̄(x, ξ − iτdϕ(x)), p(x, ξ + iτdϕ(x))}.
In particular this proves that the condition (2.3) is invariant by change of variables.

Remark 2.6. We can replace ϕ by other function defining the same oriented surface S, that
is φ(x) = g(x)ϕ(x) with g(x) > 0, then the conditions (2.2) and (2.3) are invariant under
this change. This mean that the strongly pseudo-convexity is a geometrical condition on S
an oriented sub-manifold of co-dimension one.

Remark 2.7. The conditions (2.2) and (2.3) are open then the conditions are true in a neigh-
borhood of x0.

Remark 2.8. If p is principally normal then the limit of condition (2.3) when τ goes to
0 gives the condition (2.2). Actually the definition of strong pseudo-convexity make sense
only for principal normal symbol.

Remark 2.9. Let Q(τ) = p(x0, ξ + τdϕ(x)), for ξ �= 0. If the roots of Q are simple
i.e. if Q(τ) = 0 implies Q′(τ) �= 0, this is equivalent to p(x0, ξ + iτdϕ(x0)) = 0 and
{p, ϕ}(x0, ξ+ iτdϕ(x0)) �= 0. Then if the root of Q are simple S is strongly pseudo-convex
with respect P . In this case the condition is also satisfied for −ϕ this means that we can
change the orientation of S. The uniqueness result given by Hörmander (see Theorem 2.13
below) contains the Calderón’s result [34] but does not contain all known results where the
roots of Q are assumed smooth and eventually multiple. See Hörmander [66, Chapter 28,
section 1] for uniqueness results under smoothness assumptions on roots and Zuily [143,
Chapter 2] .

Remark 2.10. There exists a lot of results on non-uniqueness. The results have the following
form there exist u and a such that Pu+ au = 0, u = 0 on ϕ(x) < ϕ(x0) in a neighborhood
of x0 and x0 is in the support of u. We can find such results in [2, 3, 6, 119, 124, 125].
Essentially in all cases where principal normality or strong pseudo-convexity are not satisfied
in a strong sense there exists a non uniqueness result in the sense given above.

Remark 2.11. Very few results exist under weak assumption of pseudo-convexity, see re-
sults in this direction in [13, 15, 96, 126] and [66, Th. 28.4.3]).

Remark 2.12. If p is of second order with real coefficients, p is principally normal and does
not have double complex roots. Then the pseudo-convexity condition is only given by (2.2).
In this case, the pseudo-convexity condition can be described in term of bicharacteristic. Let
(x(s), ξ(s)) be the solution of ⎧⎨

⎩
ẋ(s) = ∂ξp(x(s), ξ(s))

ξ̇(s) = −∂xp(x(s), ξ(s))
x(0) = x0, ξ(0) = ξ0,

that is (x(s), ξ(s)) is the integral curve of the vector field Hp = ∂ξp(x, ξ)∂x − ∂xp(x, ξ)∂ξ.
Let g(s) = ϕ(x(s)), we have

ġ(s) = ∂xϕ(x(s))ẋ(s) = ∂xϕ(x(s))∂ξp(x(s), ξ(s)) = {p, ϕ}(x(s), ξ(s)).
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The second derivative of g gives

g̈(s) = ∂x{p, ϕ}(x(s), ξ(s))ẋ(s) + ∂ξ{p, ϕ}(x(s), ξ(s))ξ̇(s)
= ∂x{p, ϕ}(x(s), ξ(s))∂ξp(x(s), ξ(s))− ∂ξ{p, ϕ}(x(s), ξ(s))∂xp(x(s), ξ(s))
= {p, {p, ϕ}}(x(s), ξ(s)).

If we have p(x0, ξ0) = {p, ϕ}(x0, ξ0) = 0, then

ϕ(x(s)) = ϕ(x0) + (s2/2){p, {p, ϕ}}(x0, ξ0) + O(s3)

The pseudo-convexity condition is equivalent to say, the tangent bicharacteristics to S have
a contact to order 2 with S and stay in {x, ϕ(x) ≥ ϕ(x0)}.

Now we can give the statement of the unique continuation theorem.

Theorem 2.13. Let W be an open set and x0 ∈ W . We assume P principally normal and
S strongly pseudo-convex with respect P at x0 then there exists V an open subset of W with
x0 ∈ V such that for all u ∈ C∞(W )

Pu = 0 in W and u = 0 in {x ∈ W,ϕ(x) > ϕ(x0)} ⇒ u = 0 in V (2.4)

Remark 2.14. The assumption u ∈ C∞(W ) is not a restriction. If the coefficients of P
are smooth. Under the assumption given in Theorem 2.13, a distribution u satisfying the
assumption is necessary C∞ in a neighborhood of x0 (see [64, Theorem 8.8.1]).

The proof of Theorem 2.13 is given by a Carleman estimate stated now.

Theorem 2.15. Let P be principally normal, and φ ∈ C∞(W ) such that dφ(x0) �= 0,

∀ξ ∈ R
n \ {0}, p(x0, ξ) = 0 ⇒ Re{p̄{p, φ}}(x0, ξ) > 0 (2.5)

and

∀ξ ∈ R
n \ {0}, ∀τ > 0, p(x0, ξ + iτdφ(x0)) = 0,

⇒ Im{p̄(x, ξ − iτdφ(x)), p(x, ξ + iτdφ(x))} > 0 at (x, ξ) = (x0, ξ). (2.6)

Then there exist V a neighborhood of x0, C > 0 and τ0 > 0 such that for all u ∈ C∞
0 (V )

and all τ ≥ τ0 ∑
|α|≤m−1

τ2m−2|α|−1‖eτφ(x)Dαu(x)‖2 ≤ C‖eτφ(x)Pu(x)‖2. (2.7)

Remark 2.16. The assumption to obtain uniqueness are invariant by change of variables
and by change of defining function of the oriented surface. The estimate (2.7) is invariant
by change of variables but not by multiplication of function φ by a positive function. We
can remark that the assumptions (2.5) and (2.6) are not invariant by change of function φ.
Actually is ϕ satisfies (2.2) and (2.3) then φ = eλϕ satisfies (2.5) and (2.6) for λ large
enough. To prove Theorem 2.13 we need to convexify the surface S. More precisely if ϕ
satisfies (2.2) and (2.3) thenϕ(x)−ε|x−x0|2 satisfies also (2.2) and (2.3) maybe on a smaller
neighborhood of x0 because these conditions are open. Then φ(x) = eλ(ϕ(x)−ε|x−x0|2)

satisfies (2.5) and (2.6) for λ large enough.
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Remark 2.17. In the estimate (2.7) we can add to P lower order term with bounded com-
plex valued coefficients as these terms can be estimated by the left hand side. In partic-
ular the uniqueness results are also true for these operators. If the principal symbol has
non smooth coefficients, there are positive results for instance in Hörmander [64] but also
counter-examples see [116], [102] and [65].

Remark 2.18. The condition (2.6) can be interpreted as a sub-elliptic condition on the prin-
cipal symbol p(x, ξ + iτdφ(x)), and (2.7) as a sub-elliptic estimate with lost of one half
derivative. In Lerner [95] we can find Carleman estimates under sub-elliptic conditions of
superior order with related lost of derivative.

Remark 2.19. We can find some results in literature on Carleman estimate for systems.
When the determinant of principal symbol satisfied assumptions (2.5) and (2.6), we can de-
duce Carleman estimate from previous result (see [64, Chapter 8, and (3.8.5)]). For elasticity
system see [42] and [10], and for Stokes system see [51].

3. Boundary Carleman estimates

For the applications we need Carleman estimates up the boundary. Here we only consider
operator P of order 2, elliptic. Results in more general cases can be found in Tataru [136].

For elliptic operator of order 2 with real coefficients, the principal normality condition
and the condition (2.5) are trivially satisfied. The sub-elliptic condition (2.6) takes the fol-
lowing form

∀ξ ∈ R
n \ {0}, ∀τ > 0, p(x0, ξ + iτdφ(x0)) = 0,

⇒ Im{p(x, ξ − iτdφ(x), p(x, ξ + iτdφ(x)} > 0 at (x, ξ) = (x0, ξ). (3.1)

In this section we assume P defined in a neighborhood of Ω, a bounded connected open
set in R

n with C∞ boundary. First we give local result in a neighborhood of a point x0 ∈
∂Ω. The Carleman estimate up the boundary shall be given for smooth functions up the
boundary compactly supported. To be precise, let W be a neighborhood in R

n of x0 ∈ ∂Ω
and let V = W ∩ Ω, we denote by C∞

0 (V ) = {u ∈ C∞(V ), such that there exists v ∈
C∞
0 (W ), with u = v|V }. For a function w ∈ L2(V ) we denote the norm by ‖v‖L2(V ) and

for a fonction v ∈ L2(∂V ) we denote the norm by |v|L2(∂V ).

Theorem 3.1. Let x0 ∈ ∂Ω and P be an elliptic operator of order 2 with real coefficients
and φ ∈ C∞ satisfying (3.1) at x0 and dφ(x0) �= 0. Then there exist W a neighborhood of
x0 in R

n, C > 0 and τ0 > 0 such that for all u ∈ C∞
0 (V ) , where V = W ∩ Ω, and all

τ ≥ τ0, ∑
|α|≤1

τ3−2|α|‖eτφ(x)Dαu(x)‖2L2(V )

≤C‖eτφ(x)Pu(x)‖2L2(V ) +
∑
|α|≤1

τ3−|α||(eτφ(x)Dαu)|∂Ω|2L2(∂V ), (3.2)

where ∂V = V ∩ ∂Ω.

Theorem 3.2. Let x0 ∈ ∂Ω and P be an elliptic operator of order 2 with real coefficients
and φ ∈ C∞ satisfying (3.1) at x0 and ∂νφ(x0) < 0, where ∂ν is the exterior normal
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derivative at ∂V . Then there exist W a neighborhood of x0 in R
n, C > 0 and τ0 > 0 such

that for all u ∈ C∞
0 (V ), where V = W ∩ Ω, satisfying u|∂V = 0 and all τ ≥ τ0,∑

|α|≤1

τ3−2|α|‖eτφ(x)Dαu(x)‖2L2(V ) + τ |(eτφ(x)∂νu)|∂Ω|2L2(∂V )

≤C‖eτφ(x)Pu(x)‖2L2(V ). (3.3)

We can find the proofs of Theorem 3.1 and 3.2 in [91].

Remark 3.3. We can obtain a Carleman estimate without the boundary condition u|∂V = 0

but in this case we must add at the right hand side of (3.3) the terms τ3|(eτφ(x)u)|∂Ω|2L2(∂V )

and τ |(eτφ(x)Xju)|∂Ω|2L2(∂V ), where (Xj)j is a basis of vector fields tangent to ∂V .

We have the same result for the Neumann boundary condition.

Theorem 3.4. Let x0 ∈ ∂Ω and P be an elliptic operator of order 2 with real coefficients
and φ ∈ C∞ satisfying (3.1) at x0 and ∂νφ(x0) < 0, where ∂ν is the exterior normal
derivative at ∂V . Then there exist W a neighborhood of x0 in R

n, C > 0 and τ0 > 0 such
that for all u ∈ C∞

0 (V ) , where V = W ∩ Ω, satisfying ∂νu|∂V = 0 and all τ ≥ τ0,∑
|α|≤1

τ3−2|α|‖eτφ(x)Dαu(x)‖2L2(V ) +
∑
|α|≤1

τ3−|α||(eτφ(x)Dαu)|∂Ω|2L2(∂V )

≤C‖eτφ(x)Pu(x)‖2L2(V ). (3.4)

Remark 3.5. Here also we can obtain a Carleman estimate without condition ∂νu|∂V = 0

if we add the term τ |(eτφ(x)∂νu)|∂Ω|2L2(∂V ) at the right hand side of (3.4).

Remark 3.6. With the boundary terms at the right hand side (see Remaks 3.3 and 3.5),
Theorems 3.2 and 3.4 imply Theorem 3.1. So Theorem 3.1 is relevant only locally in a
neighborhood where ∂νφ(x0) ≥ 0. In [91] the proof is given for ∂νφ(x0) �= 0 but we can
also prove the result for ∂νφ(x0) = 0.

Remark 3.7. We can find functions φ satisfying the assumption of previous theorems. Let
ϕ such that dϕ(x0) �= 0 then φ(x) = eλϕ(x) satisfies (3.1) at x0 for λ large enough.

Following these three previous theorems we can give global Carleman estimates for
global weight function φ. First for Dirichlet boundary condition and second for Neumann
boundary condition.

Theorem 3.8. Let ω be an open subset of Ω eventually empty. Assume that for all x0 ∈ Ω\ω
the condition (3.1) is fulfilled. Let Γ ⊂ ∂Ω a neighborhood of {x ∈ ∂Ω, ∂νφ(x) ≥ 0}. Then
there exist C > 0 and τ0 > 0 such that for all u ∈ C∞(Ω) satisfying either u|∂Ω = 0 or
∂νu|∂Ω = 0, and all τ > τ0,∑

|α|≤1

τ3−2|α|‖eτφ(x)Dαu(x)‖2L2(Ω) +
∑
|α|≤1

τ3−|α||(eτφ(x)Dαu)|∂Ω|2L2(∂Ω) (3.5)

≤C‖eτφ(x)Pu(x)‖2L2(Ω) +
∑
|α|≤1

τ3−2|α|‖eτφ(x)Dαu(x)‖2L2(ω)

+
∑
|α|≤1

τ3−|α||(eτφ(x)Dαu)|∂Ω|2L2(Γ).
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Remark 3.9. For geometric reasons it is not alway possible to have a weight φ satisfy-
ing (3.1) in Ω or ∂νφ(x) < 0 for all x ∈ ∂Ω. This is the reason for introducing the sets ω
and Γ.

Remark 3.10. The proof of Theorem 3.8 follow the strategy developed by Hörmander [64,
Lemma 8.3.1], which proves that Carleman estimate is a local property. If the estimate (3.5)
is true locally in a neighborhood of all point of Ω we can gather all in a global estimate.

In the following propositions, we give a way to construct φ satisfying assumptions of
Theorem 3.8.

Proposition 3.11. Let ω be an open subset of Ω there exists ϕ ∈ C∞(Ω) such that

ϕ(x) = 0 for x ∈ ∂Ω

∂νϕ(x) < 0 for x ∈ ∂Ω

dϕ(x) �= 0 for x ∈ Ω \ ω.

Proposition 3.12. Let Γ be an open subset of ∂Ω there exists ϕ ∈ C∞(Ω) such that

ϕ(x) = 0 for x ∈ ∂Ω \ Γ
∂νϕ(x) < 0 for x ∈ ∂Ω \ Γ
dϕ(x) �= 0 for x ∈ Ω.

The proofs of both propositions can be found in [60]. The idea is to start with a morse
function. Next we move the critical points, in ω, to prove Proposition 3.11 or outside Ω
through Γ to prove Proposition 3.12, by a diffeomorphism constructed as the flow of a vector
field.

Now we can verify that φ(x) = eλϕ(x) satisfies the assumptions of Theorem 3.8 for λ
large enough. We obtain the following theorem.

Theorem 3.13. Let ϕ be the function constructed in Proposition 3.11 and φ(x) = eλϕ(x)

where λ is large enough such that condition (3.1) is satisfied. Then there exist C > 0 and
τ0 > 0 such that for all u ∈ C∞(Ω) satisfying either u|∂Ω = 0 or ∂νu|∂Ω = 0, and all
τ > τ0, ∑

|α|≤1

τ3−2|α|‖eτφ(x)Dαu(x)‖2L2(Ω) +
∑
|α|≤1

τ3−|α||(eτφ(x)Dαu)|∂Ω|2L2(∂Ω)

≤ C‖eτφ(x)Pu(x)‖2L2(Ω) +
∑
|α|≤1

τ3−2|α|‖eτφ(x)Dαu(x)‖2L2(ω). (3.6)

Theorem 3.14. Let ϕ be the function constructed in Proposition 3.12 and φ(x) = eλϕ(x)

where λ is large enough such that condition (3.1) is satisfied. Then there exist C > 0 and
τ0 > 0 such that for all u ∈ C∞(Ω) satisfying either u|∂Ω = 0 or ∂νu|∂Ω = 0, and all
τ > τ0, ∑

|α|≤1

τ3−2|α|‖eτφ(x)Dαu(x)‖2L2(Ω) +
∑
|α|≤1

τ3−|α||(eτφ(x)Dαu)|∂Ω|2L2(∂Ω)

≤ C‖eτφ(x)Pu(x)‖2L2(Ω) +
∑
|α|≤1

τ3−|α||(eτφ(x)Dαu)|∂Ω|2L2(Γ). (3.7)
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Remark 3.15. There are a lot of Carleman estimate up the boundary proven in literature for
different boundary conditions or different assumptions on coefficient regularity, see [56, 57,
59, 70, 99].

4. Applications, control, stabilization, related fields

Since Lions [98], there are lot of works on control, stabilization for partial differential equa-
tions. One way to study these problems is the microlocal analysis following Lebeau and
al [17] and the microlocal defect measure, see [30, 32, 33, 62, 63, 103, 134] which con-
cern wave equations. Another way is to use the return method see Coron [41] or spectral
method based on Ingham inequality (see [81] a recent paper on the subject). We can see
the book [138] for an introduction and results on the subject. Here we describe only some
results obtained by Carleman estimates.

4.1. Approximate controllability for wave equation. Exact control for wave equation is
well understood and requires the geometric control condition see [17]. The HUM (Hilbert
Uniqueness Method) given by Lions [98] allows to relate approximate control to an unique-
ness result. The statement is the following.

Fix T > 0 and Γ an open in ∂Ω where Ω satisfied assumption made in Section 3. Let
g ∈ L2(R × ∂Ω) supported in (0, T ) × Γ and v ∈ C (R, L2(Ω)) ∩ C 1(R, H−1(Ω)) be the
solution of ⎧⎨

⎩
(∂tt + P )v = 0
(v(0, ·), ∂tv(0, ·)) = (0, 0)
v|∂Ω = g.

(4.1)

We denote by S(g) = (v(T, ·), ∂tv(T, ·)) ∈ L2(Ω)⊕ H−1(Ω). Let

F = {w ∈ L2(Ω)⊕H−1(Ω), ∃g ∈ L2(R×∂Ω) supported in (0, T )×Γ such that S(g) = w}.

We associate the following adjoint problem. Let (u0, u1) ∈ H1
0 (Ω) ⊕ L2(Ω) and u ∈

C (R, H1
0 (Ω)) ∩ C 1(R, L2(Ω)) be the solution of⎧⎨

⎩
(∂tt + P )u = 0
(u(0, ·), ∂tu(0, ·)) = (u0, u1)
u|∂Ω = 0.

(4.2)

We denote by K(u0, u1) = (∂νu)|(0,T )×Γ. Of course problems (4.1) and (4.2) are well-
posed in the spaces given. If F = L2(Ω) ⊕ H−1(Ω) we say that the problem is exactly
controllable. If F is dense in L2(Ω) ⊕ H−1(Ω) we say that the problem is approximate
controllable.

Theorem 4.1 ([98, Chapter 2]). The problem (4.1) is approximate controllable if and only if
the following property is satisfied

K(u0, u1) = 0 ⇒ (u0, u1) = (0, 0) (4.3)

If P has analytic coefficients then Property (4.3) can be proven by Holmgren theorem
if T large enough. If P has C∞ coefficients we cannot apply the uniqueness theorem 2.13
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because the surfaces needs to prove that u = 0 are not pseudo-convex. In [120] we gave
an uniqueness result adapted to this case, see also [67], [135], [68], [122], and [137] where
analyticity with respect the “t” variable is a crucial assumption. In the following theorem we
are more precise than a uniqueness theorem and we estimate the solution by the boundary
data.

Theorem 4.2. For Γ an open subset of ∂Ω and all β ∈ (0, 1), there exist constants T > 0
and C > 0 such that the solution of (4.2) where (u0, u1) ∈ H1

0 (Ω)⊕ L2(Ω), satisfies

‖(u0, u1)‖L2(Ω)⊕H−1(Ω) ≤
C‖(u0, u1)‖H1(Ω)⊕L2(Ω)(

log
(
2 +

‖(u0,u1)‖H1(Ω)⊕L2(Ω)

‖K(u0,u1)‖L2((0,T )×Γ)

))β
.

If K(u0, u1) = 0 the denominator in the estimate above is∞ then (u0, u1) = (0, 0). We
find the uniqueness result. Actually T found by the proof of Theorem 4.2 is larger than the
one found in the uniqueness result and, in particular, T is not optimal.

Remark 4.3. This theorem is proven by Phung [113], in [121] we proved this result with
β = 1/2. This kind of estimates was proven by Johns [76] (with different norms that those
used here) in the context of Holmgren theorem.

By duality we can estimate the cost function. We define a norm on F by

‖v‖F = inf{‖g‖L2((0,T )×Γ), such that g is supported in (0, T )× Γ and satisfies Sg = v}.

Of course F and the norm depend of T and Γ. In general the g’s such that Sg = v are not
unique.

Theorem 4.4. For all α > 1, there exists C > 0 such that for all v = (v0, v1) ∈ H1
0 (Ω) ⊕

L2(Ω), such that ‖(v0, v1)‖H1(Ω)⊕L2(Ω) ≤ 1 and all ε > 0 there exist w = (w0, w1) ∈ F
and u = (u0, u1) ∈ L2(Ω) ⊕ H−1(Ω) such that v = u + w where ‖u‖L2(Ω)⊕H−1(Ω) ≤ ε

and ‖w‖F ≤ CeC/εα .

Remark 4.5. In [120] we proved this result with α = 2 but using the estimate given in
Theorem 4.2, we can prove Theorem 4.4. If P has analytic coefficient, there is, in [89], a
more precise result on the space F , in particular a consequence of this result is that we can
take α = 1.

4.2. Null control for heat equation.

4.2.1. Spectral approach. This method is initiated by Fattorini and Russell in [52, 123]
and it is used in [75, 91, 93]. It follows several steps, first the Carleman estimate allows to
prove an interpolation estimate (see Theorem 4.6), second we deduce an estimate on the sum
on eigenfunctions (see Theorem 4.8), third this gives a control for the low frequency with
a control on the cost, fourth by alternatively applying control and dissipation we prove the
null control (see Theorem 4.10).

We use the notations given in the begin of section 3. We introduce an other variable
denoted by s and by Q = D2

s + P . Let S > 0, ω ⊂ {0} × Ω be an open, X = (0, 3S)× Ω
and Y = (S, 2S)× Ω.
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Theorem 4.6. There exist C > 0 and δ ∈ (0, 1) such that for all v ∈ C∞(X) satisfying
v = 0 on (0, 4S)× ∂Ω and on {0} × Ω, we have

‖v‖H1(Y ) ≤ C
(‖Qv‖L2(X) + |∂νv|ω|L2(ω)

)δ ‖v‖1−δ
H1(X). (4.4)

Remark 4.7. This kind of estimate was first proven, using Carleman estimate, in [14, 73].
Carleman estimate allows to prove local estimate analogous to (4.4). Next we can patch
together these estimates to prove (4.4). This estimate is useful below but we can prove by the
same Carleman estimates other interpolation estimate useful in other context. For instance,
we can change the boundary conditions on v, or the control term ∂νv|ω (see [40, 77, 112]).

In the following theorems, P , with the Dirichlet boundary condition, is assumed self-
adjoint, positive. We denote byϕj the normalized eigenfunctions ofP , and λj the associated
eigenvalues.

Theorem 4.8. There exist C > 0 such that for all μ and u =
∑

λj≤μ2 ajϕj , we have

‖u‖L2(Ω) ≤ CeCμ‖u‖L2(ω). (4.5)

Remark 4.9. This estimate is optimal for sum of eigenfunction (see [75] and [88]). There
exist examples proving that the estimate (4.5) is optimal yet for a sequence of eigenfunctions
(see [22, 111]) but it is not optimal, for a sequence of eigenfunctions, for all domain as we
can see on a cube in Rn.

To prove Theorem 4.8 we define v(s, ·) =∑λj≤μ2(aj/
√

λj) sinh(
√

λjs)ϕj . It is easy
to see that Qv = 0 and ∂νv = −∂sv = −∑λj≤μ2 ajϕj on s = 0. The estimations by
below or by above of ‖v‖H1(Y ) and ‖v‖H1(X) and Theorem 4.6, give the factor eCμ.

Theorem 4.10. Let T > 0 and ω be an open in Ω. There exists C > 0, such that for all
u0 ∈ L2(Ω), there exist g ∈ L2((0, T ) × Ω) supported in (0, T ) × ω such that the solution
u of ⎧⎨

⎩
∂tu + Pu = g in (0, T )× Ω)
u|(0,T )×∂Ω = 0
u(0, ·) = u0,

(4.6)

satisfies u(T, ·) = 0. Moreover we can choose g such that ‖g‖L2((0,T )×Ω) ≤ C‖u0‖L2(Ω).

Remark 4.11. The problem (4.6) is well-posed. The function g is called the control of
u0. It is easy to deduce a control to the trajectory namely if v is a solution to (4.6) with
g = 0 we can find for all u0 a function g such that the solution of (4.6) satisfy u(T, ·) =
v(T, ·). In [114] we can find estimate of control in spirit of section 4.1. This result does
not use Carleman estimate. We can find also, in [55, 104] estimates on the cost of control
in small time. This cost is estimate by CeC/T when T is small. Actually we can prove that
the attainable set is larger than the trajectory and contains e−TP 1/2

u0 for all u0 ∈ L2(Ω)
(see [107]).

Remark 4.12. The proof is based first on a control for the first eigenfunctions. We can
prove following Theorem 4.8 that we can find a control g such that u(T, ·) is orthogonal
to ϕj for all j satisfying λj ≤ μ2 and g satisfies ‖g‖L2(0,T )×Ω) ≤ CeKμ. Letting the
solution dissipate for t > T the L2 norm of the solution decrease at less of e−cμ2

. As we
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dissipate more than energy given to the system, the final solution after application of control
and dissipation is smaller than the initial solution. Repeating the procedure on an infinite
numbers of interval the final solution is null. Of course we must more precise because the
K and c given above depend on the interval of time T and this time goes to 0. But we can
estimate precisely K and c with respect T and handle the procedure. This strategy works in
other contexts, see [1, 85, 87, 105–108].

4.2.2. Fursikov-Imanuvilov method. Carleman estimate are proven in parabolic context
to deduce unique continuation (see [109, 127, 131]) but we cannot use these estimates to
prove observability estimates because the domain in time of the estimated quantity is smaller
than the observed domain. This phenomena is analogous to (4.4) where Y is smaller thanX .
By this method we can only prove uniqueness result and approximative controllability. To
remedy it, Fursikov and Imanuvilov introduced singular weights. Consequence the cut-off
function in time is in the weight. This is possible because the order of the operator is one in
time variable and is two in spatial variables.

Theorem 4.13. Let T > 0, there exist C > 0, λ > 0 and τ0 > 0 such that for all u ∈
C∞((0, T )× Ω), satisfying u(t, x) = 0 for (t, x) ∈ (0, T )× ∂Ω, we have for all τ > τ0,

τ3‖η3/2eτηφu‖2L2((0,T )×Ω)+τ‖η1/2eτηφ∇xu‖2L2((0,T )×Ω)

≤ C‖eτηφ(∂t + P )u‖2L2((0,T )×Ω) + C‖eτηφu‖2L2((0,T )×ω).

(4.7)

where η(t) = T 2

t(T−t) , φ(x) = eλϕ(x) − eλK with ϕ defined in Proposition 3.11 and
K ≥ 2maxx∈Ω |ϕ(x)|.
Remark 4.14. In the left hand side of (4.7), we can add first derivative with respect t and Pu
with a factor (τη)−1/2 in the norm, see the original proof given by Fursikov and Imanuvilov
[60]. This estimate can be proven for operator P with coefficients depending of t. This kind
of estimate can be use for nonlinear equations, for heat equations with non global lipschitz
non linearities (see [45, 55]) or for Navier-Stokes and Boussinesq systems (see [48, 53, 54,
61]). Same kind of estimates can be proven for other boundary conditions or transmission
conditions, see [27, 46, 71, 84, 86]. In [47, 139] there are same kind of Carleman estimates
for heat equations with a potential in |x|−2. All these results show that the method is very
flexible.

Fixing τ in (4.7) and using the fact that the parabolic problem is well-posed we can
obtain the observability estimate

Theorem 4.15. Let u ∈ C ([0, T ], L2(Ω)) be the solution of the problem (4.6), there exists
C > 0 such that

‖u(T, ·)‖L2(Ω) ≤ C‖u(t, x)‖L2((0,T )×ω).

Remark 4.16. This estimate is equivalent to the null controllability. This is another way to
prove Theorem 4.10.

Remark 4.17. There is some results for parabolic systems using Carleman estimates. The
goal is to find Kalman type condition to control. Typically when the number of control is
smaller than the size of system. We can see [7, 8, 78] and references of these papers for
results in this direction.
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4.3. Stabilization for wave equation. In this section we study the decay of the energy for
the wave equation with a damping which is localized either in a subset of domain Ω or on a
subset of the boundary Γ.

We consider the following problem, let ω ⊂ Ω be an open and a ∈ C∞
0 (ω) where

a(x) ≥ 0 for all x ∈ ω. Let (u0, u1) ∈ H1
0 (Ω)⊕ L2(Ω), and u be the solution of⎧⎨

⎩
∂2
ttu(t, x)−Δu(t, x) + a(x)∂tu(t, x) = 0 in (0,+∞)× Ω,

(u(0, ·), ∂tu(0, ·) = (u0, u1),
u|(0,+∞)×∂Ω = 0.

(4.8)

The problem is well-posed and for simplicity we considerΔ but the results are true for all el-
liptic operator of order two, self-adjoint. We define the energy byE(u)(t) =

∫
Ω

(|∇u(t, x)|2
+|∂tu(t, x)|2

)
dx. If a ≡ 0 then E(u)(t) = E(u)(0), and in general

E(u)(T )− E(u)(0) = −2

∫ T

0

∫
ω

a(x)|∂tu(t, x)|2dxdt.

As a ≥ 0, E(u)(t) decreases and we can prove that E(u)(t) → 0 when t → +∞. The goal
is to quantify the decay. Under Geometric Control Condition it is proven that there exists
C > 0 such that E(u)(t) ≤ C‖(u0, u1)‖2H1(Ω)⊕L2(Ω)e

−t/C (see [17], [90], [128], [9]). The
interest of the following theorem is when the Geometric Control Condition is not satisfied.
We define

A =

(
0 Id
Δ −a(x)

)
,

the generator of the semi-group associated with the problem (4.8).

Theorem 4.18. Assume that a �≡ 0 then for all k > 0, there exist C > 0, such that for all
(u0, u1) ∈ D(Ak),

(E(u)(t))
1/2 ≤ C‖(u0, u1)‖D(Ak)

log(2 + t)k
.

Actually this result is the consequence of an estimate on the resolvent.

Theorem 4.19. There exist C > 0 and δ > 0 such that for all λ ∈ R,

‖(iλ − A)−1‖ ≤ Ceδ|λ|,

where ‖ · ‖ is the norm operator between L2(Ω) → L2(Ω).

Remark 4.20. The proof of Theorem 4.19 is in [90]. Theorem 4.8 was proven with a
log log t in numerator of the right hand side and improved in [31]. See also [18] for a simpler
proof of the link between the estimate on resolvent and the energy decay. We can find also
similarly results in [58] where the regularity assumptions are weaker.

We have the same kind of result for the boundary damping.
We consider the following problem, let Γ ⊂ ∂Ω be an open of ∂Ω and a ∈ C∞

0 (Γ)
where a(x) ≥ 0 for all x ∈ ∂ω. We define

A =

(
0 Id
Δ 0

)
,
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and D(A) = {(u0, u1) ∈ H1(Ω) ⊕ L2(Ω), A(u0, u1) ∈ H1(Ω) ⊕ L2(Ω), (∂νu0 +
au1)|∂Ω = 0}.

Let (u0, u1) ∈ H1
0 (Ω)⊕ L2(Ω), and u be the solution of⎧⎨
⎩

∂2
ttu(t, x)−Δu(t, x) = 0 in (0,+∞)× Ω,

(u(0, ·), ∂tu(0, ·) = (u0, u1),
∂νu + a(x)∂tu(t, x) = 0 on (0,+∞)× ∂Ω.

(4.9)

The problem is well-posed, in the space given, by classical Hille-Yosida theorem. The energy
decreases and we have E(u)(T )−E(u)(0) = −2

∫ T
0

∫
Γ
a(x)|∂tu(t, x)|2dσdt, where dσ is

the measure on the boundary.

Theorem 4.21. Assume that a �≡ 0 then for all k > 0, there exists C > 0, such that for all
(u0, u1) ∈ D(Ak),

(E(u)(t))
1/2 ≤ C‖(u0, u1)‖D(Ak)

log(2 + t)k
.

This result follows from the estimate on the resolvent.

Theorem 4.22. There exist C > 0 and δ > 0 such that for all λ ∈ R,

‖(iλ − A)−1‖ ≤ Ceδ|λ|,

where ‖ · ‖ is the norm operator between L2(Ω) → L2(Ω).

Remark 4.23. Theorem 4.22 is proven in [92] and Theorem 4.21 follows from Theo-
rem 4.19. Other results for this kind of problems was proven in [25, 40, 57, 77, 112].

4.4. Local energy decay for wave equation. Local energy for the wave equation decreases
exponentially under non trapping condition in odd dimension and polynomial in even dimen-
sion, see [82, 100, 110]. Here we give the Burq result [31] proven without any geometrical
conditions but the decay is only logarithmic.

Let K be a compact set in R
n, such that K̊ is a open set with C∞ boundary. Let

Ω = R
n \ K. We assume P elliptic, self-adjoint and there exists R > 0 such that P = Δ

for |x| > R. It is convenient to introduce the semi-group generator B of the wave equation
given by

B =

(
0 Id

−P 0

)
,

where P is the operator given by P in Ω with Dirichlet boundary condition. Let U be the
solution of ∂tU−BU = 0with U(0) = (u0

1, u
0
2) ∈ H = H1

0 (Ω)⊕L2(Ω). This solution will
be denoted by U(t) = etB(u0

1, u
0
2). Let U(t) = (u1(t), u2(t)) we have ∂2

ttu1 − Pu1 = 0.
Let R0 > 0, the local energy is given by Eloc(U, t) = (1/2)

∫
Ω∩B(0,R0)

(|∇u1(t, x)|2 +

|∂tu1(t, x)|2)dx where∇ is associated with the Riemannian metric defining P .

Theorem 4.24. Let k > 0 and R1 > 0, there exists C > 0 such that for all (u0
1, u

0
2) ∈

D(Bk) supported in B(0, R1), the solution U(t) = etB(u0
1, u

0
2) satisfies

Eloc(U, t)1/2 ≤ C‖U(0)‖D(Bk)

log(2 + t)k
.
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As for Theorem 4.18 the proof is the consequence of a stationary result on the resolvent.
We define R(τ) such that (P − λ2)R(λ)f = f . If Imλ < 0, R(λ) is well defined and
we can extend R(λ) in C \ {0} as a meromorphic operator from L2

comp to H1
0,loc(Ω). The

resolvent (iλ − B)−1 is related with R(λ) by the formula

(iλ − B)−1 =

(
iλR(λ) R(λ)

−I − λ2R(λ) iλR(λ)

)
. (4.10)

Theorem 4.25. Let χ1 and χ2 be C∞
0 (Rn) functions. There exist C0 > 0 and C1 > 0 such

that for all λ ∈ R we have

‖χ1R(λ)χ2‖L(L2(Ω),H1
0 (Ω)) ≤ C0e

C1λ.

Theorem 4.24 is the consequence of (4.10) and Theorems 4.22 and 4.25.

Remark 4.26. The same kind of result can be proven for elasticity system (see [24]). In this
case, even for convex obstacle, the decay of local energy cannot be better than the inverse of
every power of t (see [133]).

4.5. Other problems related to Carleman estimate. Carleman estimates are tools used
to the study of control for other equations and in other field related to control theory and
stabilization.

The null-control for degenerate parabolic equations was studied in [35, 36], in [21] we
can find results on Grushin operator and in [20, 22, 23] results on Kolmogorov operator.
These problems are still open and require other researches.

The optimal control obtains on the discretized equation of a partial differential equation
has oscillation in general even if the control for partial differential equation does not oscillate.
This problem is not well understood and some approach uses Carleman estimate (see [28,
29, 49])

The stochastic equations was studied with Carleman estimate see ([142] for references
and [97]).

Optimal control in time was studied under a bound constraint on the control. A bang-
bang property can be proven and this requires to control heat equation on measurable set.
Results are proven for this problem in [11, 115].

The Carleman estimates are tools used in the inverse problems. We can see [69] for a
review in subject. It is impossible to give a complete bibliography on the subject here. See
some recent works, [19, 26, 44, 72, 101], to find more references.
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Models and feedback stabilization of open
quantum systems

Pierre Rouchon

Abstract. At the quantum level, feedback-loops have to take into account measurement back-action.
We present here the structure of the Markovian models including such back-action and sketch two
stabilization methods: measurement-based feedback where an open quantum system is stabilized by
a classical controller; coherent or autonomous feedback where a quantum system is stabilized by a
quantum controller with decoherence (reservoir engineering). We begin to explain these models and
methods for the photon box experiments realized in the group of Serge Haroche (Nobel Prize 2012).
We present then these models and methods for general open quantum systems.

Mathematics Subject Classification (2010). Primary 93B52, 93D15, 81V10, 81P15; Secondary
93C20, 81P68, 35Q84.

Keywords. Markov model, open quantum system, quantum filtering, quantum feedback, quantum
master equation.

1. Introduction

Serge Haroche has obtained the Physics Nobel Prize in 2012 for a series of crucial experi-
ments on observations and manipulations of photons with atoms. The book [33], written with
Jean-Michel Raimond, describes the physics (Cavity Quantum Electro-Dynamics, CQED)
underlying these experiments done at Laboratoire Kastler Brossel (LKB). These experimen-
tal setups, illustrated on figure 2.1 and named in the sequel “the LKB photon box”, rely on
fundamental examples of open quantum systems constructed with harmonic oscillators and
qubits. Their time evolutions are captured by stochastic dynamical models based on three
features, specific to the quantum world and listed below.

1. The state of a quantum system is described either by the wave function |ψ〉 a vector of
length one belonging to some separable Hilbert spaceH of finite or infinite dimension,
or, more generally, by the density operator ρ that is a non-negative Hermitian operator
on H with trace one. When the system can be described by a wave function |ψ〉
(pure state), the density operator ρ coincides with the orthogonal projector on the line
spanned by |ψ〉 and ρ = |ψ〉〈ψ| with usual Dirac notations. In general the rank of
ρ exceeds one, the state is then mixed and cannot be described by a wave function.
When the system is closed, the time evolution of |ψ〉 is governed by the Schrödinger
equation

d

dt
|ψ〉 = − i

�
H|ψ〉 (1.1)
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where H is the system Hamiltonian, an Hermitian operator on H that could possibly
depend on time t via some time-varying parameters (classical control inputs). When
the system is closed, the evolution of ρ is governed by the Liouville/von-Neumann
equation

d

dt
ρ = − i

�

[
H, ρ
]
= − i

�

(
Hρ − ρH

)
. (1.2)

2. Dissipation and irreversibility has its origin in the “collapse of the wave packet” in-
duced by the measurement. A measurement on the quantum system of state |ψ〉 or ρ
is associated of an observable O, an Hermitian operator on H, with spectral decom-
position

∑
μ λμP μ: P μ is the orthogonal projector on the eigen-space associated to

the eigen-value λμ. The measurement process attached to O is assumed to be instan-
taneous and obeys to the following rules:

• the measurement outcome μ is obtained with probability pμ = 〈ψ|P μ|ψ〉 or
pμ = Tr (ρP μ), depending on the state |ψ〉 or ρ just before the measurement;

• just after the measurement process, the quantum state is changed to |ψ〉+ or ρ+
according to the mappings

|ψ〉 �→ |ψ〉+ =
P μ|ψ〉√〈ψ|P μ|ψ〉

or ρ �→ ρ+ =
P μρP μ

Tr (ρP μ)

where μ is the observed measurement outcome. These mappings describe the
measurement back-action and have no classical counterpart.

3. Most systems are composite systems built with several sub-systems. The quantum
states of such composite systems live in the tensor product of the Hilbert spaces of
each sub-system. This is a crucial difference with classical composite systems where
the state space is built with Cartesian products. Such tensor products have important
implications such as entanglement with existence of non separable states. Consider a
bi-partite system made of two sub-systems: the sub-system of interest S with Hilbert
space HS and the measured sub-system M with Hilbert space HM . The quantum
state of this bi-partite system (S,M) lives in H = HS ⊗HM . Its Hamiltonian H is
constructed with the Hamiltonians of the sub-systems, HS and HM , and an interac-
tion HamiltonianHint made of a sum of tensor products of operators (not necessarily
Hermitian) on S and M :

H = HS ⊗ IM +Hint + IS ⊗HM

with IS and IM identity operators on HS and HM , respectively. The measurement
operator O = IS ⊗ OM is here a simple tensor product of identity on S and the
Hermitian operator OM on HM , since only M is directly measured. Its spectrum is
degenerate: the multiplicities of the eigenvalues are necessarily greater or equal to the
dimension of HS .

This paper shows that, despite different mathematical formulations, dynamical models
describing open quantum systems admit the same structure, essentially given by the Markov
model (3.2), and directly derived from the three quantum features listed here above. Sec-
tion 2 explains the construction of such Markov models for the LKB photon box and its
stabilization by measurement-based and coherent feedbacks. These stabilizing feedbacks



Models and feedback stabilization of open quantum systems 923

rely on control Lyapunov functions, quantum filtering and reservoir engineering. The next
sections explain these models and methods for general open quantum systems. In section 3
(resp. section 4) general discrete-time (resp. continuous-time) systems are considered. In
appendix, operators, key states and formulae are presented for the quantum harmonic oscil-
lator and for the qubit, two key quantum systems. These notations are used and not explicitly
recalled throughout sections 2, 3 and 4.

2. The LKB photon box

C

B

D

R1
R2

Figure 2.1. Scheme of the LBK experiment where photons are observed via probe atoms. The photons
in blue are trapped between the two mirrors of the cavity C. They are probed by two-level atoms (the
small pink torus) flying out the preparation box B, passing through the cavity C and measured in D.
Each atom is manipulated before and after C in Ramsey cavities R1 and R2, respectively. It is finally
detected inD either in ground state |g〉 or in excited state |e〉.

2.1. The ideal Markov model. The LKB photon box of figure 2.1, a bi-partite system with
the photons as first sub-system and the probe atom as second sub-system, illustrates in an
almost perfect and fundamental way the three quantum features listed in the introduction
section. This system is a discrete time system with sampling period τ around 80 μs, the
time interval between probe atoms. Step k ∈ N corresponds to time t = kτ . At t = kτ ,
the photons are assumed to be described by the wave function |ψ〉k of an harmonic oscillator
(see appendix A). At t = kτ , the probe atom number k, modeled as a qubit (see appendix B),
gets outside the boxB in ground state |g〉. Between t ∈ [kτ, (k+1)τ [, the wave function |Ψ〉
of this composite system, photons/atom number k, is governed by a Schrödinger evolution

d

dt
|Ψ〉 = − i

	
H|Ψ〉

with starting condition |Ψ〉kτ = |ψ〉k ⊗ |g〉 and where H is the photons/atom Hamiltonian
depending possibly on t. Appendix C presents typical Hamiltonians in the resonant and dis-
persive cases. We have thus a propagator between t = kτ and t = (k+1)τ−, U(kτ,(k+1)τ−),
from which we get |Ψ〉 at time t = (k + 1)τ−, just before detector D where the energy of
the atom is measured via O = IS ⊗ σz . The following relation,

|Ψ〉(k+1)τ− = U(kτ,(k+1)τ−)|ψ〉k ⊗ |g〉 � Mg|ψ〉k ⊗ |g〉+M e|ψ〉k ⊗ |e〉,
valid for any |ψ〉k, defines the measurement operators Mg and M e on the Hilbert space
of the photons HS . Since, for all |ψ〉k, |Ψ〉(k+1)τ− is of length 1, we have necessarily
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M †
gMg + M †

eM e = IS . At time t = (k + 1)τ−, we measure O = λeIS ⊗ |e〉〈e| +
λgIS ⊗ |g〉〈g| with two highly degenerate eigenvalues λe = 1, λg = −1 of eigenspaces
HS ⊗ |e〉 and HS ⊗ |g〉, respectively. According to the measurement quantum rules, we
can get only two outcomes μ, either μ = g or μ = e. With outcome μ, just after the
measurement, at time (k + 1)τ the quantum state |Ψ〉 is changed to

|Ψ〉(k+1)τ− �→ |Ψ〉(k+1)τ =
Mμ|ψ〉k√

〈ψk|M †
μMμ|ψk〉

⊗ |μ〉.

Moreover the probability to get μ is 〈ψk|M †
μMμ|ψk〉. Since |Ψ〉(k+1)τ is now a simple ten-

sor product (separate state), we can forget the atom number k and summarize the evolution
of the photon wave function between t = kτ and t = (k + 1)τ by the following Markov
process

|ψ〉k+1 =

⎧⎨
⎩

Mg|ψ〉k√
〈ψk|M†

gMg|ψk〉
, with probability 〈ψk|M †

gMg|ψk〉;
Me|ψ〉k√

〈ψk|M†
eMg|ψk〉

, with probability 〈ψk|M †
eM e|ψk〉.

More generally, for an arbitrary quantum state ρk of the photons at step k, we have

ρk+1 =

⎧⎪⎨
⎪⎩

MgρkM
†
g

Tr(MgρkM
†
g)

, with probability pg(ρk) = Tr
(
MgρkM

†
g

)
;

MeρkM
†
e

Tr(MeρkM
†
e)

, with probability pe(ρk) = Tr
(
M eρkM

†
e

)
.

(2.1)

The measurement operators Mg and M e are implicitly defined by the Schrödinger propa-
gator between kτ and (k + 1)τ . They always satisfyM †

gMg +M †
eM e = IS .

2.2. Quantum non demolition (QND) measurement. For a well tuned composite evolu-
tion U(kτ,(k+1)τ−) (see [33]) with a dispersive interaction, one get the following measure-
ment operators, functions of the photon-number operator N ,

Mg = cos
(

φ0N+φR

2

)
, M e = sin

(
φ0N+φR

2

)
(2.2)

where φ0 and φR are tunable real parameters. The Markov process (2.1) admits then a lot of
interesting properties characterizing QND measurement.

• For any function g : R �→ R, Vg(ρ) = Tr (g(N)ρ) is a martingale:

E (Vg(ρk+1) / ρk) = Vg(ρk)

where E (x / y) stands for conditional expectation of x knowing y. This results from
elementary properties of the trace and from the commutation ofMg andM e withN .

• For any integer n̄, the photon-number state |n̄〉〈n̄| (n̄ ∈ N) is a steady-state: any
realization of (2.1) starting from ρ0 = |n̄〉〈n̄| is constant: ∀k ≥ 0, ρk ≡ |n̄〉〈n̄|.

• When (φR, φ0, π) areQ-independent, there is no other steady state than these photon-
number states. Moreover, for any initial density operator ρ0 with a finite photon-
number support (ρ0|m〉 = 0 for m large enough), the probability that ρk converges
towards the steady state |n̄〉〈n̄| is Tr (|n̄〉〈n̄|ρ0) = 〈n̄|ρ0|n̄〉. Since Tr (ρ0) = 1 =∑

n̄∈N〈n̄|ρ0|n̄〉, the Markov process (2.1) converges almost surely towards a photon-
number state, whatever its initial state ρ0 is.
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The proof of this convergence result is essentially based on a Lyapunov function, a super-
martingale, V (ρ) = −∑n∈N〈n |ρ|n〉2. Simple computations yield

E (V (ρk+1) / ρk) = V (ρk)− Q(ρk)

where Q(ρ) ≥ 0 is given by the following formula

Q(ρ) =
∑
n∈N

sin2(φ0n+φR)
4

⎛
⎝ cos2

(
φ0n+φR

2

)
〈n|ρ|n〉

∑
n′ cos2

(
φ0n

′+φR

2

)
〈n′|ρ|n′〉

−
sin2

(
φ0n+φR

2

)
〈n|ρ|n〉

∑
n′ sin2

(
φ0n

′+φR

2

)
〈n′|ρ|n′〉

⎞
⎠

2

Since (φ0, φR, π) are Q-independent, Q(ρ) = 0 implies that, for some n̄ ∈ N, ρ = |n̄〉〈n̄|.
One concludes then with usual probability and compactness arguments [39], despite the fact
that the underlying Hilbert space is of infinite dimension. Other and also more precise results
can be found in [9].

2.3. Stabilization of photon-number states by feedback. Take n̄ ∈ N. With measure-
ment operators (2.2), the Markov process (2.1) admits ρ̄ = |n̄〉〈n̄| as steady state. We
describe here the measurement-based feedback (quantum-state feedback) implemented ex-
perimentally in [56] and that stabilizes ρ̄. Here the scalar classical control input u consists
in applying, just after the atom measurement in D, a coherent displacement of tunable am-
plitude u. This yields the following control Markov process

ρk+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Duk
MgρkM

†
gD

†
uk

Tr
(
MgρkM

†
g

) yk = g with probability pg,k = Tr
(
MgρkM

†
g

)

Duk
M eρkM

†
eD

†
uk

Tr
(
M eρkM

†
e

) yk = e with probability pe,k = Tr
(
M eρkM

†
e

)
(2.3)

where uk ∈ R is the control at step k, Du = eua
†−ua is the displacement of amplitude

u(see appendix A) and yk is the measurement outcome at step k.
The stabilization of ρ̄ is based on a state-feedback function f , u = f(ρ), such that

almost all closed-loop trajectories of (2.3) with uk = f(ρk) converge towards ρ̄ for any
initial condition ρ0. The construction of f exploits the open-loop martingales Tr (g(N)ρ)
to construct the following strict control Lyapunov function:

Vε(ρ) =
∑
n

(−ε〈n |ρ|n〉2 + σn〈n|ρ|n〉
)

where ε > 0 is small enough and

σn =

⎧⎪⎪⎨
⎪⎪⎩

1
4 +
∑n̄

ν=1
1
ν − 1

ν2 , if n = 0;∑n̄
ν=n+1

1
ν − 1

ν2 , if n ∈ [1, n̄ − 1];
0, if n = n̄;∑n

ν=n̄+1
1
ν + 1

ν2 , if n ∈ [n̄ + 1,+∞].

The weight σn are all non negative, n �→ σn is strictly decreasing (resp. increasing) for
n ≤ n̄ (resp. n ≥ n̄) and minimum for n = n̄. The feedback law u = f(ρ) is obtained by
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choosing u such that the expectation value of Vε(ρk+1), knowing ρk = ρ and uk = u, is as
small as possible:

u = f(ρ) =: Argmin
υ∈[−ū,ū]

Vε

(
Dυ

(
MgρM

†
g +M eρM

†
e

)
D†

υ

)

where ū > 0 is some prescribed bound on |u|. Such a feedback law achieves global stabi-
lization since, in closed-loop, the Lyapunov function is strict:

∀ρ �= |n̄〉〈n̄|, Vε

(
Df(ρ)

(
MgρM

†
g +M eρM

†
e

)
D†

f(ρ)

)
< Vε

(
ρ
)
.

Formal convergence proofs can be found in [3] for any finite dimensional approximations
resulting from a truncation to a finite number of photons and in [59] for the infinite dimen-
sion.

2.4. A more realistic Markov model with detection errors. The experimental implemen-
tation of the above feedback law [56] has to cope with several sources of imperfections. We
focus here on measurement errors and show how the Markov process has to be changed
to take into account these errors. Assume that we know the detection error rates charac-
terized by P(y = e/μ = g) = ηg ∈ [0, 1] (resp. P(y = g/μ = e) = ηe ∈ [0, 1])
the probability of erroneous assignation to e (resp. g) when the atom collapses in g (resp.
e). Without error, the quantum state ρk obeys to (2.1). A direct application of Bayes law
provides the expectation of ρk+1, knowing ρk and the effective detector signal yk, pos-
sibly corrupted by a detection error. When yk = g, this expectation value is given by

(1−ηg)MgρkM
†
g+ηeMeρkM

†
e

Tr((1−ηg)MgρkM
†
g+ηeMeρkM

†
e)

and, when yk = e, by
ηgMgρkM

†
g+(1−ηe)MeρkM

†
e

Tr(ηgMgρkM
†
g+(1−ηe)MeρkM

†
e)

.

Moreover the probability to get yk = g is Tr
(
(1− ηg)MgρkM

†
g + ηeMeρkM

†
e

)
and to get

yk = e is Tr
(
ηgMgρM

†
g + (1− ηe)MeρM

†
e

)
. This means that the Markov process (2.1)

must be changed to

ρk+1 =

⎧⎪⎪⎨
⎪⎪⎩

(1−ηg)MgρkM
†
g+ηeMeρkM

†
e

Tr((1−ηg)MgρkM
†
g+ηeMeρkM

†
e)

when yk = g,

ηgMgρkM
†
g+(1−ηe)MeρkM

†
e

Tr(ηgMgρkM
†
g+(1−ηe)MeρkM

†
e)

when yk = e,
(2.4)

with Tr
(
(1− ηg)MgρkM

†
g + ηeMeρkM

†
e

)
and Tr

(
ηgMgρkM

†
g + (1− ηe)MeρkM

†
e

)
be-

ing the probabilities to detect yk = g and e, respectively. The quantum state ρk is thus a con-
ditional state: it is the expectation value of the projector associated to the photon wave func-
tion at step k, knowing its value at step k = 0 and the detection outcomes (y0, . . . , yk−1).

All other experimental imperfections including decoherence can be treated in the same
way (see, e.g., [26, 58]) and yield to a quantum state governed by a Markov process with a
similar structure. In fact all usual models of open quantum systems admit the same structure,
either in discrete-time (see section 3) or in continuous-time (see section 4).

2.5. The real-time stabilization algorithm. Let us give more details on the real-time im-
plementation used in [56] of this quantum-state feedback. The sampling period τ is around
80 μs. The controller set-point is an integer n̄ labelling the steady-state ρ̄ = |n̄〉〈n̄| to be
stabilized. At time step k, the real-time computer

1. reads yk the measurement outcome for probe atom k;
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2. updates the quantum state from previous step value ρk−1 to ρk using yk and a Markov
model slightly more complicated but of same structure as (2.4); this update corre-
sponds to a quantum filter (see subsection 3.3).

3. computes uk as f(ρk) (state feedback) where f results from minimizing the expecta-
tion of the control Lyapunov function Vε(ρ) at step k + 1, knowing ρk;

4. send via an antenna a micro-wave pulse calibrated to obtain the displacementDuk
on

the photons.

All the details of this quantum feedback are given in [55]. In particular, the Markov model
takes into account several experimental imperfections such as finite life-time of the photons
(around 1/10 s) and a delay of 5 steps in the feedback loop. Convergence results related to
this feedback scheme are given in [3].

2.6. Reservoir engineering stabilization of Schrödinger cats. It is possible to stabilize
the photons trapped in cavity C (figure 2.1) without any such measurement-based feedback,
just by well tuned interactions with the probe atoms and without measuring them in D. Such
kind of stabilization, known as reservoir engineering [50], can be seen as a generalization of
optical pumping techniques [37]. Such stabilization methods are illustrative of coherent (or
autonomous) feedback where the controller is an open quantum system. In [53], a realistic
implementation of such passive stabilization method is proposed. It stabilizes a coherent
superposition of classical photon-states with opposite phases, a Schrödinger phase-cats with
wave functions of the form (|α〉 + i|-α〉)/√2, where |α〉 is the coherent state of amplitude
α ∈ R. We explain here the convergence analysis of such passive stabilization using the
notations and operator definitions given in appendix A.

The atom entering the cavity C is prepared through R1 in a partially excited state
cos(u/2)|g〉 + sin(u/2)|e〉 with u ∈ [0, π/2[ (south hemisphere of the Bloch sphere). Its
interaction with the photons is first dispersive with positive detuning during its entrance, then
resonant in the cavity middle and finally dispersive with negative detuning when leaving the
cavity. The resulting measurement operatorsMg andM e appearing in (2.1) admit then the
following form (see [54] for detailed derivations):

Mg = e−ih̃(N)M̃ge
ih̃(N), M e = e−ih̃(N)M̃ ee

ih̃(N)

with n �→ h̃(n) a real function, with I standing for IS , with

M̃g = cos(u2 ) cos
(

θ(N)
2

)
+ ε sin(u2 )

sin
(

θ(N)
2

)
√
N

a†

M̃ e = sin(u2 ) cos
(

θ(N+I)
2

)
− ε cos(u2 )a

sin
(

θ(N)
2

)
√
N

and with n �→ θ(n) a real function such that

θ(0) = 0, ∀n > 0, θ(n) ∈]0, π[ and lim
n (→+∞ θ(n) = π/2

Since we do not measure the atoms, the photon state ρk+1 at step k + 1 is given by the
following recurrence from the state ρk at step k:

ρk+1 = K(ρk) � MgρkM
†
g +M eρkM

†
e.
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-3
-3

3

3

0

0

Figure 2.2. Left: Wigner function of ρ∞ stabilized by reservoir engineering in [54]. Right: Wigner
function of a prefect Schrödinger phase-cat, 1

2

(
|α∞〉 + i|-α∞〉

)(
〈α∞| + i〈-α∞|

)
, with an average

number of photons identical to ρ∞ (α∞ =
√

Tr (Nρ∞)). The color map is identical to figure A.1.

Consider the change of frame associated to the unitary transformation e−ih̃(N): ρ = e−ih̃(N)

×ρ̃eih̃(N). Then we have ρ̃k+1 = K̃(ρ̃k) � M̃gρ̃k(M̃g)
† + M̃ eρ̃k(M̃ e)

†. It is proved
in [40] that, since |u| ≤ π/2, exists a unique common eigen-state |ψ̃〉 ∈ HS of M̃g and
M̃ e. Thus ρ̃∞ = |ψ̃〉〈ψ̃| is a fixed point of K̃. It is also proved in [40] that the ρ̃k’s
converge to ρ̃∞ when the function θ is strictly increasing. Since the underlying Hilbert
space HS is of infinite dimension, it is important to precise the type of convergence. For
any initial condition ρ̃0 such that Tr (N ρ̃0) < +∞, then limk (→+∞ Tr

(
(ρ̃k − ρ̃∞)2

)
= 0

(Frobenius norm on Hilbert-Schmidt operators). Since Tr (Nρ) ≡ Tr (N ρ̃), we have the
convergence of ρk towards ρ∞ = e−ih̃(N)ρ̃∞eih̃(N) as soon as the initial energy Tr (Nρ0)

is finite: limk (→+∞ Tr
(
((ρk − ρ∞)

2
)
= 0. When θ is not strictly increasing, we conjecture

that such convergence towards ρ∞ still holds true.
For well chosen experimental parameters [54], ρ̃∞ is close to a coherent state |α∞〉〈α∞|

for some α∞ ∈ R and h̃(N) ≈ πN2/2 . Since

e−iπ
2 N2 |α∞〉 = e−iπ/4

√
2

(|α∞〉+ i|-α∞〉),
we have under realistic conditions limk (→+∞ ρk ≈ 1

2

(
|α∞〉 + i|-α∞〉

)(
〈α∞| − i〈-α∞|

)
,

a coherent superposition of the classical states |α∞〉 and |-α∞〉 of same amplitude but of
opposite phases, i.e. a Schrödinger phase-cat. Figure 2.2 displays numerical computations
of the Wigner function of ρ∞ obtained with realistic parameters.

3. Discrete-time systems

The theory of open quantum systems starts with the contributions of Davies [25]. The goal
of this section is first to present in an elementary way the general structure of the Markov
models describing such systems. Some related stabilization problems are also addressed.
Throughout this section, H is an Hilbert space; for each time-step k ∈ N, ρk denotes the
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density operator describing the state of the quantum Markov process; for all k, ρk is an
Hilbert-Schmidt operator on H, Hermitian and of trace one; the set of continuous operators
onH is denoted by L(H); expectation values are denoted by the symbol E ( ).

3.1. Markov models. Take a positive integer m and consider a finite set (Mμ)μ∈{1,...,m}
of operators on H such that

I =

m∑
μ=1

M †
μMμ (3.1)

where I is the identity operator. Then each Mμ ∈ L(H). Take another positive integer
m′ and consider a left stochastic m′ × m-matrix (ημ′μ): its entries are non-negative and
∀μ ∈ {1, . . . ,m}, ∑m′

μ′=1 ημ′μ = 1. Consider the Markov process of state ρ and output
y ∈ {1, . . . ,m′} (measurement outcome) defined via the transition rule

ρk+1 =

∑
μ ημ′μMμρkM

†
μ

Tr
(∑

μ ημ′μMμρkM
†
μ

) , yk = μ′ with probability Pμ′(ρk) (3.2)

where Pμ′(ρ) = Tr
(∑

μ ημ′μMμρM
†
μ

)
. At each step k, the probability to have yk = μ′

depends on the quantum state ρk and is given by Pμ′(ρk).

3.2. Kraus and unital maps. The Kraus mapK corresponds to the master equation of (3.2).
It is given by the expectation value of ρk+1 knowing ρk:

K(ρ) �
∑
μ

MμρM
†
μ = E (ρk+1 / ρk = ρ) . (3.3)

In quantum information [47] such Kraus maps describe quantum channels. They admit many
interesting properties. In particular, they are contractions for many metrics (see [49] for the
characterization, in finite dimension, of metrics for which any Kraus map is a contraction).
We just recall below two such metrics. For any density operators ρ and σ we have

D(K(ρ),K(σ)) ≤ D(ρ, σ) and F (K(ρ),K(σ)) ≥ F (ρ, σ) (3.4)

where the trace distance D and fidelity F are given by

D(ρ, σ) � Tr (|ρ − σ|) and F (ρ, σ) � Tr2
(√√

ρσ
√

ρ

)
. (3.5)

Fidelity is between 0 and 1: F (ρ, σ) = 1 if and only if, ρ = σ. Moreover F (ρ, σ) = F (σ, ρ).
If σ = |ψ〉〈ψ| is a pure state (|ψ〉 element of H of length one), F (ρ, σ) coincides with
the Frobenius product: F (ρ, |ψ〉〈ψ|) ≡ Tr (ρ|ψ〉〈ψ|) = 〈ψ|ρ|ψ〉. Kraus maps provide the
evolution of open quantum systems from an initial state ρ0 without information coming from
the measurements (see [33, chapter 4: the environment is watching]):

ρk+1 = K(ρk) for k = 0, 1, . . . , .

This corresponds to the “Schrödinger description” of the dynamics.
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The “Heisenberg description” is given by the dual map K∗. It is characterized by

Tr (AK(ρ)) = Tr (K∗(A)ρ)

and defined for any operator A onH by

K∗(A) =
∑
μ

M †
μAMμ.

Technical conditions on A are required when H is of infinite dimension, they are not given
here (see, e.g., [25]). The map K∗ is unital since (3.1) reads K∗(I) = I . As K, the
dual map K∗ admits a lot of interesting properties. It is noticed in [57] that, based on a
theorem due of Birkhoff [14], such unital maps are contractions on the cone of non-negative
Hermitian operators equipped with the Hilbert’s projective metric. In particular, when H is
of finite dimension, we have, for any Hermitian operator A:

λmin(A) ≤ λmin(K
∗(A)) ≤ λmax(K

∗(A)) ≤ λmax(A)

where λmin and λmax correspond to the smallest and largest eigenvalues. As shown in [51],
such contraction properties based on Hilbert’s projective metric have important implications
in quantum information theory.

To emphasize the difference between the “Schrödinger description” and the “Heisenberg
description” of the dynamics, let us translate convergence issues from the “Schrödinger de-
scription” to the “Heisenberg one”. Assume, for clarity’s sake, thatH is of finite dimension.
Suppose also that K admits the density operator ρ̄ as unique fixed point and that, for any
initial density operator ρ0, the density operator at step k, ρk, defined by k iterations of K,
converges towards ρ̄ when k tends to ∞. Then k �→ D(ρk, ρ̄) is decreasing and converges
to 0 whereas k �→ F (ρk, ρ̄) is increasing and converges to 1.

The translation of this convergence in the “Heisenberg description” is the following: for
any initial operator A0, its k iterates via K∗, Ak, converge towards Tr (A0ρ̄) I . Moreover
when A0 is Hermitian, k �→ λmin(Ak) and k �→ λmax(Ak) are respectively increasing and
decreasing and both converge to Tr (A0ρ̄).

3.3. Quantum filtering. Quantum filtering has its origin in Belavkin’s work [13] on con-
tinuous-time open quantum systems (see section 4). The state ρk of (3.2) is not directly
measured: open quantum systems are governed by hidden-state Markov model. Quantum
filtering provides an estimate ρest

k of ρk based on an initial guess ρest
0 (possibly different from

ρ0) and the measurement outcomes yl between 0 and k − 1:

ρest
l+1 =

∑
μ ηylμMμρ

est
l M

†
μ

Tr
(∑

μ ηylμMμρ
est
l M

†
μ

) , l ∈ {0, . . . , k − 1}. (3.6)

Thus (ρ, ρest) is the state of an extended Markov process governed by the following rule

ρk+1 =

∑
μ ημ′μMμρkM

†
μ

Tr
(∑

μ ημ′μMμρkM
†
μ

) and ρest
k+1 =

∑
μ ημ′μMμρ

est
kM

†
μ

Tr
(∑

μ ημ′μMμρ
est
kM

†
μ

)

with transition probability Pμ′(ρk) = Tr
(∑

μ ημ′μMμρkM
†
μ

)
depending on ρk and inde-

pendent of ρest
k .
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When H is of finite dimension, it is shown in [58] with an inequality proved in [52]
that such discrete-time quantum filters are always stable in the following sense: the fidelity
between ρ and its estimate ρest is a sub-martingale for any initial condition ρ0 and ρest

0 ;

E
(
F (ρk+1, ρ

est
k+1) | (ρk, ρest

k )
) ≥ F (ρk, ρ

est
k )

This result does not guaranty that ρest
k converges to ρk when k tends to infinity. The conver-

gence characterization of ρest towards ρ via checkable conditions on the left stochastic matrix
(ημ′μ) and on the set of operators (Mμ) remains an open problem [60, 61].

3.4. Stabilization via measurement-based feedback. Assume now that the operatorsMμ

appearing in (3.2) and satisfying (3.1), depend also on a control input u belonging to some
admissible set U (typically a discrete set or a compact subset of Rp for some positive integer
p). Then we have the following control Markov model with input u ∈ U , hidden state ρ and
measured output y ∈ {1, . . . ,m′}:

ρk+1 =

∑
μ ημ′μMμ(uk)ρkM

†
μ(uk)

Tr
(∑

μ ημ′μMμ(uk)ρkM
†
μ(uk)

) , yk = μ′ with probability Pμ′(ρk, uk) (3.7)

where Pμ′(ρ, u) = Tr
(∑

μ ημ′μMμ(u)ρM
†
μ(u)
)
. Assume that for some nominal ad-

missible input ū ∈ U , this Markov process admits a steady state ρ̄. This means that, for
any μ′ ∈ {1, . . . ,m′} we have

∑
μ ημ′μMμ(ū)ρ̄M

†
μ(ū) = Pμ′(ρ̄, ū)ρ̄. The measurement-

based feedback stabilization of the steady-state ρ̄ is the following problem: for any initial
condition ρ0, find for any k ∈ N a control input uk ∈ U depending only on ρ0 and on the
past y values, (y0, . . . , yk−1), such that ρk converges almost surely towards ρ̄.

Quantum-state feedback scheme, u = f(ρ), can be used here. They can be based on
Lyapunov techniques. Potential candidates of Lyapunov functions V (ρ) could be related to
the metrics for which the open-loop Kaus map with ū is contracting. Specific V depend-
ing on the precise structure of the system could be more adapted as for the LKB photon
box [3]. Such Lyapunov feedback laws are then given by the minimization versus u ∈ U of
E (V (ρk+1) | ρk = ρ, uk = u).

Assume that we have a stabilizing feedback law u = f(ρ): ū = f(ρ̄) and the trajectories
of (3.7) with uk = f(ρk) converge almost surely towards ρ̄. Since ρ is not directly accessi-
ble, one has to replace ρk by its estimate ρest

k to obtain uk. Experimental implementations of
such quantum feedback laws admit necessarily an observer/controller structure governed by
a Markov process of state (ρ, ρest) with the following transition rule:

ρk+1 =

∑
μ ημ′μMμ(f(ρ

est
k ))ρkM

†
μ(f(ρ

est
k ))

Tr
(∑

μ ημ′μMμ(f(ρ
est
k ))ρkM

†
μ(f(ρ

est
k ))
)

ρest
k+1 =

∑
μ ημ′μMμ(f(ρ

est
k ))ρ

est
kM

†
μ(f(ρ

est
k ))

Tr
(∑

μ ημ′μMμ(f(ρ
est
k ))ρ

est
kM

†
μ(f(ρ

est
k ))
)

(3.8)

with probability Pμ′(ρk, f(ρ
est
k )) = Tr

(∑
μ ημ′μMμ(f(ρ

est
k ))ρkM

†
μ(f(ρ

est
k ))
)

depending
on ρk and ρest

k . In [16] a separation principle is proved with elementary arguments (see
also [3]): if H is of finite dimension, if ρ̄ is a pure state (ρ̄ = |ψ̄〉〈ψ̄| for some |ψ̄〉 in H)
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and if Ker(ρest
0 ) ⊂ Ker(ρ0), then almost all realizations of (3.8) converge to the steady-

state (ρ̄, ρ̄). The stabilizing feedback schemes used in experiments [56] and [64] exploit
such observer/controller structure and rely on this separation principle where the designs
of the stabilizing feedback (controller) and of the quantum-state filter (observer) are done
separately.

With such feedback scheme we loose the linear formulation of the ensemble-average
master equation with a Kraus map. In general, there is no simple formulation of the master
equation governing the expectation value of ρk in closed-loop. Nevertheless, for systems
where the measurement step producing the output yk is followed by a control action charac-
terized by uk, it is possible via a static output feedback, uk = f(yk) where f is now some
function from {1, . . . ,m′} to U , to preserve in closed-loop such Kraus-map formulations.
These specific feedback schemes, called Markovian feedbacks, are due to Wiseman and have
important applications. They are well explained and illustrated in the recent book [63].

3.5. Stabilization of pure states by reservoir engineering. With T as sampling period,
a possible formalization of this passive stabilization method is as follows. The goal is to
stabilize a pure state ρ̄S = |ψ̄S〉〈ψ̄S | for a system S with Hilbert spaceHS and Hamiltonian
operator HS (|ψ̄S〉 ∈ HS is of length one). To achieve this goal consider a “realistic”
quantum controller of Hilbert space HC with initial state |θC〉 and with Hamiltonian HC .
One has to design an adapted interaction between S and C with a well chosen interaction
Hamiltonian Hint, an Hermitian operator on HS,C = HS ⊗ HC . This controller C and
its interaction with S during the sampling interval of length T have to fulfill the conditions
explained below in order to stabilize ρ̄S .

Denote byUS,C = U(T ) the propagator between 0 and time T for the composite system
(S,C): U(t) is the unitary operator onHS,C defined by

d

dt
U = − i

�

(
HS ⊗ IC +Hint + IS ⊗HC

)
U , U(0) = IS,C

where IS , IC and IS,C are the identity operators on HS , HC , and HS,C , respectively. To
the propagator US,C and the initial controller wave function |θC〉 ∈ HC is attached a Kraus
mapK on HS ,

K(ρS) =
∑
μ

MμρSM
†
μ

where the operatorsMμ onHS are defined by the decomposition,

∀|ψS〉 ∈ HS , US,C

(|ψS〉 ⊗ |θC〉
)
=
∑
μ

(
Mμ|ψS〉

)⊗ |λμ〉,

with (|λμ〉) any ortho-normal basis ofHC . Despite the fact that the operators (Mμ) depend
on the choice of this basis, the Kraus map K is independent of this choice: it depends only
on US,C and |θC〉.

The first stabilization condition is the following: the Kraus operators Mμ have to admit
|ψ̄S〉 as common a eigen-vector since ρ̄S has to be a fixed point ofK (K(ρ̄S) = ρ̄S).

The second stabilization condition is the following: for any initial density operator ρS,0,
the iterates ρS,k of K converge to ρ̄S , i.e.,

lim
k (→+∞

ρS,k = ρ̄S where ρS,k = K(ρS,k−1).
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When these two conditions are satisfied, the repetition of the same interaction for each
sampling interval [kT, (k + 1)T ] (k ∈ N) with a controller-state |θC〉 at kT ensures that
the density operator of S at kT , ρS,k, converges to ρ̄S since ρS,k = K(ρS,k−1). Here, the
so-called reservoir is made of the infinite set of identical controller systems C indexed by
k ∈ N, with initial state |θC〉 and interacting sequentially with S during [kT, (k + 1)T ].

4. Continuous-time systems

4.1. Stochastic master equations. These models have their origins in the work of Davies
[25], are related to quantum trajectories [18, 24] and are connected to Belavkin quantum
filters [13]. A modern and mathematical exposure of the diffusive models is given in [5].
These models are interpreted here as continuous-time versions of (3.2). They are based
on stochastic differential equations, also called Stochastic Master Equations (SME). They
provide the evolution of the density operator ρt with respect to the time t. They are driven by
a finite number of independent Wiener processes indexed by ν, (Wν,t), each of them being
associated to a continuous classical and real signal, yν,t, produced by detector ν. These
SMEs admit the following form:

dρt =

(
− i

�
[H, ρt] +

∑
ν

LνρtL
†
ν − 1

2 (L
†
νLνρt + ρtL

†
νLν)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL

†
ν − Tr

(
(Lν +L†ν)ρt

)
ρt

)
dWν,t (4.1)

whereH is the Hamiltonian operator on the underlying Hilbert spaceH andLν are arbitrary
operators (not necessarily Hermitian) on H. Each measured signal yν,t is related to ρt and
Wν,t by the following output relationship:

dyν,t = dWν,t +
√

ην Tr
(
(Lν +L†ν) ρt

)
dt

where ην ∈ [0, 1] is the efficiency of detector ν. The ensemble average of ρt obeys thus to
a linear differential equation, also called master or Lindblad-Kossakowski differential equa-
tion [38, 41]:

d

dt
ρ = − i

�
[H, ρ] +

∑
ν

LνρtL
†
ν − 1

2 (L
†
νLνρt + ρtL

†
νLν). (4.2)

It is the continuous-time analogue of the Kraus map K associated to the Markov pro-
cess (2.4).

In fact (3.2) and (4.1) have the same structure. This becomes obvious if one remarks
that, with standard Itō rules, (4.1) admits the following formulation

ρt+dt =
MdytρtM

†
dyt

+
∑

ν(1− ην)LνρtL
†
νdt

Tr
(
MdytρtM

†
dyt

+
∑

ν(1− ην)LνρtL
†
νdt
)

withMdyt
= I+

(
− i

�
H − 1

2

∑
ν L

†
νLν

)
dt+
∑

ν

√
ηνdyνtLν . With such a formulation, it

becomes clear that (4.1) preserves the trace and the non-negativeness of ρ. This formulation
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provides also directly a time discretization numerical scheme preserving non-negativeness
of ρ

Mixed diffusive/jump stochastic master equations can be considered. Additional Poisson
counting processes (Nμ(t)) are added in parallel to the Wiener processes (Wν,t) [2]:

dρt =

(
− i

�
[H, ρt] +

∑
ν

LνρtL
†
ν − 1

2
(L†νLνρt + ρtL

†
νLν)

)
dt

+
∑
ν

√
ην

(
Lνρt + ρtL

†
ν − Tr

(
(Lν +L†ν)ρt

)
ρt

)
dWν,t

+

(∑
μ

V μρtV
†
μ − 1

2
(V †

μV μρt + ρtV
†
μV μ)

)
dt

+
∑
μ

(
θμρt+

∑
μ′ ημ,μ′V μρtV

†
μ

θμ+
∑

μ′ ημ,μ′ Tr
(
V μ′ρtV †

μ′
) − ρt

)⎛⎝dNμ(t)−
(
θμ +

∑
μ′

ημ,μ′ Tr
(
V μ′ρtV

†
μ′

))
dt

⎞⎠
where the V μ’s are operators on H, where the additional parameters θμ, ημ,μ′ ≥ 0 with

ημ′ =
∑

μ ημ,μ′ ≤ 1, describe counting imperfections. For each μ,
(
θμ +

∑
μ′ ημ,μ′

Tr
(
V μ′ρtV

†
μ′

))
dt is the probability to increment by one Nμ between t and t + dt. The

above stochastic model is similar to the discrete-time Markov process (3.2). The transition
from ρt to ρt+dt is given by the following two possibilities:

• either, for some μ, dNμ(t) = Nμ(t + dt)− Nμ(t) = 1, then we have the transition

ρt+dt =
θμρt+

∑
μ′ ημ,μ′V μ′ρtV

†
μ′

θμ+
∑

μ′ ημ,μ′ Tr
(
V μ′ρtV

†
μ′

) ;
• or, ∀μ, dNμ(t) = 0, and we have the transition

ρt+dt =
MdytρtM

†
dyt

+
∑

ν(1− ην)LνρtL
†
νdt +

∑
μ(1− ημ)V μρtV

†
μdt

Tr
(
MdytρtM

†
dyt

+
∑

ν(1− ην)LνρtL
†
νdt +

∑
μ(1− ημ)V μρtV

†
μdt
)

with

Mdyt = I +

(
− i

�
H − 1

2

∑
ν

L†νLν + 1
2

∑
μ

(
ημ Tr

(
V μρtV

†
μ

)
I − V †

μV μ

))
dt

+
∑
ν

√
ηνdyνtLν

and dyν,t =
√

ην Tr
(
(Lν +L†ν) ρt

)
dt + dWν,t.

Such transition relationships can be exploited by numerical integration schemes in order to
preserve positiveness of ρ. In particular, when all ην , θμ and ημ,μ′ are equal to zero, we
recover, up to second order terms, the explicit Euler numerical scheme for the Lindblad-
Kossakovski equation.
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4.2. Quantum filtering. For clarity’s sake, take in (4.1) a single measurement yt associ-
ated to operator L, detection efficiency η ∈ [0, 1] and scalar Wiener process Wt: dyt =
√

ηTr
(
(L+L†) ρt

)
dt + dWt. The continuous-time counterpart of (3.6) provides the

estimate ρest
t by the Belavkin quantum filtering process

dρest
t = − i

�
[H, ρest

t ] dt +
(
Lρest

t L
† − 1

2 (L
†Lρest

t + ρest
t L

†L)
)

dt

+
√

η
(
Lρest

t + ρest
t L

† − Tr
(
(L+L†)ρest

t

)
ρet

)(
dyt −√

ηTr
(
(L+L†)ρest

t

)
dt
)
.

initialized to any density matrix ρest
0 . Thus (ρ, ρest) obeys to the following set of nonlinear

stochastic differential equations

dρt = − i
�
[H, ρt] dt +

(
LρtL

† − 1
2 (L

†Lρt + ρtL
†L)
)

dt

+
√

η
(
Lρt + ρtL

† − Tr
(
(L+L†)ρt

)
ρt

)
dWt

dρest
t = − i

�
[H, ρest

t ] dt +
(
Lρest

t L
† − 1

2 (L
†Lρest

t + ρest
t L

†L)
)

dt

+
√

η
(
Lρest

t + ρest
t L

† − Tr
(
(L+L†)ρest

t

)
ρest
t

)
dWt

+ η
(
Lρest

t + ρest
t L

† − Tr
(
(L+L†)ρest

t

)
ρest
t

)
Tr
(
(L+L†)(ρt − ρest

t )
)

dt.

It is proved in [2] that such filtering process is always stable in the sense that, as for the
discrete-time case, the fidelity between ρt and ρest

t is a sub-martingale. In [61] a first con-
vergence analysis of these filters is proposed. Nevertheless the convergence characterization
in terms of the operators H , L and the parameter η remains an open problem as far as we
know.

Formulations of quantum filters for stochastic master equations driven by an arbitrary
number of Wiener and Poisson processes can be found in [2].

4.3. Stabilization via measurement-based feedback. Assume that the Hamiltonian H =
H0 + uH1 appearing in (4.2) depends on some scalar control input u, H0 and H1 be-
ing Hermitian operators on H. Assume also that ρ̄ = |ψ̄〉〈ψ̄| is a steady-state of (4.2)
for u = 0. Necessarily |ψ̄〉 is an eigen-vectors of each Lν , Lν |ψ̄〉 = λν |ψ̄〉 for some
λν ∈ C. This implies that ρ̄ is also a steady-state of (4.1) with u = 0, since Lν ρ̄ + ρ̄L†ν =

Tr
(
(Lν +L†ν)ρ̄

)
ρ̄. The stabilization of ρ̄ consists then in finding a feedback law u = f(ρ)

with f(ρ̄) = 0 such that almost all trajectories ρt of the closed-loop system (4.1) with
H = H(t) = H0 + f(ρt)H1 converge to ρ̄ when t tends to +∞. Such feedback law could
be obtained by Lyapunov techniques as in [46]. As in the discrete-case, ρt is replaced, in
the feedback law, by its estimate ρest

t obtained via quantum filtering. Convergence is then
guarantied as soon as Ker ρest

0 ⊂ Ker ρ0 [16]. Other feedback schemes not relying directly
on the quantum state ρt but still based on past values of the measurement signals yν can be
considered (see [63] for Markovian feedbacks; see [17, 62] for recent experimental imple-
mentations).

4.4. Stabilization via coherent feedback. This passive stabilization method has its origin,
for classical system, in the classical Watt regulator where a mechanical system, the steam



936 Pierre Rouchon

machine, was controlled by another mechanical system, a conical pendulum. As initially
shown in [44], the study of such closed-loop systems highlights stability and convergence
as the main mathematical issues. For quantum systems, these issues remain similar and are
related to reservoir engineering [42, 50].

As in the discrete-time case, the goal remains to stabilize a pure state ρ̄S = |ψ̄S〉〈ψ̄S |
for system S (Hilbert space HS and Hamiltonian HS) by coupling to the controller system
C (Hilbert space HC , Hamiltonian HC) via the interaction Hint, an Hermitian operator
on HS ⊗ HC . The controller C is subject to decoherence described by the set

(
LC,ν

)
of

operators on HC indexed by ν. The closed-loop system is a composite system with Hilbert
spaceH = HS⊗HC . Its density operator ρ obeys to (4.2) withH = HS⊗IC+IS⊗HC+
Hint and Lν = IS ⊗ LC,ν ( IS and IC identity operators on HS and HC , respectively).
Stabilization is achieved when ρ(t) converges, whatever its initial condition ρ(0) is, to a
separable state of the form ρ̄S ⊗ ρ̄C where ρ̄C could possibly depend on t and/or on ρ(0).
In several interesting cases, such as cooling [32], coherent feedback is shown to outperform
measurement-based feedback.

The asymptotic analysis (stability and convergence rates) for such composite closed-loop
systems is far from being obvious, even if such analysis is based on known properties for
each subsystem and for the coupling Hamiltonian Hint. When H is of infinite dimension,
convergence analysis becomes more difficult. To have an idea of the mathematical issues,
take the harmonic oscillators considered in [45]. They are nonlinearly coupled to coherent
drives. These open quantum systems could have important applications for quantum com-
putations and are governed by the following kind of master equations:

d

dt
ρ = u[(a†)r − ar, ρ] + κ

(
(arρ(a†)r − 1

2 (a
†)rarρ − 1

2ρ(a
†)rar

)
(4.3)

where u > 0 and κ > 0 are constant parameters and r is an integer greater than 1. Set
ᾱ = r

√
2u/κ and for s ∈ {0, 1, . . . , r − 1}, ᾱs = e2isπ/rᾱ. Denote by |ᾱs〉 the coher-

ent state of complex amplitude ᾱs. Computations exploiting properties of coherent states
recalled in appendix A show that, for any s, |ᾱs〉〈ᾱs| is a steady state of (4.3). Moreover
the set of steady states corresponds to the density operators ρ̄ with support inside the vector
space spanned by the |ᾱs〉 for s ∈ {0, 1, . . . , r−1}. We conjecture that, for initial conditions
ρ(0) with finite energy (Tr (ρN) < ∞), the solutions of (4.3) are well defined and converge
in Frobenius norm to such steady states ρ̄ possibly depending on ρ(0). Having sharp estima-
tions of the convergence rates is also an open question. We cannot apply here the existing
general convergence results towards “full rank steady-states” (see, e.g., [4][chapter 4]): here
the rank of such steady states ρ̄ is at most r. Another formulation of such dynamics can be
given via the Wigner function W ρ of ρ (see appendix A). With the correspondence (A.2),
(4.3) yields a partial differential equation describing the time evolution of W ρ: this equa-
tion is of order one in time but of order 2r versus the two variables of the phase plane. It
corresponds to a Fokker-Planck equation of high order.

5. Concluding remarks

The above exposure deals with specific and limited aspects of modelling and control of open
quantum systems. It does not consider many other interesting developments such as
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• controllability and motion planing in finite dimension [23, 31] and in infinite dimen-
sion (see, e.g., [10–12, 21, 27]);

• quantum Langevin equations and input/output approach [28], quantum signal amplifi-
cation [22] and linear quantum systems [35];

• (S,L,H) formalism for quantum networks [30];

• master equations and quantum Fokker Planck equations [19, 20];

• optimal control methods [7, 8, 15, 29, 48].

More topics can also be found in the review articles [1, 34, 43].

A. Quantum harmonic oscillator

We just recall here some useful formulae (see, e.g., [6]). The Hamiltonian formulation of the
classical harmonic oscillator of pulsation ω > 0, d2

dt2 x = −ω2x, is as follows:

d

dt
x = ωp =

∂H

∂p
,

d

dt
p = −ωx = −∂H

∂x

with the classical Hamiltonian H(x, p) = ω
2 (p

2 + x2). The correspondence principle yields
the following quantization: H becomes an operator H on the function of x ∈ R with
complex values. The classical state (x(t), p(t)) is replaced by the quantum state |ψ〉t as-
sociated to the function ψ(x, t) ∈ C. At each t, R � x �→ ψ(x, t) is measurable and∫
R
|ψ(x, t)|2dx = 1: for each t, |ψ〉t ∈ L2(R,C).
The HamiltonianH is derived from the classical one H by replacing x by the Hermitian

operator X ≡ x√
2
and p by the Hermitian operator P ≡ − i√

2
∂
∂x :

H

	
= ω(P 2 +X2) ≡ −ω

2

∂2

∂x2
+

ω

2
x2

The Hamilton ordinary differential equations are replaced by the Schrödinger equation,
d
dt |ψ〉 = −ıH

�
|ψ〉, a partial differential equation defining ψ(x, t) from its initial condition

(ψ(x, 0))x∈R : ı
∂ψ

∂t
(x, t) = −ω

2

∂2ψ

∂x2
(x, t) +

ω

2
x2ψ(x, t), x ∈ R

The average position reads

〈X〉t = 〈ψ|X|ψ〉 = 1√
2

∫ +∞

−∞
x|ψ|2dx.

The average impulsion reads

〈P 〉t = 〈ψ|P |ψ〉 = − ı√
2

∫ +∞

−∞
ψ∗

∂ψ

∂x
dx,

(real quantity via an integration by part).
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It is very convenient to introduced the annihilation operator a and creation operator a†:

a = X + ıP ≡ 1√
2

(
x +

∂

∂x

)
, a† = X − ıP ≡ 1√

2

(
x − ∂

∂x

)
.

We have

[X,P ] = ı
2I, [a,a†] = I, H = ω(P 2 +X2) = ω

(
a†a+ 1

2I
)

where I stands for the identity operator.
Since [a,a†] = I , the spectral decomposition of a†a is simple. The Hermitian operator

N = a†a, the photon-number operator, admits N as non degenerate spectrum. The normal-
ized eigenstate |n〉 associated to n ∈ N, is denoted by |n〉. Thus the underlying Hilbert space
reads

H =

⎧⎨
⎩
∑
n≥0

ψn|n〉, (ψn)n≥0 ∈ l2(C)

⎫⎬
⎭

where (|n〉)n∈N is the Hilbert basis of photon-number states (also called Fock states). For
n > 0, we have

a|n〉 = √
n |n − 1〉, a†|n〉 = √

n + 1 |n + 1〉.
The ground state |0〉 is characterized by a|0〉 = 0. It corresponds to the Gaussian function
ψ0(x) =

1
π1/4 exp(−x2/2).

For any function f we have the following commutations

af(N) = f(N + I)a, a†f(N) = f(N − I)a†.

In particular for any angle θ, eiθNae−iθN = e−iθa.
For any amplitude α ∈ C, the Glauber displacement unitary operatorDα is defined by

Dα = eα a†−α∗a

We have D−1
α = D†

α = D−α. The following Glauber formula is useful: if two operators
A and B commute with their commutator, i.e., if [A, [A,B]] = [B, [A,B]] = 0, then we

have eA+B = eA eB e−
1
2 [A,B]. Since A = αa† and B = −α∗a are in this case, we have

another expression forDα

Dα = e−
|α|2
2 eαa

†
e−α∗a = e+

|α|2
2 e−α∗aeαa

†
.

The terminology displacement has its origin in the following property derived from Baker-
Campbell-Hausdorff formula:

∀α ∈ C, D−αaDα = a+ α and D−αa
†Dα = a† + α∗.

To the classical state (x, p) is associated a quantum state usually called coherent state of
complex amplitude α = (x + ıp)/

√
2 and denoted by |α〉:

|α〉 = Dα|0〉 = e−
|α|2
2

+∞∑
n=0

αn√
n!
|n〉. (A.1)
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|α〉 corresponds to the translation of the Gaussian profile corresponding to vacuum state |0〉:

|α〉 ≡
(
R � x �→ 1

π1/4 e
ı
√
2x)αe−

(x−√
2�α)2

2

)
.

This usual notation is potentially ambiguous: the coherent state |α〉 is very different from
the photon-number state |n〉 where n is a non negative integer: The probability pn to obtain
n ∈ N during the measurement of N with |α〉 obeys to a Poisson law pn = e−|α|

2 |α|2n/n!.
The resulting average energy is thus given by 〈α|N |α〉 = |α|2. Only for α = 0 and n = 0,
these quantum states coincide.

The coherent state α ∈ C is the unitary eigenstate of a associated to the eigenvalue
α ∈ C: a|α〉 = α|α〉. Since H/	 = ω(N + 1

2 ), the solution of the Schrödinger equation
d
dt |ψ〉 = −ıH

�
|ψ〉, with initial value a coherent state |ψ〉t=0 = |α0〉 (α0 ∈ C) remains a

coherent state with time varying amplitude αt = e−ıωtα0:

|ψ〉t = e−ıωt/2|αt〉.

These coherent solutions are the quantum counterpart of the classical solutions: xt =√
24(αt) and pt =

√
2;(αt) are solutions of the classical Hamilton equations d

dtx = ωp

and d
dtp = −ωx since d

dtαt = −ıωαt. The addition of a control input, a classical drive of
amplitude u ∈ R, yields to the following control Schrödinger equation

d

dt
|ψ〉 = −ı

(
ω
(
a†a+ 1

2

)
+ u(a+ a†)

)
|ψ〉

It is the quantum version of the control classical harmonic oscillator

d

dt
x = ωp,

d

dt
p = −ωx − u

√
2.

A possible definition of the Wigner function W ρ attached to any density operator ρ is as
follows:

W ρ : C � α → 2
π Tr
(
eiπNe−αa†+α∗aρeαa

†−α∗a
)
∈ [−2/π, 2/π]

where α = x + ip is a position in the phase-plane (x, p) of the classical oscillator. With the
correspondences

∂

∂α
= 1

2

(
∂

∂x
− i

∂

∂p

)
,

∂

∂α∗
= 1

2

(
∂

∂x
+ i

∂

∂p

)

W ρa =

(
α − 1

2

∂

∂α∗

)
W ρ, Waρ =

(
α + 1

2

∂

∂α∗

)
W ρ

W ρa†
=

(
α∗ + 1

2

∂

∂α

)
W ρ, Wa†ρ =

(
α∗ − 1

2

∂

∂α

)
W ρ

(A.2)

the Lindblad-Kossakovski governing the evolution of the density operator ρ of a quantum
oscillator, with damping time constant 1/κ > 0 and resonant drive of real amplitude u,

d

dt
ρ = u[a† − a, ρ] + κ

(
aρa† − (Nρ + ρN)/2

)
,
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Figure A.1. Wigner function of typical quantum states of an harmonic oscillator.

becomes a convection-diffusion equation for the Wigner function W ρ

∂W ρ

∂t
= κ

2

(
∂

∂x

(
(x − ᾱ)W ρ

)
+

∂

∂p

(
pW ρ
)
+ 1

4ΔW ρ

)

where Δ denotes the Laplacian operator ∂2

∂x2 + ∂2

∂p2 . The solutions converge toward the

Gaussian steady-state W ρ(x, p) = 2
π e−2(x−ᾱ)2−2p2

, where ρ = |ᾱ〉〈ᾱ| is the coherent state
of amplitude ᾱ = 2u/κ.

B. Qubit

The underlying Hilbert space H = C
2 = {cg|g〉+ ce|e〉, cg, ce ∈ C} where (|g〉, |e〉) is the

ortho-normal frame formed by the ground state |g〉 and the excited state |e〉. It is usual to
consider the following operators on H:

σ- = |g〉〈e|, σ+ = σ-
† = |e〉〈g|, σx = σ- + σ+ = |g〉〈e|+ |e〉〈g|,

σy = iσ- − iσ+ = i|g〉〈e| − i|e〉〈g|, σz = σ+σ- − σ-σ+ = |e〉〈e| − |g〉〈g|. (B.1)

σx, σy and σz are the Pauli operators. They are square root of I: σx2 = σy
2 = σz

2 = I.
They anti-commute

σxσy = −σyσx = iσz, σyσz = −σzσy = iσx, σzσx = −σxσz = iσy

and thus [σx,σy] = 2iσz , [σy,σz] = 2iσx, [σz,σx] = 2iσy . The uncontrolled evolution is
governed by the Hamiltonian H/	 = ωσz/2 where ω > 0 is the qubit pulsation. Thus the
solution of d

dt |ψ〉 = −iH
�
|ψ〉 is given by

|ψ〉t = e
−i

(
ωt
2

)
σz |ψ〉0 = cos

(
ωt
2

) |ψ〉0 − i sin
(
ωt
2

)
σz|ψ〉0
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since for any angle θ we have

eiθσx = cos θ + i sin θσx, eiθσy = cos θ + i sin θσy, eiθσz = cos θ + i sin θσz.

Since the Pauli operators anti-commute, we have the useful relationships:

eiθσxσy = σye
−iθσx , eiθσyσz = σze

−iθσy , eiθσzσx = σxe
−iθσz .

The orthogonal projector ρ = |ψ〉〈ψ|, the density operator associated to the pure state
|ψ〉, obeys to the Liouville equation d

dtρ = − i
�
[H, ρ]. Mixed quantum states are described

by ρ that are Hermitian, non-negative and of trace one. For a qubit, the Bloch sphere repre-
sentation is a useful tool exploiting the smooth correspondence between such ρ and the unit
ball of R3 considered as Euclidian space:

ρ =
I + xσx + yσy + zσz

2
, (x, y, z) ∈ R

3, x2 + y2 + z2 ≤ 1.

(x, y, z) ∈ R
3 are the coordinates in the orthonormal frame (�ı,�j,�k) of the Bloch vector

�M ∈ R
3. This vector lives on or inside the unit sphere, called Bloch sphere:

�M = x�ı + y�j + z�k.

Since Tr
(
ρ2
)
= x2 + y2 + z2, �M is on the Bloch sphere when ρ is of rank one and thus

is a pure state. The translation of Liouville equation on �M yields with H/	 = ωσz/2:
d
dt

�M = ω�k× �M. For the two-level system with the coherent drive described by the complex
valued control u, H/	 = ω

2σz + $(u)
2 σx + )(u)

2 σy and the Liouville equation reads, with
the Bloch vector �M representation,

d

dt
�M = (4(u)�ı + ;(u)�j + ω�k)× �M.

C. Jaynes-Cumming Hamiltonians and propagators

The Jaynes-Cummings Hamiltonian [36] is the simplest Hamiltonian describing the interac-
tion between an harmonic oscillator and a qubit. Such an interaction admits two regimes, the
resonant one where the oscillator and the qubit exchange energy, the dispersive one where
the oscillator pulsation depends on the qubit state and where the qubit pulsation, slightly
different from the oscillator pulsation, depends on the number of vibration quanta. We re-
call below the simplest forms of these Hamiltonians in the interaction frame. A deeper and
complete presentation can be found in [33].

The resonant Hamiltonian Hres is given by

Hres/	 = if(t)
(
a† ⊗ σ- − a⊗ σ+

)
= if(t)

(
a† ⊗ |g〉〈e| − a⊗ |e〉〈g|) (C.1)

whereas the dispersive oneHdisp is a simple tensor product:

Hdisp/	 = f(t) N ⊗ σz = f(t) N ⊗ (|e〉〈e| − |g〉〈g|) (C.2)

where f(t) is a known real parameter depending possibly on the time t.
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Simple computations show that the resonant propagator U res between t0 and t1 associ-
ated to Hres, i.e., the solution of Cauchy problem

d

dt
U = −i

Hres

	
U , U(t0) = I,

is explicit and given by the following compact formulae:

U res(t0, t1) = cos

(
N

∫ t1

t0

f

)
⊗ |g〉〈g|+ cos

(
(N + I)

∫ t1

t0

f

)
⊗ |e〉〈e|

− a
sin
(
N
∫ t1
t0
f
)

√
N

⊗ |e〉〈g| +
sin
(
N
∫ t1
t0
f
)

√
N

a† ⊗ |g〉〈e|. (C.3)

It is instructive to check that U †
resU res = I . Similarly, the dispersive propagator Udisp

between t1 and t2 associated to Hdisp is given by

Udisp(t0, t1) = exp

(
iN

∫ t1

t0

f

)
⊗ |g〉〈g|+ exp

(
−iN

∫ t1

t0

f

)
⊗ |e〉〈e|. (C.4)
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Time-inconsistent optimal control problems

Jiongmin Yong

Abstract. An optimal control problem is time-consistent if for any initial pair of time and state,
whenever there exists an optimal control, it will stay optimal thereafter. In real world, however, such
kind of time-consistency is hardly true, mainly due to the time-inconsistency of decision maker’s time-
preference and/or risk-preference. In another word, most optimal control problems, if not all, are not
time-consistent, or time-inconsistent. In this paper, some general time-inconsistent optimal control
problems are formulated for stochastic differential equations. Recent works of the author concerning
the (time-consistent) equilibrium solutions to the time-inconsistent problems are surveyed.

Mathematics Subject Classification (2010). Primary 93E20, 49L20, 49N05; Secondary 49N70.

Keywords. Stochastic optimal control, time inconsistency, equilibrium solution, Hamilton-Jacobi-
Bellman equation, differential games, linear-quadratic problem, Riccati equation.

1. Introduction

Let (Ω,F ,F,P) be a complete filtered probability space on which a d-dimensional standard
Brownian motion W (·) is defined, whose natural filtration is F = {Ft}t≥0 (augmented by
all the P-null sets). Let T > 0. For any t ∈ [0, T ), we consider the following controlled
stochastic differential equation (SDE, for short):{

dX(s) = b(s,X(s), u(s))ds + σ(s,X(s), u(s))dW (s), s ∈ [t, T ],
X(t) = x,

(1.1)

where b : [0, T ]×R
n×U → R

n and σ : [0, T ]×R
n×U → R

n×d are suitable deterministic
maps with U being a metric space. In the above, X : [0, T ] × Ω → R

n is called a state
process, u : [t, T ] × Ω → U is called a control process, and (t, x) ∈ Dp is called an initial
pair, where p > 1, and

Dp =
{
(t, x)

∣∣ t is an F-stopping time valued in [0, T ),

and x is Ft-measurable, Rn-valued, with E|x|p < ∞
}
.

We define the set of all admissible control processes by the following:

U [t, T ] =
{
u : [t, T ]× Ω → U

∣∣ u(·) is F-progressively measurable
}
. (1.2)

Under some mild conditions, for any (t, x) ∈ Dp and u(·) ∈ U [t, T ], (1.1) admits a unique
strong solution X(·) ≡ X(· ; t, x, u(·)). To measure the performance of the control process

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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u(·) ∈ U [t, T ], we introduce the following cost functional

J0(t, x;u(·)) = Et

[ ∫ T

t

e−δ(s−t)g0(s,X(s), u(s))ds + e−δ(T−t)h0(X(T ))
]
, (1.3)

with some constant δ ≥ 0 (called the discount rate), some maps g0 : [0, T ]× R
n × U → R

and h0 : Rn → R, and Et[ · ] = E[ · | Ft]. On the right hand side of (1.3), the first term is
referred to as a running cost and the second term is referred to as a terminal cost. We can
pose the following optimal control problem.

Problem (C). For any (t, x) ∈ Dp, find a ū(·) ∈ U [t, T ] such that

J0(t, x; ū(·)) = inf
u(·)∈U [t,T ]

J0(t, x;u(·)) ≡ V 0(t, x). (1.4)

Any ū(·) ∈ U [t, T ] satisfying (1.4) is called an optimal control of Problem (C) for
the initial pair (t, x), the corresponding state process X̄(·) ≡ X(· ; t, x, ū(·)) and the pair
(X̄(·), ū(·)) are called the corresponding optimal state process and optimal pair, respec-
tively. The function V 0(· , ·) defined by (1.4) is called the value function of Problem (C). For
Problem (C), we have the following Bellman’s principle of optimality (see [27, 28], also,
[12, 39]): For any τ ∈ [t, T ],

V 0(t, x) = inf
u(·)∈U [t,τ ]

Et

[ ∫ τ

t

e−δ(s−t)g0(s,X(s), u(s))ds

+ e−δ(τ−t)V 0
(
τ,X(τ ; t, x, u(·)))], (1.5)

where U [t, τ ] is defined similar to U [t, T ], replacing [t, T ] by [t, τ ] (see (1.2)). Now, if
(X̄(·), ū(·)) is an optimal pair of Problem (C) for the initial pair (t, x) ∈ [0, T ) × R

n, then
from (1.5), we obtain

V 0(t, x)
= J0(t, x; ū(·))
= Et

[ ∫ τ

t

e−δ(s−t)g0(s, X̄(s), ū(s))ds + e−δ(τ−t)J0
(
τ, X̄(τ ; t, x, ū(·)); ū(·)∣∣

[τ,T ]

)]
� inf

u(·)∈U [t,τ ]
Et

[ ∫ τ

t

e−δ(s−t)g0(s,X(s), u(s))ds + e−δ(τ−t)V 0
(
τ,X(τ ; t, x, u(·)))]

= V 0(t, x).

Thus, one must have

Et

[
J0
(
τ, X̄(τ); ū(·)∣∣

[τ,T ]

)− V 0(τ, X̄(τ))
]
= 0, a.s.

It follows that

J0
(
τ, X̄(τ); ū(·)∣∣

[τ,T ]

)
= V 0(τ, X̄(τ)) = inf

u(·)∈U [τ,T ]
J0
(
τ, X̄(τ);u(·)), a.s.

This means that the restriction ū(·)∣∣
[τ,T ]

∈ U [τ, T ] of an optimal control ū(·) ∈ U [t, T ]

for the initial pair (t, x) on any later time interval [τ, T ] is optimal for the initial pair
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(
τ, X̄(τ ; t, x, ū(·))) ∈ Dp. Such a phenomenon is called the time-consistency of Problem
(C).

The advantage of the time-consistency is that for any given initial pair (t, x), if an optimal
control ū(·) can be constructed for that (initial pair), then it will stay optimal thereafter (for
the later initial pair along the optimal trajectory). However, in reality, the situation is rarely
such ideal, namely, many real problems do not have the time-consistency. This is mainly
caused by the time-inconsistency of people’s time-preferences and/or risk-preferences, which
we now briefly explain.

From common experience, we know that people usually over-discount the payoff/cost
of the immediate future time period than that of the farther future time periods. It was
pointed out by Hume ([16]) that passion is dominating over reason during the immediate
future period. This is referred to as people’s time-preferences. Mathematically, one can de-
scribe such a situation by what we call the general discounting which includes the so-called
quasi-exponential discounting, hyperbolic discounting, and/or non-exponential discounting
situations. This amounts to replacing the discount functions e−δ(s−t) and e−δ(T−t) appeared
in (1.3) by some general functions λ(s, t) and ν(T, t), or even more generally, we may con-
sider the following cost functional:

J(t, x;u(·)) = Et

[ ∫ T

t

g(t, s,X(s), u(s))ds + h(t,X(T ))
]
, (1.6)

where the maps g(·) and h(·) explicitly depend on the initial time t in some general way.
The optimal control problem associated with (1.1) and (1.6) will not be time-consistent, or
time-inconsistent, in general, meaning that the restriction of an optimal control for a given
initial pair on a later time interval might not be optimal for that corresponding initial pair.

On the other hand, different groups of people have different attitudes towards risks. One
may be risk-averse (when making decisions for investment, buying insurance, etc.), or risk-
seeking (when buying a lottery, gambling, etc.). These are referred to as people’s risk-
preferences. A classical way of describing people’s risk-references is to use the so-called
expected utility which can be traced back to Bernoulli’s resolution of St.Petersburg’s paradox
([2]). For a general expected utility theory, see the book by von Neumann–Morgenstern
[25]. Later it was extended to the so-called stochastic differential utility ([8]) which can
be represented by the adapted solutions to certain backward stochastic differential equations
(BSDEs, for short) (see [13]). However, the paradoxes of Allais [1] and Ellsberg [14] showed
that expected utility might not completely represent people’s risk-preferences. In fact, even
earlier, it was already realized by some scholars that the probability involved in the classical
expected utility theory should be subjective, instead of objective, see for example, [6, 31, 32],
etc. To describe people’s risk-preferences, one may use the so-called Choquet expected
utility, by which we mean that in the standard expected utility theory, replace the usual
expectation by the so-called Choquet integral ([5], see also [7]). A special case of that is the
expected utility with respect to the so-called distorted probability ([7, 33]) which is widely
used in the insurance related studies and the behavioral finance. See [17, 20], and so on, for
relevant results. On the other hand, inspired by the mean-variance problems, people could
represent their dynamic risk-preferences by conditional variance. An interesting motivation
from optimal control relevant to this is as follows. Practically, one hopes that the optimal
control ū(·) and/or optimal state trajectory X̄(·) are not too random. To achieve this, one
could include conditional variance of the state-control pair var t[X(·)] and/or var t[u(·)]) in
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the cost functional, where

vart[X(s)] = Et

∣∣X(s)− Et[X(s)]
∣∣2 = Et|X(s)|2 − ∣∣Et[X(s)]

∣∣2,
vart[u(s)] = Et

∣∣u(s)− Et[u(s)]
∣∣2 = Et|u(s)|2 −

∣∣Et[u(s)]
∣∣2.

Note that in the above, Et[X(s)] and Et[u(s)] are nonlinearly appeared. Suggested by the
above, we see that it is possible to consider the following cost functional:

J(t, x;u(·)) = Et

[ ∫ T

t

g
(
s,X(s), u(s),Et[X(s)],Et[u(s)]

)
ds + h

(
X(T ),E[X(T )]

)]
.

Some concrete examples can be cooked up to show that if in the cost functional, one either
has non-exponential discounting, or nonlinear appearance of conditional expectation of the
state and/or control, the corresponding optimal control problem will be time-inconsistent in
general. See [36, 38] for some details.

A natural question is: What can we do for the time-inconsistent optimal control prob-
lems? It is desired that one can obtain the so-called time-consistent equilibrium solutions for
time-inconsistent problems. In this paper, we will survey some results obtained by the author
in the recent years. For some relevant works, see [3, 4, 9–11, 19, 23, 24, 26, 29, 30, 34, 35].

2. Problem with general discounting

In this section, we consider state equation (1.1) with deterministic coefficients and with the
following cost functional:

J(t, x;u(·)) = Et

[ ∫ T

t

g(t, s,X(s), u(s))ds + h(t,X(T ))
]
. (2.1)

Clearly, our cost functional covers the non-exponential/hyperbolic discounting situations.

2.1. The problem. In what follows, we let T > 0 be a fixed time horizon, and U ⊆ R
m be

a closed subset, which could be either bounded or unbounded (it is allowed that U = R
m).

We will use K > 0 as a generic constant which can be different from line to line. Let Sn be
the set of all (n × n) symmetric real matrices. Denote

D[0, T ] =
{
(t, s) ∈ [0, T ]2

∣∣ 0 � t � s � T
}
.

Recall the definition of U [t, T ] from Section 1 (see (1.2)). Further, for q � 1, let

Uq[t, T ] =
{
u : [t, T ]× Ω → U

∣∣ u(·) is F-progressively measurable,

E

∫ T

t

|u(s)|qds < ∞
}
.

Note that in the case U is bounded, for different q � 1, all the Uq[t, T ] are the same as
U [t, T ]. But, if U is unbounded, Uq[t, T ] will be different for different q ∈ [1,∞). We
introduce the following standing assumptions.



Time-inconsistent optimal control problems 951

(H1) The maps b : [0, T ] × R
n × U → R

n, σ : [0, T ] × R
n × U → R

n×d are continuous
and there exist constants L > 0 and k � 0 such that⎧⎨
⎩

|b(t, x, u)− b(t, y, u)| � L
(
1 + (|x| ∨ |y|)k + |u|)|x − y|,

〈x − y, b(t, x, u)− b(t, y, u) 〉 � L|x − y|2,
|σ(t, x, u)− σ(t, y, u)| � L|x − y|, ∀(t, u) ∈ [0, T ]× U, x, y ∈ R

n,

with |x| ∨ |y| = max{|x|, |y|}, and

|b(t, 0, u)|+ |σ(t, 0, u)| � L(1 + |u|), ∀(t, u) ∈ [0, T ]× U.

(H2) Maps g : D[0, T ]×R
n × U → R and h : [0, T ]×R

n → R are continuous, and there
exist constants L > 0 and q � 0 such that{

0 � g(τ, t, x, u) � L(1 + |x|q + |u|q),
0 � h(τ, x) � L(1 + |x|q), ∀(τ, t, x, u) ∈ D[0, T ]× R

n × U.

It is standard that under (H1)–(H2), for any (t, x) ∈ [0, T ) × R
n and u(·) ∈ Uq∨2[t, T ],

the state equation admits a unique solution X(·), and J(t, x;u(·)) is finite for any u(·) ∈
Uq∨2[t, T ]. We now formally state our optimal control problem.

Problem (N). For any given initial pair (t, x) ∈ [0, T )×R
n, find a ū(·) ∈ U [t, T ] such that

J(t, x; ū(·)) = inf
u(·)∈U [t,T ]

J(t, x;u(·)). (2.2)

The above Problem (N) is time-inconsistent, in general. Our goal is to find time-consistent
equilibrium controls and characterize the equilibrium value function, which will be made
precise below.

We denote

a(t, x, u) =
1

2
σ(t, x, u)σ(t, x, u)T , ∀(t, x, u) ∈ [0, T ]× R

n × U.

Define

H(τ, t, x, u, p, P ) = 〈 b(t, x, u), p 〉+tr
[
a(t, x, u)P

]
+ g(τ, t, x, u),

∀(τ, t, x, u, p, P ) ∈ D[0, T ]× R
n × U × R

n × S
n,

(2.3)

and let
H(τ, t, x, p, P ) = inf

u∈U
H(τ, t, x, u, p, P ),

∀(τ, t, x, p, P ) ∈ D[0, T ]× R
n × R

n × S
n.

(2.4)

We introduce the following assumption.

(H3) The map ψ : D[0, T ]×R
n×R

n×S
n → U is well-defined and has needed regularity.
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2.2. Time-consistent equilibria. In this section, inspired by [29], wewill seek time-consistent
solution to Problem(N) by an approach of multi-person differential games.

To begin with, let us first introduce some necessary notions. Let P[0, T ] be the set of all
partitions Δ = {tk

∣∣ 0 � k � N} of [0, T ] with 0 = t0 < t1 < t2 < · · · < tN−1 < tN =
T , and with the mesh size ‖Δ‖ defined by the following:

‖Δ‖ = max
1�k�N

(tk − tk−1).

We introduce the following definition.

Definition 2.2. A map Ψ : [0, T ]× R
n → U is called a closed-loop equilibrium strategy of

Problem (N) if for any (t, x) ∈ Dp, the closed-loop system{
dX∗(s)=b(s,X∗(s),Ψ(s,X∗(s)))ds+σ(s,X∗(s),Ψ(s,X∗(s)))dW (s), s∈ [t, T ],
X∗(t) = x.

admits a unique solution X∗(·) ≡ X∗(· ; t, x,Ψ(·)). There exists a family P0[0, T ] ⊆
P[0, T ] with the property that

inf
Δ∈P0[0,T ]

‖Δ‖ = 0,

and for any Δ ≡ {0 = t0 < t1 < · · · < tN = T} ∈ P0[0, T ], there exists a map
ΨΔ : [0, T ]× R

n → U satisfying the following: For any (t, x) ∈ Dp, the following system⎧⎨
⎩

dXΔ(s) = b
(
s,XΔ(s),ΨΔ(s,XΔ(s))

)
ds

+σ
(
s,XΔ(s),ΨΔ(s,XΔ(s))

)
dW (s), s ∈ [t, T ],

XΔ(t) = x

admits a unique solution XΔ(·) ≡ XΔ(· ; t, x,ΨΔ(·)). Let XΔ
0 (·) = XΔ(· ; 0, x,ΨΔ(·))

which is defined on [0, T ]. For each k = 1, 2, · · · , N , and any uk(·) ∈ U [tk−1, tk], let Xk(·)
be the solution to the following:⎧⎪⎪⎨
⎪⎪⎩

dXk(s)=b(s,Xk(s), uk(s))ds+σ(s,Xk(s), uk(s))dW (s), s∈ [tk−1, tk],

dXk(s) = b
(
s,Xk(s),Ψ

Δ(s,Xk(s))
)
ds

+σ
(
s,Xk(s),Ψ

Δ(s,Xk(s))
)
dW (s), s ∈ [tk, T ],

Xk(tk−1) = XΔ
0 (tk−1).

(2.5)

Then the following local optimality condition holds:

J
(
tk−1, X

Δ
0 (tk−1); Ψ

Δ(·)∣∣
[tk−1,T ]

)
� J(tk−1, X

Δ
0 (tk−1);uk(·)⊕ΨΔ(·)∣∣

[tk,T ]

)
,

where (
uk(·)⊕ΨΔ(·)

∣∣∣
[tk,T ]

)
(s) =

{
uk(s), s ∈ [tk−1, tk),

ΨΔ(s,Xk(s)), s ∈ [tk, T ].
(2.6)

Further,
lim

Δ∈P0[0,T ],‖Δ‖→0
|ΨΔ(t, x)−Ψ(t, x)| = 0,

uniformly for (t, x) in any compact set of [0, T ]× R
n.
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In the above case, we call X∗
0 (·) ≡ X∗(· ; 0, x,Ψ(·)) and the corresponding u∗0(·) ≡

Ψ
(· ;X∗

0 (·)
)
a time-consistent equilibrium state process and a time-consistent equilibrium

control for the initial state x, respectively, and call (X∗
0 (·), u∗0(·)) a time-consistent equilib-

rium pair. Further, function V : [0, T ]× R
n → R is called an equilibrium value function of

Problem (N) if for each x ∈ R
n,

V
(
t,X∗

0 (t)
)
= J
(
t,X∗

0 (t); Ψ(·)∣∣
[t,T ]

)
, t ∈ [0, T ]. (2.7)

We point out that the equilibrium strategy Ψ(· , ·) is a map defined on [0, T ]× R
n, which is

independent of particular initial pairs.

2.3. Multi-person differential games. We now consider an N -person differential game,
called Problem (GΔ), depending on the given partition Δ : 0 = t0 < t1 < · · · < tN = T of
[0, T ]. Throughout this section, we assume that (H1)–(H3) hold. Let us start with Player N
who controls the system on [tN−1tN ). More precisely, for each (t, x) ∈ [tN−1, tN ] × R

n,
consider the following controlled SDE:{

dXN (s)=b
(
s,XN (s), uN (s)

)
ds+σ

(
s,XN (s), uN (s)

)
dW (s), s∈ [t, tN ],

XN (t) = x,
(2.8)

with cost functional

JN (t, x;uN (·))=Et

[ ∫ tN

t

g
(
tN−1, s,X

N (s), uN (s)
)
ds+h

(
tN−1, X

N (tN )
)]

. (2.9)

Note that

JN (tN−1, x;u
N (·)) = J(tN−1, x;u

N (·)), (x, uN (·)) ∈ R
n × U [tN−1, tN ]. (2.10)

We pose the following problem for Player N :

Problem (CN ). For any (t, x) ∈ [tN−1, tN ) × R
n, find a ūN (·) ≡ ūN (· ; t, x) ∈ U [t, tN ]

such that
JN (t, x; ūN (·)) = inf

uN (·)∈U [t,tN ]
JN (t, x;uN (·)) ≡ V Δ(t, x). (2.11)

The above defines the value function V Δ(· , ·) on [tN−1, tN ] × R
n, and in the case ūN (·)

exists, by (2.10), we have

J(tN−1, x; ū
N (·)) = V Δ(tN−1, x), ∀x ∈ R

n. (2.12)

Under proper conditions, V Δ(· , ·) is the classical solution to the following HJB equation
([12, 18]):⎧⎪⎨

⎪⎩
V Δ
t (t, x) + inf

u∈U
H
(
tN−1, t, x, u, V

Δ
x (t, x), V Δ

xx(t, x)
)
= 0,

(t, x) ∈ [tN−1, tN ]× R
n,

V Δ(tN , x) = h(tN−1, x), x ∈ R
n.

(2.13)

By the definition of ψ : D[0, T ]×R
n ×R

n × S
n → U , we may also write (2.13) as follows⎧⎨

⎩
V Δ
t (t, x)+H

(
tN−1, t, x, ψ(tN−1, t, x, V

Δ
x (t, x), V Δ

xx(t, x)), V
Δ
x (t, x), V Δ

xx(t, x)
)
=0,

(t, x) ∈ [tN−1, tN ]× R
n,

V Δ(tN , x) = h(tN−1, x), x ∈ R
n.

(2.14)
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Clearly, V Δ(· , ·), well-defined on [tN−1, tN ] × R
n, depends on tN−1 and tN . With such a

solution V Δ(· , ·) of (2.13) (or (2.14)), let us assume that the following closed-loop system
admits a unique solution X̄N (·) ≡ X̄N (· ; tN−1, x): (suppressing the dependence of X̄N (·)
on tN through V Δ(· , ·))⎧⎪⎪⎨
⎪⎪⎩

dX̄N (s) = b
(
s, X̄N (s), ψ(tN−1, s, X̄

N (s), V Δ
x (s, X̄N (s)), V Δ

xx(s, X̄
N (s)))

)
ds

+σ
(
s, X̄N (s), ψ(tN−1, s, X̄

N (s), V Δ
x (s, X̄N (s)), V Δ

xx(s, X̄
N (s)))

)
dW (s),

s ∈ [tN−1, tN ],

X̄N (tN−1) = x.
(2.15)

Then under (H3), an optimal control ūN (·) of Problem (CN ) for the initial pair (tN−1, x)
admits the following feedback representation:

ūN (s) ≡ ūN (s; tN−1, x) = ψ
(
tN−1, s, X̄

N (s), V Δ
x (s, X̄N (s)), V Δ

xx(s, X̄
N (s))

)
≡ ψ
(
tN−1, s, X̄

N (s; tN−1, x), V
Δ
x (s, X̄N (s; tN−1, x)), V

Δ
xx(s, X̄

N (s; tN−1, x))
)

s ∈ [tN−1, tN ],
(2.16)

and X̄N (·) ≡ X̄N (· ; tN−1, x) is the corresponding optimal state process.
Next, we consider an optimal control problem for Player (N − 1) on [tN−2, tN−1). For

any initial pair (t, x) ∈ [tN−2, tN−1]× R
n, the state equation is⎧⎨

⎩
dXN−1(s)=b

(
s,XN−1(s), uN−1(s)

)
ds+σ

(
s,XN−1(s), uN−1(s)

)
dW (s),

s ∈ [t, tN−1),

XN−1(t) = x.
(2.17)

To determine the suitable cost functional, we note that Player (N − 1) can only control the
system on [tN−2, tN−1) and PlayerN will take over at tN−1 to control the system thereafter.
Moreover, Player (N − 1) knows that Player N will play optimally based on the initial pair
(tN−1, X

N−1(tN−1)) of Player N , which is the terminal pair of Player (N − 1). Hence,
the sophisticated cost functional of Player (N − 1) should be

JN−1(t, x;uN−1(·)) = Et

[ ∫ tN−1

t

g(tN−2, s,X
N−1(s), uN−1(s))ds

+

∫ tN

tN−1

g
(
tN−2, s, X̄N (s; tN−1, XN−1(tN−1)), ūN (s; tN−1, XN−1(tN−1))

)
ds

+h
(
tN−2, X̄

N (tN ; tN−1, X
N−1(tN−1))

)]
.

(2.18)

Note that although Player (N−1) knows that PlayerN will control the system on [tN−1, tN ],
he/she still “discounts” the future costs in his/her own way (see tN−2 appearing in the run-
ning cost on [tN−1, tN ] and in the terminal cost at tN ). Now, if we denote

hN−1(x) = EtN−1

[ ∫ tN

tN−1

g
(
tN−2, s, X̄

N (s; tN−1, x), ū
N (s; tN−1, x)

)
ds

+h
(
tN−2, X̄

N (tN ; tN−1, x)
)]

,

then the cost functional (2.18) can be written as

JN−1(t, x;uN−1(·)) = Et

[ ∫ tN−1

t

g
(
tN−2, s,X

N−1(s), uN−1(s))ds

+hN−1(XN−1(tN−1)
)]

.
(2.19)
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We see that the optimal control problem associated with the state equation (2.17) and the
cost functional (2.19) looks like a standard one. But, the map x �→ hN−1(x) seems to be
a little too implicit, which is difficult for us to pass to the limits later on. We now would
like to make it more explicit in some sense. Inspired by the idea of Four Step Scheme
introduced in [21, 22] for forward-backward stochastic differential equations (FBSDEs, for
short) with deterministic coefficients, we proceed as follows. For the optimal state process
X̄N (·) ≡ X̄N (· ; tN−1, x) determined by (2.15) on [tN−1, tN ], we introduce the following
backward stochastic differential equation (BSDE, for short):⎧⎨
⎩

dY N(s)=−g
(
tN−2, s, X̄N (s), ψ(tN−1, s, X̄N (s), V Δ

x (s, X̄N (s)), V Δ
xx(s, X̄

N (s)))
)
ds

+ZN (s)dW (s), s ∈ [tN−1, tN ],

Y N (tN ) = h(tN−2, X̄
N (tN )),

(2.20)
which is equivalent to the following:{

dY N (s)=−g
(
tN−2, s, X̄

N (s), ūN (s)
)
ds+ZN (s)dW (s), s∈ [tN−1, tN ],

Y N (tN ) = h(tN−2, X̄
N (tN )),

(2.21)

Note that tN−2 appears in the drift of BSDE and in the terminal condition. This BSDE admits
a unique adapted solution (Y N (·), ZN (·)) ≡ (Y N (· ;x), ZN (· ;x)) ([22, 39]), uniquely
depending on x ∈ R

n. Further, one has

Y N (tN−1) = EtN−1

[ ∫ tN

tN−1

g
(
tN−2, s, X̄

N (s), ūN (s)
)
ds + h(tN−2, X̄

N (tN ))
]

= hN−1(x).

It is seen that (2.15) and (2.21) form an FBSDE. By [21] (see also [22, 39]), we have the
following representation for Y N (·)

Y N (s) = ΘN (s, X̄N (s)), s ∈ [tN−1, tN ], (2.22)

as long as ΘN (· , ·) is a classical solution to the following PDE:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ΘN
s (s, x) + 〈ΘN

x (s, x), b
(
s, x, ψ(tN−1, s, x, V

Δ
x (s, x), V Δ

xx(s, x))
) 〉

+tr
[
a
(
s, x, ψ(tN−1, s, x, V

Δ
x (s, x), V N

xx(s, x))
)
ΘN

xx(s, x)
]

+g
(
tN−2, s, x, ψ(tN−1, s, x, V

Δ
x (s, x), V Δ

xx(s, x))
)
= 0,

(s, x) ∈ [tN−1, tN ]× R
n,

ΘN (tN , x) = h(tN−2, x). x ∈ R
n,

(2.23)

Note that ΘN (· , ·) depends on (tN−2, tN−1, tN ). With the above representation ΘN (· , ·) of
Y N (·), we can rewrite the cost functional (2.19) as follows:

JN−1(t, x;uN−1(·))
= Et

[ ∫ tN−1

t

g(tN−2, s,X
N−1(s), uN−1(s))ds +ΘN (tN−1, X

N−1(tN−1))
]
.

We now pose the following problem for Player (N − 1):

Problem (CN−1). For any (t, x) ∈ [tN−2, tN−1) × R
n, find a ūN−1(·) ≡ ūN−1(· ; t, x) ∈

U [tN−2, tN−1] such that

JN−1(t, x; ūN−1(·)) = inf
uN−1(·)∈U [t,tN−1]

JN−1(t, x;uN−1(·)) ≡ V Δ(t, x). (2.24)
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The above defines the value function V Δ(· , ·) on [tN−2, tN−1) × R
n. Under proper condi-

tions, V Δ(· , ·) is the classical solution to the following HJB equation ([12, 18]):⎧⎪⎨
⎪⎩

V Δ
t (t, x) + inf

u∈U
H
(
tN−2, t, x, u, V

Δ
x (t, x), V Π

xx(t, x)
)
= 0,

(t, x) ∈ [tN−2, tN−1)× R
n,

V Δ(tN−1 − 0, x) = ΘN (tN−1, x), x ∈ R
n.

(2.25)

We point out that in general,

V Δ(tN−1 − 0, x) = ΘN (tN−1, x) �= V Δ(tN−1, x).

Thus, V Δ(· , ·), which is now defined on [tN−2, tN ]×R
n, may have a jump at {tN−1}×R

n.
For any x ∈ R

n, suppose the following admits a unique solution X̄N−1(·):⎧⎪⎪⎨
⎪⎪⎩

dX̄N−1(s)=b
(
s, X̄N−1(s), ψN−1(s)

)
ds+σ

(
s,X̄N−1(s),ψN−1(s)

)
dW (s),

ψN−1(s) = ψ
(
tN−2, s, X̄

N−1(s), V Δ
x (s, X̄N−1(s)), V Δ

xx(s, X̄
N−1(s))

)
,

s ∈ [tN−2, tN−1),

X̄N−1(tN−2) = x.

(2.26)

Then we define

ūN−1(s; tN−2, x) = ψ
(
tN−2, s, X̄

N−1(s), V Δ
x (s, X̄N−1(s)), V Δ

xx(s, X̄
N−1(s))

)
,

s ∈ [tN−2, tN−1),

which is an optimal control of Problem (CN−1) with the initial pair (tN−2, x). Now, for the
optimal pair (

X̄N−1(·), ūN−1(·)) = (X̄N−1(· ; tN−2, x), ū
N−1(· ; tN−2, x)

)
of Problem (CN−1) (on [tN−2, tN−1]), we make a natural extension on [tN−1, tN ] as fol-
lows: {

X̄N−1(s) = X̄N (s; tN−1, X̄
N−1(tN−1)),

ūN−1(s) = ūN (s; tN−1, X̄
N−1(tN−1)),

s ∈ [tN−1, tN ].

We refer to such a pair
(
X̄N−1(·), ūN−1(·)) as a sophisticated equilibrium pair on [tN−2, tN ].

The above procedure can be continued recursively. By induction, we can construct so-
phisticated cost functional Jk(t, x;uk(·)) for Player k, and

V Δ(t, x) = inf
uk(·)∈U [t,tk]

Jk(t, x;uk(·)), (t, x) ∈ [tk−1, tk)× R
n, 1 � k � N,

with the value function V Δ(· , ·) satisfying the following HJB equations on the time intervals
associated with the partition Δ:⎧⎨
⎩

V Δ
t (t, x)+H

(
�Δ(t), t, x, ψ

(
�Δ(t), t, x, V Δ

x (t, x), V Δ
xx(t, x)

)
, V Δ

x (t, x), V Δ
xx(t, x)

)
=0,

(t, x) ∈ [tN−1, tN ]× R
n,

V Δ(tN , x) = h(tN−1, x), x ∈ R
n,

and for k = 1, 2, · · · , N − 1,⎧⎨
⎩

V Δ
t (t, x)+H

(
�Δ(t), t, x, ψ

(
�Δ(t), t, x, V Δ

x (t, x), V Δ
xx(t, x)

)
, V Δ

x (t, x), V Δ
xx(t, x)

)
=0,

(t, x) ∈ [tk−1, tk)× R
n,

V Δ(tk − 0, x) = Θk+1(tk, x), x ∈ R
n,
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where,

�Δ(s) =

N∑
k=1

tk−1I[tk−1,tk)(s), s ∈ [0, T ],

and for k = 1, 2, · · · , N − 1, Θk+1(· , ·) is the solution to the following (linear) PDE:⎧⎨
⎩

Θk+1
t (t, x) +H

(
tk−1, t, x, ψ

(
�Δ(t), t, x, V Δ

x (t, x), V Δ
xx(t, x)

)
,

Θk+1
x (t, x),Θk+1

xx (t, x)
)
= 0, (t, x) ∈ [tk, tN ]× R

n,

Θk+1(tN , x) = h(tk−1, x), x ∈ R
n.

(2.27)
Now, we define

ΨΔ(t, x) = ψ
(
�Δ(t), t, x, V Δ

x (t, x), V Δ
xx(t, x)

)
, (t, x) ∈ [0, T ]× R

n. (2.28)

Then for any given x ∈ R
n, let XΔ

0 (·) be the solution to the following closed-loop system:⎧⎨
⎩

dXΔ
0 (s)=b

(
s,XΔ

0 (s),ΨΔ(s,XΔ
0 (s))

)
ds+σ

(
s,XΔ

0 (s),ΨΔ(s, X̄Δ
0 (s))

)
dW (s),

s ∈ [0, T ],

XΔ
0 (0) = x,

and denote
uΔ
0 (s) = ΨΔ

(
s,XΔ

0 (s)
)
, s ∈ [0, T ].

According to our construction, we have

J
(
tk−1, X

Δ
0 (tk−1); Ψ

Δ(·)∣∣
[tk−1,T ]

)
= J
(
tk−1, X

Δ
0 (tk−1);u

Δ
0 (·)
∣∣
[tk−1,tk]

)
= V Δ

(
tk−1, X

Δ
0 (tk−1)

)
= Jk

(
tk−1, X

Δ
0 (tk−1);u

Δ
0 (·)
∣∣
[tk−1,tk]

)
= inf

uk(·)∈U [tk−1,tk]
Jk
(
tk−1, X

Δ
0 (tk−1);u

k(·)) � Jk
(
tk−1, X

Δ
0 (tk−1);u

k(·))
= J
(
tk−1, X

Δ
0 (tk−1);u

k(·)⊕ΨΔ(·)∣∣
[tk,T ]

)
,

∀uk(·) ∈ U [tk−1, tk], 1 � k � N,

(2.29)

where uk(·) ⊕ ΨΔ(·)∣∣
[tk,T ]

is defined the same way as (2.5)–(2.6). In general, for k =

1, 2, · · · , N − 1, we might have

J
(
tk−1, X

Δ
0 (tk−1);u

Δ
0 (·)
)
> inf

u(·)∈U [tk−1,T ]
J(tk−1, X

Δ
0 (tk−1);u(·)

)
. (2.30)

2.4. The limits. We now would like to look at the situation when ‖Δ‖ → 0. Suppose we
have the following:

lim
‖Δ‖→0

(
|V Δ(t, x)− V (t, x)|+ |V Δ

x (t, x)− Vx(t, x)|+ |V Δ
xx(t, x)− Vxx(t, x)|

)
= 0,

uniformly for (t, x) in any compact sets, for some V (· , ·). Under (H3), we also have

lim
‖Δ‖→0

|ΨΔ(t, x)−Ψ(t, x)| = 0,

uniformly for (t, x) in any compact sets, for

Ψ(t, x) = ψ(t, t, x, Vx(t, x), Vxx(t, x)
)
, (t, x) ∈ [0, T ]× R

n. (2.31)
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Then the following limit exist:

lim
‖Δ‖→0

‖XΔ
0 (·)− X∗(·)‖L2

F
(Ω;C([0,T ];Rn)) = 0,

for X∗(·) solving the following SDE:{
dX∗(s) = b

(
s,X∗(s), u∗(s)

)
ds + σ

(
s,X∗(s), u∗(s)

)
dW (s), s ∈ [0, T ].

X∗(0) = x,
(2.32)

where
u∗(s) = Ψ

(
s,X∗(s)

)
, s ∈ [0, T ], (2.33)

and

L2
F
(Ω, C([0, T ];Rn)) =

{
X : [0, T ]× Ω → R

n
∣∣ X(·) has continuous paths,

E
[

sup
t∈[0,T ]

|X(t)|2] < ∞
}
.

Clearly,
lim

‖Δ‖→0
‖uΔ

0 (·)− u∗(·)‖U2[0,T ] = 0.

By (2.29), we have

J
(
�Δ(t), X̄Δ(�Δ(t)); ūΔ(·)) = V Δ(�Δ(t), X̄Δ(t)), t ∈ [0, T ].

Thus, passing to the limits, we have (2.7).
By Definition 2.2, Ψ(· , ·) is a time-consistent equilibrium strategy, and V (· , ·) is a time-

consistent equilibrium value function of Problem (N).
With some careful analysis (see [36]), we are able to obtain the following differential

equation:⎧⎨
⎩
Θt(τ, t, x)+H

(
τ, t, x, ψ

(
t, t, x,Θx(t, t, x),Θxx(t, t, x)

)
,Θx(τ, t, x),Θxx(τ, t, x)

)
=0,

(τ, t, x) ∈ D[0, T ]× R
n,

Θ(τ, T, x) = h(τ, x), (τ, x) ∈ [0, T ]× R
n,

(2.34)
where {

H(τ, t, x, u, p, P ) = tr
[
a(t, x, u)P

]
+ 〈 b(t, x, u), p 〉+g(τ, t, x, u),

ψ(τ, t, x, p, P ) ∈ argminH(τ, t, x, · , p, P ).
(2.35)

We call the above (2.34) the equilibrium Hamilton-Jacobi-Bellman equation (equilibrium
HJB equation, for short) of Problem (N). If one can find Θ(· , · , ·) from the above, then the
equilibrium value function V (· , ·) can be determined by the following:

V (t, x) = Θ(t, t, x), (t, x) ∈ [0, T ]× R
n. (2.36)

It is clear that the (time-consistent) equilibrium pair can be determined by (2.32) and (2.33),
in principle.

An interesting feature of (2.34) that both Θ(τ, t, x) and Θ(t, t, x) appear in the equation
where the later is the restriction of the former on τ = t. On one hand, although the equation
is fully nonlinear, due to the fact that Θ(t, t, x) is different from Θ(τ, t, x), the existing
theory for fully nonlinear parabolic equations cannot apply directly. On the other hand, it is
seen that if Θ(t, t, x) is obtained from an independent way, then (2.34) is actually a linear
equation for Θ(τ, t, x) with τ can be purely regarded as a parameter.
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2.5. Well-posedness of the equilibrium HJB equation. In this subsection, we discuss the
well-posedness for the equilibrium HJB equation (2.34). Let us first intuitively describe our
idea. For any smooth function v(· , ·), denote⎧⎪⎪⎨
⎪⎪⎩

[L(t, v(t, ·))ϕ(·)](x) = tr
[
a(t, x, ψ(t, t, x, vx(t, x), vxx(t, x))ϕxx(x)

]
+ 〈 b(t, x, ψ(t, t, x, vx(t, x), vxx(t, x))), ϕx(x) 〉,

(t, x) ∈ [0, T ]× R
n,

G(τ, t, v(t, ·))(x) = g
(
τ, t, x, ψ(t, t, x, vx(t, x), vxx(t, x))

)
, (τ, t, x) ∈ D[0, T ]× R

n.

Consider the following linear abstract backward evolution equation:{
Θt(τ, t) + L(t, v(t))Θ(τ, t) + G(τ, t, v(t)) = 0, t ∈ [τ, T ],
Θ(τ, T ) = h(τ).

(2.37)

Under some mild conditions, the above is well-posed, and we have the following variation
of constant formula:

Θ(τ, t) = E(T, t; v(·))h(τ) +
∫ T

t

E(s, t; v(·))G(τ, s, v(s))ds, t ∈ [τ, T ], (2.38)

where E(· , · ; v(·)) is called the backward evolution operator generated by L(· , v(·)). Con-
sequently, the (time-consistent) equilibrium value function V (t, ·) = Θ(t, t, ·) should be the
solution to the following nonlinear functional integral equation:

V (t) = E(T, t;V (·))h(t) +
∫ T

t

E(s, t;V (·))G(t, s, V (s))ds, t ∈ [0, T ]. (2.39)

We call (2.39) the equilibrium HJB integral equation for Problem (N). Once a solution
V (· , ·) of (2.39) is found, we can, in principle, construct a (time-consistent) equilibrium
control and an equilibrium pair for Problem (N). Of course, if we like, we may also solve the
equilibrium HJB equation (2.34), which actually is not necessary as far as the construction
of a time-consistent equilibrium pair is concerned.

The well-posedness of (2.39) seems to be difficult for the general case. We now assume
the following:

σ(t, x, u) = σ(t, x), (t, x, u) ∈ [0, T ]× R
n × U, (2.40)

namely, the control does not enter the diffusion of the state equation. In this case, our equi-
librium HJB equation reads⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Θt(τ, t, x) +
1

2
tr
[
σ(t, x)σ(t, x)TΘxx(τ, t, x)

]
+ 〈 b(t, x, ψ(t, t, x,Θx(t, t, x))

)
,Θx(τ, t, x) 〉

+g
(
τ, t, x, ψ(t, t, x,Θx(t, t, x))

)
= 0, (τ, t, x) ∈ D[0, T ]× R

n,
Θ(τ, T, x) = h(τ, x), (τ, x) ∈ [0, T ]× R

n.

(2.41)

The essential feature of (2.41) is that Θxx(t, t, x) does not appear in the equation (although
Θx(t, t, x) still appears there). This leads to the well-posedness problem much more acces-
sible. We have the following result (see [36]).

Theorem 2.5. Let all the coefficients of (2.41) have all required order differentiability with
bounded derivatives. Let

a(t, x) � δI, (t, x) ∈ [0, T ]× R
n,

for some δ > 0. Then (2.41) admits a unique solution Θ(· , · , ·).
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3. LQ problem with nonlinearly appearance of conditional expectations

We now consider the case that conditional expectation of the state/control nonlinearly appear
in the cost functional. For such a case, we will only consider linear-quadratic case. The
general nonlinear situation is still open. We consider the following controlled linear SDE:{

dX(s) =
{
A(s)X(s) + B(s)u(s)

}
ds +

{
C(s)X(s)+D(s)u(s)

}
dW (s), s ∈ [t, T ],

X(t) = x ∈ Xt,
(3.1)

Note that for any (t, x) ∈ D and u(·) ∈ U [t, T ], the corresponding state process X(·) =
X(· ; t, x, u(·)) depends on (t, x, u(·)). The cost functional is as follows:

J(t, x;u(·))= Et

{∫ T

t

[〈Q(s, t)X(s), X(s) 〉+〈 Q̄(s, t)Et[X(s)],Et[X(s)] 〉
+ 〈R(s, t)u(s), u(s) 〉+〈 R̄(s, t)Et[u(s)],Et[u(s)] 〉

]
ds

+〈G(t)X(T ), X(T ) 〉+〈 Ḡ(t)Et[X(T )],Et[X(T )] 〉
}
.

(3.2)

Let us introduce the following hypotheses:
(LQ1) The following hold:

A(·), C(·) ∈ C([0, T ];Rn×n), B(·), D(·) ∈ C([0, T ];Rn×m).

(LQ2) The following hold:{
Q(· , ·), Q̄(· , ·) ∈ C([0, T ]2; Sn), R(· , ·), R̄(· , ·) ∈ C([0, T ]2; Sm),
G(·), Ḡ(·) ∈ C([0, T ]; Sn),

and for some δ > 0,{
Q(s, t), Q(s, t) + Q̄(s, t) � 0, R(s, t), R(s, t) + R̄(s, t) � δI, 0 � t � s � T,
G(t), G(t) + Ḡ(t) � 0, 0 � t � T.

(LQ3) The following monotonicity conditions are satisfied:⎧⎨
⎩

Q(s, t) � Q(s, τ), Q(s, t) + Q̄(s, t) � Q(s, τ) + Q̄(s, τ),
R(s, t) � R(s, τ), R(s, t) + R̄(s, t) � R(s, τ) + R̄(s, τ),
G(t) � G(τ), G(t) + Ḡ(t) � G(τ) + Ḡ(τ),

0 � t � τ � s � T.

It is clear that under (LQ1)–(LQ2), for any (t, x) ∈ D and u(·) ∈ U [t, T ], state equation
(3.1) admits a unique solution X(·) ≡ X(· ; t, x, u(·)), and the cost functional J(t, x;u(·))
is well-defined. Then we can state the following problem.

Problem (LQ).For any (t, x) ∈ D, find a u∗(·) ∈ U [t, T ] such that

J(t, x;u∗(·)) = inf
u(·)∈U [t,T ]

J(t, x;u(·)) ≡ V (t, x). (3.3)

For given (t, x) ∈ D, any u∗(·) ∈ U [t, T ] satisfying the above is called a pre-commitment
optimal control for Problem (LQ) at (t, x). The corresponding X∗(·) and (X∗(·), u∗(·)) are
called pre-commitment optimal state process and pre-commitment optimal pair of Problem
(LQ), respectively, and V (· , ·) is called the pre-commitment value function.
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In what follows, we will denote{
Q̂(s, t) = Q(s, t) + Q̄(s, t), R̂(s, t) = R(s, t) + R̄(s, t),

Ĝ(t) = G(t) + Ĝ(t).
0 � t � s � T.

The following is found in [37].

Proposition 3.2. Let (LQ1)–(LQ2) hold. Then for any fixed t ∈ [0, T ), the following Riccati
equation system admits a unique solution (P (·), P̂ (·)) ∈ C1([t, T ]; Sn)2 (suppressing s):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ṗ + PA + ATP + CTPC + Q(t)

−(PB + CTPD)
[
R(t) + DTPD

]−1
(BTP + DTPC) = 0,

˙̂
P + P̂A + AT P̂ + CTPC + Q̂(t)

−(P̂B + CTPD)
[
R̂(t) + DTPD

]−1
(BT P̂ + DTPC) = 0, s ∈ [t, T ],

P (T ) = G(t), P̂ (T ) = Ĝ(t).

(3.4)

Further, let x ∈ Xt and X∗(·) ≡ X∗(· ; t, x) be the solution to the following closed-loop
system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dX∗(s) =
{[

A(s)− B(s)Θ(s)
]
X∗(s) + B(s)

[
Θ(s)− Θ̂(s)

]
Et[X

∗(s)]
}
ds

+
{[

C(s)−D(s)Θ(s)
]
X∗(s)+D(s)

[
Θ(s)−Θ̂(s)

]
Et[X

∗(s)]
}
dW (s),

s∈ [t,T ],
X∗(t) = x,

with {
Θ(s) =

[
R(s, t) + D(s)TP (s)D(s)

]−1[
B(s)TP (s) + D(s)TP (s)C(s)

]
,

Θ̂(s) =
[
R̂(s, t) + D(s)TP (s)D(s)

]−1[
B(s)T P̂ (s) + D(s)TP (s)C(s)

]
,

and define u∗(·) as follows:

u∗(s) = −Θ(s)X∗(s) +
[
Θ(s)− Θ̂(s)

]
Et[X

∗(s)], s ∈ [t, T ]. (3.5)

Then (X∗(·), u∗(·)) is the pre-commitment optimal pair of Problem (LQ) at (t, x), and

V (t, x) = inf
u(·)∈U [t,T ]

J(t, x;u(·)) = J(t, x;u∗(·)) = 〈 P̂ (t)x, x 〉, ∀x ∈ Xt. (3.6)

We note that the equation for P̂ (·) can also be written⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̂
P (s) + P̂ (s)A(s) + A(s)T P̂ + C(s)TP (s)C(s) + Q̂(t, s)

−[P̂ (s)B(s) + C(s)TP (s)D(s)
][

R̂(s, t) + D(s)TP (s)D(s)
]−1

·[B(s)T P̂ (s) + D(s)TP (s)C(s)
]
= 0, s ∈ [t, T ],

P̂ (T ) = Ĝ(t),

(3.7)

Thus, as long as
Q̄(· , ·) = 0, R̄(· , ·) = 0, Ḡ(·) = 0
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are not true,
Θ(s) = Θ̂(s), s ∈ [t, T ]

is not true in general. Hence, the term Et[X
∗(·)] will present in the state feedback represen-

tation of u∗(·) (see (3.5)), and the closed-loop system reads⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dX∗(s)=
{[

A(s)−B(s)Θ(s)
]
X∗(s)+B(s)

[
Θ(s)−Θ̂(s)

]
Et[X

∗(s)]
}
ds

+
{[

C(s)−D(s)Θ(s)
]
X∗(s)+D(s)

[
Θ(s)−Θ̂(s)

]
Et[X

∗(s)]
}
dW (s),

s∈ [t, T ],
X∗(t) = x,

which is a linear MF-SDE.

3.1. Open-loop equilibrium control. We introduce the following notion.

Definition 3.3. For given x ∈ R
n, a state-control pair (X∗(·), u∗(·)) ∈ X [0, T ]×U [0, T ] is

called an open-loop equilibrium pair of Problem (MF-LQ) for the initial state x if

X∗(0) = x,

and for almost all t ∈ [0, T ), and any u(·) ∈ U [t, T ],

lim
ε ↓ 0

J(t,X∗(t);uε(·))− J(t,X∗(t);u∗(·))
ε

� 0, (3.8)

where
uε(·) = u(·)I[t,t+ε)(·) + u∗(·)I[t+ε,T ](·). (3.9)

In this case, X∗(·) and u∗(·) are called an open-loop equilibrium state process and an open-
loop equilibrium control, respectively.

We refer to (3.8) as a local optimality condition at t ∈ [0, T ). One sees that if (X∗(·), u∗(·))
is an open-loop equilibrium pair of Problem (LQ) for the initial state x, then along the open-
loop equilibrium state X∗(·), the open-loop equilibrium control u∗(·) stays locally optimal.
On the other hand, since (X∗(·), u∗(·)) is a fixed state-control pair of (1.1) on [0, T ], in which
the conditional expectation terms are absent, the above defined open-loop equilibrium pair is
time-consistent. Note that if we consider the general state equation (3.1) in which some con-
ditional expectation terms appear, we do not know if one can directly define time-consistent
state-control pairs. This is why for open-loop equilibrium solutions of Problem (LQ), we
only consider (1.1). The following result, in some sense, is an extension of a relevant result
found in [15].

Proposition 3.4. Let (LQ1)–(LQ2) hold. Suppose (X∗(·), u∗(·)) ∈ X [0, T ] × U [0, T ] is a
state-control pair starting from initial state x. For each t ∈ [0, T ), let (Y (· , t), Z(· , t)) be
the adapted solution of the following BSDE:⎧⎪⎪⎨

⎪⎪⎩
dY (s, t) = −

{
A(s)TY (s, t) +C(s)TZ(s, t) +Q(s, t)X∗

+Q̄(s, t)Et[X
∗(s)]
}
ds+ Z(s, t)dW (s), s ∈ [t, T ],

Y (T, t) = G(t)X∗(T ) + Ḡ(t)Et[X
∗(T )].

(3.10)
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Suppose (s, t) �→ (Y (s, t), Z(s, t)) is continuous on 0 � t � s � T and suppose

u∗(t) = −R̂(t, t)−1
{
B(t)TY (t, t) +D(t)TZ(t, t)

}
, t ∈ [0, T ]. (3.11)

Then (X∗(·), u∗(·)) is an open-loop equilibrium pair of Problem (LQ) for initial state x.

The above leads to the following FBSDE family (parameterized by t ∈ [0, T )):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dX∗(s) =
{
A(s)X∗(s) +B(s)u∗(s)

}
ds

+
{
C(s)X∗(s) +D(s)u∗(s)

}
dW (s), 0 � s � T,

dY (s, t) = −{A(s)TY (s, t) +C(s)TZ(s, t)+Q(s, t)X∗(s)
+Q̄(s, t)Et[X

∗(s)]
}
ds+Z(s, t)dW (s), 0 � t � s � T,

X∗(0) = x, Y (T, t) = G(t)X∗(T ) + Ḡ(t)Et[X
∗(T )],

R̂(t, t)u∗(t) +B(t)TY (t, t) +D(t)TZ(t, t) = 0, t ∈ [0, T ].

(3.12)

Inspired by [22], we suppose

Y (s, t) = P (s, t)X∗(s) + P̄ (s, t)Et[X
∗(s)], s ∈ [t, T ],

for some deterministic functions P (· , ·) and P̄ (· , ·). Then the above will be true if we let
P (s, t) and P̂ (s, t) ≡ P (s, t) + P̄ (s, t) be the solutions to the following coupled Riccati
equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ps(s, t) + P (s, t)A(s) +A(s)TP (s, t) +C(s)TP (s, t)C(s) +Q(s, t)

−[P (s, t)B(s)+C(s)TP (s, t)D(s)][R̂(s, s)+D(s)TP (s, s)D(s)]−1

·[B(s)T P̂ (s, s) +D(s)TP (s, s)C(s)] = 0,

P̂s(s, t) + P̂ (s, t)A(s) +A(s)T P̂ (s, t) +C(s)TP (s, t)C(s) + Q̂(s, t)

−[P̂ (s, t)B(s)+C(s)TP (s, t)D(s)][R̂(s, s)+D(s)TP (s, s)D(s)]−1

·[B(s)T P̂ (s, s) +D(s)TP (s, s)C(s)] = 0, s ∈ [t, T ],

P (T, t) = G(t), P̂ (T, t) = Ĝ(t).

(3.13)

To summarize the above, we state the following result.

Theorem 3.5. Let (LQ1)–(LQ2) hold. Suppose Riccati equation system (3.13) admits a
unique solution (P (· , ·), P̂ (· , ·)) which is continuous in both variables. Then an open-loop
equilibrium control u∗(·) ∈ U [0, T ] exists and it admits the following closed-loop represen-
tation:

u∗(t) = −[R̂(t, t) +D(t)TP (t, t)D(t)
]−1
[
B(t)T P̂ (t, t) +D(t)TP (t, t)C(t)

]
X∗(t),

where X∗(·) is the state under control u∗(·).
From the above, we see that the existence of an open-loop equilibrium control is guaran-

teed by the solvability of Riccati equation system (3.13).

We now make a couple of comments on this.

The advantages: The approach is direct and the derivation of equilibrium pair is not very
complicated. Moreover, the open-loop equilibrium control u∗(·) admits a closed-loop repre-
sentation.

The disadvantages: The Riccati equations in (3.13) do not have symmetry structure.
Therefore the solutions P (· , ·) and P̂ (· , ·) of the system are not necessarily symmetric. This
leads to some difficulties in establish the well-posedness of the system.
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3.2. Close-loop equilibrium strategy. In this subsection, we introduce closed-loop equi-
librium strategies. We recall denote that any partition of [0, T ] is denoted by Δ:

Δ =
{
tk
∣∣ 0 � k � N

} ≡ {0 = t0 < t1 < t2 < · · · < tN−1 < tN = T
}
,

with N being some natural number, and define its mesh size by the following:

‖Δ‖ = max
0�k�N−1

(tk+1 − tk).

For the above Δ, we define

JΔ
k (X(·), u(·))=Etk

{∫ T

tk

[ 〈Q(s, tk)X(s), X(s) 〉+〈 Q̄(s, tk)Etk [X(s)],Etk [X(s)] 〉
+ 〈R(s, tk)u(s), u(s) 〉+ 〈 R̄(s, tk)Etk [u(s)],Etk [u(s)] 〉

]
ds

+ 〈G(tk)X(T ), X(T ) 〉+ 〈 Ḡ(tk)Etk [X(T )],Etk [X(T )] 〉
}
,

for any (X(·), u(·)) ∈ X [tk, T ]×U [tk, T ], k = 0, 1, 2, · · · , N−1. In the above, (X(·), u(·))
does not have to be a state-control pair of the original control system.

Now, we introduce the following which is comparable with Definition 2,2.

Definition 3.6. Let Δ = {0 = t0 < t1 < · · · < tN−1 < tN = T
}
be a partition of [0, T ],

and let ΘΔ, Θ̂Δ : [0, T ] → R
m×n be two given maps depending on Δ.

(i) For any x ∈ R
n fixed, let XΔ(·) ≡ XΔ(· ;x) be the solution to the following linear

MF-SDE:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXΔ(s)=
{[

A(s)−B(s)ΘΔ(s)
]
XΔ(s)

+
[
Ā(s)+B(s)

[
ΘΔ(s)−Θ̂Δ(s)

]−B̄(s)Θ̂Δ(s)
]
EρΔ(s)[X

Δ(s)]
}
ds

+
{[

C(s)−D(s)ΘΔ(s)
]
XΔ(s)

+
[
C̄(s)+D(s)

[
ΘΔ(s)−Θ̂Δ(s)

]−D̄(s)Θ̂Δ(s)
]
EρΔ(s)[X

Δ(s)]
}
dW (s),

s ∈ [0,T ],

XΔ(0) = x,

where

ρΔ(s) =

N−1∑
k=0

tkI[tk,tk+1)(s), s ∈ [0, T ],

and let uΔ(·) ≡ uΔ(· ;x) be defined by

uΔ(s) = −ΘΔ(s)XΔ(s)+
[
ΘΔ(s)−Θ̂Δ(·)]EρΔ(s)[X

Δ(s)], s ∈ [0, T ]. (3.14)

The pair (XΔ(·), uΔ(·)) is called the closed-loop pair associated with Δ and
(ΘΔ(·), Θ̂Δ(·)), starting from x.

(ii) For each tk ∈ Δ and any uk(·) ∈ U [tk, tk+1], letXk(·) be the solution to the following
system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dXk(s)=
{
A(s)Xk(s) + Ā(s)Etk [Xk(s)] + B(s)uk(s) + B̄(s)Etk [uk(s)]

}
ds

+
{
C(s)Xk(s)+C̄(s)Etk [Xk(s)]+D(s)uk(s)+D̄(s)Etk [uk(s)]

}
dW (s),

s∈ [tk, tk+1],

Xk(tk) = XΔ(tk),
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and XΔ
k+1(·) be the solution to the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXΔ
k+1(s)=

{[
A(s)−B(s)ΘΔ(s)

]
XΔ

k+1(s)

+
[
Ā(s)+B(s)

[
ΘΔ(s)−Θ̂Δ(s)

]−B̄(s)Θ̂Δ(s)
]
EρΔ(s)[X

Δ
k+1(s)]

}
ds

+
{[

C(s)−D(s)ΘΔ(s)
]
XΔ

k+1(s)

+
[
C̄(s)+D(s)

[
ΘΔ(s)−Θ̂Δ(s)

]−D̄(s)Θ̂Δ(s)
]
EρΔ(s)[X

Δ
k+1(s)]

}
dW(s),

∈ [tk+1,T ],

XΔ
k+1(tk+1) = Xk(tk+1).

Denote⎧⎨
⎩

Xk(·)⊕ XΔ(·) ≡ Xk(·)I[tk,tk+1)(·) + XΔ
k+1(·)I[tk+1,T ](·),

uk(·)⊕ uΔ(·) = uk(·)I[tk,tk+1)(·)
−{ΘΔ(·)XΔ

k+1(·)+
[
ΘΔ(·)−Θ̂Δ(·)]EρΔ(·)[X

Δ
k+1(·)]

}
I[tk+1,T ](·).

We call (Xk(·)⊕XΔ(·), uk(·)⊕uΔ(·)) a local variation of (XΔ(·), uΔ(·)) on [tk, tk+1].
Suppose the following local optimality condition holds:

JΔ
k

(
XΔ

k (·), uΔ
k (·)
)
� JΔ

k

(
Xk(·)⊕ XΔ(·), uk(·)⊕ uΔ(·)), ∀uk(·) ∈ U [tk, tk+1].

Then we call (ΘΔ(·), Θ̂Δ(·)) a closed-loop Δ-equilibrium strategy of Problem (MF-
LQ), and call

(
XΔ(· ;x), uΔ(· ;x)) a closed-loop Δ-equilibrium pair of Problem

(MF-LQ) for the initial state x.

(iii) If the following holds:

lim
‖Δ‖→0

[
‖ΘΔ(·)−Θ(·)‖C([0,T ];Rm×n) + ‖Θ̂Δ(·)− Θ̂(·)‖C([0,T ];Rm×n)

]
= 0,

for some Θ, Θ̂ ∈ C([0, T ];Rm×n), then (Θ(·), Θ̂(·)) is called a closed-loop equilib-
rium strategy of Problem (MF-LQ). For any (t, x) ∈ D, let X̂∗(·) ≡ X̂∗(· ; t, x) be
the solution to the following system:⎧⎨
⎩

dX̂∗(s)=
[
A(s)−B(s)Θ̂(s)

]
X̂∗(s)ds +

[
C(s)−D(s)Θ̂(s)

]
X̂∗(s)dW (s),

s ∈ [t, T ],

X̂∗(t) = x,

and define û∗(·) ≡ û∗(· ; t, x) as follows:

û∗(s) = −Θ̂(s)X̂∗(s), s ∈ [t, T ].

Then (t, x) �→ (X̂∗(· ; t, x), û∗(· ; t, x)) is called a closed-loop equilibrium pair flow
of Problem (MF-LQ). Further,

V̂ (t, x) = J̃(t, x; X̂∗(· ; t, x), û∗(· ; t, x)), (t, x) ∈ D

is called a closed-loop equilibrium value function of Problem (MF-LQ).



966 Jiongmin Yong

We point out that (ΘΔ(·), Θ̂Δ(·)) and (Θ(·), Θ̂(·)) are independent of the initial state
x ∈ R

n. Let us now state the main result of this section.

Theorem 3.7. Let (LQ1)–(LQ3) hold. Then there exists a unique pair (Γ, Γ̂) of Sn-valued
functions solving the following system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Γs(s, t) + Γ(s, t)
[
A(s)− B(s)Θ̂(s)

]
+
[
A(s)− B(s)Θ̂(s)

]T
Γ(s, t) + Q(s, t)

+
[
C(s)−D(s)Θ̂(s)

]T
Γ(s, t)

[
C(s)−D(s)Θ̂(s)

]
+Θ̂(s)TR(s, t)Θ̂(s) = 0,

Γ̂s(s, t) + Γ̂(s, t)
[
A(s)− B(s)Θ̂(s)

]
+
[
A(s)− B(s)Θ̂(s)

]T
Γ̂(s, t) + Q̂(s, t)

+
[
C(s)−D(s)Θ̂(s)

]T
Γ(s, t)

[
C(s)−D(s)Θ̂(s)

]
+Θ̂(s)TR̂(s, t)Θ̂(s) = 0,

0 � t � s � T,

Γ(T, t) = G(t), Γ̂(T, t) = Ĝ(t), 0 � t � T,

where Θ̂(·) is given by the following:

Θ̂(s) =
[
R̂(s, s) + D(s)TΓ(s, s)D(s)

]−1[
B(s)T Γ̂(s, s) + D(s)TΓ(s, s)C(s)

]
,

s ∈ [0, T ].

The closed-loop equilibrium state process X∗(·) is the solution to the following closed-loop
system:⎧⎨
⎩

dX∗(s) =
[
A(s)− B(s)Θ̂(s)

]
X∗(s)ds +

[
C(s)− D(s)Θ̂(s)

]
X∗(s)dW (s),

s ∈ [0, T ],
X∗(0) = x,

the closed-loop equilibrium control admits the following representation:

u∗(s) = −Θ̂(s)X∗(s), s ∈ [0, T ], (3.15)

and the closed-loop equilibrium value function is given by the following:

V̂ (t, x) = 〈 Γ̂(t, t)x, x 〉, ∀(t, x) ∈ D. (3.16)

Note that in Theorem 3.6, the Riccati equations for Γ(· , ·) and Γ̂(· , ·) are different:
(Q(· , ·), R(· , ·), G(·)) appears in the former and (Q̂(· , ·), R̂(· , ·), Ĝ(·)) appears in the later.
Also, we see that the system is fully coupled.

Directly comparing the results of this subsection with those in the previous subsection,
we see that the open-loop and closed-loop equilibrium solutions are different for Problem
(LQ). The results coincide when the problem is reduced to classical LQ problems.

The proof is lengthy and technical. However, the main idea is similar to that in Section
2, based on a careful analysis of multi-person differential games. For details, see [37].
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Mathematical models and numerical methods for
Bose-Einstein condensation

Weizhu Bao

Abstract. The achievement of Bose-Einstein condensation (BEC) in ultracold vapors of alkali atoms
has given enormous impulse to the theoretical and experimental study of dilute atomic gases in con-
densed quantum states inside magnetic traps and optical lattices. This article offers a short survey
on mathematical models and theories as well as numerical methods for BEC based on the mean field
theory. We start with the Gross-Pitaevskii equation (GPE) in three dimensions (3D) for modeling one-
component BEC of the weakly interacting bosons, scale it to obtain a three-parameter model and show
how to reduce it to two dimensions (2D) and one dimension (1D) GPEs in certain limiting regimes.
Mathematical theories and numerical methods for ground states and dynamics of BEC are provided.
Extensions to GPE with an angular momentum rotation term for a rotating BEC, to GPE with long-
range anisotropic dipole-dipole interaction for a dipolar BEC and to coupled GPEs for spin-orbit cou-
pled BECs are discussed. Finally, some conclusions are drawn and future research perspectives are
discussed.
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1. Introduction

The achievement of Bose-Einstein condensation (BEC) of dilute gases in 1995 [3, 28, 39]
marked the beginning of a new era in atomic, molecular and optical (AMO) physics and
quantum optics. In fact, the phenomenon known as BEC was predicted by Einstein in 1924
[40, 41] based on the ideas of Bose [27] concerning photons: In a system of bosons obeying
Bose statistics under the assumption that it is in equilibrium at temperature T and chemi-
cal potential μ, Einstein [40, 41] derived the so-called Bose-Einstein distribution (or Bose-
Einstein statistics), in the grand canonical ensemble, for the mean occupation of the jth
energy state as

nj =
1

e(εj−μ)/kBT − 1
:= f(εj), j = 0, 1, . . . , (1.1)

where εj > μ is the energy of the jth state, nj is the number of particles in state j, kB is the

Boltzmann constant. The mean total number of particles is given as N(T, μ) =
∞∑
j=0

f(εj),
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and the mean total energy is given as E(T, μ) =
∞∑
j=0

εjf(εj). From the above distribution,

Einstein [40, 41] predicted that there should be a critical temperature Tc below which a finite
fraction of all the particles “condense” into the same one-particle state.

Einstein’s original prediction was for a noninteracting gas and did not receive much at-
tention in a long time. After the observation of superfluidity in liquid 4He below the λ
temperature (2.17K) in 1938, London [61] suggested that despite the strong interatomic in-
teractions BEC was indeed occurring in this system and was responsible for the superfluid
properties. This suggestion has stood the test of time and is the basis for our modern under-
standing of the properties of the superfluid phase. By combining laser cooling and evapo-
rative cooling, in 1995 BEC was realized in a system that is about as different as possible
from 4He, namely, dilute atomic alkali gases trapped by magnetic fields and over the last
two decades these systems have been the subject of an explosion of research, both experi-
mentally and theoretically. Perhaps the single aspect of BEC systems that makes them most
fascinating is best illustrated by the cover of Science magazine of December 22, 1995, in
which the Bose condensate is declared “molecule of the year” and pictured as a platoon
of soldiers marching in lock-step: every atom in the condensate must behave in exactly the
same way, and this has the consequence, inter alia, that effects which are so small as to be
essentially invisible at the level of single atom may be spectacularly amplified. Most BEC
experiments reach quantum degeneracy between 50 nK and 2 μK, at densities between 1011

and 1015 cm−3. The largest condensates are of 100 million atoms for sodium, and a billion
for hydrogen; the smallest are just a few hundred atoms. Depending on the magnetic trap,
the shape of the condensate is either approximately round, with a diameter of 10–15 μm, or
cigar-shaped with about 15 μm in diameter and 300 μm in length. The full cooling cycle that
produce a condensate may take from a few seconds to as long as several minutes [37, 52].
For better understanding of the long history towards the BEC and its physical study, we refer
to the Nobel lectures [37, 52] and several review papers in physics [38, 56, 65, 67].

The experimental advances in BEC [3, 28, 39] have spurred great excitement in the
AMO community and condense matter community as well as computational and applied
mathematics community. Since 1995, numerous efforts have been devoted to the studies of
ultracold atomic gases and various kinds of condensates of dilute gases have been produced
for both bosonic particles and fermionic particles [38, 43, 56]. In this rapidly growing re-
search area, mathematical models and analysis as well as numerical simulation have been
playing an important role in understanding the theoretical part of BEC and predicting and
guiding the experiments. The goal of this paper is to offer a short survey on mathematical
models and theories as well as numerical methods for BEC based on the Gross-Pitaevskii
equation (GPE) [7, 46, 65–67]. The paper is organized as follows. In section 2, we present
the GPE for BEC based on the mean field approximation. Ground states and their computa-
tions are discussed in section 3, and dynamics and its computation are presented in section
4. Extensions to rotating BEC, dipolar BEC and spin-orbit-coupled BEC are presented in
section 5. Finally, some conclusions and perspectives are drawn in section 6.

2. The Gross-Pitaevskii equation

In this section, we will present the GPE for modeling BEC based on the mean field ap-
proximation [7, 46, 65–67], its nondimensionalization and dimension reduction to lower
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dimensions.

2.1. Mean field approximation. For a BEC of ultracold dilute gas withN identical bosons
confined in an external trap, only binary interaction is important, then the many-body Hamil-
tonian for it can be written as [56, 58]

HN =
N∑
j=1

(
− 	

2

2m
Δj + V (xj)

)
+

∑
1≤j<k≤N

Vint(xj − xk), (2.1)

where xj ∈ R
3 denotes the position of the jth particle for j = 1, . . . , N , m is the mass of a

boson, 	 is the Planck constant,Δj = ∇2
j is the Laplace operator with respect to xj , V (xj) is

the external trapping potential, and Vint(xj −xk) denotes the inter-atomic two body interac-
tion. Denote the complex-valued wave functionΨN := ΨN (x1, . . . ,xN , t) ∈ L2(R3N ×R)
for the N particles in the BEC, which is symmetric with respect to any permutation of the
positions xj (1 ≤ j ≤ N ), then the total energy is given as

Etotal(ΨN ) = (ΨN , HNΨN ) :=

∫
R3N

ΨNHNΨN dx1 . . . dxN , (2.2)

where f , Re(f) and Im(f) denote the complex conjugate, real part and imaginary part of
f , respectively, and the evolution of the system is described by the time-dependent linear
Schrödinger equation

i	∂tΨN (x1, . . . ,xN , t) =
δEtotal(ΨN )

δΨN

= HNΨN (x1, . . . ,xN , t), (2.3)

where i =
√−1 denotes the imaginary unit and t is time.

For a BEC, all particles are in the same quantum state and we can formally take the
Hartree ansatz [7, 42, 46, 58, 59, 65–67]

ΨN (x1, . . . ,xN , t) ≈
N∏
j=1

ψ(xj , t), (2.4)

with the normalization for the single-particle wave function ψ := ψ(x, t) as

‖ψ(·, t)‖2 :=

∫
R3

|ψ(x, t)|2 dx = 1, (2.5)

where x = (x, y, z)T ∈ R
3 is the Cartesian coordinate in three dimensions (3D). Due

to that the BEC gas is dilute and the temperature is below the critical temperature Tc, i.e.
a weakly interacting gas, the binary interaction Vint is well approximated by the effective
contact interacting potential [65–67]:

Vint(xj − xk) = g δ(xj − xk), (2.6)

where δ(·) is the Dirac distribution and the constant g = 4π�2as

m with as the s-wave scat-
tering length of the bosons (positive for repulsive interaction and negative for attractive in-
teraction, which is much smaller than the average distance between the particles). Plugging
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(2.4) into (2.2), noticing (2.1) and (2.6), and keeping only the two-body interaction, we ob-
tain Etotal(ΨN ) ≈ N E(ψ) with the Gross-Pitaevskii (GP) energy (or energy per particle)
defined as [46, 58, 59, 65–67]

E(ψ) =

∫
R3

[
	
2

2m
|∇ψ(x, t)|2 + V (x)|ψ(x, t)|2 + Ng

2
|ψ(x, t)|4

]
dx. (2.7)

The dynamics of the BEC will be governed by the following nonlinear Schrödinger equation
(NLSE) with cubic nonlinearity, known as the Gross-Pitaevskii equation (GPE) [7, 42, 46,
58, 59, 65–67]:

i	∂tψ =
δE(ψ)

δψ
=

[
− 	

2

2m
∇2 + V (x) + Ng|ψ|2

]
ψ, x ∈ R

3, t > 0. (2.8)

In most BEC experiments, the trapping potential has been taken as the harmonic oscillator
potential [3, 7, 28, 39, 67]

V (x) =
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, x = (x, y, z)T ∈ R

3, (2.9)

where ωx, ωy and ωz are the trap frequencies in x-, y- and z-direction, respectively. Without
loss of generality, we assume that ωx ≤ ωy ≤ ωz throughout the paper. For other trapping
potentials used in BEC experiments, such as box potential, double-well potential and optical
lattice potential, we refer to [7, 26, 65–68] and references therein.

The derivation of the GPE (2.8) from the linear Schrödinger equation (2.3) for a BEC (or
a system of N identical particles) based on mean field approximation – dimension reduction
– was formally obtained by Pitaevskii [66] and Gross [46] independently in 1960s. Since
the first experimental observation of BEC in 1995, much attention has been paid to provide
mathematical justification for the derivation when N is large enough: For ground states,
Lieb et al. [58, 59] proved rigorously that the GP energy (2.7) approximates the energy
of the many-body system correctly in the mean field regime; and for dynamics, Yau et al.
[42] established the validity of the GPE (2.8) as an approximation for (2.3), which inspired
great interests in the study on dynamics for such many body system recently [35, 36, 54].
The above GPE (2.8) is a very simple equation, which is very convenient for mathematical
analysis and numerical calculations, and in the case of the BEC alkali gases, appears to
give a rather good quantitative description of the behavior in a large variety of experiments
[7, 65–67]. It has become the fundamental mathematical model for studying theoretically
the ground states and dynamics of BECs [7, 65–67].

2.2. Nondimensionalization. In order to study theoretically BECs, we nondimensionalize
the GPE (2.8) with the harmonic trapping potential (2.9) under the normalization (2.5) and
introduce [7, 65–67]

t̃ =
t

ts
, x̃ =

x

xs
, ψ̃

(
x̃, t̃
)
= x3/2

s ψ (x, t) , Ẽ(ψ̃) =
E(ψ)

Es
, (2.10)

where ts = 1
ωx

, xs =
√

�

mωx
and Es = 	ωx are the scaling parameters of dimension-

less time, length and energy units, respectively. Plugging (2.10) into (2.8), multiplying by
t2s/mx

1/2
s , and then removing all ,̃ we obtain the following dimensionless GPE under the
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normalization (2.5) in 3D [7, 65–67]:

i∂tψ(x, t) =

[
−1

2
∇2 + V (x) + κ|ψ(x, t)|2

]
ψ(x, t), x ∈ R

3, t > 0, (2.11)

where κ = 4πNas

xs
is the dimensionless interaction constant, the dimensionless trapping

potential is given as [7, 65–67]

V (x) =
1

2

(
x2 + γ2

yy
2 + γ2

zz
2
)
, x ∈ R

3, with γy =
ωy

ωx
≥ 1, γz =

ωz

ωx
≥ 1, (2.12)

and dimensionless energy functional E(ψ) is defined as [7, 65–67]

E(ψ) =

∫
R3

[
1

2
|∇ψ(x, t)|2 + V (x)|ψ(x, t)|2 + κ

2
|ψ(x, t)|4

]
dx. (2.13)

2.3. Dimension reduction. In many BEC experiments [3, 28, 39, 65–67], the trapping po-
tential (2.12) is anisotropic, i.e. γz 1 1 and/or γy 1 1, and then the GPE in 3D can be
further reduced to a GPE in two dimensions (2D) or one dimension (1D). Assume the initial
data for the 3D GPE (2.11) is given as

ψ(x, 0) = ψ0(x), x ∈ R
3, (2.14)

and define the linear operator H as

H = −1

2
Δ + V (x) = −1

2
∇2 + V (x), x ∈ R

3. (2.15)

When γz 1 1 and γy = O(1) (⇔ ωz 1 ωx and ωy = O(ωx)), i.e. disk-shaped
condensate with strong confinement in the z-direction [3, 28, 39, 65, 67], then the linear
operator H can be split as

H = −1

2
Δ⊥ + V2(x⊥)− 1

2
∂zz +

z2

2ε4
:= H⊥ + Hε

z = H⊥ +
1

ε2
Hz̃, x ∈ R

3, (2.16)

where x⊥=(x, y)T ∈R
2,Δ⊥=∂xx+∂yy , V2(x⊥)= 1

2 (x
2+γ2

yy
2),H⊥ :=− 1

2Δ⊥+V2(x⊥),
ε = 1/

√
γz , z = εz̃ and

Hε
z := −1

2
∂zz +

z2

2ε4
=

1

ε2

[
−1

2
∂z̃z̃ +

z̃2

2

]
:=

1

ε2
Hz̃, z, z̃ ∈ R. (2.17)

For Hz̃ in (2.17), we know that the following linear eigenvalue problem

Hz̃ χ(z̃) =

[
−1

2
∂z̃z̃ +

z̃2

2

]
χ(z̃) = μχ(z̃), z̃ ∈ R, (2.18)

with ‖χ‖2 :=
∫
R
|χ(z̃)|2 dz̃ = 1 admits distinct orthonormal eigenfunctions χk(z̃) with

corresponding eigenvalues μk for k = 0, 1, . . . In fact, they form an orthonormal basis of
L2(R) and can be chosen as [7, 14, 25, 65–67]

μk =
k + 1

2
, χk(z̃) =

1

π1/4
√
2k k!

e−z̃2/2 Hk(z̃), z̃ ∈ R, k = 0, 1, 2, . . . , (2.19)
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with Hk(z̃) the standard Hermite polynomial of degree k. Thus (χε
k(z), μ

ε
k) for k ≥ 0 are

orthonormal eigenpairs to the operator Hε
z with

με
k =

μk

ε2
=

k + 1

2ε2
, χε

k(z) =
1√
ε
χk(z̃) =

1√
ε
χk

(z
ε

)
, z ∈ R. (2.20)

For simplicity of notation, here we only consider “pure state” case in the strong confinement
direction, especially the “ground state” case [7, 14, 25, 65–67]. Assuming that the initial
data ψ0 in (2.14) satisfies

ψ0(x) ≈ ψ2(x⊥)χε
0(z), x ∈ R

3, 0 < ε 5 1, (2.21)

noting the scale separation in (2.16), when ε → 0+, the solution ψ to the 3D GPE (2.11) can
be well approximated as [7, 14, 25, 65–67]

ψ(x, t) ≈ ψ2(x⊥, t) χε
0(z) e−i με

0 t, x ∈ R
3, t ≥ 0. (2.22)

Plugging (2.22) into (2.11) and then multiplying by χε
0(z) e

i με
0 t, integrating for z over R,

we obtain formally the GPE in 2D with ψ2 := ψ2(x⊥, t) as [7, 14, 25, 65–67]

i∂tψ2 =

[
−1

2
Δ⊥ + V2(x⊥) + κ

√
γz
2π

|ψ2|2
]
ψ2, x⊥ ∈ R

2, t > 0. (2.23)

The above dimension reduction from 3D to 2D is mathematically and rigorously justified in
the very weak interaction regime [6, 25], i.e. κ = O(ε) = O(1/

√
γz) as ε → 0+. However,

for the strong interaction regime, i.e. κ = O(1) and ε → 0+, it is very challenging. The
key difficulty is due to that the energy associated to the 2D GPE (2.23) is unbounded in this
regime. Recently, by using a proper re-scaling, the dimension reduction is justified in this
regime too [16].

Similarly, when γz 1 1 and γy 1 1 (⇔ ωz 1 ωx and ωy 1 ωx), i.e. cigar-shaped
condensate with strong confinement in the (y, z)-plane [3, 28, 39, 65, 67], the 3D GPE (2.11)
can be reduced to the following GPE in 1D as [7, 14, 65–67]

i∂tψ1(x, t) =

[
−1

2
∂xx +

x2

2
+ κ

√
γyγz

2π
|ψ1(x, t)|2

]
ψ1(x, t), x ∈ R, t > 0. (2.24)

Then the 3D GPE (2.11), 2D GPE (2.23) and 1D GPE (2.24) can be written in a unified
way [7, 14, 65–67]

i∂tψ(x, t) =

[
−1

2
∇2 + V (x) + β |ψ(x, t)|2

]
ψ(x, t), x ∈ R

d, t > 0, (2.25)

where β = κ, κ
√

γz/2π and κ
√

γyγz/2π when d = 3, 2 and 1, respectively, and

V (x) =
1

2

⎧⎪⎨
⎪⎩

x2, d = 1,

x2 + γ2
yy

2, d = 2,

x2 + γ2
yy

2 + γ2
zz

2, d = 3,

x ∈ R
d. (2.26)

This GPE conserves the normalization (or mass)

N(ψ(·, t)) =
∫
Rd

|ψ(x, t)|2 dx ≡
∫
Rd

|ψ(x, 0)|2 dx = 1, t ≥ 0, (2.27)
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and the energy per particle

E(ψ(·, t)) =
∫
Rd

[
1

2
|∇ψ|2 + V (x)|ψ|2 + β

2
|ψ|4
]
dx ≡ E(ψ(·, 0)), t ≥ 0. (2.28)

In fact, the energy functional E(ψ) can be split into three parts as E(ψ) = Ekin(ψ) +
Epot(ψ)+Eint(ψ)with the kinetic energyEkin(ψ), potential energyEpot(ψ) and interaction
energy Eint(ψ) defined as

Ekin(ψ) =

∫
Rd

1

2
|∇ψ|2dx, Eint(ψ) =

∫
Rd

β

2
|ψ|4dx, Epot(ψ) =

∫
Rd

V (x)|ψ|2dx.

3. Ground states

To find the stationary state of the GPE (2.25) for a BEC, we write [7, 12, 65–67]

ψ(x, t) = φ(x) e−iμt, x ∈ R
d, t ≥ 0, (3.1)

where μ is the chemical potential of the condensate and φ(x) is a function independent of
time. Substituting (3.1) into (2.25) gives the following for (μ, φ):

μ φ(x) = −1

2
∇2φ(x) + V (x)φ(x) + β|φ(x)|2φ(x), x ∈ R

d, (3.2)

under the normalization condition

‖φ‖2 :=

∫
Rd

|φ(x)|2dx = 1. (3.3)

This is a nonlinear eigenvalue problem with a constraint and any eigenvalue μ can be com-
puted from its corresponding eigenfunction φ(x) by [7, 12, 65–67]

μ = μ(φ) = E(φ) +

∫
Rd

β

2
|φ(x)|4dx = E(φ) + Eint(φ). (3.4)

The ground state of a BEC is usually defined as the minimizer of the following nonconvex
(or constrained) minimization problem [7, 12]: Find φg ∈ S such that

Eg := E(φg) = min
φ∈S

E(φ), with μg := μ(φg) = E(φg) + Eint(φg), (3.5)

where S = {φ | ‖φ‖ = 1, E(φ) < ∞} is the unit sphere and μg is the corresponding chem-
ical potential. It is easy to show that the ground state φg is an eigenfunction of the nonlinear
eigenvalue problem (3.2) under the constraint (3.3), which is the Euler-Lagrangian equa-
tion of constrained minimization problem (3.5). Any eigenfunction of (3.2) whose energy is
larger than that of the ground state is usually called excited states in the physics literatures.

3.1. Existence and uniqueness. Denote the best Sobolev constant Cb in 2D as

Cb := inf
0 �=f∈H1(R2)

‖∇f‖2L2(R2) ‖f‖2L2(R2)

‖f‖4L4(R2)

. (3.6)
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The best constant Cb can be attained at some H1 function [7] and it is crucial in considering
the existence of ground states in 2D. For existence and uniqueness of the ground state to
(3.5), we have the following results.

Theorem 3.1 (Existence and uniqueness [7, 59]). Suppose V (x) ≥ 0 (x ∈ R
d) in the

energy functional (2.28) satisfies the confining condition lim
|x|→∞

V (x) = ∞, then there exists

a ground state φg ∈ S for (3.5) if one of the following holds: (i) d = 3, β ≥ 0; (ii)
d = 2, β > −Cb; (iii) d = 1, for all β ∈ R. Moreover, the ground state can be chosen
as nonnegative |φg|, and φg(x) = eiθ0 |φg(x)| for some constant θ0 ∈ R. For β ≥ 0, the
nonnegative ground state φg is unique. If the potential V (x) ∈ L2

loc, the nonnegative ground
state is strictly positive. In contrast, there exists no ground state if one of the following holds:
(i′) d = 3, β < 0; (ii′) d = 2, β ≤ −Cb.

For the ground state φg ∈ S of (3.5) with the harmonic potential (2.26), we have the
following properties.

Theorem 3.2 (Virial identity [7, 67]). The ground state φg ∈ S of (3.5) satisfies the following
virial identity

2Ekin(φg)− 2 Epot(φg) + d Eint(φg) = 0. (3.7)

Theorem 3.3 (Symmetry [7, 59]). Suppose γy = γz = 1 in (2.26), i.e. the harmonic trap-
ping potential V (x) is radially/spherically symmetric in 2D/3D and monotone increasing,
then the positive ground state φg ∈ S of (3.5) must be radially/spherically symmetric in
2D/3D and monotonically decreasing, i.e. φg(x) = φg(r) with r = |x| for x ∈ R

d.

Theorem 3.4 (Decay at far-field [7]). When β ≥ 0, for any ν > 0, there exists a constant
Cν > 0 such that

|φg(x)| ≤ Cν e−ν|x|, x ∈ R
d, d = 1, 2, 3. (3.8)

3.2. Approximations under the harmonic potential. For any fixed β ≥ 0 in (2.28), we
denote the positive ground state of (3.5) with (2.26) as φg := φβ

g and the corresponding
energy and chemical potential as Eg := Eβ

g = E(φβ
g ) and μg := μβ

g = μ(φβ
g ), respectively.

When β = 0, i.e. linear case, the exact ground state φ0
g can be found as [7, 12, 65–67]

E0
g = μ0

g =
1

2

⎧⎪⎨
⎪⎩
1,

1 + γy,

1 + γy + γz,

φ0
g(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
π1/4 e−x2/2, d = 1,
γ1/4
y

π1/2 e−(x2+γyy
2)/2, d = 2,

(γyγz)
1/4

π3/4 e−(x2+γyy
2+γzz

2)/2, d = 3.

When |β| = o(1) in (2.28), i.e. weak interaction case, the ground state φβ
g can be approx-

imated by φβ
g (x) ≈ φ0

g(x) for x ∈ R
d, and the corresponding energy Eβ

g and chemical
potential μβ

g can be approximated with Cd =
∫
Rd |φ0

g(x)|4 dx as

Eβ
g ≈ E(φ0

g) = E0
g +

β

2
Cd = E0

g + O(β), μβ
g ≈ μ(φ0

g) = μ0
g + βCd = μ0

g + O(β),

where C1 =
√

π/2, C2 =
√

γy/2π and C3 =
√

γyγz/(2π)
3/2.



Mathematical models and numerical methods for Bose-Einstein condensation 979

When β 1 1, the ground state φβ
g can be well approximated by the Thomas-Fermi (TF)

approximation φβ
g ≈ φTF

g [7, 67], i.e. by dropping the diffusion term (e.g. the first term on
the right hand side of (3.2)), we obtain

μTF
g φTF

g (x) = V (x)φTF
g (x) + β|φTF

g (x)|2φTF
g (x), x ∈ R

d, (3.9)

with μTF
g ≈ μβ

g . Solving the above equation, we get

φβ
g (x) ≈ φTF

g (x) =

{√(
μTF
g − V (x)

)
/β, V (x) < μTF

g ,

0, otherwise,
(3.10)

where μTF
g is chosen to satisfy the normalization ‖φTF

g ‖ = 1, which can be computed as
[7, 12, 65–67]

μβ
g ≈ μTF

g =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

(
3β
2

)2/3
,(

βγy

π

)1/2
,

1
2

(
15βγyγz

4π

)2/5
,

Eβ
g ≈ ETF

g =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3
10

(
3β
2

)2/3
, d = 1,

2
3

(
βγy

π

)1/2
, d = 2,

5
14

(
15βγyγz

4π

)2/5
, d = 3,

with ETF
g := μTF

g − Eint(φ
TF
g ). For fixed γy ≥ 1 and γz ≥ 1 in (2.26) and when β 1 1

(e.g. N 1 1), from the above TF approximation, we can get the typical lengthes (i.e.
RTF

x =
√
2μTF

g , RTF
y =

√
2μTF

g /γy and RTF
z =

√
2μTF

g /γz of the support of the TF

approximation φTF
g in x-, y- and z-directions, respectively ) – TF radius– of the ground

state φβ
g for a BEC as: RTF

x = O(β1/(d+2)) = O(N1/(d+2)) for d = 1, 2, 3, RTF
y =

O(β1/(d+2)) = O(N1/(d+2)) for d = 2, 3, and RTF
z = O(β1/5) = O(N1/5) for d = 3. In

addition, we also have Eβ
g ≈ ETF

g = d+2
d+4μ

TF
g ≈ d+2

d+4μ
β
g = O(β2/(d+2)) = O(N2/(d+2)),

‖φβ
g‖L∞ ≈ φTF

g (0) = O(β−d/2(d+2)) = O(N−d/2(d+2)) for d = 1, 2, 3. Thus it is easy
to see that there is no limit of the ground state φβ

g when β → ∞ under the standard physics
scaling (2.10) for a BEC. In addition, for computing the ground states and dynamics of a
BEC, the bounded computational domain needs to be chosen depending on β such that the
truncation error can be negligible!

3.3. Numerical methods. Various numerical methods for computing the ground state φg in
(3.5) have been proposed and studied in the literature [7, 11, 12, 22, 34, 64]. Among them,
one of the most efficient and simple methods is the following gradient flow with discrete
normalization (GFDN) [7, 12]. Choose a time step τ := Δt > 0 and denote time steps as
tn = nτ for n = 0, 1, . . . At each time interval [tn, tn+1), by applying the steepest decent
method to the energy functional E(φ) without constraint and then projecting the solution
back to the unit sphere S at t = tn+1 so as to satisfy the constraint (3.3), we have

∂tφ = −1

2

δE(φ)

δφ
=

[
1

2
∇2 − V (x)− β |φ|2

]
φ, tn < t < tn+1, (3.11)

φ(x, tn+1)
,
= φ(x, t+n+1) =

φ(x, t−n+1)

‖φ(·, t−n+1)‖
, x ∈ R

d, n ≥ 0, (3.12)
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where φ := φ(x, t), φ(x, t±n ) = limt→t±n φ(x, t), and with the initial data

φ(x, 0) = φ0(x), x ∈ R
d. (3.13)

In fact, the gradient flow (3.11) can be obtained from the GPE (2.25) by t → −it, thus the
GFDN is known as imaginary time method in physics literatures [34, 64].

For the above GFDN, suppose V (x) ≥ 0 for x ∈ R
d and ‖φ0‖2 :=

∫
Rd |φ0(x)|2 dx

= 1, then we have [7, 12]

Theorem 3.5 (Energy diminishing [12]). For β = 0, the GFDN (3.11)-(3.13) is energy
diminishing for any time step τ > 0 and initial data φ0, i.e.

E(φ(·, tn+1)) ≤ E(φ(·, tn)) ≤ · · · ≤ E(φ(·, 0)) = E(φ0), n = 0, 1, 2, · · · . (3.14)

Let τ → 0 in (3.11)-(3.13), we can obtain the following normalized gradient flow (NGF)
[12]

∂tφ(x, t) =

[
1

2
∇2 − V (x)− β |φ|2 + μφ(t)

]
φ, x ∈ R

d, t ≥ 0, (3.15)

where

μφ(t) =
μ(φ(·, t))
‖φ(·, t)‖2 =

1

‖φ(·, t)‖2
∫
Rd

[
1

2
|∇φ|2 + V (x)|φ|2 + β|φ|4

]
dx. (3.16)

Theorem 3.6 (Energy diminishing [12]). The NGF (3.15) with (3.13) is normalization con-
servative and energy diminishing, i.e.

‖φ(·, t)‖ ≡ ‖φ0‖ = 1,
d

dt
E(φ) = −2 ‖∂tφ(·, t)‖2 ≤ 0 , t ≥ 0, (3.17)

which in turn implies

E(φ(·, t)) ≥ E(φ(·, s)), 0 ≤ t ≤ s < ∞. (3.18)

With the above two theorems, the positive ground state can be obtained from the GFDN
as φg(x) = limt→∞ φ(x, t) provided that φ0 is chosen as a positive function and time step
τ is not too big when β ≥ 0 [7, 12]. In addition, the GFDN (3.11)-(3.13) can be discretized
by the backward Euler finite difference (BEFD) discretization [7, 12]. For simplicity of
notation, here we only present the BEFD for the GFDN in 1D truncated on a bounded interval
U = (a, b) with homogeneous Dirichlet boundary conditions. Choose a mesh size h :=
Δx = (b − a)/M > 0 with M a positive integer, denote grid points as xj = a + jh for
j = 0, 1, . . . ,M , and let φn

j be the numerical approximation of φ(xj , tn). Then a BEFD
discretization for the GFDN in 1D reads [7, 12]

φ
(1)
j − φn

j

τ
=

φ
(1)
j+1 − 2φ

(1)
j + φ

(1)
j−1

2h2
−
[
V (xj) + β

(
φn
j

)2]
φ
(1)
j , 1 ≤ j ≤ M − 1,

φ
(1)
0 = φ

(1)
M = 0, φ0

j = φ0(xj), φn+1
j =

φ
(1)
j

‖φ(1)‖h , 0 ≤ j ≤ M, n ≥ 0,

where ‖φ(1)‖2h := h
∑M−1

j=1 |φ(1)
j |2. This BEFD method is implicit and unconditionally

stable, the discretized system can be solved by the Thomas’ algorithm, the memory cost is
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O(M) and computational cost is O(M) per time step. The ground state can be obtained

numerically from the above BEFD when max
0≤j≤M

|φn+1
j −φn

j |
τ ≤ ε with ε small enough, e.g.

10−6. For extensions to 2D and 3D as well as other numerical methods, we refer [7, 11, 12,
22, 34, 64] and references therein.

4. Dynamics

For studying the dynamics of the GPE (2.25), the initial data is usually chosen as

ψ(x, 0) = ψ0(x), x ∈ R
d. (4.1)

The GPE (2.25) is a dispersive PDE and it is time reversible or symmetric, i.e. it is unchanged
under the change of variable in time as t → −t and taken conjugate in the equation. Another
important property is time transverse or gauge invariant, i.e. if V → V + α with α a
given real constant, then the solution ψ → ψe−iαt which immediately implies that the
density ρ = |ψ|2 is unchanged. It conserves the normalization (or mass) and energy (or
Hamiltonian), i.e. N(ψ(·, t)) ≡ N(ψ0) and E(ψ(·, t)) ≡ E(ψ0) for t ≥ 0.

4.1. Well-posedness and dynamical properties. For studying well-posedness of the GPE
(2.25), we introduce the functional spaces

LV (R
d) =

{
φ|
∫
Rd

V (x)|φ(x)|2dx < ∞
}

, X := X(Rd) = H1(Rd) ∩ LV (R
d).

Theorem 4.1 (Well-posedness [7]). Suppose the trapping potential is nonnegative and at
most quadratic growth in far field, i.e., V (x) ∈ C∞(Rd) and DkV (x) ∈ L∞(Rd) for all
k ∈ N

d
0 with |k| ≥ 2, then we have

(i) For any initial data ψ0 ∈ X(Rd), there exists a time Tmax ∈ (0,+∞] such that the
Cauchy problem of the GPE (2.25) with (4.1) has a unique maximal solution ψ ∈
C ([0, Tmax), X). It is maximal in the sense that if Tmax < ∞, then ‖ψ(·, t)‖X → ∞
when t → T−max.

(ii) As long as the solution ψ(x, t) remains in the energy space X , the L2-norm ‖ψ(·, t)‖2
and energy E(ψ(·, t)) are conserved for t ∈ [0, Tmax).

(iii) The solution of the Cauchy problem is global in time, i.e., Tmax = ∞, if d = 1 or
d = 2 with β > Cb/‖ψ0‖22 or d = 3 with β ≥ 0.

Theorem 4.2 (Finite time blow-up [7]). In 2D and 3D, assume V (x) is at most quadratic
growth in far field and satisfies V (x)d + x · ∇V (x) ≥ 0 for x ∈ R

d (d = 2, 3). When
β < 0, for any initial data ψ0(x) ∈ X with finite variance

∫
Rd |x|2|ψ0|2 dx < ∞, the

Cauchy problem of the GPE (2.25) with (4.1) will blow-up at finite time, i.e. Tmax < ∞, if
one of the following holds:

(i) E(ψ0) < 0;

(ii) E(ψ0) = 0 and Im
(∫

Rd ψ0(x) (x · ∇ψ0(x)) dx
)
< 0;

(iii) E(ψ0) > 0 and Im
(∫

Rd ψ0(x) (x · ∇ψ0(x)) dx
)
< −√E(ψ0)d ‖xψ0‖L2 .
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If there is no external potential in the GPE (2.25), i.e. V (x) ≡ 0, then the momentum
and angular momentum are also conserved [4, 7, 70]. The GPE (2.25) admits the plane wave
solution as ψ(x, t) = Aei(k·x−ωt), where the time frequency ω, amplitude A and spatial
wave number k satisfy the following dispersion relation [4, 7, 70]: ω = |k|2

2 +β|A|2. In 1D,
i.e. d = 1, when β < 0, it admits the well-known bright soliton solution as [4, 70]

ψB(x, t) =
A√−β

sech(A(x − vt − x0))e
i(vx− 1

2 (v
2−A2)t+θ0), x ∈ R, t ≥ 0, (4.2)

where A√−β
is the amplitude of the soliton withA a positive real constant, v is the velocity of

the soliton, x0 and θ0 are the initial shifts in space and phase, respectively. Since the soliton
solution is exponentially decaying for |x| → +∞, then the mass and energy are well defined
and given by: N(ψB) = − 2A

β and E(ψB) = Av2

−β + A3

−3β . When β > 0, it admits dark
solitons [67, 70].

Let ψ := ψ(x, t) be the solution of the GPE (2.25) with the harmonic potential (2.26) and
initial data (4.1) satisfying ‖ψ0‖ = 1, define the center-of-mass xc(t) =

∫
Rd x|ψ(x, t)|2 dx,

square of the condensate width δα(t) =
∫
Rd α2|ψ(x, t)|2dx with α = x, y or z, and angular

momentum expectation 〈Lz〉(t) =
∫
Rd ψ(x, t)Lzψ(x, t) dx with Lz = −i (x∂y − y∂x)

when d = 2, 3. Then we have [7, 13]

Lemma 4.3 (Angular momentum expectation [7, 13]). For any initial data ψ0(x) in (4.1),
when γy = 1 in (2.26), i.e. the trapping potential is radially/cylindrically symmetric in
2D/3D, then the angular momentum expectation is conserved, i.e.

〈Lz〉(t) ≡ 〈Lz〉(0) =
∫
Rd

ψ0(x)Lzψ0(x) dx, t ≥ 0. (4.3)

Lemma 4.4 (Condensate width [7, 13]). For any initial data ψ0(x) in (4.1), in 1D without
interaction, i.e. d = 1 and β = 0 in (2.25), we have

δx(t) = E(ψ0) +
(
δ(0)x − E(ψ0)

)
cos(2t) + δ(1)x sin(2t), t ≥ 0; (4.4)

and in 2D with a radially symmetric trap, i.e. d = 2 and γy = 1 in (2.26), we have

δr(t) = E(ψ0) +
(
δ(0)r − E(ψ0)

)
cos(2t) + δ(1)r sin(2t), t ≥ 0, (4.5)

where δr(t) = δx(t) + δy(t), δ
(0)
r := δ

(0)
x + δ

(0)
y , and δ

(1)
r := δ

(1)
x + δ

(1)
y with δ

(0)
α =∫

Rd α2|ψ0(x)|2dx and δ
(1)
α = 2

∫
Rd α Im

(
ψ0∂αψ0

)
dx for α = x or y. Thus δx in 1D and

δr in 2D are periodic functions with frequency doubling the trapping frequency.

Lemma 4.5 (Center-of-mass [7, 13, 19]). For any initial data ψ0(x) in (4.1), the dynamics
of the center-of-mass satisfies the following second-order ODE

ẍc(t) + Λxc(t) = 0, t ≥ 0, (4.6)

with the following initial data

xc(0) = x(0)
c =

∫
Rd

x|ψ0(x)|2dx, ẋc(0) = x(1)
c =

∫
Rd

Im(ψ0∇ψ0) dx,

where Λ is a d × d diagonal matrix as Λ = 1 when d = 1, Λ = diag(1, γ2
y) when d = 2,

and Λ = diag(1, γ2
y , γ

2
z ) when d = 3. This implies that each component of xc is a periodic

function whose frequency is the same as the trapping frequency in that direction.
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Lemma 4.6 (Exact solution [7, 13]). If the initial data ψ0(x) in (4.1) is chosen as

ψ0(x) = φe(x− x0) e
i(w0·x+g0), x ∈ R

d, (4.7)

where x0,w0 ∈ R
d and g0 ∈ R are given constants, and (μe, φe) is a solution of the

nonlinear eigenvalue problem (3.2) with the constraint (3.3), then the GPE (2.25) with (2.26)
and (4.7) admits the following unique exact solution

ψ(x, t) = φe(x− xc(t)) e−iμet ei(w(t)·x+g(t)), x ∈ R
d, t ≥ 0, (4.8)

where xc(t) satisfies the second-order ODE (4.6) with the initial condition xc(0) = x0 and
ẋc(0) = w0, and w(t) and g(t) satisfy the following ODEs

ẇ(t) = −Λxc(t), ġ(t) = V (xc(t)) =
1

2
xc(t) · (Λxc(t)), t > 0, (4.9)

with initial data w(0) = w0 and g(0) = g0.

4.2. Numerical methods. Various numerical methods have been proposed and studied in
the literature [4, 7, 14, 20, 34, 64] for computing the dynamics of the GPE (2.25) with
(4.1). Among them, one of the most efficient and accurate as well as simple methods is
the following time-splitting sine pseudospectral (TSSP) method [4, 7, 14]. For simplicity of
notation, here we only present the TSSP method for the GPE (2.25) in 1D truncated on a
bounded interval U = (a, b) with homogeneous Dirichlet boundary conditions. Let ψn

j be
the numerical approximation of ψ(xj , tn) and ψn be the solution vector at time t = tn = nτ
with components {ψn

j }Mj=0, then a second-order TSSP method for the GPE (2.25) in 1D
reads [4, 7, 14]

ψ
(1)
j =

2

M

M−1∑
l=1

e−iτμ2
l /4 (̃ψn)l sin(μl(xj − a)), ψ

(2)
j = e−iτ(V (xj)+β|ψ(1)

j |2) ψ
(1)
j ,

ψn+1
j =

2

M

M−1∑
l=1

e−iτμ2
l /4 (̃ψ(2))l sin(μl(xj − a)), 0 ≤ j ≤ M,

where μl = lπ/(b − a) for 1 ≤ l ≤ M − 1 and (̃ψn)l and (̃ψ(2))l are the discrete sine
transform (DST) coefficients of ψn and ψ(2), respectively. This TSSP method for the GPE
(2.25) is explicit, unconditionally stable, second-order accurate in time and spectral-order
accurate in space [4, 7, 14]. It is time reversible or symmetric, time transverse invariant,
conserves the mass at the discetized level and has the same dispersive relation as the GPE
when V (x) ≡ 0. The memory cost is O(M) and computational cost is O(M lnM) per time
step. For extensions to 2D/3D and other numerical methods, we refer to [4, 7, 14, 20, 34, 64]
and references therein.

4.3. Bogoliubov excitation of ground state. An important class of time-dependent solu-
tions of the GPE (2.25) is given by the small-amplitude oscillations, where the changes in
space and time of the wave function (or order parameter) with respect to the stationary states,
especially ground states, are small. In many cases these solutions emphasize the collective
behavior exhibited by the interacting Bose gases and can be interpreted in terms of the el-
ementary excitations of the system. For describing the dynamics of a BEC, it is natural
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to consider the linearized behavior of small perturbations around its ground state φg with
chemical potential μg and take the ansatz [38, 43, 45, 67]

ψ(x, t) = e−iμgt
[
φg(x) + u(x)e−iωt − v(x)eiωt

]
, x ∈ R

d, t > 0, (4.10)

where the Bogoliubov amplitudes u(x) and v(x) are treated as small and ω ∈ C to be
determined. Substituting (4.10) into (2.25) and collecting first-order terms proportional to
e±iωt, we obtain the Bogoliubov equations – linear eigenvalue problem for (ω, u, v)— as
[38, 43, 45, 67]

ω u(x) =

[
−1

2
∇2 + V (x) + 2β|φg(x)|2 − μg

]
u(x)− φ2

g v(x), x ∈ R
d,

− ω v(x) =

[
−1

2
∇2 + V (x) + 2β|φg(x)|2 − μg

]
v(x)− φ

2

g u(x).

(4.11)

In many ways, the above Bogoliubov equations are analogous to a nonrelativistic version of
the Dirac equation, with u and v as the particle and hole amplitudes, including the (+, −)
metric seen in the minus sign on the left hand side of the second equation compared to the
first equation in (4.11) [38, 43, 45, 67]. In addition, a detailed analysis shows that physi-
cally relevant Bogoliubov eigenfunctions must satisfy the following positive normalization
condition [38, 43, 45, 67]:

‖u‖2 − ‖v‖2 :=

∫
Rd

[|u(x)|2 − |v(x)|2] dx = 1. (4.12)

For solutions of the Bogoliubov equations, especially no external trapping potential in (2.25),
we refer to [38, 43, 45, 67] and references therein.

4.4. Semiclassical scaling and limits. In the strongly repulsive interaction regime, i.e.
β 1 1 in the GPE (2.25) with (2.26), another scaling (under the normalization (2.27)
with ψ being replaced by ψε) – semiclassical scaling – is also very useful in practice, es-
pecially in numerical computation. By choosing x → xε−1/2 and ψ = εd/4 ψε with
0 < ε = 1/β2/(2+d) < 1 (⇔ t = 1

ωx
, xs =

√
	/mεωx and Es = 	ωx/ε in (2.10) for

the GPE (2.8) when d = 3), we obtain [7, 14]

iε ∂tψ
ε(x, t) =

[
−ε2

2
∇2 + V (x) + |ψε(x, t)|2

]
ψε(x, t), x ∈ R

d, t > 0. (4.13)

This GPE conserves the following energy

Eε(ψε(·, t)) =
∫
Rd

[
ε2

2
|∇ψε|2 + V (x)|ψε|2 + 1

2
|ψε|4

]
dx ≡ Eε(ψε(·, 0)), t ≥ 0.

Similarly, the nonlinear eigenvalue problem (3.2) (under the normalization (3.3) with
φ = φε) reads

μεφε(x) =

[
−ε2

2
∇2 + V (x) + |φε(x)|2

]
φε(x), x ∈ R

d, (4.14)

where the eigenvalue (or chemical potential) με can be computed from its corresponding
eigenfunction φε by με = με(φε) = Eε(φε) + Eε

int(φ
ε) with Eε

int(φ
ε) = 1

2

∫
Rd |φε|4 dx.
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The constrained minimization problem for ground state collapses to: Find φε
g ∈ S such that

Eε
g := Eε(φε

g) = min
φε∈S

Eε(φε), with με
g := με(φε

g) = Eε(φε
g) + Eε

int(φ
ε
g). (4.15)

Similarly to section 3.2, we can get the TF approximation to the ground state when 0 < ε 5
1:

φε
g(x) ≈ φTF

g (x) =

{√
μTF
g − V (x), V (x) < μTF

g ,

0, otherwise,
(4.16)

where

με
g ≈ μTF

g =

⎧⎪⎪⎨
⎪⎪⎩

1
2

(
3
2

)2/3
,(γy

π

)1/2
,

1
2

(
15γyγz

4π

)2/5
,

Eε
g ≈ ETF

g =

⎧⎪⎪⎨
⎪⎪⎩

3
10

(
3
2

)2/3
, d = 1,

2
3

(γy

π

)1/2
, d = 2,

5
14

(
15γyγz

4π

)2/5
, d = 3.

From this TF approximation, for fixed γy ≥ 1 and γz ≥ 1 in (2.26) and when 0 < ε 5 1,
we have Eε

g ≈ ETF
g = d+2

d+4μ
TF
g ≈ d+2

d+4μ
ε
g = O(1), ‖φε

g‖L∞ ≈ φTF
g (0) = O(1), and the TF

radius RTF
x =

√
2μTF

g = O(1), RTF
y =

√
2μTF

g /γy = O(1) and RTF
z =

√
2μTF

g /γz =

O(1) for d = 1, 2, 3. In addition, the ground state φε
g(x) converges to φTF

g (x) uniformly
when ε → 0+. Furthermore, for computing numerically the ground states and dynamics of
a BEC, the bounded computational domain can be chosen independent of ε [7, 14].

Taking the WKB ansatz ψε(x, t) =
√

ρε(x, t) eiS
ε(x,t)/ε with ρε = |ψε|2 and Sε the

density and phase of the wave function, respectively, inserting it into the GPE (4.13) and
separating real and imaginary parts, we obtain the transport and Hamilton-Jacobi equations
for density and phase, respectively [7, 32, 44]

∂tρ
ε + div (ρε ∇Sε) = 0, x ∈ R

d, t > 0,

∂tS
ε +

1

2
|∇Sε|2 + ρε + V (x) =

ε2

2

1√
ρε

Δ
√

ρε.
(4.17)

Furthermore, defining the quantum velocity uε = ∇Sε and current Jε = ρε uε, we get from
(4.17) the Euler system with a third-order dispersion correction term – quantum hydrody-
namics (QHD) – as [7, 32, 44]

∂tρ
ε + div Jε = 0, x ∈ R

d, t > 0,

∂tJ
ε + div

(
Jε ⊗ Jε

ρε

)
+ ρε ∇V (x) +∇P (ρε) =

ε2

4
∇ (ρε∇2 ln ρε

)
,

(4.18)

where the pressure is defined as P (ρε) = (ρε)
2
/2. Letting ε → 0+ in (4.18), formally we

get the Euler system [7, 32, 44]

∂tρ
0 + div J0 = 0, x ∈ R

d, t > 0,

∂tJ
0 + div

(
J0 ⊗ J0

ρ0

)
+ ρ0 ∇V (x) +∇P (ρ0) = 0.

(4.19)

For mathematical justification of the passage from the GPE (4.13) to the Euler system (4.19),
we refer to [7, 32, 44] and references therein.
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5. Extensions

In this section, we will present briefly mathematical models and theories as well as numerical
methods for rotating BEC based on the GPE with an angular momentum rotation term, dipo-
lar BEC based on the GPE with a long-range anistropic dipole-dipole interaction (DDI) and
spin-orbit-coupled BEC based on coupled GPEs with an internal atomic Josephon junction
(JJ) and an spin-orbit coupling term.

5.1. For rotating BEC. At temperatures T much smaller than the critical temperature Tc,
following the mean field theory [1, 2, 7, 31, 43, 57, 62, 69], a BEC in the rotational frame is
well described by the macroscopic wave function ψ := ψ(x, t), whose evolution is governed
by the GPE with an angular momentum rotation term

i	∂tψ =

[
− 	

2

2m
∇2 + V (x)− Ω̃Lz + Ng|ψ|2

]
ψ, x ∈ R

3, t > 0, (5.1)

where Ω̃ is the angular velocity, Lz is the z-component angular momentum operator defined
as Lz = −i	 (x∂y − y∂x) and ψ satisfies the normalization condition (2.5).

Under the harmonic potential (2.9), similarly to the nondimensionalization in section 2.2
and dimension reduction in 2.3 from 3D to 2D when ωz 1 max{ωx, ωy} for a disk-shaped
condensate [2, 7, 13, 23], we can obtain the following dimensionless GPE with an angular
momentum rotation term in d-dimensions (d = 2, 3):

i ∂tψ =

[
−1

2
∇2 + V (x)− ΩLz + β|ψ|2

]
ψ, x ∈ R

d, t > 0, (5.2)

where Ω = Ω̃/ωx, β = κ and κ
√

γz/2π when d = 3 and 2, respectively, the dimensionless
harmonic potential is given in (2.26) for d = 3, 2, and the dimensionless angular momentum
rotation term is given as Lz = −i (x∂y − y∂x). The GPE (5.2) conserves the normalization
(2.5) and energy per particle

E(ψ(·, t)) =
∫
Rd

[
1

2
|∇ψ|2 + V (x)|ψ|2 − Ωψ Lzψ +

β

2
|ψ|4
]
dx ≡ E(ψ(·, 0)), t ≥ 0.

The ground state can be defined the same as (3.5) with the above energy functional. For
the existence and uniqueness as well as nonexistence, we have [2, 7, 23, 69]

Theorem 5.1 (Existence and uniqueness [2, 7, 23, 69]). Suppose that V (x) is taken as the
harmonic potential in (2.26), then we have

i) There exists a ground state of the rotating BEC (5.2) when |Ω| < 1 and β ≥ 0 in 3D
or β > −Cb in 2D.

ii) For any β ≥ 0, there exists a critical rotation velocity 0 < Ωβ
c ≤ 1 – first critical

rotation speed – depending on β such that: when Ωβ
c < |Ω| < 1, quantized vortices

will appear in the ground state φg .

iii) In 2D with γy = 1 (radially symmetric V (x)), there exists β0 > 0 such that when
β ≥ β0, for |Ω| < Ωβ

c1 (Ωβ
c1 depends on β), the ground state can be chosen as positive

|φg|, and φg(x) = eiθ0 |φg(x)| for some constant θ0 ∈ R, and the positive ground
state φg is unique.
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iv) There exists no ground state of the rotating BEC (5.2) if one of the following holds:
(a) β < 0 in 3D or β < −Cb in 2D; (b) |Ω| > 1.

Remark 5.2. From the various numerical results, for radially symmetric V (x) in 2D (or
cylindrically symmetric in 3D ) and any fixed β ≥ 0, the first critical rotation speed
0 < Ωβ

c ≤ 1 depends on β and: when |Ω| < Ωβ
c , the ground state can be chosen as

nonnegative |φg|, and φg(x) = eiθ0 |φg(x)| for some constant θ0 ∈ R, and the nonnega-
tive ground state φg is unique; when Ωβ

c < |Ω| < 1, quantized vortices will appear in the
ground state φg; and when Ωβ

c = |Ω|, there exist at least two different ground states – one
without quantized vortices and one with quantized vortices. We remark here that a rigorous
mathematical justification is still missing.

For more results on the ground state of the rotating BEC (5.2) and efficient and accurate
numerical methods for simulation, such as BEFD [7, 23] or BEFP [11], we refer to [2,
7, 9, 23, 43, 69] and references therein. Similarly, for the well-posedness of the Cauchy
problem of (5.2) with the initial data (4.1) and its dynamical properties as well as efficient and
accurate numerical methods, such as TSADI [21] or TSGLFHP [17], we refer to [4, 7, 43, 69]
and references therein. Here we present a different formulation of the GPE (5.2) under the
rotating Lagrangian coordinates so that the angular momentum rotation term will be removed
[19].

For any time t ≥ 0, let A(t) be an orthogonal rotational matrix defined as

A(t) =

(
cos(Ωt) sin(Ωt)
− sin(Ωt) cos(Ωt)

)
, d = 2, A(t) =

⎛
⎝ cos(Ωt) sin(Ωt) 0

− sin(Ωt) cos(Ωt) 0
0 0 1

⎞
⎠ , d = 3.

It is easy to verify that A−1(t) = AT (t) for any t ≥ 0 and A(0) = I with I the identity
matrix. For any t ≥ 0, we introduce the rotating Lagrangian coordinates x̃ as [19]

x̃ = A−1(t)x = AT (t)x ⇔ x = A(t)x̃, x ∈ R
d, (5.3)

and denote the wave function in the new coordinates as ϕ := ϕ(x̃, t)

ϕ(x̃, t) := ψ(x, t) = ψ (A(t)x̃, t) , x ∈ R
d, t ≥ 0. (5.4)

Here, we refer the Cartesian coordinates x as the Eulerian coordinates. Plugging (5.3) and
(5.4) into (5.2), we obtain the GPE

i∂tϕ(x̃, t) =

[
−1

2
∇2 + W (x̃, t) + β|ϕ(x̃, t)|2

]
ϕ(x̃, t), x̃ ∈ R

d, t > 0, (5.5)

where W (x̃, t) = V (A(t)x̃) for x̃ ∈ R
d and t > 0, which is time-independent, i.e.

W (x̃, t) = V (x̃) if the harmonic potential (2.26) is radially/cylindically symmetric in 2D/3D,
i.e. γy = 1. In addition, the initial data for the GPE (5.5) from (4.1) is

ϕ(x̃, 0) = ψ(x, 0) = ψ0(x) := ϕ0(x) = ϕ0(x̃), x̃ = x ∈ R
d. (5.6)

Based on the above new formulation, the results and numerical methods developed for non-
rotating BEC, such as TSSP [4, 7, 14, 17, 20], can be directly applied for analyzing and
simulating the dynamics of rotating BEC.
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5.2. For dipolar BEC. At temperature T much smaller than the critical temperature Tc,
a dipolar BEC is well described by the macroscopic wave function ψ := ψ(x, t) whose
evolution is governed by the following 3D GPE [6, 7, 10, 24, 55, 71]

i	∂tψ =

[
− 	

2

2m
∇2 + V (x) + Ng|ψ|2 + NCdd

(
Vdip ∗ |ψ|2)]ψ, x ∈ R

3, t > 0,

where Cdd = μ0μ
2
dip/3 with μ0 the vacuum magnetic permeability and μdip the perma-

nent magnetic dipole moment, ψ satisfies the normalization condition (2.5), and the long-
range and anisotropic DDI between two dipoles with the same dipole moment or orientation
n = (n1, n2, n3)

T ∈ R
3 (which is a given unit vector satisfying |n| =

√
n2
1 + n2

2 + n3
3 = 1)

is given by

Vdip(x) =
3

4π

1− 3(x · n)2/|x|2
|x|3 =

3

4π

1− 3 cos2(θ)

|x|3 , x ∈ R
3, (5.7)

where θ is the angle between the dipole axis n and the vector x. We remark here that it is
still an open problem to derive the above GPE from the N -body linear Schrödinger equation
(2.3) with Vint in (2.2) is taken as Vdip.

Again, under the harmonic potential (2.9), similarly to the nondimensionalization in sec-
tion 2.2 and dimension reduction in 2.3 from 3D to 2D when ωz 1 max{ωx, ωy} for a
disk-shaped condensate and to 1D when ωz = ωy 1 ωx for a cigar-shaped condensate
[6, 7, 30], by using the decomposition of contact and long-range (or repulsive and attractive)
parts of the DDI (5.7) [10, 30]

Udip(x) =
3

4π|x|3
(
1− 3(x · n)2

|x|2
)

= −δ(x)− 3∂nn

(
1

4π|x|
)

, x ∈ R
3, (5.8)

where the differential operators ∂n = n · ∇ and ∂nn = ∂n∂n, we can obtain the following
dimensionless GPE with a DDI in d-dimensions (d = 1, 2, 3):

i∂tψ(x, t) =

[
−1

2
∇2 + V (x) + β|ψ(x, t)|2 + ηϕ(x, t)

]
ψ(x, t),

ϕ(x, t) = Lnu(x, t), u(x, t) = G ∗ |ψ|2, x ∈ R
d, t ≥ 0,

(5.9)

where

β =

⎧⎪⎨
⎪⎩

2κ+λ(1−3n2
1)

4πε2 ,
κ+λ(3n2

3−1)

ε
√
2π

,

κ − λ,

η = −3λ

⎧⎪⎨
⎪⎩

3n2
1−1

8ε
√
2π

,

1/2,
1,

Ln =

⎧⎨
⎩

∂xx, d = 1,
∂n⊥n⊥ − n2

3∇2, d = 2,
∂nn, d = 3,

with κ = 4πNas

xs
, λ =

mNμ0μ
2
dip

3�2xs
, ε = 1√

γz
, n⊥ = (n1, n2)

T , and

G(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
ε
√
2π

∫∞
0

e−s/2ε2√
s2+|x|2 ds

1/(2π|x|),
1

(2π)3/2

∫
R

e−s2/2√
|x|2+ε2s2

ds,

1/(4π|x|),

⇔ Ĝ(ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε
√
2√
π

∫∞
0

e−ε2s/2

s+|ξ|2 ds, d = 1&SAM,

1/|ξ|, d = 2&SDM,
1

2π2

∫
R

e−ε2s2/2

|ξ|2+s2 ds, d = 2&SAM,

1/|ξ|2, d = 3,
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where f̂(ξ) denotes the Fourier transform of a function f(x) for x, ξ ∈ R
d. In addition, in

3D, u in (5.9) satisfies the Poisson equation [6, 7, 30]

−∇2u(x, t) = |ψ(x, t)|2, x ∈ R
3, satisfying lim

|x|→∞
u(x, t) = 0, t ≥ 0; (5.10)

and in 2D with SDM approximation, u in (5.9) satisfies the fractional Poisson equation
[6, 7, 30]

(−∇2)1/2u(x, t) = |ψ(x, t)|2, x ∈ R
2, satisfying lim

|x|→∞
u(x, t) = 0, t ≥ 0. (5.11)

The GPE (5.9) conserves the normalization (2.5) and energy per particle

E(ψ(·, t)) =
∫
Rd

[
1

2
|∇ψ|2 + V (x)|ψ|2 + β

2
|ψ|4 + η

2
ϕ|ψ|2

]
dx ≡ E(ψ(·, 0)), t ≥ 0.

The ground state can be defined the same as (3.5) with the above energy functional. For
the existence and uniqueness as well as nonexistence of the ground state of the dipolar BEC
(5.9) and efficient and accurate numerical methods for simulation, such as BESP [10] or
BEFP with nonuniform FFT [49], we refer to [6, 7, 10] and references therein. Similarly,
for the well-posedness of the Cauchy problem of (5.9) with the initial data (4.1) and its
dynamical properties as well as efficient and accurate numerical methods, such as TSSP [10]
or TSFP with nonuniform FFT [49], we refer to [6, 7, 10] and references therein.

5.3. For spin-orbit-coupled BEC. At temperatures T much smaller than the critical tem-
perature Tc, a spin-orbit-coupled BEC with two components can be well described by the
macroscopic wave function Ψ := Ψ(x, t) = (ψ1(x, t), ψ2(x, t))T whose evolution is gov-
erned by the following 3D coupled Gross-Pitaevskii equations (CGPEs) [5, 7, 8, 48, 60, 65,
67, 73] for x ∈ R

3 and t > 0 as

i	∂tψ1 =

[
− 	

2

2m
∇2 + V (x) +

i	k̃0
2m

∂x +
	δ̃

2
+ Ng11|ψ1|2 + Ng12|ψ2|2

]
ψ1 +

	Ω̃

2
ψ2,

i	∂tψ2 =

[
− 	

2

2m
∇2 + V (x)− i	k̃0

2m
∂x − 	δ̃

2
+ Ng21|ψ1|2 + Ng22|ψ2|2

]
ψ2 +

	Ω̃

2
ψ1,

where N is the total number of particles, k̃0 describes the spin-orbit-coupling strength, δ̃ is
the detuning constant for Raman transition, Ω̃ is the effective Rabi frequency describing the
strength to realize the internal atomic Josephson junction (JJ) by a Raman transition, and the
interactions of particles are described by gjl =

4π�2ajl

m with ajl = alj (j, l = 1, 2) being
the s-wave scattering lengths between the jth and lth components. The above CGPEs is
normalized as

‖Ψ‖2 :=

∫
R3

[|ψ1(x, t)|2 + |ψ2(x, t)|2] dx = 1. (5.12)

Again, under the harmonic potential (2.9), similarly to the nondimensionalization in sec-
tion 2.2 and dimension reduction in 2.3 from 3D to 2D and 1D, we can obtain the following
dimensionless CGPEs under the normalization condition (5.12) for spin-orbit-coupled BEC
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in d-dimensions (d = 1, 2, 3) for x ∈ R
d and t > 0 as

i∂tψ1 =

[
−1

2
∇2 + V (x) + ik0∂x +

δ

2
+ β11|ψ1|2 + β12|ψ2|2

]
ψ1 +

Ω

2
ψ2,

i∂tψ2 =

[
−1

2
∇2 + V (x)− ik0∂x − δ

2
+ β21|ψ1|2 + β22|ψ2|2

]
ψ2 +

Ω

2
ψ1,

(5.13)

where k0 = k̃0

ωx
, δ = δ̃

ωx
, Ω = Ω̃

ωx
, and β11, β12 = β21, β22 are dimensionless interaction

constants. This CGPEs conserves the normalization (or total mass)

N(Ψ(·, t)) := ‖Ψ(·, t)‖2 =

∫
Rd

2∑
j=1

|ψj(x, t)|2 dx ≡ N(Ψ(·, 0)) = 1, t ≥ 0, (5.14)

and the energy per particle

E(Ψ(·, t)) =
∫
Rd

{ 2∑
j=1

[
1

2
|∇ψj |2 + |ψj |2

(
V (x) +

1

2

2∑
l=1

βjl|ψl|2
)]

+
δ

2

(|ψ1|2 − |ψ2|2
)

+ ik0
(
ψ1∂xψ1 − ψ2∂xψ2

)
+ΩRe(ψ1ψ2)

}
dx ≡ E(Ψ(·, 0)), t ≥ 0. (5.15)

In addition, when Ω = 0, then it also conserves the mass of each component

N(ψj(·, t)) :=
∫
Rd

|ψj(x, t)|2 dx ≡ N(ψj(·, 0)), t ≥ 0, j = 1, 2. (5.16)

The ground state can be defined as: Find Φg ∈ S such that

Eg := E(Φg) = min
Φ∈S

E(Φ), (5.17)

where S = {Φ = (φ1, φ2)
T | ‖Φ‖ = 1, E(Φ) < ∞}. Of course, when Ω = 0, for any fixed

0 ≤ α ≤ 1, an α-dependent ground state can be defined as: Find Φα
g ∈ Sα such that

Eα
g := E(Φα

g ) = min
Φ∈Sα

E(Φ), (5.18)

where Sα = {Φ = (φ1, φ2)
T | ‖φ1‖2 = α, ‖φ1‖2 = 1 − α, E(Φ) < ∞}. It is easy to see

that
Eg = E(Φg) = min

0≤α≤1
Eα

g = min
0≤α≤1

E(Φα
g ) = min

0≤α≤1
min
Φ∈Sα

E(Φ). (5.19)

For the existence and uniqueness as well as nonexistence of the ground states of the spin-
orbit-coupled BEC (5.3) based on the definition (5.17) for any Ω ∈ R and the definition
(5.18) for Ω = 0, and efficient and accurate numerical methods for simulation, such as
BEFD or BESP [5, 7, 8], we refer to [5, 7, 8, 65, 67, 73] and references therein. Similarly,
for the well-posedness of the Cauchy problem of (5.3) with the initial dataΨ(x, 0) = Ψ0(x)
and its dynamical properties as well as efficient and accurate numerical methods, such as
TSSP [5, 7], we refer to [5, 7, 8, 65, 67, 73] and references therein. Finally, by setting
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ψ1(x, t) = ϕ1(x, t)ei(ωt+k0x) and ψ2(x, t) = ϕ2(x, t)ei(ωt−k0x) with ω =
δ−k2

0

2 in the
CGPEs (5.13), we obtain for x ∈ R

d and t > 0

i∂tϕ1 =

[
−1

2
∇2 + V (x) + δ + β11|ϕ1|2 + β12|ϕ2|2

]
ϕ1 +

Ω

2
e−i2k0xϕ2,

i∂tϕ2 =

[
−1

2
∇2 + V (x) + β21|ϕ1|2 + β22|ϕ2|2

]
ϕ2 +

Ω

2
ei2k0xϕ1.

(5.20)

This CGPEs conserves the normalization (5.14) for any Ω ∈ R and (5.16) when Ω = 0
with ψj replaced by ϕj for j = 1, 2. It is very useful in designing the most efficient and
accurate numerical methods for computing ground states and dynamics, such as BESP and
TSSP [5, 7, 8]), especially for the box potential, comparing to the system (5.13).

6. Conclusions and future perspectives

Due to its massive relations and applications in many different areas, such as atomic, molecu-
lar and optical physics, quantum optics, condense matter physics and low temperature phys-
ics, the research on theoretical, experimental and computational studies of BEC has been
started almost century ago and has grown explosively (or exponentially) since 1995. Up to
now, rich and extensive research results have been obtained in experimental and theoretical
understanding of ground states and dynamics of BEC. The research in this area is still very
active and highly demanded due to the latest experimental and/or technological advances
in BEC, such as spinor BEC [18, 22, 47, 51], BEC with damping terms [15] or impurities
[50] or random potentials [63], degenerate Fermi gas [45], Rydberg gas [53], spin-orbit-
coupled BEC [60], BEC at finite temperature [72], etc. These achievements have brought
great challenges to AMO community, condensed matter community, and computational and
applied mathematics community for modeling, simulating and understanding various inter-
esting phenomenons related to BEC. It becomes more and more interdisciplinary involving
theoretical, computational and experimental physicists and computational and applied math-
ematicians as well as pure mathematicians.

Acknowledgements. The author is grateful to Beijing Computational Science Research
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Discrete-to-continuum variational methods for
Lattice systems

Andrea Braides

Abstract. I review some recent results regarding the description of the behaviour of energy-driven
discrete systems, and more precisely lattice systems, through the construction of approximate contin-
uous problems. On one hand methods of weak convergence, homogenization, integral representation
and gradient flow dynamics already used for continuum problems have been adapted to the discrete
setting, on the other hand the new discrete dimension has brought new phenomena, novel problems
and interesting results. I will limit my description to systems with interfacial energies, but focus on
methods that can be adapted to a multi-scale analysis.
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49F22, 49J55.

Keywords. Discrete systems, Lattice systems, variational methods, homogenization, optimal design,
variational motion, Γ-convergence, gradient-flow dynamics, thin films.

1. Introduction

The presence of discrete systems is ubiquitous in the applications of Mathematics to Science
and Technology, ranging from problems parameterized by the pixels of a screen in Computer
Vision, to nodes on a network for Flow Dynamics, to the location of atoms in simulations
of Continuum Mechanics problems, to that of larger ensembles in coarse-grained theories in
Statistical Physics, etc. In many cases, the variables are directly parameterized on a lattice,
or a portion of it (as in Image Processing or in the design of conducting networks), while in
other cases this may be a simplifying assumption on the geometry or on the admissible states
of the system. A paradigmatic example of the latter situation is the analysis of Lennard-Jones
systems close to a ground state, for which a crystallization result holds; i.e., that minimal
states can be parameterized on a regular lattice. Even this expected property of ground
states is a very subtle issue and has been proved only in dimension two and for a class of
interatomic potentials (see [61]).

We will consider only variational lattice systems; i.e., we will assume that their be-
haviour is governed by an energy functional depending on the values of a parameter u de-
fined on the elements (nodes) of the lattice. We will mainly focus on a particular type of
interactions, when the parameter u can take only two values, which we take being ±1 (spin
variable), the energy can be written as the sum of the interactions between pair of values
of the parameter (pair interactions), and we will be interested in problems where the limit
behaviour can be approximated by a continuous surface energy.
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It must be noted that the methods we will use are to some extent independent of the
simplification that we are making. In many problems, surface energies appear only at some
energy scale, or in competition with bulk terms (free-discontinuity problems). This is the
case for example of models in Computer Vision (e.g., Blake and Zisserman’s [15], whose
continuous counterpart is the Mumford and Shah variational model [56]) or Lennard-Jones
systems from which one can deduce continuous variational models in Fracture Mechanics
[35]. Nevertheless, blow-up and localization techniques often allow to decouple surface
and bulk contribution, and assume that the parameters are locally constant on both sides of
interfaces, so that the results we are going to illustrate can be thought as describing a part of
a technically more complex energy depending on a continuous parameter.

The main points of the presentation will be the following:

• a variety of techniques constructed for continuum energies such as homogenization,
Γ-convergence, multi-scale analysis, variational motions, Geometric Measure The-
ory, are naturally suited for this discrete setting, and provide a natural environment to
define a continuum approximation;

• conversely, the discrete dimension provides a much more natural environment where
to state and solve some problems which in the continuum case can be stated only with
complex topological and geometrical constructions;

• in some cases the choice of the parameters for the continuum description are the main
difficulty. This choice gives different effects and provides new problems with respect
to the continuum setting.

2. A variational setting for spin systems

We will fix a periodic lattice L in R
d. For reasons of simplicity we will mainly think of Zd

or of the triangular lattice T in R2, but we may consider as well non-Bravais lattices such as
the hexagonal lattice in R2, fcc or hcp lattices in R

3, etc.

The energy setting. We will consider functions u : L → {1,−1}, whose value at i ∈ L is
denoted by ui, and pair-interaction energies defined on such functions. It will be sometimes
convenient to write the energies in such a way that they are zero on the two constant states
±1. Upon additive and multiplicative constants the general form of these functionals is

E(u) =
1

8

∑
ij

cij(ui − uj)
2. (2.1)

The normalization constant 1/8 is due to the fact that the pair (i, j) is accounted for twice
and that ui−uj ∈ {−2, 0, 2}. It is more customary, especially in Statistical Physics, to write
such energies as

E(u) = −
∑
ij

cijuiuj , (2.2)

which is an equivalent form if only a finite number of indices are taken into account (finite
domain). If cij ≥ 0 (ferromagnetic interactions) form (2.1) allows to directly consider
an infinite domain and avoids +∞ − ∞ indeterminations. If interactions are not positive,
it will be otherwise necessary to rewrite the energy in a different fashion with a suitable
renormalization.
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Convergence of discrete functions. Wemay use several notions of convergence of discrete
functions. In most cases, given a family (uε) with uε : L → {±1} we consider functions
ũε which are piecewise-constant interpolations of the function with value uε

i on the node
εi ∈ εL. This correspond to scaling the lattice of a factor ε. The resulting functions belong
to L1

loc(R
d). We can therefore consider the convergence ũε → u in this topology. In this

way we have defined a convergence uε → u of discrete functions to a continuum limit. Other
notions of convergence of ũε to u will be used, and the corresponding convergences of uε to
u.

Surface scaling and compactness. We will consider families of energies

Eε(u) =
1

8

∑
ij

εd−1cεij(ui − uj)
2, (2.3)

where in principle the sum runs over all pairs in Z
d × Z

d (with i �= j). The scaling εd−1

corresponds to considering Eε(u
ε) as surface energies if interpreted in the scaled parameter

ũε. Indeed, in the simplest situation of nearest-neighbour interactions in the cubic lattice
L = Z

d, with cεij = 1 if |i − j| = 1 and cεij = 0 otherwise, we have

Eε(u
ε) = Hd−1(∂{ũε = 1}); (2.4)

i.e., the energy coincides with the d − 1-dimensional Hausdorff measure of the interface
∂{ũε = 1}, or, equivalently the perimeter of the set {ũε = 1}. From the theory of sets of
finite perimeter, we deduce then that families with equiboundedEε(u

ε) are precompact with
respect to the convergence uε → u (see e.g. [19]).

Static picture: Γ-limit. Functionals Eε can be set in the framework of surface energies on
sets of finite perimeter [11], and their behaviour is described by Γ-limits of the form

F (u) =

∫
∂{u=1}

ϕ(x, ν) dHd−1, (2.5)

where ∂A denotes the reduced boundary of the set A, and ν its measure-theoretical normal.
In the homogeneous case ϕ(x, ν) = ϕ(ν) this Γ-convergence will guarantee in particular

the convergence (up to translations) of minimizers uε with the (limit) volume constraint
#({uε = 1}) = Mε and Mε εd → 1 to the function u = 2χA − 1, where A is the Wulff
shape of ϕ; i.e., A minimizes

A �→
∫
∂A

ϕ(ν) dHd−1

among the sets of finite perimeter with unit volume, |A| = 1. Indeed the knowledge of the
Wulff shape itself is sufficient to describe ϕ and hence the Γ-limit. In the simplest case (2.4)
we have

ϕ(ν) = ‖ν‖1 := |ν1|+ · · · |νd| (2.6)

and A is a unit coordinate cube.

Dynamic picture: minimizing movement along a sequence of functionals. The knowl-
edge of the Γ-limit does not give information sufficient to describe gradient-flow type dy-
namics, which may depend on the interaction between the space scale ε and the relevant
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time scale τ , and is defined by an implicit-time discretization scheme along Eε (see [23] and
Section 5 below).

Note that for sufficiently slow time scales the behaviour of the systems is approximated
by the gradient-flow dynamics related to the Γ-limit, which can therefore be used as a com-
parison motion. In case (2.6) and d = 2 the related dynamics is the crystalline motion of the
setsAt := {x : u(t, x) = 1}. In the case of an initial datum a square, the sets are all squares,
with side length L satisfying the ODE

L′ = − 2

L
(2.7)

until extinction time [9].

3. Positive interactions

As remarked above, the simplest case for energies (2.1) is when all interactions are non-
negative; in which case the only ground states are the uniform states. In that framework it is
not restrictive, for the sake of notational simplicity, to limit the analysis to the cubic lattice
L = Z

d. In the case of nearest-neighbour interactions; i.e., if cij = 0 if |i − j| �= 1 energies
Eε can be directly rewritten as surface integrals. The discrete setting allows also to consider
long-range interactions; i.e., interactions between non-neighbouring points.

3.1. Integral-representation results. A general question is whether an approximation by
a surface energy can be used. The answer is positive if the decay of the interaction is suffi-
ciently fast, as in the following theorem (where the hypotheses are simplified for the sake of
simplicity of presentation).

Theorem 3.1 (compactness). Let cεij be non-negative numbers satisfying

(i) (coerciveness) cεij ≥ c1 > 0 if |i − j| = 1;

(ii) (decay) |cεij | ≤ c2|i − j|−r with r > d + 1,

and let Eε be defined by (2.3). Then, up to subsequences, Eε Γ-converge to a surface energy
of the form (2.5) for some Carathéodory integrand whose positively homogeneous extension
of degree one in the second variable is convex. The domain of F is BVloc(R

d; {±1}).
Remark 3.2.
(a) Conditions (i) and (ii) are simplified for expository reasons and can be easily im-

proved;

(b) (non-local limits) if (ii) is relaxed to a growth condition only guaranteeing that F be
finite on BVloc(R

d; {±1}), we may lose locality; e.g., F may be of the form

F (u) =

∫
∂{u=1}

ϕ(x, ν)dHd−1 +

∫
Rd×Rd

k(x, y)(u(x)− u(y))2 dx dy; (3.1)

(c) (boundary terms) in a finite domain Ω we can consider energies obtained by restrict-
ing the interactions in the definition of Eε to i, j belonging to 1

εΩ. If Ω is a sufficiently
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smooth bounded set, then the corresponding limit takes the same form, but is restricted
to functions in BV (Ω; {±1}) and takes into account only the part of ∂{u = 1} con-
tained in Ω, up to a constant term concentrated on ∂Ω. Note that this term may be
relevant to problems where Ω is a design parameter.

Homogenization formulas. In the periodic case; i.e., if cεij = Cij and there exists T ∈ N

such that Cij = Ci+kT j+kT for all i, j, k ∈ Z
d then ϕ(x, ν) = ϕ(ν) and it is described

by an asymptotic formula involving the computation of minimum problems with Dirichlet
boundary conditions on a family of invading cubes [38]. The same result holds under almost-
periodicity assumptions.

The use of homogenization formulas often allows to provide bounds on ϕ, and in some
cases its actual computation. This is valid in particular when T = 1, so that Cij = C ′

i−j .
For example, in the two-dimensional case with C ′

k = 1 for |k| ≤ √
2 and C ′

k = 0 other-
wise (next-to-nearest neighbour interactions) ϕ is described by its Wulff shape, which is an
octagon.

We now give some examples in which the analysis of the effect of the discrete dimension
in the homogenization formulas allows to highlight differences and new applications with
respect to the analogous continuum problems.

3.2. Optimal design of networks. Lattice energies may be used to describe metric prop-
erties of networks. For the sake of simplicity we illustrate only a two-dimensional frame-
work. In this case nearest-neighbour interaction energies on Z2 can be interpreted as a length
functional on curves defined in the nodes of the translated lattice (1/2, 1/2) + Z

2, with
piecewise-constant weights aε(i+j)/2 = cεij . The continuum counterpart of such energies are
Riemannian metrics of the form

Fε(γ) =

∫ 1

0

aε(γ(t))|γ′(t)|2 dt, (3.2)

whose limits are given by Finsler metrics with the integrands ϕ = ϕ(x, ν) computed at
x = γ and ν = γ′ [24, 29]. Optimal-design problems for such energies amount to finding
the general form of such ϕ when aε are subject to some design constraint. The simplest such
constraint is requiring that aε ∈ {α, β} where α and β are two positive constants (mixture
of two conductors). In the continuum case such a description for ϕ is an open problem, with
only bounds available [46]. The discrete case, where we require that cεij ∈ {α, β}, allows a
simple solution of this type of problems as follows.

A general observation (the “Dal Maso-Kohn localization principle” [22])) states that
in order to describe general ϕ(x, ·) it suffices to consider the case of periodic coefficients
Cij ∈ {α, β} with prescribed proportion of α and β connections (microgeometries). Often,
the “extreme microgeometries” are then obtained by taking connections in parallel or in
series. While this cannot be done in all directions at once in the continuum, such geometries
are easily constructed in the discrete setting. As a result, reading the limit in terms of Finsler
metrics, we obtain all functional of the form

F (γ) =

∫ 1

0

ϕ(γ(t), γ′(t)) dt, (3.3)



1002 Andrea Braides

where ϕ(x, ·) is any convex function satisfying

α(|ν1|+ |ν2|) ≤ ϕ(x, ν) ≤ c1|ν1|+ c2|ν2|,
where the coefficients c1 and c2 satisfy

c1 ≤ β, c2 ≤ β, c1 + c2 = 2(θβ + (1− θ)α)

and θ is the limit local proportion of β connections at x.

3.3. Discrete thin objects. Theories of thin objects starting from three-dimensional bodies
through a dimension-reduction procedure have been a very successful way to obtain rigorous
simplified theories for membranes, shells, rods, etc. [31, 49, 54]. For elastic membranes, the
three-dimensional energies have the form

Fε(u) =
1

ε

∫
D×(0,ε)

W (∇u) dx1 dx2 dx3 , (3.4)

and the resulting energies as ε → 0 can be written on two-dimensional functions as

F (u) =

∫
D

W (∇αu) dx1 dx2, (3.5)

where W is defined through a minimization and quasiconvexification procedure, and ∇α

denotes the gradient in dimension two. An analog description can be given for interfacial
problems [30].

Similar energies can be considered in a discrete setting, simply restricting the summation
in the definition of energies Eε in (2.3) to a stripe

ST
n = {x ∈ R

d+1 : |〈x, n〉| ≤ T}, (3.6)

where T > 0 and n ∈ Sd. Note that the corresponding notion of convergence of function
uε → u gives a limit function u defined on {x ∈ R

d+1 : |〈x, n〉| = 0}, which we identify
with R

d. A compactness theorem, analogous to Theorem 3.1, guarantees, under the corre-
sponding decay assumptions, that we have a limit functional of the form (2.5) defined in Rd.
Nevertheless, with respect to the continuum case, we have some notable differences.

1. Surface effects. Even in the simpler case of periodic Cij and coordinate thin films; e.g.,
when n = ed+1 is a coordinate vector, we have a non-trivial dependence of the resulting ϕ
on T . This is due to the non-local character of discrete interactions, giving a boundary term
which is predominant for small values of T .

2. Quasicrystals. When n is not rational (i.e., it is not a multiple of a vector in Z
d+1) then

the part of the lattice included in ST
n cannot be considered as the superposition of copies

of Zd. Nevertheless, almost-periodic techniques allow to cover also these cases, which are
connected to the modeling of quasicrystals [28].

3. Aperiodic lattices. Penrose tilings. Some aperiodic lattices can be constructed through
a “cut-and-project” procedure from a higher-dimensional lattice on a lower-dimensional sub-
space. This is the case of Penrose tilings on the plane, for example, which can be constructed
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as a projection of a subset of Z5 on a suitable “irrational” two-dimensional subspace. To such
a construction the techniques used for “quasicrystals” can be adapted, obtaining an effective
interfacial energy [41].

Question. Is the Wulff shape of such an interfacial energy a pentagon? How do these
pentagons differ (depending on the corresponding Penrose tiling)?

4. Objective structures. Nanotubes. The definition of homogenized interfacial energies
can be extended from periodicity assumptions to objective structures [52]. As a particular
case we can treat models of “brittle nanotubes”, for which the effective interfacial energy
can depend on the chirality of the model. It is interesting to note that, even though described
by the same general formulas, the value of the fracture toughness depends very much on the
type of underlying lattice considered.

3.4. Random models. Percolation. In a fashion connected to problems in Statistical Phys-
ics one can maintain a fixed lattice, and consider a random choice of coefficients. For sim-
plicity we suppose that only nearest-neighbour interactions are taken into account and that
cεij ∈ {α, β}, in which case we can interpret this as a model of a uniform network with ran-
domly placed defects or inclusions. In a two-dimensional framework (to which we limit our
description), by the identification of boundaries with curves the limit can be interpreted as
describing the overall metric properties of a random network. The precise statement requires
the introduction of an i.i.d. random variable, which gives, for each of its realizations ω, a
random choice of the coefficients Cω

ij ∈ {α, β} with{
Cω

ij = β with probability p

Cω
ij = α with probability 1− p,

and in (2.3) we simply consider cεij = Cω
ij . In this way we obtain a family of functionals

Eω
ε indexed by the realizations of our random variable. The analysis of the Γ-limit for each

fixed ω corresponds to fixing a distribution of connections through the realization ω of the
random medium, and computing its overall properties, which in general may depend on ω;
the question is if almost surely they do not (deterministic limit) and how can the limit be
described in terms of known probabilistic quantities. In the case of 0 < α ≤ β < +∞ for
each fixed ω the functionals are in the class taken into account by Theorem 3.1. Hence, a
strictly positive and finite limit ϕ = ϕω is always defined. Indeed, such a ϕω = ϕα,β

p is
shown to almost surely depend only on the probability p and on the two values α and β, and
can be described by the corresponding first-passage percolation formula [18, 38].

In the extreme cases, when α = 0 or β = +∞ (in this second case we use the convention
that +∞ · 0 = 0, so that β(ui − uj)

2 is finite, and equal to 0, if and only if ui = uj), the
description of the limit is related to the properties of the infinite clusters of bonds (i.e., infinite
connected components of elements of the dual lattice corresponding to pairs (i, j) with Cω

ij

taking the value α if p < 1/2, or, respectively, β if p > 1/2).

Theorem 3.3 (dilute-spin percolation theorem [37]). Let α = 0. Then we have

(i) (trivial surface tension) if p ≤ 1/2 then the corresponding Γ-limit is almost surely 0
for all u;

(ii) (non-trivial deterministic surface tension) if p > 1/2 then there exists a homogeneous
strictly positive surface tension ϕ = ϕ0,β

p such that (2.5) holds.
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The function ϕ0,β
p is given by the dilute first-passage percolation formula [44, 64].

For p < 1/2 the existence of an infinite cluster yields that the limit of minimal-length
problems in the homogenization formula are always trivial. In the case p > 1/2 the dis-
crete environment can be interpreted as a randomly perforated medium, for which the main
issue is the estimate of the effect of ‘large’ holes (whose probability is very small), which is
negligible thanks to the i.i.d. hypothesis.

Theorem 3.4 (rigid-spin percolation theorem [59]). Let β = +∞. Then we have

(i) (non-trivial deterministic surface tension) if p ≤ 1/2 then there exists a homogeneous
strictly positive surface tension ϕ = ϕα,∞

p such that (2.5) holds;

(ii) (degenerate surface tension) if p > 1/2 then the corresponding Γ-limit is almost surely
equal to the functional identically +∞ for all u, except for the trivial cases u = 1 and
u = −1.

The function ϕα,∞
p is given by the chemical distance on the strong cluster [51]. Furthermore,

we have the continuity result ϕα,β
p → ϕα,∞

p as β → +∞.

The key point in this result is a variational characterization of the chemical distance (the
asymptotic distance in the infinite cluster). It is interesting to note that the continuity result is
not trivial, and relies on a lemma provided by H. Kesten [36], which we may state informally
as follows.

Lemma 3.5. Fixed L < 1, let γ be a long path in the infinite cluster with length less than
L times the corresponding chemical distance between its endpoints. Then it must contain a
fixed proportion P = P (L) of connections in the complement of the infinite cluster.

It is interesting and promising to note the mutual exchange of results and problems be-
tween variational results and the corresponding percolation techniques.

3.5. Some interesting generalizations. The hypotheses of the compactness Theorem 3.1
can be extended in several interesting directions.

1. Random lattices. The compactness Theorem 3.1 can be extended to random perturba-
tions of a given lattice. Other cases than can be covered using similar techniques are Poisson
processes. It would be very interesting to prove percolation results in this context.

2. Double-porosity models. Such models in the continuum case are used in applications,
e.g., to the study of the flow in a naturally fractured reservoir [13, 26]. In a discrete setting
the complex topological assumptions necessary to their modeling are simplified, and reduce
to a degenerate coerciveness condition, where (i) in Theorem 3.1 is weakened to cεij ≥ ε for
a part of the interactions. If we suppose that the part in which (i) remains valid in the strong
form determines a finite family of N infinite periodic connected sets, each of which can
be treated as a separate perforated set, then the limit depends on a N -dimensional variable
u ∈ BVloc(R

d; {±1})N , and takes the form

F (u) =
N∑
j=1

∫
∂{uj=1}

ϕj(νj)dHd−1 +

∫
Rd

ψ(u1, . . . , uN ) dx,

where ψ is an interaction term. Note that we may add lower-order terms, which influence
the form of ψ in a non-trivial way.
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3. Energies depending on a finite number of parameters. Surfactants. The compactness
theorem can be extended to functions taking finitely many values. Even in the simplest
case of u ∈ {−1, 0, 1} and supposing that we still have the trivial ground states ±1, the
effect of the extra variable can be described in detail by a different type of energy. As an
example, in the Blume-Emery-Griffith model the 0-phase, suitably scaled, converges to a
positive measure μ, and the limit can be written as

F (u, μ) =

∫
∂{u=1}

φ
( dμ

dHd−1
, ν
)
dHd−1 + c‖μ‖(Rd \ ∂{u = 1})

(see [7]). This functional describes the energetic effect of the 0-phase, which is different
when we have “deposition” on the interface between the 1-phase and the −1-phase, or “di-
lution” on the interior of the phases. If we do not have constraints on μ, we may define
ϕ(ν) = minz≥0 φ(z, ν) and integrate out the measure variable, reobtaining a representation
as in Theorem 3.1. Note that this optimization may not be possible if for example the total
mass of μ is prescribed.

4. Interactions with negative or changing sign

When in (2.1) or (2.2) the interactions cεij may take a negative sign then formally the func-
tional is not bounded below and then, in the case of the infinite domain, it must be suitably
scaled, taking care to avoid +∞−∞ indeterminations [1]. Even after scaling in such a way
that it becomes bounded from below, as in (2.3), the representation of the Γ-limit, and its
computation, may be different than the one described in Theorem 3.1. As a simple example
one can consider the triangular lattice and only the anti-ferromagnetic nearest-neighbour in-
teractions; i.e., such that cεij = −1 when |i − j| = 1. In this geometry it is not possible that
all pair interactions take the minimal value (frustration), so that minimal states are all those
u not taking the same value at all vertices of each triangle. Note that in this case we may take
the magnetization as the parameter for the Γ-limit, which is then trivially constant for all u
with values in [−1/3, 1/3] (the value 1/3 corresponding to spins taking two values +1 and
one −1 on each triangle, and analogously for −1/3), and no interfacial energy is present.

In the case of the cubic lattice Zd the anti-ferromagnetic nearest-neighbour energies can
be reduced, up to scaling, to ferromagnetic ones via a change of parameter, setting vi =
(−1)iui (where (−1)i = Πk(−1)ik ). The phase boundaries for v are called anti-phase
boundaries of u. Note that in this case the corresponding magnetization for u is always 0,
both when v = 1 and v = −1. This shows that not always the magnetization is a good
order parameter. The simple definition of v as above is not meaningful in general. For
example, if we have nearest and next-to-nearest neighbour interactions in the square lattice
with all antiferromagnetic interactions, such a change of variable gives an energy with still
antiferromagnetic interactions, so that it cannot be rephrased as a ferromagnetic energy in
terms of v. This shows that in general the determination of a limit order parameter is a
non-trivial, and in general essential, part of the question.

4.1. Limits parameterized on ground states. The line followed in Theorem 3.1 can be
repeated in this more general context if we can describe the ground states for the energy E.
Actually, some care must be taken in the definition of ground states themselves. To that end,
in the context of the cubic lattice, we assume to being able to rewrite our energies (upon
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additive constants) as
Eε(u) =

∑
i

εd−1Ψ({ui+j}j∈Zd),

and denote the energy localized to a set I by E(u, I) =
∑

i∈I Ψ({ui+j}j∈Zd). Then the
analog of Theorem 3.1 reads as follows.

Theorem 4.1. Suppose that we have

(i) (existence of periodic ground states) there exist N,K ∈ N and {v1, . . . , vK} N -
periodic functions such that, setting QN = {1, . . . , N}d we have E(vj , QN ) = 0,
and E(u,QN ) ≥ C > 0 if u �= vj in QN for all j;

(ii) (incompatibility of ground states) if u =

{
vl in QN

vm in k + QN

with k ∈ Z
d such that

QN ∩ (k + QN ) �= ∅, then E(u,QN ∪ (k + QN )) > 0;

(iii) (decay of the energy) if u = u′ in RQN then |E(u′, QN ) − E(u,QN )| ≤ CR and∑
R CRRd−1 < ∞.

Then we have

(a) (compactness) If Eε(uε) ≤ C < +∞. Then there exist A1,ε, . . . , AK,ε ⊆ Z
N

(identified with the union of the cubes centered on their points) such that uε = vj

on Aj,ε, we have χAj,ε → χAj in the sense of convergence from discrete to
continuum (Section 2), and A1, . . . , AK is a partition of Rd. We denote this
convergence as

uε → u :=

K∑
j=1

jχAj ;

(b) (Γ-convergence) the Γ-limit can be written as

F (u) =

∫
S(u)

ψ(u+, u−, ν) dHd−1

where S(u) :=
⋃

i,j ∂{u = i} ∩ ∂{u = j} and u± denote the traces of u on
both sides of S(u), for a suitable BV-elliptic function ψ.

This result generalizes the previous compactness theorem provided that we enlarge our
class of limit energies to functionals defined on partitions of sets of finite perimeter [11], and
that we take the ground states themselves as order parameters. Conditions (ii) and (iii) have
the same role as the hypotheses of Theorem 3.1.

In the case of nearest-neighbour antiferromagnetic energies on a cubic lattice, we have
K = N = 2, with two 2-periodic ground states, corresponding to v1 given by v1i = (−1)i

and v2 = −v1.

4.2. Patterns. The parameterization of ground states can describe different types of pat-
terns at the microscopic level. We list a few examples, where we do not explicit the transla-
tion that gives zero energy to ground states.
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(1) for d = 1 andE(u) =
∑

i(αuiui−1+ui−1ui+1)with |α| < 2 (strong anti-ferromagnetic
next-to-nearest neighbour interactions in 1D) we have four 4-periodic ground states,
differing by a translation, so that the order parameter can be interpreted as a shift;

(2) for d = 2 and E(u) = c1
∑
|i−j|=1 uiuj + c2

∑
|k−l|=√2 ukul in the square lattice,

with c2 > 0 and 2c2 > c1 (strong anti-ferromagnetic next-to-nearest neighbour inter-
actions in 2D) we have four 2-periodic ground states v1, . . . , v4 given by v1i = (−1)i1 ,
v2i = (−1)i2 , v3 = −v1, and v4 = −v2. In this case we have striped ground states.
The two ground states v1 and v2 can be interpreted as the directions e1 and e2 while v3

and v4 as the opposite directions −e1 and −e2. The interface between v1 and v3, e.g.,
can be considered an anti-phase boundary. Note that the Wulff shape of ψ(ek, el, ·)
can be either a square or an irregular hexagon [1];

(3) for d = 2 and E(u) = c1
∑
|i−j|=1 uiuj + c2

∑
|k−l|=√3 ukul in the triangular lat-

tice, with c1 > 0 and c2 < 0 (anti-ferromagnetic nearest neighbour interactions and
ferromagnetic next-to-nearest neighbour interactions) then we have six ground states,
which are

√
3 periodic in the direction (1/2,

√
3/2).

Remark 4.2 (boundary terms). Contrary to the ferromagnetic case, in general the additional
boundary term appearing in problems on a bounded domain Ω is not a constant, and depends
on the trace of the ground state at the boundary; i.e., the Γ-limit takes the form

F (u) =

∫
S(u)∩Ω

ψ(u+, u−, ν) dHd−1 +

∫
∂Ω

φ(u, n)dHd−1,

where n is the normal to ∂Ω. As a consequence, minimizers can depend on the interplay
between the geometry of the domain and the microstructure of ground states.

Remark 4.3 (ferromagnetic parameters). In some cases it is possible to infer, as in the case
of dilute spin systems, that the relevant parameters can still be interpreted as the two ferro-
magnetic phases. This is the case of periodic antiferromagnetic inclusions, provided that the
distance between the inclusion is sufficiently large with respect to their size. In this case the
parameter indexing the ground states represents the majority phase in the ferromagnetic ma-
trix. It is interesting to note that even in the two-dimensional setting the minimum problems
giving the interfacial energy cannot be directly interpreted as minimal-length problems, as
their computation may involve the value on large antiferromagnetic inclusions.

Remark 4.4 (change in parameters - open problems). Simple examples show that we may
have a change in the limit parameter in dependence of the volume fraction between fer-
romagnetic and antiferromagnetic interactions. Optimal-design and random problems are
widely open. For example, it is not proved whether there exists a small but positive proba-
bility p such that a random i.i.d. distribution of antiferromagnetic interactions in a matrix of
ferromagnetic interactions is still described by only two (ferromagnetic) states.

4.3. Change of patterns in thin films. As we have observed in the ferromagnetic case, a
boundary contribution can influence the limit description of discrete thin films. In that case,
the influence was described by a varying value of the interfacial energy. In the case of the
presence of antiferromagnetic interactions, taking into account that boundary conditions and
the geometry influence the form of the ground states, we may have a more striking influence
in dependence of the thickness of the thin film.
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Remark 4.5 (variation of the parameters by boundary effects). We can take the two-dimens-
ional antiferromagnetic/ferromagnetic Example (3) in Section 4.2, on a thin film with normal
perpendicular to a direction of the lattice vectors. If we have a “very thin film” of a single
layer, then we simply have a one-dimensional antiferromagnetic lattice, with 2 parameters.
As we increase the number of layers, the number of parameters varies depending on the ratio
c1/c2 and for a sufficiently large film it reaches the number of the parameter of the bulk case
(i.e., 6).

Remark 4.6 (coerciveness by boundary effects). As we have remarked above, the antifer-
romagnetic triangular lattice is degenerate, with zero surface tension in the limit. In the
case of thin films this is not the case. Not only, as above we have the one-dimensional an-
tiferromagnetic lattice, with 2 parameters when we have a single layer, but we have a non
degenerate interfacial energy for all number of layers, with the number of parameters that di-
verges as 2N . Other interesting effects that can be highlighted on this simple example are the
dependence on the thin film direction, and the asymmetry of the interfacial energy density.

5. Gradient-flow type dynamics

For energy-driven systems a notion of gradient-flow dynamics can be given through a time-
discrete approximation scheme. For a sequence of parameterized energies Fε defined on
a Hilbert space X the minimizing movement x(t) along the sequence Fε with time scale
τ = τ(ε) from an initial datum x0 (or from a family of initial data x0

ε → x0) is defined as
the limit of the (time-discrete) trajectories xε defined as follows: we set xε

0 = x0 and define
recursively xε

k+1 as a solution of the minimum problem

min
{
Fε(x) +

1

2τ
‖x − xε

k‖2
}
, (5.1)

and then xε(t) = xε
�x/τ� [12, 23]. This scheme can be adapted to discrete systems and

energies of the type Eε following a variant due to Almgren, Taylor and Wang [10] (which
indeed precedes the formalization of minimizing movements). Note that the minimizing
movement x depends on the time scale τ(ε). In particular we have the following extreme
cases, under proper coerciveness assumptions, which are satisfied by our Eε.

Theorem 5.1 (extreme minimizing movements). Let Fε be a sequence of functionals defined
on discrete spaces. Let x0

ε → x0 with Fε(x
0
ε) ≤ C < +∞ and let Fε be equicoercive, non-

negative and Γ-converge to F . Then
(i) (pinning scale) there exists a (sufficiently fast) scale τp such that if τ ≤ τp then

x(t) = x0 for all t;
(ii) (commutation scale) there exists a (sufficiently slow) scale τc such that if τ ≥ τc then

x(t) coincides with the minimizing movement for F from x0 (defined by taking Fε = F ).

The existence of a pinning scale is a consequence of the discreteness of the space, and
is independent of the Γ-convergence of Fε. Loosely speaking, in the notation of (5.1) there
exists a function f such that we have ‖x0

ε −x‖2 ≥ f(ε) for all x �= x0
ε, so that the minimum

in (5.1) is x0
ε for all k if τ < f(ε)/2C =: τp.

The interesting regimes are those excluded by Theorem 5.1, which interpolate between
the extreme scales. The relevant problems can be summarized as
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(i) determine the critical regime(s) τ = τ(ε) such that we neither have pinning nor
commutation;

(ii) compute the corresponding continuum effective minimizing movement, and describe
the additional features that make it differ from the “trivial” one of the commutative case.

This novel type of dynamic homogenization problems constitutes a very interesting and
wide class of gradient-flow type dynamics. We only give a few examples in the case of
discrete energies converging to a crystalline perimeter.

5.1. Homogenized dynamics for positive interactions. For many ferromagnetic (nearest-
neighbour) interactions the Γ-limit F is given by the crystalline perimeter. In two dimen-
sions, Almgren and Taylor have shown that the minimizing movement (flat flow) for this
functional is given by motion by crystalline curvature [9]. This motion can be easily de-
scribed for coordinate rectangles, in which case each side moves inwards with velocity given
by its curvature κ, which in the crystalline case is defined by κ = 2/L, L being the length
of the side. The same description holds for coordinate polyrectangles provided we define
κ = −2/L (i.e., the motion is outwards) if the set is concave at the side, and κ = 0 if the set
is neither concave or convex at the side.

Remark 5.2 (partial pinning/quantization of the velocity [34]). If Eε are ferromagnetic
nearest-neighbour interactions with cij = 1 if |i − j| = 1, then we have

(i) the critical regime is ε ∼ τ ;

(ii) if τ/ε → γ then the effective minimizing movement is described by the law

v =
1

γ

⌊
γκ
⌋
,

with the convention on the crystalline curvature κ as above.
The integer part is explained by the fact that the “discrete sides” must move by a finite

quantity (proportional) to ε. Note that, as a consequence, we have partial pinning; i.e.,
pinning of sides only when they are larger than 2γ, and that, contrary to the motion by
crystalline curvature, we may have initial data which may be pinned after an initial motion.

Remark 5.3 (homogenization of the velocity [39]). As remarked in the case of the optimal
design of ferromagnetic materials, we may have the same crystalline perimeter even when
we have periodic inclusions with cij = β > 1 in a matrix of unit nearest-neighbour inter-
actions. These inclusions do not influence the Γ-limit, but they do influence the resulting
minimizing movement, the reason being that the “discrete sides” avoid the inclusions for
energetic reasons. We still have an effective minimizing movement, with sides moving with
a velocity

v =
1

γ
fhom
(
γκ
)
,

with γ as in the previous remark. The homogenized velocity function can be described
through a homogenization formula, and takes into account the geometry and distribution
of the strong inclusions.

Remark 5.4 (bulk effects). We can consider periodic inclusions as in the previous example
but with cεij = ε (double-porosity scaling). The effect of these inclusions is negligible
in the Γ-limit, which can be treated as a perforated domain giving, upon properly scaling
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the energy, still the same crystalline perimeter F . Nevertheless, in this case the effective
minimizing movement has an additional term taking into account that the weak inclusions
may be regarded as a bulk effect. We may have in the limit a velocity of the form

v =
1

γ

⌊
γcκ + c(γ)

⌋
.

Note that in this case the limit for very slow time scales is not the motion of the crystalline
perimeter. The failure of Theorem 5.1(ii) is due to the non equi-coerciveness of Eε in the
double-porosity case. A similar type of effect is encountered in the study of convection in
mushy layers [63].

5.2. Homogenized dynamics for non-positive interactions. We only highlight some phe-
nomena in the case of antiferromagnetic interactions

Remark 5.5 (mobility and motion by creation of defects). In the case of multiple ground
states the limit behaviour is connected to the motion of networks rather than sets. Even in
the simplifying case when only two phases are present in the continuum description we may
have

(1) (mobility) the velocity law may depend on the orientation of the boundary normal and
on the two phases;

(2) (motion by the creation of defects) the interface may move by using an intermediate
phase which is non optimal for static problems. This may also happen at corner points.

Remark 5.6 (motion by maximization). The discrete setting allows to define another kind
of motion, e.g., by taking in the minimizing-movement scheme an antiferromagnetic inter-
action. In this way we formally define a motion following a maximization criterion of the
ferromagnetic energy or a backward motion for the perimeter functional. In particular we
may take as initial datum a single point (nucleation) from which we have an expanding fam-
ily of sets at constant velocity, whose shape depends (on the energy and) on the distance
[40].

6. Conclusion: surface scaling as part of a multi-scale analysis

For general discrete systems, the surface-energy description analyzed above must be placed
in a proper multi-scale framework, together with effects related to other types of scaling.
Note that, even when only energetic contributions are taken into account in a static picture
described by a Γ-limit process, the same type of functionals can be considered with different
scaling depending on the energy level. For the same quadratic energies we may have, e.g.,

(a) (bulk scaling)
∑

ij εdcij |ui − uj |2 giving integral energies
∫

f(x, u(x)) dx;

(b) (surface scaling)
∑

ij εd−1cij |ui − uj |2 giving surface energies as described in this
presentation above;

(c) (vortex scaling)
∑

ij εd−2| log ε|−1cij |ui − uj |2 giving vortex energies defined on
point singularities;
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(d) (gradient scaling)
∑

ij εd−2cij |ui − uj |2 giving integral energies depending on gra-
dients

∫
f(x,∇u(x)) dx, etc.

Such effects, and others, may be present at the same time. For some of them, methods
corresponding to those described for surface energies have been developed and used. Some
issues that have a direct link with the results described above are

• vortex and dislocation models from vector spin systems (the so-called XY model; i.e.,
with ui ∈ R

2 and |ui| = 1) [4]. Even though the interactions are formally the same
as the ferromagnetic one, here the relevant scaling gives a behaviour equivalent to
Ginzburg-Landau energies both for the static and the dynamic case, and has applica-
tions in the theory of dislocations [6, 8];

• liquid-crystal type models. Here a very interesting issue is the choice of the parameter,
which can be for example the magnetization or the Q-tensor, giving different limit
theories even at the first bulk scaling [28];

• microscopic order/disorder. For computational and modelling reasons it is very impor-
tant to know whether macroscopic energies correspond to a regular arrangements of
discrete values (Cauchy-Born rule) or not, and how this ‘regularity’ properties depend
on parameters (e.g. thickness of thin films) [2, 33, 47, 50, 58];

• interaction between surface and bulk contribution for free-discontinuity problems.
Both in Computer Vision and Fracture Mechanics, among other applications, we en-
counter competing bulk and surface energies, which can be derived from atomistic
Lennard-Jones interactions [35] or optimized among lattice energies (see e.g. [45]);

• quasicontinuum methods. Computational problems involving free-discontinuity prob-
lems for which details of interfacial interactions are important require a coupling be-
tween continuum discretization procedures and atomistic fine-mesh analysis (see e.g.
[16, 57, 60]);

• derivation of nonlinear and linear theories in Continuum Mechanics. The interpreta-
tion of discrete energies as describing the deformation of a lattice ground state lead to
the derivation of elastic energies. We may have nonlinear elastic energies even from
very simple lattice interactions [3, 17], while linear elastic energies can be rigorously
derived [42] using powerful rigidity estimates [48];

• optimal-design problems. As highlighted for surface energies, optimal design prob-
lems can be treated also for conducting or elastic networks [32] in the spirit of optimal
design of composites [55]. Little has been done in this direction, which seems natural
for applications;

• surface relaxation and crystal shapes. Surface energies may arise as a result of asym-
metric interactions at internal or external boundaries as a higher-order effect [27, 62].
When other bulk interactions are close to a ground state an important effect of the
surface energy is the determination of optimal shapes of crystals [14].

Among the general directions of research that have been taken, some that may be singled
out are the elaboration of new notions in the direction to allow to bridge the scales (in the
variational setting e.g. ‘equivalence by Γ-convergence’ [43]), the extension of variational
techniques to non-zero temperature [53], and the removal of the assumption of an under-
lying lattice [14, 61]. Many more new questions have been raised, with a wide range of
applications, but still, even in the simplest variational setting, many remain open.
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Abstract. This contribution provides a pedagogical introduction for mathematicians to the field of
electronic structure calculation. TheN -body electronic Schrödinger equation and the main methods to
approximate the solutions to this equation (wavefunction methods, density functional theory, quantum
Monte Carlo) are presented. The numerical simulation of the resulting models, the construction of elec-
tronic structure models for systems with infinitely many electrons (perfect crystals, crystals with local
defects, disordered materials) by means of thermodynamic limits, and the modeling and simulation of
molecules interacting with complex environments, are discussed.
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1. Introduction

Electronic structure calculation has become an essential tool in chemistry, condensed matter
physics, molecular biology, materials science, and nanosciences. Over 10,000 research arti-
cles containing electronic structure calculations were published in 2013, and the field utilizes
about 15% of the CPU time available in scientific computing centers worldwide. Its impor-
tance in contemporary research was acknowledged by the 1998 Nobel Prize in Chemistry
shared by Kohn and Pople for their contributions to density functional theory and wavefunc-
tion methods for electronic structure calculation. The 2013 Nobel Prize in Chemistry was
then awarded to Karplus, Levitt and Warshel for the development of multiscale models for
complex chemical systems, the finer scale being dealt with electronic structure models.

The field is also an inexhaustible source of exciting mathematical and numerical prob-
lems. In this contribution, we explain how to model and simulate a sample of matter at
the molecular scale from the first principles of quantum mechanics. The central object is
the time-independent N -body Schrödinger equation allowing one to compute the possible
electronic states of the system for a given configuration of the nuclei. This equation is a
linear elliptic eigenvalue problem on R3N where N is the number of electrons in the system.
The construction of mathematical approximations of this equation and the design of efficient
numerical methods to directly simulate the 3N-dimensional linear Schrödinger equation and
its various lower-dimensional but nonlinear approximations (such as the Hartree-Fock and
Kohn-Sham models) is a very active field of interdisciplinary research. After introducing the
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electronic Schrödinger equation and the main three approaches to approximate and simulate
it (wavefunction methods, density functional theory, and quantum Monte Carlo methods),
we present recent advances in the mathematical understanding of electronic structure models
and in the methods to solve them numerically, as well as open questions and future research
directions. In order to make this contribution self-contained, we first recall the fundamental
principles of quantum mechanics and briefly discuss the Born-Oppenheimer approximation
allowing one (in most cases) to decouple electronic and nuclear degrees of freedom.

2. Basics of (non-relativistic) quantum mechanics

An autonomous quantum system is described by a separable complex Hilbert spaceH called
the state space, and a self-adjoint operator H on the state space called the Hamiltonian.
The (pure) states of the system are in one-to-one correspondence with the projective space
H/C, which means that the state of the system at time t is completely characterized by a
normalized vector ψ(t) ∈ H, called the wave function, ψ(t) and eiαψ(t) describing the
same state for all α ∈ R. The dynamics of the system is governed by the time-dependent
Schrödinger equation

i	
dΨ

dt
(t) = HΨ(t), (2.1)

where 	 is the reduced Planck constant. Of particular importance are the stationary states,
namely the states of the form Ψ(t) = eiα(t)ψ, where ‖ψ‖H = 1 and where eiα(t) is an irrel-
evant global phase factor. Inserting this Ansatz in the time-dependent Schrödinger equation
(2.1), we obtain that there exists a real number E such that ψ satisfies the time-independent
Schrödinger equation

Hψ = Eψ

and α(t) = −iEt/	. In other words, ψ is an eigenvector of the self-adjoint operator H as-
sociated with the eigenvalue E. From a physical viewpoint, E is the energy of the stationary
state ψ.

The formalism presented above is completely general and valid for any isolated quantum
system. For a simple system consisting of a single particle of mass m and spin s subjected
to a stationary external potential Vext (take for instance Vext ∈ L2(R3) + L∞(R3) to avoid
technical problems), the state space is the Hilbert space L2(R3 × Σ,C) ≡ L2(R3,C2s+1),
where Σ is a finite set of cardinality 2s + 1. In the so-called position representation, the
integrable function x �→ |Ψ(t;x, σ)|2 is the probability density of observing at time t the
particle at point xwith spin σ. The Hamiltonian is the self-adjoint operator onL2(R3×Σ,C)
defined by

H = − 	
2

2m
Δ+ Vext,

where Δ is the Laplace operator with respect to the variable x, and Vext the operator of
multiplication by the real-valued function Vext. The first term of the Hamiltonian models
the kinetic energy of the particle, and the second term its potential energy. In the absence of
external magnetic field, an assumption we make here, both terms are independent of the spin
variable, so that it is not necessary for our purpose to specify the physical meaning of the
spin variable. Lastly, the time-evolution of the particle is driven by the linear time-dependent
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Schrödinger equation in the three dimensional space:

i	
∂Ψ

∂t
(t, x, σ) = − 	

2

2m
ΔΨ(t, x, σ) + Vext(x)Ψ(t, x, σ).

Likewise, the stationary states are obtained by solving a linear elliptic eigenvalue problem in
the three dimensional space:

− 	
2

2m
Δψ(x, σ) + Vext(x)ψ(x, σ) = Eψ(x, σ).

The spectrum of the Hamiltonian H obviously depends on the external potential Vext. For
typical potentials encountered in electronic structure calculation, it has the structure dis-
played on Fig. 2.1. The lowest energy eigenmode is called the ground state; the higher
energy eigenmodes are called excited states.

Ξ

Excited states

Ground state
Essential spectrum

Figure 2.1. Typical spectra of the Hamiltonians encountered in (non-relativistic) electronic structure
calculation of atoms and molecules: the essential spectrum is a half-line [Ξ,+∞); the discrete spec-
trum (bound states) can be empty, or consist of a finite or countable sequence of isolated eigenvalues
of finite multiplicities. In the case when the number of discrete eigenvalues is infinite, they accumulate
at Ξ. The essential spectrum coincides with the continuous spectrum (diffusion states) but can also
contain eigenvalues embedded in the continuous spectrum.

Let us now consider a quantum system consisting of two particles of spins s1 and s2
respectively. The state space then is a subspace of the tensor product of the one-particle
state spaces of the two particles. In other words, the wavefunction Ψ(t) is a function of
L2(R3 × Σ1,C) ⊗ L2(R3 × Σ2,C) ≡ L2(R6,C(2s1+1)(2s2+1)). In the position represen-
tation, the wavefunction Ψ is a function of the time variable t and of the position and spin
variables (xi, σi) ∈ R

3 × Σi of each particle (where Σi is a set of cardinality 2si + 1; for
electrons, which are particles of spin s = 1/2, this set is usually denoted by {|↑〉, |↓〉} and
the spin states | ↑〉 and | ↓〉 are respectively called spin-up and spin-down). The function
|Ψ(t;x1, σ1;x2, σ2)|2 is interpreted as the probability density of observing at time t the par-
ticle 1 at point x1 with spin σ1 and the particle 2 at point x2 with spin σ2. If the two particles
are different in nature (for instance an electron and a positron), the state space is equal to
the tensor product L2(R3 × Σ1,C) ⊗ L2(R3 × Σ2,C). It the two particles are identical
bosons, the state space is the symmetrized tensor product H ∨ H of the one-particle state
space H = L2(R3 × Σ,C), while if they are identical fermions, it is the antisymmetrized
tensor productH ∧H, so that the wavefunction Ψ must satisfy the symmetry properties

Ψ(t;x2, σ2;x1, σ1) = Ψ(t;x1, σ1;x2, σ2) (for two identical bosons),
Ψ(t;x2, σ2;x1, σ1) = −Ψ(t;x1, σ1;x2, σ2) (for two identical fermions).

According to the spin-statistics theorem, particles with integer spins are bosons, while par-
ticles with half-integer spins are fermions. In order to simplify the formalism, we will omit
the spin variable in the sequel.
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Finally, for a quantum system consisting of N particles, the state space is a subspace
of the tensor product of the one-particle state spaces and, in the position representation,
|Ψ(t;x1, · · · ;xN )|2 is the probability density of observing at time t the first particle at x1,
the second particle at x2, etc. If all the N particles are identical, the state space is ∨NH for
bosons and ∧NH for fermions, and an important physical observable is the particle density

ρΨ(t, x) = N

∫
R3(N−1)

|ψ(t;x, x2, · · · , xN )|2 dx2 · · · dxN .

The time-independent Schrödinger equation is then a 3N-dimensional elliptic eigenvalue
problem. In the case of N identical particles with mass m, subjected to a stationary external
potential Vext, and interacting through a two-body potential W , we have⎛
⎝− N∑

i=1

	
2

2m
Δxi

+
N∑
i=1

Vext(xi)+
∑

1≤i<j≤N

W (xi, xj)

⎞
⎠Ψ(x1, · · · , xN ) = E Ψ(x1, · · · , xN ).

At first sight, it seems impossible to solve such an equation numerically for N greater than
one or two. There is however one case, and this is key for electronic structure calculation,
when this equation can be solved relatively easily. It is when the particles are identical and
do not interact. In this case indeed, the Hamiltonian is separable (it is the sum of one-body
operators)

HNI = −
N∑
i=1

	
2

2m
Δxi +

N∑
i=1

Vext(xi) =

N∑
i=1

hxi

and the bound states of the N particle system can be easily obtained from the bound states
φ1, φ2, · · · of the one-particle system, the latter being solutions to⎧⎪⎪⎪⎨

⎪⎪⎪⎩

hφi = εiφi, ε1 ≤ ε2 ≤ · · ·∫
R3

φi(x)φj(x) dx = δij ,

h = − 	
2

2m
Δ+ Vext,

(2.2)

where ε1 ≤ ε2 ≤ ... are the discrete eigenvalues of h (counting multiplicities). In particular,
the ground state of a system of N non-interacting bosons is given by

Ψ(x1, · · · , xN ) =
N∏
i=1

φ1(xi), ρΨ(x) = N |φ1(x)|2 (non-interacting bosons),

where φ1 is the ground state eigenfunction of the one-body Hamiltonian h. For a system
of N non-interacting fermions, the shape of the ground state wavefunction is more complex
due to the antisymmetry constraint:

Ψ(x1, · · · , xN ) =
1√
N !

det(φi(xj)), ρΨ(x) =

N∑
i=1

|φi(x)|2 (non-int. fermions),

where (φ1, · · · , φN ) is a family of L2-orthonormal eigenfunctions of h associated with the
lowest N eigenvalues (counting multiplicities). Note that, as the Hamiltonian HNI is real-
valued, it is sufficient to consider real-valued wavefunctions.
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3. First-principle molecular simulation

First principle molecular simulation is based on the simple observation that a given sample
of matter is nothing but a collection of atomic nuclei and electrons in Coulomb interaction,
and that we can specify the state space and the Hamiltonian of such a system provided we
know its chemical formula (that is the chemical nature of the nuclei, and the number of
electrons). Thus, the Hamiltonian of a molecular system composed of M nuclei with masses
m1, · · · ,mM and charges z1, · · · , zM , and N electrons is

Hmol =−
M∑
k=1

1

2mk
ΔRk

−
N∑
i=1

1

2
Δxi −

N∑
i=1

M∑
k=1

zk
|xi −Rk|

+
∑

1≤i<j≤N

1

|xi − xj | +
∑

1≤k<l≤M

zkzl
|Rk −Rl| .

The first term of Hmol models the kinetic energy of the nuclei, the second term, the kinetic
energy of the electrons, and the last three terms the Coulomb interactions between nuclei
and electrons, electrons and electrons, and nuclei and nuclei, respectively. Here and in the
sequel, we adopt the system of atomic units obtained by setting to 1 the values of the reduced
Planck constant 	, of the electron mass me, of the elementary charge e and of 4πε0, where
ε0 is the dielectric permittivity of the vacuum:

atomic units: 	 = 1, me = 1, e = 1, 4πε0 = 1.

A remarkable feature of this model is that it does not involve any empirical parameters spe-
cific to the system under consideration. It only depends on a few fundamental constants of
physics, on the charges of the nuclei (1 for hydrogen, 2 for helium, 3 for lithium, ...), and
on their masses, which have been measured experimentally with very high accuracy. This
implies that the properties of the molecular system under consideration can be, in princi-
ple, computed from its chemical formula. The problem is that to do so, we need to solve
the corresponding Schrödinger equation, that is a partial differential equation in dimension
3(N+M):

The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be solved. (Dirac, 1929 [31])

Solving N -body Schrödinger equations for interacting particles was obviously not pos-
sible in Dirac’s time, but it is doable nowadays, at least to some point. Before devoting a lot
of effort to try and solve this equation for molecular systems, it is interesting to get some in-
sights on the quality of the model. For this purpose, we first consider a very simple molecular
system for which both extremely accurate calculations and experiments can be performed:
a helium atom consisting of one nucleus of charge z = 2 and two electrons. If a laser with
frequency ν is shone on a helium atom, and if ν is large enough, a photon with energy hν is
absorbed by the helium atom (h = 2π	 is the Planck constant) causing an electron to escape
to infinity (where it does not feel anymore the Coulomb potential generated by the nucleus
and the other electron) with kinetic energy Ek:

He + hν → He+ + e−.
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The difference ΔE = hν − Ek = hΔν between the energy of the photon and the kinetic
energy of the electron at infinity, which can be measured very accurately, is equal to the
difference between the ground state energy of the helium atom and the ground state energy
of the He+ ion (see Fig. 3.1), whose respective Hamiltonians are

HHe = − 1

2m
ΔR − 1

2
Δx1
− 1

2
Δx2
− 2

|x1 −R| −
2

|x2 −R| +
1

|x1 − x2| ,

and
HHe+ = − 1

2m
ΔR − 1

2
Δx1 −

2

|x1 −R| ,
with m � 7294.29953 a.u.

The ground state energy of He+ can be computed analytically, and, using translational
and rotational symmetries, the ground state energy of He can be obtained by solving numer-
ically a 3-dimensional Schrödinger equation [55]. The agreement between theory (Δν �
5,945,262,288MHz) and experiment (two independent experiments gaveΔν � 5,945,204,238
MHz and Δν � 5,945,204,356 MHz) is very good, and even extremely good if the so-
obtained solution is post-treated to include relativistic corrections by means of perturbation
theory (Δν � 5,945,204,223 MHz). Note that relativistic effect cannot be dealt with per-
turbatively for heavy nuclei (see e.g. [35] for a mathematical analysis of fully relativistic
quantum molecular models).

E  = h ν 
k ΔΔ E=h

Ground state energy of He

Ground state energy of He+

ν − 

Figure 3.1. Spectra of He (top) and He+ (bottom). The corresponding Hamiltonians being translation
invariant, their discrete spectrum is empty.

3.1. Born-Oppenheimer approximation. Of course, the helium atom is a simple three
body system. For more complex systems with dozens of nuclei and hundreds of electrons,
approximations must be used. The first one is the so-called Born-Oppenheimer approxi-
mation. It relies on the fact that nuclei are much heavier than electrons. Using the mass
ratio as a small parameter, it is possible to decouple the nuclear and electronic degrees
of freedom by means of an adiabatic limit [77]. Using in a second stage a semiclassical
approximation on the nuclear dynamics [1, 2], it is shown that, in most cases, nuclei be-
have as classical point-like particles interacting trough an effective potential energy func-
tion W : R

3M → R (see [12, 39] and references therein for mathematical studies of
cases when the Born-Oppenheimer approximation breaks down). The state of the nuclei
at time t is then described by the positions R = (Rk(t))1≤k≤M ∈ R

3M and the momenta
P = (Pk(t))1≤k≤M ) ∈ R

3M of the M nuclei, and the classical nuclear Hamiltonian reads

HBO(P,R) =
M∑
k=1

|Pk|2
2mk

+ W (R1, · · · , RM ).
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The global minima ofW are the equilibrium configurations of the molecular system. Loosely
speaking, the local, non-global, minima correspond to metastable states and the critical
points of W of Morse index 1 can be seen as the transition states of all the different pos-
sible chemical reactions or the conformational changes involving the atoms of the system.
Sampling the nuclear configuration space according to suitable probability measures (note
that the Gibbs measure Z−1e−βW where β is an inverse temperature and Z a normaliza-
tion constant is not well-defined for a molecule free to move in the whole space R3) allows
one to compute the thermodynamical properties of the system [59]. The various dynam-
ics which can be inferred from HBO (classical Hamiltonian dynamics, Langevin dynamics,
overdamped Langevin dynamics, ...) provide information on the kinetics of the reactions or
conformational changes at thermodynamic equilibrium, as well as on non-equilibrium pro-
cesses. The quantum counterpart of HBO (obtained from Hmol by an adiabatic limit, not
followed by a semiclassical limit) is also useful to compute properties such as the infrared
spectra of molecules, proton tunneling in biological systems, or the superfluidity of helium
4 [28]. We will not further discuss the nuclear dynamics and focus on the electrons, which
seem to have disappeared from the picture. They are in fact hidden in the definition of the
effective potential W , the expression of which is given by

W (R1, · · · , RM ) = E
{Rk}
0 +

∑
1≤k<l≤M

zkzl
|Rk − Rl| , (3.1)

where E
{Rk}
0 is the ground state eigenvalue of

H
{Rk}
elec = −1

2

N∑
i=1

Δxi −
N∑
i=1

M∑
k=1

zk
|xi − Rk| +

∑
1≤i<j≤N

1

|xi − xj | .

The electronic HamiltonianH
{Rk}
elec is a self-adjoint operator onHN := ∧NL2(R3,C) (recall

that we omit the spin variable) with domainDN := ∧NH2(R3,C) and form domainQN :=
∧NH1(R3,C).

3.2. Solving the electronic ground state problem. In the sequel, we focus on the com-
putation of the ground state of the electronic Hamiltonian H

{Rk}
elec for a given nuclear con-

figuration {Rk}. In order to simplify the notation, we will denote by E0 := E
{Rk}
0 and

HN := H
{Rk}
elec (recall that N is the number of electrons in the system), so that

HN = −1

2

N∑
i=1

Δxi +

N∑
i=1

Vne(xi) +
∑

1≤i<j≤N

1

|xi − xj | with Vne(x) = −
M∑
k=1

zk
|x− Rk| .

If the molecular system is neutral or positively charged, the spectrum ofHN has the structure
sketched on Fig. 2.1, the number of discrete eigenvalues being infinite, and the bottom Ξ of
the essential spectrum being the ground state of HN−1 [95]. In particular, Ξ = 0 for one
electron systems, and Ξ < 0 if N ≥ 2. The electronic ground state can be obtained by
solving the minimization problem

E0 = inf {〈Ψ|HN |Ψ〉, Ψ ∈ QN , ‖Ψ‖HN
= 1} , (3.2)

where 〈ψ|A|ψ〉 denotes the quadratic form associated with the self-adjoint operatorA (Dirac’s
bra-ket notation). Note that as HNΨ is real-valued whenever Ψ is real-valued, it suffices to
minimize over real-valued test functions Ψ.



1024 Eric Cancès

Many approaches have been developed in the past 70 years to approximate electronic
ground states, which can be classified into several families, the main ones being wave-
function methods [49], density functional theory [32] and quantum Monte Carlo methods
(Fig. 3.2). All these methods have advantages and drawbacks. Some are more accurate
than others, but require much higher computational effort, and their use is therefore limited
to smaller systems. Some methods allow to correctly predict some properties (equilibrium
geometry, infrared spectrum, polarizability, ...) but fail to predict other properties (reaction
rates, magnetic shielding, ...). We refer e.g. to [49] for more details on these aspects.

Figure 3.2. Classification of the main approximation methods for electronic ground state calculations.

The detailed description of all these methods goes beyond the scope of this pedagogical
introduction. We will only explain the basic ideas underlying each of them. Beforehand, we
report a numerical example illustrating the fact that electronic structure calculation can pro-
vide quantitatively correct results for polyatomic molecules. A water molecule H2O consists
of 3 nuclei and 10 electrons. The equilibrium geometry of the molecule (see Fig. 3.3) corre-
sponds to the global minimizers of the interatomic potential W defined by (3.1). The results
obtained with the Hartree-Fock model (93.96 pm, 106.33◦) are reasonably close to experi-
mental data. Better results are obtained with, for instance the Kohn-Sham LDA model [54]
(96.86 pm, 105.00◦), the Kohn-Sham GGA model with PBE functional [78] (96.90 pm,
104.75◦), or the coupled cluster CCSD(T) method [49] (95.89 pm, 104.16◦).

104.45°

OH

H

95.84 pm

Figure 3.3. Geometry of the water molecule (experimental data).

3.2.1. Wavefunction methods. A natural way to approximate problem (3.2) is to mini-
mize the energy functional 〈ψ|HN |ψ〉 upon less general wavefunctions ψ. This leads to the
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variational problem

EX
0 = inf {〈ψ|HN |ψ〉, ψ ∈ X , ‖ψ‖H = 1} , (3.3)

where X is a properly chosen subset of QN . Obviously, EX
0 is an upper bound of the target

valueE0. The Hartree-Fock (HF) approximation consists in minimizing over the setX of the
L2-normalized N -electron wavefunctions that can be written as an antisymmetrized product
of single electron molecular orbitals φi:

ψ(x1, · · · , xN ) =
1√
N !

det(φi(xj)). (3.4)

Such functions are called Slater determinants. Recall that the ground state of a system of
non-interacting fermions is a Slater determinant (see Section 2). Since the determinant is an
alternate multilinear map, one can, without loss of generality, impose that the functions φi

satisfy the orthonormality constraints ∫
R3

φiφj = δij .

When X is the set of Slater determinants, problem (3.3) can be rewritten, once the computa-
tion of 〈ψ|HN |ψ〉 is explicitly performed, as

EHF
0 = inf

{
EHF(Φ), Φ = (φ1, · · · , φN ) ∈ (H1(R3))N ,

∫
R3

φiφj = δij

}
, (3.5)

where

EHF(Φ) =
1

2

N∑
i=1

∫
R3

|∇φi|2 +
∫
R3

ρΦVne +
1

2

∫
R3

∫
R3

ρΦ(x)ρΦ(y)

|x− y| dx dy

−1

2

∫
R3

∫
R3

|γΦ(x, y)|2
|x− y| dx dy, (3.6)

where the density matrix γΦ and the density ρΦ associated with theN -tupleΦ = (φ1, · · · , φN )
are defined as

γΦ(x, y) =
N∑
i=1

φi(x)φi(y), ρΦ(x) = γΦ(x, x) =
N∑
i=1

|φi(x)|2. (3.7)

Note that the density ρΦ is in fact the density ρψ of the N -body wavefunction ψ defined by
(3.4). The last term in the HF energy functional (3.6) is called the exchange term. It has
a purely quantum nature (it arises from the antisymmetry of the electronic wavefunction)
and has no classical counterpart. The first-order optimality conditions associated with the
constrained optimization problem (3.5) read, after some algebraic manipulation (see e.g. [68]
for details), as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Φ0 = (φ1, · · · , φN ) ∈ (H1(R3))N ,
hHF
Φ0 φi = εiφi,∫
R3

φiφj = δij ,

hHF
Φ0 φ = −1

2
Δφ+ Vneφ+ (ρΦ0 � | · |−1)φ−

∫
R3

γΦ0(·, x′)
| · −x′| φ(x′) dx′.

(3.8)
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If Φ0 is a minimizer of (3.5), then ε1, · · · , εN are in fact the lowest N eigenvalues of the
Hartree-Fock operator hHF

Φ0 (a stronger property is shown in [5]). These equations look some-
what similar to the equations (2.2) we obtained for non-interacting electrons. The big dif-
ference is that, this time, the mean-field Hamiltonian hHF

Φ0 depends on the ground state Φ0.
The Hartree-Fock equations (3.8) are therefore a nonlinear elliptic eigenvalue problem. The
Hartree-Fock model has been thoroughly studied in the mathematical literature. The exis-
tence of a Hartree-Fock ground state for neutral molecules and positive ions was established
by Lieb and Simon [68], and the set of solutions to the Hartree-Fock equations was studied
by Lions [73]. Uniqueness is a difficult question [46]. Numerical algorithms are analyzed
in [16, 22, 23, 60].

For polytatomic systems, the Hartree-Fock method is often not accurate enough to reach
the requested accuracy. A natural way to improve the HF wavefunction ΨHF is to consider
finite sums of Slater determinants and search for an approximation of the ground state wave-
function of the form

Ψ(x1, · · · , xN ) = c0Ψ
HF(x1, · · · , xN ) + finite sum of Slater determinants,

where c0 is a normalization coefficient. Several ways to generate such improved wave-
functions have been proposed [49]: the Møller-Plesset perturbation method (mathemati-
cally based on Kato perturbation theory [51]), the configuration interaction method, and
the coupled cluster method (see [82] for a mathematical analysis). The CCSD(T) method
(the acronym stands for Coupled Cluster Single Double (Triple)) is considered as the gold
standard of quantum chemistry. It however suffers from two major limitations:

• first, the required computational effort scales as N7, instead of N3 for the Hartree-
Fock model, where N is the number of electrons in the system, so that its use is
limited to relatively small molecular systems (a dozen of atoms); the construction of
coupled cluster methods with better scaling is an active field of research;

• second, the coupled cluster method fails when the Hartree-Fock wavefunction is not
the dominant component of the ground state wavefunction, that is when several Slater
determinants are necessary to get a decent estimate of the ground state wavefunction.

To address the second problem, one has to resort to multi-configuration methods. These
methods include the multi-configuration self-consistent field (MCSCF) method [49], which
was mathematically analyzed by Le Bris [57], Friesecke [41] and Lewin [62], as well as
the recently developed multi-reference coupled cluster (MRCC) method [83]. The MCSCF
method can be interpreted as a low rank tensor method based on Tucker format [7, 37].

3.2.2. Density Functional Theory (DFT). It has been shown by Hohenberg and Kohn [50]
that the electronic ground state energy and density can be obtained by minimizing a func-
tional of the electronic density. To establish this fact, we report here the simple argument
proposed later by Levy [61] (see also [64]). Splitting the electronic Hamiltonian as

HN = H1
N +

N∑
i=1

V (xi) with Hλ
N = −1

2

N∑
i=1

Δxi
+
∑

1≤i<j≤N

λ

|xi − xj | ,

and observing that, due to the antisymmetry property, we have for all Ψ ∈ QN ,

〈Ψ|
N∑
i=1

V (xi)|Ψ〉 =
N∑
i=1

∫
R3N

V (xi)|Ψ(x1, · · · , xN )|2 dx1 · · · dxN =

∫
R3

ρΨV,
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the electronic ground state problem (3.2) also reads

E0 = inf

{
〈Ψ|H1

N |Ψ〉+
∫
R3

ρΨV, Ψ ∈ QN , ‖Ψ‖HN
= 1

}

= inf

{
FN (ρ) +

∫
R3

ρΨV, ρ ∈ RN

}
,

where
RN = {ρ | ∃Ψ ∈ QN s.t. ‖Ψ‖HN

= 1 and ρΨ = ρ}
is the set of admissible electronic densities and where

FN (ρ) = inf
{〈Ψ|H1

N |Ψ〉, Ψ ∈ QN , ‖Ψ‖HN
= 1, ρΨ = ρ

}
(3.9)

is a universal density functional, in the sense that it only depends on the number of electrons
in the system, not on the number, chemical natures, and positions of the nuclei. The setRN

can be easily characterized:

RN =

{
ρ ≥ 0 | √ρ ∈ H1(R3),

∫
R3

ρ = N

}
.

On the other hand, there is no simple way to evaluate FN (ρ) for a given ρ ∈ RN .
Although introduced decades before the works by Hohenberg and Kohn, Thomas-Fermi

type models fall in the framework of DFT. They consist in approximating FN (ρ) by explicit
functionals of the density ρ. Examples of such models include the original Thomas-Fermi
(TF) model

FTF(ρ) = CTF

∫
R3

ρ5/3 +
1

2

∫∫
R3×R3

ρ(x)ρ(y)

|x− y| dx dy,

where CTF = 10
3 (3π2)2/3 is the Thomas-Fermi constant, and the Thomas-Fermi-von

Weizsäcker (TFW) model

FTFW(ρ) = CW

∫
R3

|∇√ρ|2 + CTF

∫
R3

ρ5/3 +
1

2

∫∫
R3×R3

ρ(x)ρ(y)

|x− y| dx dy,

where the constant CW takes different values depending on how the TFW model is de-
rived [32]. The first term in FTF(ρ) models the kinetic energy of the electrons (CTFρ

5/3
0

is the kinetic energy density of a homogeneous gas of non-interacting electrons of uniform
density ρ0 [32]). The second component of FTF(ρ) is the electrostatic energy of a classical
charge distribution of density ρ. The first term in FTFW(ρ) is a correction to the Thomas-
Fermi approximation of the kinetic energy of the electrons taking into account the fact that,
in molecular systems, the electronic density is not uniform. The above Thomas-Fermi type
models provide crude approximations of FN (ρ) (according to the TF model, any molecule is
unstable! [89]), and are no longer used in quantum chemistry and materials science. On the
other hand, some improvements of the TFW model, the so-called orbital-free models [94],
are used for the simulation of specific materials (aluminum crystals with defects for exam-
ple [80]). The main reason why we mention Thomas-Fermi like models is that they are very
useful in the mathematical analysis of electronic structure models [63, 67, 76]. They are
indeed toy models upon which new mathematical techniques can be developed before being
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applied to the more sophisticated models actually used in quantum chemistry and materials
science.

The Kohn-Sham method [54] is to date the most popular electronic structure method as
it provides the best compromise between computational efficiency and accuracy. It proceeds
from the density functional theory remarking that on the one hand,

TKS(ρ) = inf

{
1

2

N∑
i=1

∫
R3

|∇φi|2, Φ = (φi) ∈ (H1(R3))N ,

∫
R3

φiφj = δij , ρΦ = ρ

}
,

where the density ρΦ is defined by (3.7), is an excellent approximation (exact for pure state
non-interacting V -representable densities [64]) of the density functional for non-interacting
electrons, that is of the density functional obtained by replacing H1

N with H0
N in (3.9), and

that, on the other hand, the classical Coulomb energy

J(ρ) =
1

2

∫
R3

∫
R3

ρ(x)ρ(y)

|x− y| dx dy

is a reasonable first-order approximation of the electronic interaction. The functional FN (ρ)
can therefore be decomposed as

F (ρ) = TKS(ρ) + J(ρ) + Exc(ρ), (3.10)

where the exchange-correlation energy functionalExc(ρ) is expected to be a small correction
of the first two terms of the decomposition (3.10). Numerical simulations confirm that the
exchange-correlation energy is about 10% of the total energy for ground states of molecular
systems. The Kohn-Sham model then reads

EKS
0 = inf

{
EKS(Φ), Φ = (φ1, · · · , φN ) ∈ (H1(R3))N ,

∫
R3

φiφj = δij

}
, (3.11)

with

EKS(Φ) =
1

2

N∑
i=1

∫
R3

|∇φi|2 +
∫
R3

ρΦVne + J(ρφ) + Exc(ρΦ).

The Kohn-Sham approach is in principle exact in the sense that if (3.10) is exactly satisfied,
then EKS

0 = E0 for all molecular systems. On the other hand, as the exact exchange-
correlation functional is not known explicitly, it must be approximated in practice to perform
numerical calculations. For this reason, there is not one, but a whole zoology of Kohn-Sham
models, corresponding to different approximations of Exc(ρ). The simplest Kohn-Sham
model actually used in practice is obtained using the Local Density Approximation (LDA)
introduced by Kohn and Sham [54] (see also [79]). The resulting model is mathematically
very similar to the so-called Xα model [84] where the exchange-correlation functional is
approximated by the Dirac local exchange term:

EXα
xc (ρ) = −CD

∫
R3

ρ4/3,

where CD = 3
4

(
3
π

)1/3
is the Dirac constant. Other more refined exchange-correlation

functionals have been developed in the past 30 years, leading to the Generalized Gradi-
ent Approximation (GGA) [78], meta-GGA functionals [88], hybrid functionals [6], range-
separated functionals [92] ... The Kohn-Sham ground state energy and density can be ob-
tained by solving the Kohn-Sham equations (deduced from the Euler-Lagrange equations
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associated with (3.11) by a simple algebraic manipulation)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0(x) =

N∑
i=1

|φi(x)|2

hρ0 φi = εiφi, ε1 < ε2 ≤ ε3 ≤ · · ·∫
R3

φiφj = δij

hρ0 = −1

2
Δ + V H

ρ0 + V xc
ρ0

−ΔV H
ρ0 = 4π

(
ρ0 −

M∑
k=1

zkδRk

)
,

(3.12)

where the Kohn-Sham potential V KS
ρ0 = V H

ρ0 + V xc
ρ0 is the sum of the Hartree potential

V H
ρ0 = ρ0 � | · |−1 and of the exchange-correlation potential V xc

ρ0 = ∂Exc

∂ρ (ρ0). The differ-
ences between the various Kohn-Sham models lay in the form of the exchange-correlation
potential. For the Xα model, we have V xc,Xα

ρ = − 4
3CDρ1/3. As for Hartree-Fock, the

Kohn-Sham equations have the mathematical form of a nonlinear elliptic eigenvalue prob-
lem. The Kohn-Sham model, as well as its generalizations (extended Kohn-Sham model,
spin-polarized Kohn-Sham model) and approximations (reduced Hartree-Fock model), have
been studied mathematically in [3, 45, 58, 64, 85]. A interesting related topic concerning the
construction of density functionals for the Coulomb interaction is addressed in [30].

3.2.3. Quantum Monte Carlo methods. QuantumMonte Carlo (QMC)methods (see e.g. [4]
and references therein) aim at solving the N -body quantum problem by means of stochastic
algorithms. The term QMC encompasses several classes of methods including variational
Monte Carlo (VMC), diffusion Monte Carlo (DMC), and path integral Monte Carlo. In the
framework of electronic structure calculation, the most commonly used are VMC and DMC
methods. For convenience, we use in this section the shorthand notation x = (x1, · · · , xN ),

V (x) = −
N∑
i=1

M∑
k=1

zk
|xi −Rk| +

∑
1≤i<j≤N

1

|xi − xj | and HN = −1

2
Δ + V,

where Δ is the Laplace operator in the 3N -dimensional space.
VMC methods allow one to efficiently compute the energy of a large class of (non nec-

essarily normalized) electronic wavefunctions ψ. The name Variational Monte Carlo origi-
nates from the fact that this approach can be used, in the spirit of usual variational methods,
to seek an approximation of the ground state energy E0 (and of a ground state wavefunction
ψ0) by minimizing the Rayleigh quotient 〈ψ|HN |ψ〉

〈ψ|ψ〉 over a family {ψp, p ∈ P} of trial wave
functions depending on a set of parameters p. VMC methods are based on the observation
that

〈ψ|HN |ψ〉
〈ψ|ψ〉 =

∫
R3N

Eψ
L (x) |ψ(x)|2 dx∫

R3N

|ψ(x)|2 dx

,

where the scalar field Eψ
L (x) = [HNψ](x)/ψ(x) = − 1

2
Δψ(x)
ψ(x) + V (x) is called the local
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energy. Hence,
〈ψ|HN |ψ〉
〈ψ|ψ〉 = lim

N→∞
1

N
N∑

n=1

Eψ
L (X

n), (3.13)

where (Xn)n≥1 are points of R3N sampling the probability distribution

dμψ(x) =
|ψ(x)|2∫
R3N |ψ|2 dx.

The VMC method consists in approximating the right-side of (3.13) by an empirical mean
for large, but finite values of N . Note that if ψ is an eigenfunction of HN associated with
the eigenvalue E, Eψ

L (x) = E almost everywhere, so that the variance of Eψ
L vanishes. In

this extreme case, the relation

〈ψ|HN |ψ〉
〈ψ|ψ〉 =

1

N
N∑

n=1

Eψ
L (X

n)

in fact holds true whatever N and the realizations (Xn)1≤n≤N of the random variable with
law μψ . Most often, VMC calculations are performed with trial wavefunctions ψ that are
good approximations of a ground state wavefunction ψ0. Consequently, E

ψ
L (x) usually is a

function of low variance (with respect to the probability distribution μψ). This is the reason
why, in practice, the empirical mean 1

N
∑N

n=1 Eψ
L (X

n) is a fairly accurate approximation
of 〈ψ|HN |ψ〉

〈ψ|ψ〉 , even for relatively “small” values of N .
Of course, the quality of this approximation depends on the way the points (Xn)n≥1

are generated. The standard sampling method currently used for VMC calculations is a
Metropolis-Hastings algorithm based on a biased random walk in the configuration space
R

3N [4].
Let us now turn to the DMC method [4]. For the sake of simplicity, we assume that the

ground state energy E0 is a simple eigenvalue of HN , considered as an operator onHN , and
we denote by g = E1 − E0 the spectral gap between the ground state energy E0 and the
first excited state energy E1. The DMC method is based on the following observation. Let
ψI ∈ DN . The unique solution ψ(t,x) in C0(R+,DN ) ∩ C1(R+,HN ) of the parabolic
problem {

∂ψ

∂t
(t,x) = −(HNψ(t, ·))(x) = 1

2
Δψ(t,x)− V (x)ψ(t,x),

ψ(0,x) = ψI(x),
(3.14)

reads ψ(t, ·) = e−tHNψI and is such that

‖ exp(E0t) ψ(t)− 〈ψ0|ψI〉 ψ0‖L2 ≤ ‖ψI − 〈ψ0|ψI〉 ψ0‖L2 exp(−gt),

where as above, ψ0 denotes anL2-normalized ground state ofHN . If moreover 〈ψ0|ψI〉 �= 0,
one also has

0 ≤ E(t)− E0 ≤ 〈ψI |H|ψI〉 − E0

|〈ψ0|ψI〉|2 e−gt, where E(t) =
〈ψI |HN |ψ(t)〉
〈ψI |ψ(t)〉 . (3.15)

As equation (3.14) is posed on R3N , and as in addition, V has singularities, it seems difficult
to numerically solve (3.14) with deterministic methods.
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On the other hand, a stochastic representation formula of the solution to (3.14) is pro-
vided by the Feynman-Kac formula

ψ(t,x) = E

(
ψI (x+Wt) exp

(
−
∫ t

0

V (x+Ws) ds

))
, (3.16)

where the expectation E is over theR3N -valuedWiener process (Wt)t≥0, and could a priori
be used to estimateE0 [74]. As such, (3.16) is however not adapted to numerical simulations:
it has indeed been observed that for a given x ∈ R

3N , the variance of the random variable

Y x
t = ψI (x+Wt) exp

(
−
∫ t

0

V (x+Ws) ds

)

increases very quickly with time.
In practice, one makes use of an importance sampling technique. If the importance func-

tion ψI the DMC method is based upon is well-chosen, the ground state energy is approxi-
mated with a very good accuracy. In most cases, taking for ψI a Hartree-Fock ground state
is sufficient to recover 90% of the correlation energy (the correlation energy is defined as
the difference between the exact ground state energy E0 and the energy EHF

0 of the Hartree-
Fock ground state); for molecular systems in which the main part of the correlation energy
is non-dynamical, that is when the ground state ψ0 is badly approximated by a single Slater
determinant, but fairly well approximated by a linear combination of a few Slater determi-
nants, it is however necessary to consider multi-configurational importance functions [47].
The DMC method works as follows. Assume that the importance function ψI is continuous
and such that the fields

bψI (x) =
∇ψI(x)

ψI(x)
and EψI

L (x) =
(HNψI)(x)

ψI(x)
= −1

2

ΔψI(x)

ψI(x)
+ V (x)

exist for almost every x ∈ R
3N and can be calculated with a reasonable computational cost

(for instance, bψI (x) and EψI

L (x) can be computed in O(N4) operations if ψI is a Slater
determinant). Consider the function

f1(t,x) = ψI(x)ψ(t,x), (3.17)

where ψ is the solution of (3.14). The energy E(t) defined by (3.15) also reads

E(t) =

∫
R3N

EψI

L (x) f1(t,x) dx∫
R3N

f1(t,x) dx

,

and an elementary calculation shows that f1 is solution to the equation

∂f

∂t
=

1

2
Δf − div

(
bψIf

)− EψI

L f, f(0,x) = |ψI(x)|2. (3.18)

The above partial differential equation can be interpreted as the Fokker-Planck equation of a
drift-diffusion process with source term. This leads us to considering the stochastic process
defined by the stochastic differential equation (SDE)

dXx
t = bψI (Xx

t ) dt + dWt, Xx
0 = x, (3.19)
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the function

f2(t,x) = |ψI(x)|2 E

(
exp

(
−
∫ t

0

EψI

L (Xx
s )ds

))
, (3.20)

and the real-valued function of time

EDMC(t) =
E

(
EψI

L (Xt) exp
(
− ∫ t

0
EψI

L (Xs)ds
))

E

(
exp
(
− ∫ t

0
EψI

L (Xs)ds
)) . (3.21)

If the field bψI were regular enough and well-behaved at infinity (globally Lipschitz for
instance), the SDE (3.19) would be well-posed by classical results (see e.g. [87]). Under
the additional condition that the function EψI

L is bounded below, the functions f1 and f2
respectively defined by (3.17) and (3.20), would coincide, as well as the two quantities of
interest E(t) and EDMC(t) defined by (3.15) and (3.21). This ideal scenario is encountered
in the simulation of bosons, where the function ψI can be chosen positive everywhere, reg-
ular enough, and well-behaved at infinity. The situation is more delicate for fermions, as
the field bψI = ∇ψI

ψI
is singular on the nodal surfaces of ψI . Under some technical as-

sumptions we do not spell out in detail here, which are fulfilled for toy models (a system of
non-interacting fermions confined in a harmonic potential), but should probably be refined
to fully cover the case of electrons interacting with point nuclei, it is established in [20]
that the SDE (3.19) has a unique solution, and that for all x ∈ U = R

3N \ ψ−1
I (0), the

function R+ � t �→ Xx
t ∈ R

3N is in C0(R+, C(x)), where C(x) is the connected com-
ponent of U containing x. In particular, the trajectories of (3.19) cannot cross the nodal
surfaces ψ−1

I (0). This is due to the fact that close to the nodal surfaces, the random variable
δ(t) = dist(Xx

t , ψ
−1
I (0)) behaves as the solutions to the SDE

dxt = xt
−1 dt + dBt,

where (Bt)t≥0 is a one-dimensional Wiener process, which are known to stay away from
zero almost surely in finite times. On the other hand, and similar to the case when bψI

is globally Lipschitz, the random variable Xx
t has a density p(t,x,y) and the function

(x,y) �→ ψI(x)
2p(t,x,y) is symmetric. In the fermionic setting, the function f2 defined by

(3.20) still is a solution to (3.18) in the distributional sense, but it is not equal to f1. More
precisely, it holds

f2(t,x) = ψI(x)φ(t,x),

where φ(t,x) is the unique solution in C0(R+,DN ) ∩ C1(R+,HN ) to⎧⎪⎨
⎪⎩

∂φ

∂t
(t,x) =

1

2
Δφ(t,x)− V (x)φ(t,x),

φ(0,x) = ψI(x),
φ(t,x) = 0 on ψ−1

I (0).

(3.22)

Problem (3.22) differs from problem (3.14) through the additional homogeneous Dirichlet
condition that φ vanishes on the nodal surfaces of ψI . As a consequence, EDMC(t) differs
from E(t) and it holds [20]

lim
t→+∞EDMC(t) = EDMC

0 ,
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where

EDMC
0 = inf

{〈ψ|HN |ψ〉, ψ ∈ QN , ‖ψ‖L2 = 1, ψ = 0 on ψ−1
I (0)

}
.

Obviously EDMC
0 ≥ E0, and the equality holds if and only if the nodal surfaces ofψI coin-

cide with those of a ground state ψ0 of HN . The systematic bias introduced by the choice
of a function ψI which does not have the same nodes as ψ0 (which is the case in practice),
is called the fixed node error. Getting rid of the fixed node error in quantum Monte Carlo
simulations of fermions is one of the major challenges in computational physics.

4. Some recent advances and open questions

4.1. Towards certified numerical methods. As we have seen, the Hartree-Fock and Kohn-
Sham models are infinite-dimensional constrained (non-convex) optimization problems,
whose Euler-Lagrange equations are nonlinear elliptic eigenvalue problems. Computing
numerically the Hartree-Fock or Kohn-Sham ground states therefore requires

1. a discretization method to transform the infinite-dimensional problem into a finite-
dimensional one;

2. an iterative algorithm to solve the so-obtained finite-dimensional contrained optimiza-
tion problem, or the associated Euler-Lagrange equations.

Theoretical chemists and computational physicists have devoted a lot of effort to the develop-
ment of efficient discretization methods for electronic structure calculation. The most com-
mon discretization methods are Gaussian atomic orbitals [49] for molecules, and planewaves
[36] for solid state physics and materials science. New approaches based on wavelets [43]
or discontinuous Galerkin methods [71] have also been recently introduced. We refer to [13]
for a recent review of the iterative algorithms for solving the discretized Hartree-Fock and
Kohn-Sham problems. The development of fast numerical methods is an active field of re-
search [8, 33, 34, 42, 52, 69, 70, 72]. Note that optimized black-box algorithms are not yet
available, and that very few convergence results for existing algorithms [22, 23, 60] have
been established so far.

One of the challenges for the next decade is to construct accurate and robust error es-
timators with respect to the various numerical parameters used to perform the calculation
(truncation of the discretization basis in variational approximations, number of points in nu-
merical quadratures, convergence thresholds for iterative algorithms, ...). These estimators
could then be used to adapt in real time the numerical parameters to equilibrate the vari-
ous sources of error. As a result, the maximal committed error could be certified and the
simulation time strongly reduced in comparison with the current usual approach consisting
in fixing a priori the numerical parameters and testing the quality of the chosen parameters
by checking that the results hardly change when refining the discretization and reducing the
convergence thresholds. Important progress in this direction has been made in the last few
years; in particular, optimal a priori error bounds on nonlinear eigenvalue problems have
recently been obtained [14], and these results have been applied to the analysis of Kohn-
Sham models [15, 29]. The construction of a posteriori error estimators for Kohn-Sham is a
current active field of research.
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4.2. Multiscale models. An important, very challenging, mathematical and numerical prob-
lem is concerned with the coupling of quantum chemistry models with coarser models in
view of simulating larger molecular systems. Such approaches include QM/MMmodels [90]
(for the development of which Karplus, Levitt and Warshel were awarded the 2013 Nobel
Prize in Chemistry), and implicit solvation models [91]. QM/MM models consist in cutting
the molecular system (say a drug interacting with a protein) into two subsystems (the drug
and the active site of the protein on the one hand, the rest of the protein on the other hand) and
in treating the first one (small but key) with quantum mechanics (QM) and the second one
(large and playing the role of the “environment”) with classical molecular mechanics (MM).
Understanding such coupling between quantum and classical models is an essentially open
mathematical question.

So far, we assumed that the molecule under study could be considered as an isolated
system, which is almost never the case in practice. In particular, most chemical reactions take
place in the liquid phase. In principle, we could apply the models previously introduced to
a "supermolecule" consisting of the solute molecule and a big number of solvent molecules.
This is however not doable in practice for two reasons. First, this would dramatically increase
the size of the system; second, we would need to properly sample and average over the
configurations of the solvent molecules, which is very difficult and most often unfeasible
in practice. Implicit solvation models, which date back to Born, Kirkwood and Onsager,
consist in replacing all the solvent molecules but the few ones strongly interacting with the
solute, with an effective continuous medium accounting for long-range electrostatics. This
amounts to replacing the Poisson equation in (3.12) by the inhomogeneous elliptic equation

−div (ε∇V H
ρ0

)
= 4π

(
ρ0 −

M∑
k=1

zkδRk

)
, (4.1)

with ε(x) = 1 inside a cavity Ω containing the molecule (see Fig. 4.1) and ε(x) = εs outside
Ω, where εs is the macroscopic dielectric permittivity of the solvent (about 80 for water).
A numerical method coupling Schwarz’s domain decomposition method with integral equa-
tions has recently been proposed to solve the so-called COSMO approximation of (4.1) in
the framework of classical and quantum molecular models [75]. This allows one to perform
geometry optimization on large molecules in solution with a limited extra-cost with respect
to the same calculation in vacuo.

Implicit solvation models are widely used in chemistry and give satisfactory results in
many cases. On the other hand, they fail in other cases, in particular in the presence of strong
interactions between the solute and the solvent. Also, the definition of the molecular cavity
Ω is a touchy business, and some physical properties may strongly depend on the chosen
definition. For all these reasons, constructing better solvation models using mathematical
tools such as model reduction techniques is an interesting problem of major importance for
applications.

4.3. Thermodynamic limits and the crystal problem. In contrast with the contents of the
previous two subsections, we now present a purely theoretical problem. Consider a cluster
with L3 identical atoms, put the L3 nuclei on the sites of a cubic lattice (for simplicity)
and compute the electronic ground state for this nuclear configuration (Fig. 4.1). Several
questions are in order: when L goes to infinity,

(i) does the ground state energy per atom converge?
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(ii) does the ground state electronic density converge?

(iii) does it converge to a periodic density?

(iv) can those quantities be obtained by solving a periodic problem on a unit cell?

(v) if nuclei are allowed to relax to their equilibrium positions for finite L, do we obtain a
periodic crystal in the limit?

L

Figure 4.1. Left: a molecular cavity for the carotene molecule used in implicit salvation models (cour-
tesy P. Laug, Inria). Right: a cubic cluster of size L. The thermodynamic limit problem consists in
studying the limit of the electronic structure of the cluster when L goes to infinity.

The first four questions fall into the scope of thermodynamic limit problems. The fifth
issue is called the crystal problem. The thermodynamic limit problems in the terms stated
above have been the subject of many outstanding contributions in the context of various
energy models and various physical systems [26, 38, 48, 65, 66, 81]. The thermodynamic
limit problem is completely solved for the TF [67] and TFW [26] models. For Hartree-Fock
and Kohn-Sham type models, the fundamental issues (ii)-(iii) remain open. The two key
difficulties are first that the latter models are not convex (convexity plays a crucial role in the
analysis of the TFW model) and second that the number of molecular orbitals φi to be dealt
with, or equivalently the rank of the one-body density matrix γΦ =

∑
i |φi〉〈φi|, are also

growing to infinity (in the TFW model, only the density ρ is relevant). For the HF model,
partial results have been established [27, 44]. The results are partial in the sense that it is
needed to postulate, in addition to the periodicity of the set of nuclei, the periodicity of the
ground state density matrix in the limit. A simplified version of the HF model, namely the
reduced Hartree-Fock model however allows for a complete proof [27].

4.4. Crystals with defects and disordered systems. In the previous section, we dealt with
perfect crystals, while the really interesting systems for the applications are crystals with
defects. The difficulty is that such systems contain infinitely many interacting electrons
and have no symmetry allowing us to reduce the problem to a periodic cell, as is the case
for perfect crystals. In the past few years, some progress has been made in the theoretical
understanding of Kohn-Sham models for insulating and semiconducting crystals with local



1036 Eric Cancès

defects [17, 18, 24], but the cases of metals and extended defects is still open (see [40] for
the case of a uniform electron gas and [19] for the TFW model). On the numerical side, very
little is known: in particular, there is no completely satisfactory method to deal with charged
defects in insulators and semi-conductors.

A huge amount of literature has been devoted to modeling electrons in random materials.
In most cases, electrons are considered as non-interacting particles subjected to a stationary
random empirical potential V (ω, x) [25]. The analysis of the electronic properties of the
material then reduces to the analysis of the spectral properties of the associated random
Schrödinger operator H(ω) = − 1

2Δ+ V (ω, ·) acting on L2(R3). A remarkable property of
random Schrödinger operators is that, under some ergodicity and integrability assumptions
on V , the spectrum of H(ω) is deterministic: there exists a closed set Σ ∈ R such that
σ(H(ω)) = Σ almost surely. Similar results hold for the density of states (that is, losely
speaking, the number of quantum states per unit volume) of the Hamiltonian H(ω) [11].
Interesting questions are concerned with the nature of the spectrum (point spectrum, abso-
lutely continuous spectrum, ...), which is related to the electronic transport properties of the
material. We refer to [25, 86] and references therein for more details on the linear case.

Serious additional difficulties arise for models with interacting electrons. Recent results
have been obtained on the thermodynamic limit of disordered quantum systems composed
of interacting particles with short-range (Yukawa) interactions [9, 21, 93]. The case of long-
range (Coulomb) interactions was investigated in [10]. The existence of a thermodynamic
limit is proven, but the limit is not identified. An interesting open problem consists in study-
ing the case of rare but possibly large random perturbations, which corresponds to the phys-
ical situation of doped semiconductors with low concentration of impurities. This question
has been successfully addressed in [53] in the case of a linear model of non-interacting elec-
trons. The case of interacting electrons with short-range interactions is dealt with in [56].
The problem is still open for electrons in Coulomb interactions.

Acknowledgements. I am grateful to V. Ehrlacher, G. Gontier, M. Luskin and G. Stoltz for
useful comments on this manuscript.

The bibliography mostly contains mathematical contributions to the field of electronic
structure calculation. Due to the lack of space, very few of the hundreds of relevant refer-
ences of the physics and chemistry literatures are cited.
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A mathematical perspective of image denoising

Miguel Colom, Gabriele Facciolo, Marc Lebrun, Nicola Pierazzo,
Martin Rais, Yi-Qing Wang, and Jean-Michel Morel

Abstract. Digital images are matrices of regularly spaced samples, the pixels, each containing a photon
count. Each pixel thus contains a random sample of a Poisson variable. Its mean would be the ideal
image value at this pixel. It follows that all images are random discrete processes and therefore “noisy”.
Ever since digital images exist, numerical methods have been proposed to recover the ideal mean from
its random observed value. This problem is obviously ill posed and makes sense only if there is an
underlying image model. Inventing or learning from data a consistent mathematically image model is
the core of the problem. Images being 2D projections of our complex surrounding visual world, this is
a challenging problem, which is nevertheless beginning to find simple but mathematically innovative
answers. We shall distinguish four classes of denoising principles, relying on functional or stochastic
image models. We show that each of these principles can be summarized in a single formula. In addition
these principles can be combined efficiently to cope with the full image complexity. This explains
their immediate industrial impact. All current cameras and imaging devices rely directly on the simple
formulas explained here. In the past ten years the image quality delivered to users has increased fast
thanks to this exemplary mathematical modeling.

As an illustration of the universality and simplicity reached by the theory, most image denoising
algorithms discussed in this paper can be tested directly on any digital image at Image Processing On
Line, http://www.ipol.im/. In this web journal, each paper contains a complete algorithmic description,
the corresponding source code, and can be run online on arbitrary images.

Mathematics Subject Classification (2010). Primary 62H35; secondary 68U10, 94A08.

Keywords. Image denoising, Fourier transform, Wiener estimate, wavelet threshold, discrete cosine
transform, oracle estimate, Bayes formula, neighborhood filters, nonlocal methods, neural networks,
blind denoising.

1. Introduction

Most digital images and movies are currently obtained by a matrix of sensors counting
photons hitting the surface. We shall denote by i the indices of the matrix elements also called
pixels. The value ũ(i) observed by a sensor at a pixel i is a Poisson random variable whose
mean u(i) would be the ideal image. The difference between the observed image and the ideal
image ũ(i) − u(i) = n(i) is called “noise”. By a well known property of Poisson random
variables, the standard deviation of the noise n(i) is equal to

√
u(i). On a motionless scene

with constant lighting, u(i) can be approached by simply accumulating photons for a long
exposure time, and by taking the temporal average of this photon count. Accumulating photon
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impacts on a sensitive surface is therefore the essence of photography. The first Nicéphore
Niépce photograph [16] was obtained after an eight hours exposure: it is very noisy, though!
A digitization of it can be seen on the left hand side of Figure 1.1. The image in the middle is
an attempt to denoise it. The image on the right is the “estimated noise”, namely the difference
between the noisy image and its denoised version. How was this done will be explained in
section 7.

Figure 1.1. Left: A digitization of the first ever photograph by Nicéphore Niépce “View from the
Window at Le Gras” ca. 1826 obtained after an eight hours exposure. Middle: an attempt to denoise it.
Right: the “estimated noise”, namely the difference between the noisy image and its denoised version.

Augmenting the exposure time of the camera amounts to augmenting the expectation
u(i) of the number of photons ũ(i). The number of photons has mean u(i) and variance
u(i). Since this variance measures the amount of noise, this implies that noise increases with
the exposure. But the means increases faster than the noise. Indeed, the correctly scaled
measurement of the noise is the Signal to Noise Ratio (SNR), which is defined by

SNR :=
Mean(u(i))√
Var(ũ(i))

=
u(i)√
u(i)

=
√

u(i). (1.1)

The SNR increases like the square root of the exposure time. So the more photons we have,
the better. The solution for getting a quality image, adopted from the beginning by Nicephore
Niépce, was therefore to extend the exposure time as much as possible.

Yet, in a long exposure the photographed scene is exposed to variations due to changes
in lighting, camera motion, and incidental motions of parts of the scene. For example in the
town view of Figure 1.1, the walls on the right and left are bright because the Sun had moved
during the eight hours exposure. Nowadays, digital cameras are much faster and capture fast
moving objects. But even with a short exposure time, the photograph still risks motion blur
on any animated scene. On the other hand, if the exposure time is too short, the image is
noisy. Thus the main limitation to any imaging system is noise, regardless of its resolution.

At a first glance, the denoising problem is anyway hopeless: how to estimate the mean
u(i) of a random Poisson variable, given only one sample ũ(i) of this variable? The best
estimate of this mean knowing ũ(i) is of course this unique sample ũ(i). A glimpse of a
solution comes from image formation theory. An optical image u is band-limited [63] and
therefore smooth. Thus, one can restore the band-limited image u from its noisy version ũ,
as was proposed in 1966 in [33], by imposing a decay to its Fourier spectrum. This classic
Wiener-Fourier method multiplies the Fourier transform by optimal coefficients to attenuate
the noise. It results in a convolution of the image with a “low-pass” kernel. As we shall see,
this reduces the noise, but blurs the image. This is the functional perspective on the subject.

But the band-limitedness of u also implies that the random observed image values ũ(j) at
neighboring pixels j of a pixel i are positively correlated with ũ(i). Thus, these values can be
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taken into account to obtain a better estimate of u(i). These values being nondeterministic,
Bayesian approaches are relevant and have been proposed as early as 1972 [60]. This opens
the stochastic perspective on the subject.

In short, there are two complementary early approaches to denoising, the Fourier-Wiener
method, and the Bayesian estimation. A third hint is also given: the denoising of a given pixel
value ũ(i) must involve the values of neighboring pixels ũ(j). This leads us to the question:
where are the extra image samples that could be used to denoise the single sample ũ(i)? This
question will lead us a long way. It turns out that, not only neighboring pixels in the same
image can be used, but actually even pixels from other images! The mathematical innovation
here comes from a non-local, or fully non-local approach to image processing, under the
generic name of neighborhood filters, nonlocal filters, and even global filters, involving a
whole set of images to denoise one.

These three main perspectives will permit us to review the main algorithmic principles
which have been proposed for noise removal. All of them require a noise model, which in
most of our study will be the Gaussian white noise (we will explain in the next section why
this is not a limitation). The three rough denoising principles sketched above will be further
combined into five algorithm classes, each one relying on a single formula.

• The Fourier-Wiener transform thresholding principle, section 2 : uses the regu-
larity of the image (reflected by its sparsity in a well-chosen orthonormal transform).
For the associated Fourier-Wiener image filters, the assumption is that the Fourier (or
cosine transform, or wavelet transform) of the image decays quickly, and therefore
faster than white noise, which is homoscedastic over all frequencies. An extreme view
of this denoising principle is called “sparsity”. According to this popular assumption
used in compressed sensing [13], the ideal image has a few “sparse” coefficients in the
right basis. If that is true, a simple threshold on the transform coefficients (on the right
Hilbert basis) maintains the signal and kills most of the noise;

• The self-similarity principle and the patch based methods (section 3): The image is
self-similar, and one can therefore use other “neighboring” pixels of the same image
with the same expected colour to denoise a given pixel. The neighborhood filters
propose to average the samples with similar colours, thus performing an artificial
photon accumulation. This self-similarity principle is enhanced by deciding on the
similarity of two pixels i and j by comparing two image patches surrounding them.

• The Bayesian patch denoising principle, section 4: The Bayesian principle extends
the above considerations by giving them an optimal formulation, under the assumption
that the patches similar to a given image patch follow a stochastic model.

• The global denoising principle, section 5. In this extension of the Bayesian model,
not only image patches from the same image, but also image patches from other images
can be used for image denoising. In its maximal extension, this principle can use
literally all images of the world, thus giving an explicit point density function for the
patch stochastic model.

• Global neural denoising, section 6 learns directly the denoising algorithm by a super-
vised learning algorithm, again learnt from a huge patch database.

• Blind denoising, section 7 is the ultimate achievement of the theory, as it considers
denoising the image with a completely flexible noise model, learnt from the image
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itself. This is the principle that must be used for old photographs and for degraded
digital photographs, for which the noise model is unknown.

2. Fourier-Wiener transform thresholding

The white noise model. In this section and in the rest of the paper we shall adopt a con-
venient simplification of the noise model. We defined the noise as the difference between
the observed image and the ideal image ũ(i)− u(i) = n(i). For large enough values of u(i)
this random variable tends to be Gaussian. Furthermore, the Anscombe scalar transform
f(ũ(i)), where f is a special function proposed by Anscombe [2] transforms this Poisson
noise with a variance depending on the signal u(i) into a nearly Gaussian variable with
fixed variance. By applying the Anscombe transform to the image its noise becomes white,
homoscedastic and Gaussian. White means that the random value is independent at each
pixel, which is true because the fluctuations of the photon numbers hitting each pixel are
independent. Homoscedastic means that all pixels noises have the same variance which we
will denote by σ2. This noise model will simplify the discussion without loss of generality.

Classic transform thresholding algorithms use the observation that images are faithfully
described by keeping only their large coefficients in a well-chosen basis. By keeping these
large coefficients and setting to zero the small ones, noise should be removed and image
geometry kept. By any orthogonal transform, the coefficients of an homoscedastic de-
correlated noise remain de-correlated and homoscedastic. Here we refer to the classic Fourier,
wavelet or cosine transforms, in their discrete version applied to the image matrix viewed as a
vector in a large but finite dimension. Applied to digital images, each one of these transforms
is an orthogonal transform in the finite dimensional image space. For the Fourier method
this amounts to use the DFT (Discrete Fourier Transform). This Fourier method has been
extended in the past thirty years to generalized linear space-frequency transforms such as the
windowed cosine transform [70] or the many wavelet transforms [50].

The wavelet, or DCT, or Fourier coefficients of a Gaussian white noise with variance σ2

remain a Gaussian diagonal vector with variance σ2. The sparsity model assumes that the
most “important” image coefficients are much larger than 3σ. Thus, cancelling the coefficients
of the noisy image that are smaller (in absolute value) than, for example, 3σ will remove
most of the coefficients that are only due to noise, while keeping the large image coefficients.
This sparsity of image coefficients in certain bases is an empirical observation, used in most
denoising and compression algorithms. For example the established image compression
algorithms are based on the DCT (in the JPEG 1992 format) or, like the JPEG 2000 format
[3], on biorthogonal wavelet transforms [17]. A bit more formally, let B = {gi}Mi=1 be an
orthonormal basis of RM , where M is the number of pixels of the noisy image ũ (handled
here as a vector). Then

ũ =

M∑
i=1

〈ũ, gi〉gi, with 〈ũ, gi〉 = 〈u, gi〉+ 〈n, gi〉 , (2.1)

where ũ, u and n denote respectively the noisy, ideal and noise images and 〈·, ·〉 denotes the
Euclidean scalar product in R

M . Being independent, the noise values n(i) are uncorrelated.
They have by assumption zero mean and variance σ2. We can deduce that the noise coefficients
in the new basis remain uncorrelated, with zero mean and variance σ2. Indeed, denoting by E
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the expectation (with respect to the stochastic noise model) we have 〈n, gi〉 =
∑M

r=1 gi(r)n(r)
and therefore

E[〈n, gi〉 〈n, gj〉] =
M∑

r,s=1

gi(r)gj(s)E[n(r)n(s)]

= 〈gi, gj〉σ2 = σ2δ[j − i].

In the Fourier-Wiener method, each noisy transform coefficient 〈ũ, gi〉 is modified inde-
pendently and then the denoised image is estimated by the inverse transform of the new
coefficients. Denoting by a(i) the attenuation factor a(i) for the i-th coefficient, the inverse
transform yields the denoised version

Dũ =

M∑
i=1

a(i) 〈ũ, gi〉 gi, (2.2)

to be compared with (2.1). D is often called a diagonal operator. The following result,
generally attributed to Norbert Wiener, gives the ideal values for a(i):

Theorem 2.1. The operator Dinf minimizing the mean squared error (MSE) Dinf = argminD
E{‖u− Dũ‖2} satisfies

a(i) =
|〈u, gi〉|2

|〈u, gi〉|2 + σ2
. (2.3)

The previous optimal operator attenuates all noisy coefficients. In the methods assuming
a “sparsity” for the ideal image u, one further restricts a(i) to be 0 or 1. Then the diagonal
operator becomes a projection operator. In that case, a subset of coefficients is kept, and the
rest are set to zero. The projection operator that minimizes the MSE under that constraint is
obtained with

a(i) =

{
1 if |〈u, gi〉|2 ≥ σ2,

0 otherwise.

A transform thresholding algorithm therefore keeps the coefficients with a magnitude larger
than the noise, while setting to zero the rest. Note that both above mentioned filters are
“ideal”, or “oracular” operators. Indeed, they use the coefficients 〈u, gi〉 of the original image,
which are not known. For this reason, such algorithms are called oracle filters. The classical
transform threshold filters must approximate the oracle coefficients by using the observable
noisy coefficients. The real denoising method is therefore called empirical Wiener filter,
because it approximates the unknown original coefficients 〈u, gi〉 by invoking the identity

E|〈ũ, gi〉|2 = |〈u, gi〉|2 + σ2

to replace the optimal attenuation coefficients a(i) by the empirical attenuation coefficients

α(i) = max

{
0,
|〈ũ, gi〉|2 − cσ2

|〈ũ, gi〉|2
}

(2.4)

where c is a parameter, usually larger than one.
The global Fourier basis is not used for denoising. Indeed, modifying Fourier coefficients

by the diagonal operator often causes undue oscillation. To avoid this effect, the orthogonal
bases are usually more local, of the wavelet or block DCT type. We give now two examples.
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The sliding window DCT. The local adaptive filters were introduced by Yaroslavsky and
Eden [70] and Yaroslavsky [72]. The noisy image is analyzed in a moving square block,
typically with dimensions 8× 8. At each position of the block center, its DCT spectrum is
computed and modified by using the empirical coefficients (2.4). Finally, an inverse transform
is used to estimate only the signal value in the central pixel of the block.

Wavelet thresholding. Let B = {gi}i be a wavelet orthonormal basis [49]. The so-called
hard wavelet thresholding method [26] is a (nonlinear) projection operator setting to zero all
wavelet coefficients smaller than a certain threshold. The performance of the method depends
on the ability of the basis to approximate the image U by a small set of large coefficients.
There has been a strenuous search for wavelet bases adapted to images [52].

Unfortunately, the brutal cancelation of DCT coefficients near the image edges1 creates
small oscillations by the Gibbs phenomenon. Similarly, the undue cancelation of some of the
small wavelet coefficients may also cause the appearance of isolated wavelets in flat image
regions. These annoying artifacts are sometimes called wavelet outliers [27]. They can be
partially avoided with the use of a soft thresholding [25],

α(i) =

{ 〈ũ,gi〉−sgn(〈ũ,gi〉)μ
〈ũ,gi〉 , if |〈ũ, gi〉| ≥ μ,

0 otherwise,

which reduces the Gibbs oscillation near image discontinuities.
Several carefully designed orthogonal bases adapt better to image local geometry and

discontinuities than wavelets, particularly the “bandlets” [52] and “curvelets” [65]. This
tendency to adapt the transform locally to the image is accentuated with the methods adapting
a different basis to each pixel, or selecting a few elements or “atoms” from a huge patch
dictionary to linearly decompose the local patch on these atoms. This point of view is
developed in sparse coding methods and the K-SVD algorithm [1, 29, 47].

2.1. A case study: DCT denoising. We shall illustrate transform thresholding by at least
one good detailed example. A basic DCT denoising can be drastically improved by several
ingredients illustrated in Figure 2.1. This figure shows how the result improves by successively
using a better colour space2, by aggregating [18] the 64 denoised values obtained for each
pixel, which is contained in 64 patches with 8 × 8 dimensions, by making a statistically
more correct aggregation of these estimates, and finally by iterating the method, using the
first denoised image as “oracle” for applying the Wiener filter a second time. The method is
summarized in Algorithm 1. See [32] for an online implementation.

3. The self-similarity principle and the patch based methods

If m noisy independent pixels with the same expected colour are averaged, the noise (namely
the variance of the average of these m values) is divided by m. The first application of this

1So are called the strong image discontinuities along apparent contours of visible objects.
2A colour image is a set of three images (R,G,B) giving scalar values to three chromatic components, Red,

Green, Blue. The linear transform improving the denoising performance is simply Y0 = (R+G+B)/3, U0 =
1
2
(R−B), V0 = 1

4
(R+B)− 1

2
G, where Y0 is the luminance, and U0 and V0 contain the colour contrast between

green and blue and green and red respectively.
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Algorithm 1 DCT denoising algorithm. DCT coefficients lower than 3σ are canceled in the
first step and a Wiener filter is applied in the “oracle” second step. In colour this strategy is
applied to Y0 . Its attenuation coefficients are also applied to Uo, Vo.

Input: noisy image ũ, σ noise standard deviation, (optional) prefiltered image û1 for “oracle”
estimation, h = 3σ: threshold parameter.
Output: output denoised image u.
for each patch P̃ of size 8× 8 (if û1, patch P1 in û1) do

Compute theDCT transform of P̃ (if û1, of P1).
if û1 then

Modify DCT coefficients of P̃ as P̃ (i) = P̃ (i) P1(i)
2

P1(i)2+σ2 .
else

Cancel coefficients of P̃ with magnitude lower than h.
end if
Compute the inverse DCT transform obtaining P̂ .
Compute the aggregation weight wP̃ = 1/#{number of non-zero DCT coefficients}.

end for
for each pixel i do

Aggregation: recover the denoised value at each pixel i by averaging all values at i of all denoised
patches Q̂ containing i, weighted by wQ̃.

end for

very simple denoising principle is the use of accumulation: when the camera and the scene
do not move, the larger the photon count, the larger the signal (mean) to noise (standard
deviation) ratio. When we only dispose of a single image, some succedaneous of the above
averaging principle must be found to compensate for the limited amount of observed photons.
A rather trivial idea is to average the closest pixels to a given pixel. This amounts to convolve
the image with a fixed radial positive kernel, for example a Gaussian kernel. This approach
works only for pixels inside the homogeneous image regions, but not for those in contrasted
image regions. A convolution with a Gaussian may reduce the noise, but it makes the image
blurry.

Averaging pixels with similar colours. The sigma-filter [43] or neighborhood filter [71] is
an elegant solution to avoid this blur risk. Neighborhood filters average nearby pixels of i, but
under the condition that they have a colour value similar to that of i. These filters denoted by
NF for neighborhood filter are defined by

NFh,ρũ(i) =
1

C(i)

∑
j∈Bρ(i)

ũ(j) e−
|ũ(i)−ũ(j)|2

h2 , (3.1)

where Bρ(i) is a ball of center i and radius ρ > 0, h > 0 is the filtering parameter and

C(i) =
∑

j∈Bρ(i)
e−

|ũ(j)−ũ(i)|2
h2 is the normalization factor to make the above an averaging

filter. The parameter h expresses the required degree of colour similarity between i and j. The
filter (3.1) is so powerful that it has been been reinvented several times and received several
names: σ-filter [43], SUSAN filter [64] and Bilateral filter [66].

3.1. Non-local means. The Non-local means filter extends the concept of a neighborhood
filter by implicitly assuming a Markov field structure for the image. Its idea stems from the
now famous algorithm to synthesize textures from examples [28]. Its Markovian assumption
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Figure 2.1. Original and noisy images with additive Gaussian white noise; crops of denoised images
by Algorithm 1 when incrementally adding the use of a YoUoVo colour system, uniform aggregation
of the 64 estimated values at each pixel, statistically optimal aggregation of the same estimates, and
iteration of the Wiener filter with the “oracle” given by the first step. Image quality and SNR increase
significantly at each step.

is that, in a textured image, the stochastic model for a given pixel i can be predicted from a
local image neighborhood P of i, which we shall call “patch”.

The assumption for recreating new textures from samples is that there are enough pixels
j similar to i in a texture image ũ to recreate a new but similar texture u. This algorithm
goes back to Shannon’s theory of communication [63], where it was used for the first time to
synthesize a probabilistically correct text from a sample.

An adaptation of the above synthesis principle yields an image denoising algorithm [7]3.
The observed image is the noisy image ũ. The reconstructed image is the denoised image û.
A noisy patch P̃ surrounding a pixel i is restored by looking for the patches Q̃ in ũ with the
same dimensions as P̃ and resembling P . Then the restored value û(i) is a weighted average
of the central values ũ(j) of the patches resembling P . This defines the“non-local means”
algorithm, called “non-local” because it uses patches Q̃ that can be lie far away from P̃ , and
even patches taken from other images.

The underlying self-similarity hypothesis is that for every small patch in a natural image
one can find several similar patches in the same image, as illustrated in figure 3.1. Let us now
give the formula. NL-means denoises a square reference patch P̃ around i of dimension κ×κ
by replacing it by an average of all similar patches Q̃ in a square neighborhood of i of size
λ×λ. To do this, a normalized Euclidean distance between P̃ and Q̃, d(P̃ , Q̃) = 1

κ2 ‖P̃−Q̃‖2
is computed for all patches Q̃ is the search neighborhood. Then the weighted average is

P̂ =

∑
Q̃ Q̃e−

d(P̃ ,Q̃)2

h2∑
Q̃ e−

d(P̃ ,Q̃)2

h2

. (3.2)

The whole method is given in Algorithm 2 and can be tested in IPOL [10].
NL-means works better than the neighborhood filters because the distances of colours

between pixels are computed on a patch surrounding the pixel instead of just the central pixel.

3See also the related attempts [4, 23, 51, 69].



A mathematical perspective of image denoising 1069

Algorithm 2 NL-means algorithm.
Input: noisy image ũ, σ noise standard deviation. Output: denoised image û.
Parameters: κ = 3: patch size, λ = 31: size of search zone for similar patches, h = 0.6σ: filtering
parameter (these values may depend on the noise level)
for each pixel i do

Select a square reference patch P̃ around i of dimension κ× κ. Set P̂ = 0 and Ĉ = 0.
for each patch Q̃ in a square neighborhood of i of size λ× λ do

Compute the normalized Euclidean distance d(P̃ , Q̃) = 1
κ2 ‖P̃ − Q̃‖2.

Accumulate Q̃e
− d(P̃ ,Q̃)2

h2 to P̂ and e−
d(P̃ ,Q̃)2

h2 to Ĉ.
end for
Normalize the average patch P̂ by dividing it by the sum of weights Ĉ.

end for
for each pixel x do

Aggregation: recover the denoised value at each pixel i by averaging all values at i of all denoised
patches Q̂ containing i.

end for

Thus only values of really similar pixels are averaged. This progress is illustrated in Figure
3.2 where the pixel “neighborhoods” have an increasing sophistication: the first result, on
an original scanned image, is obtained by a Gaussian convolution. Efficient in flat regions,
this filter blurs the edges. The second result is obtained by Yaroslavsky’s neighborhood filter:
each pixel is replaced by an average of the pixels which are close to it in both the image
domain and colour range. The result is much sharper. The last result is obtained by NL-
means. The choice of resembling pixels is still more selective. The image differences between
original and denoised demonstrate the progress. This difference looks increasingly like noise
when the pixel neighborhood becomes more sophisticated. The underlying self-similarity
assumption can be formalized by an ergodic assumption, under which NL-means can be
proved to converge asymptotically to the noiseless image4. The more samples the better, so
the algorithm is immediately extendable to video [9]. Figure 3.1 illustrates how NL-means
chooses the right weight configuration for each sort of image self-similarity.

4. The Bayesian patch denoising principle

Given u the noiseless ideal image and ũ the noisy image corrupted with Gaussian noise of
standard deviation σ so that

ũ = u + n, (4.1)

the conditional distribution P(ũ | u) is

P(ũ | u) = 1

(2πσ2)
M
2

e−
||u−ũ||2

2σ2 , (4.2)

where M is the total number of pixels in the image. In order to compute the probability of

4It can be proved [7] that if the image is a fairly general stationary and mixing random process, for every pixel i,
NL-means converges to the conditional expectation of i knowing its neighborhood, which is the best Bayesian
estimate.
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(a) (b) (c)

(d) (e) (f)

Figure 3.1. On the right-hand side of each pair, one can see the weights in the NL-means average used
to estimate a 3× 3 patch located in the center of the left image by NL-means.

Figure 3.2. A comparison of the efficiency of neighborhood filters. The first row shows a piece of a
famous test image (Lena) followed by its denoised version by a Gaussian convolution, a neighborhood
filter, and NL-means. The second row shows the difference between the image and its denoised version,
which increasingly resembles white noise.

the original image given the degraded one, P(u | ũ), we need a prior on u. In the first models
[30], this prior was a parametric Markov random field, specified by its Gibbs distribution. A
Gibbs distribution for an image u takes the form

P(u) =
1

Z
e−E(u)/T ,

where Z and T are constants and E is called the energy function and writes

E(u) =
∑
C∈C

VC(u),
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where C denotes the set of cliques associated to the image and VC is a potential function. The
maximization of the a posteriori distribution writes by Bayes formula

Argmax
u

P(u | ũ) = Argmax
u

P(ũ | u)P(u),

which is equivalent to the minimization of − logP(u | ũ),

Argmin
u

‖u− ũ‖2 + 2σ2

T
E(u).

This energy writes as a sum of local derivatives of pixels in the image, thus being equivalent
to a classical Tikhonoff regularization, [30], [6].

Recent Bayesian methods have abandoned as too simplistic the global patch models
formulated by a parametric Gibbs energy. Instead, the methods build local non parametric
patch models learnt from the image itself, usually as a local Gaussian model around each
given patch, or as a Gaussian mixture. The term “patch model” is now preferred to the
notion of “clique” previously used for the Markov field methods. But the underlying notion is
the same: a “patch” is nothing but a clique. The difference is that the patch model is local
and empirical while the clique probability model was usually global and parametric. In the
nonparametric local patch models, the patches can become larger, up to an 8× 8 size, while
the cliques were often confined to very small neighborhoods. Given a noiseless patch P of u
with dimension κ× κ, and P̃ an observed noisy version of P , the same model gives by the
independence of noise pixel values

P(P̃ |P ) = c · e− ‖P̃−P‖2
2σ2 (4.3)

where P and P̃ are considered as vectors with κ2 components ||P || denotes the Euclidean
norm of P , and c is the normalizing constant. Knowing P̃ , our goal is to deduce P by
maximizing P(P |P̃ ). Using Bayes’ rule, we can compute this last conditional probability as

P(P |P̃ ) =
P(P̃ |P )P(P )

P(P̃ )
. (4.4)

P̃ being observed, this formula can in principle be used to deduce the patch P maximizing
the right term, viewed as a function of P . This is only possible if we know the probability
model P(P ). This model will be learnt from the image itself, or from a set of images5. For
example, once we have obtained (like with NL-means) a group of similar patches Q similar
to a given noisy patch P , these patches can be treated as a set of samples of a Gaussian vector.
This permits to denoise each observed patch by a Bayesian estimation under this Gaussian
model [38]. Let us assume that the patches Q similar to P follow a Gaussian model with
(observable, empirical) covariance matrix CP and (observable, empirical) mean P . This
means that

P(Q) = c.e−
(Q−P )tC

−1
P

(Q−P )

2 (4.5)

From (4.2) and (4.4) we obtain for each observed P̃ the following equivalence of problems:

max
P

P(P |P̃ ) ⇔ max
P

P(P̃ |P )P(P )

5For example [15], [68] or [75] apply a clustering method to the set of patches of a given image before restoration,
and [77] applies it to a huge set of patches extracted from many images.
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⇔ max
P

e−
‖P−P̃‖2

2σ2 e−
(P−P )tC

−1
P

(P−P )

2

⇔ min
P

‖P − P̃‖2
σ2

+ (P − P )tC−1
P (P − P ).

This expression does not yield an algorithm. Indeed, the noiseless patch P and the patches
similar to P are not observable. So we face the same problem as with the oracular Fourier-
Wiener filter. Nevertheless, we dispose of the noisy version P̃ and can compute the patches
Q̃ similar to P̃ . An empirical covariance matrix can therefore be obtained for the patches Q̃
similar to P̃ . Furthermore, using (4.1) and the fact that P and the noise n are independent, it
is easily checked that

CP̃ = CP + σ2I; EQ̃ = P . (4.6)

If the above empirical estimates are reliable, the maximum a posteriori estimation problem
finally boils down by (4.6) to the minimization problem:

max
P

P(P |P̃ )⇔ min
P

‖P − P̃‖2
σ2

+ (P − P̃ )t(CP̃ − σ2I)−1(P − P̃ ).

Differentiating this quadratic function with respect to P and equating to zero yields the
amazingly simple denoising formula

P̂1 = P̃ +
[
CP̃ − σ2I

]
C−1

P̃
(P̃ − P̃ ). (4.7)

The formula (4.7) gives a direct denoising algorithm, provided we can compute the patch
expectations and patch covariance matrices. This is done in [38] by computing empirical
means and covariances from the patches similar to a given noisy patch. Since the first such
estimate is not accurate, it is natural to iterate the algorithm, so that means and covariances are
computed again from denoised patches at the first step. Thus, Algorithm 3 is a self-explanatory
application of the single formula (4.7).

As pointed out in [41], the above Nonlocal Bayes algorithm is a Bayesian interpretation
(with some generic improvements like the aggregation) of the PCA based algorithm proposed
in [76]6.

5. The global patch denoising principle

The most recent denoising methods tend to give up any image model. Indeed, they directly
use the observed set of images to denoise a new one. More specifically they denoise image
patches by a fully non-local algorithm, in which the patch is compared to a patch model
obtained from a large or very large patch set, of up to 1010 patches. Each patch is denoised
by deducing its likeliest estimate from the set of all patches. In the method proposed in [77],
this patch space is organized as a Gaussian mixture with about 200 components7.

6See also [24] for a comparison of several local and more global strategies. Non Gaussian, Bayesian models are
possible, depending on the patch and noise models. For example [59] treats the case of a local exponential density
model for the noisy data.

7A similar idea was used in [34] who claim performing a “Scene completion using millions of photographs” to
fill in missing parts of a given image.
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Algorithm 3 Non local Bayes image denoising
Input: noisy image ũ, σ noise standard deviation. Output: denoised image û.
for all patches P̃ of the noisy image do

Find a set P(P̃ ) of patches Q̃ similar to P̃ .
Compute the expectation P̃ and covariance matrixCP̃ of these patches by

CP̃ �
1

#P(P̃ )− 1

∑
Q̃∈P(P̃ )

(
Q̃− P̃

)(
Q̃− P̃

)t

, P̃ � 1

#P(P̃ )

∑
Q̃∈P(P̃ )

Q̃.

Obtain the first step estimation P̂1 = P̃ +
[
CP̃ − σ2I

]
C−1

P̃
(P̃ − P̃ ).

end for
Obtain the pixel value of the basic estimate image û1 as an average of all values of all denoised
patches Q̂1 which contain i.
for all patches P̃ of the noisy image do

Find a new set P1(P̃ ) of noisy patches Q̃ similar to P̃ by comparing their denoised “oracular”
versions Q1 to P1.

Compute the new expectation P̃
1

and covariance matrixCP̂1
of these patches:

CP̂1
� 1

#P(P̂1)− 1

∑
Q̂1∈P(P̂1)

(
Q̂1 − P̃

1
)(

Q̂1 − P̃
1
)t

, P̃
1� 1

#P(P̂1)

∑
Q̂1∈P(P̂1)

Q̃.

Obtain the second step patch estimate P̂2 = P̃
1

+CP̂1

[
CP̂1

+ σ2I
]−1

(P̃ − P̃
1

).
end for
Obtain the pixel value of the denoised image û(i) as an average of all values of all denoised patches
Q̂2 which contain i.

In image denoising, the same idea [45] leads to define the simplest universal method,
where a huge set of patches is used to estimate the upper limits a patch-based denoising
method will ever reach8. The preliminary experiments of this paper involved a set of 20, 000
images [62]. The method, even if certainly not practical, is of exquisite simplicity. Given a
clean patch P the noisy patch P̃ with Gaussian noise of standard deviation σ has probability
distribution

P(P̃ | P ) =
1

(2πσ2)
κ2

2

e−
||P−P̃ ||2

2σ2 , (5.1)

where κ2 is the number of pixels in the patch. Then given a noisy patch P̃ its optimal estimator
for the Bayesian minimum squared error (MMSE) is by Bayes’ formula

P̂ = E[P | P̃ ] =

∫
P(P | P̃ )PdP =

∫
P(P̃ | P )

P(P̃ )
P(P )PdP. (5.2)

Using a huge set of M natural patches (with a distribution supposedly approximating the
real natural patch density), we can approximate the terms in (5.2) by P(P )dP � 1

M and

8The results of this paper support the “near optimality of state of the art denoising results”, the results obtained
by the classic state of the art BM3D algorithm being only 0.1 decibel away from optimality for methods using small
patches (typically 8× 8.) See also [14].
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P(P̃ ) � 1
M

∑
i P(P̃ | Pi), which in view of (5.1) yields

P̂ �
1
M

∑
i P(P̃ | Pi)Pi

1
M

∑
i P(P̃ | Pi)

. (5.3)

Thus the final MMSE estimator is nothing but the exact application of NL-means, denoising
each patch by matching it to the huge patch database. The final algorithm is summarized in
Algorithm 4. Although this algorithm is optimal, it is not yet fully realizable in our current
technology9.

Algorithm 4 Global Bayesian denoising
Inputs: Noisy image ũ in vectorial form; very large set of M patches Pi extracted from a large set
of noiseless natural images. Output: Denoised image û.
for all patches P̃ extracted from ũ do

Compute the MMSE denoised estimate of P̃

P̂ �
∑M

i=1 P(P̃ | Pi)Pi∑M
i=1 P(P̃ | Pi)

where P(P̃ | Pi) is known from (5.1).
end for
At each pixel i get û(i) as P̂ (i), where the patch P is centered at i.
(optional Aggregation) : for each pixel j of u, compute the denoised version ûj as the average of all
values P̂ (j) for all patches containing j. (This step in not considered in [45].)

5.1. Comparing visual quality. The visual quality of the restored image is obviously a
necessary, if not sufficient, criterion to judge the performance of a denoising algorithm. It
permits to control the absence of artifacts and the correct reconstruction of edges, texture
and fine structure. Figure 5.1 displays the noisy and denoised images for several classic
algorithms for noise standard deviations of 30 (where each colour image is on a scale from 0
to 255). The experiment illustrates that algorithms based on wavelets or DCT, like DCT and
BLS-GSM, suffer of a strong Gibbs effect near all image edges. This Gibbs effect is nearly
not noticeable in the denoised image by K-SVD which uses a transform method in a learned
redundant patch basis, or patch dictionary. The NL-means denoised image has no visual
artifacts but is more blurred than those given by BM3D and Non-Local Bayes, that have a
clearly superior performance to the rest of the algorithms. The BM3D denoised image has
some Gibbs effect near edges, which sometimes degrades the visual quality of the solution.
Indeed, the BM3D method is a syncretic method combining the grouping of similar patches
with a DCT transform thresholding.

In short, the visual quality of DCT, BLS-GSM and K-SVD is inferior to that of NL-means,
BM3D and NL-Bayes, because of strong colour noise low frequencies in flat zones, and of a
Gibbs effect.

9A clever change of variables in the integral (5.2) found in [53] permits to accelerate the calculation in (5.3) by a
1000 factor, but this is still insufficient!
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Figure 5.1. Comparison of visual quality. The noisy image was obtained adding a Gaussian white noise
of standard deviation 30. From top to bottom and left to right: original, noisy, DCT sliding window,
BLS-GSM, NL-means, K-SVD, BM3D, and Non-local Bayes.

6. Global neural denoising

Though optimal in theory, the global Bayesian denoising formula (5.2) has been recently very
well approximated by a neural network learning from an equally huge set of image patches.
A feed-forward neural network is a succession of non-linear hidden layers followed by an
application-dependent decoder

f(·, θ) = d ◦ hn ◦ · · · ◦ h1(·), n ≥ 1

with

∀1 ≤ l ≤ n, hl(zl) = a(Wlzl + bl)

and

d(zn) = Wn+1zn+1 + bn+1

in case of a linear decoder. The parameters θ comprise the connection weights Wl and biases
bl. The activation function a(·), typically implemented with the hyperbolic tangent or the
logistic function, is applied to its input vector element-wise.

Besides being infinitely differentiable, neural networks can approximate arbitrarily well
any continuous function on a compact set [35, 44], thereby making them a candidate for
regression tasks

θ∗ = Argmin
θ

E‖f(x̃, θ)− x‖22 (6.1)

= Argmin
θ

E‖f(x̃, θ)− E[x|x̃]‖22

where (x̃, x) denotes a random pair of observation and its ideal prediction, whose joint
behavior is governed by some probability law used to define the expectation in (6.1). Note
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BM3D NL-Bayes DNN
σ = 25 32.53 32.61 32.88
σ = 50 29.20 29.34 29.72
σ = 75 27.28 27.22 27.95
σ = 170 13.84 22.99 24.56

Table 6.1. Table comparing two state of the art denoising methods with DNN: the PSNR, qui is a
logarithm of the SNR defined in (1.1) measures the image quality (the higher the better).

that although we can sample from it, the underlying probability does not have a closed form
in general. Moreover, the function θ �→ f(x̃, θ) is not convex, leaving us with little choice but
to substitute the expectation with an empirical surrogate and rely on the method of steepest
descent [5, 42] to conduct the minimization.

Recently, a set of image denoising neural networks [11] has been shown to outperform
BM3D [22] and non-local Bayes [38] at several rather high levels of Gaussian noise for
which they were trained. Note that these spin-offs of the original non-local means [7] seek
information exclusively inside the noisy image while the neural networks learned to estimate
the 17-by-17 patch lying at the center of a noisy 39-by-39 noisy observation by looking at
noisy and clean patch pairs gathered from other many images. Table 6.1 is a comparison
of these algorithms on a benchmark set and the deep neural networks (DNN) consistently
dominate the other two for all the four noise levels.

A look at the output layer of the neural network trained at σ = 25 (Figure 6.2) reveals a
locally oscillating behaviour akin to that of wavelets for those visually meaningful synthesis
features. This suggests that a sort of optimal Fourier-Wiener filter is being performed.

This impressive performance is reached with neural networks of four hidden layers, each
carrying up to 3000 nodes, thereby requiring a computational cost of several 106 operations
per pixel. Moreover, their enormous sizes also mean long training time: it could take weeks
on a modern GPU platform to train just one neural network [12] under a specific level of
noise with tens of millions of example pairs. Although through an investigation of the natural
patch distribution, it can be shown [67] that a simple linear transform is readily available to
make a single neural network work well across all levels of Gaussian noise, the challenge
lying ahead is to scale down such a neural network while preserving its performance.

7. Blind denoising

We have shown that all efficient denoising methods boil down to a single formula and to
very simple image models. But we assumed a simple noise model, the Gaussian white noise.
In this section the focus will be on performing “blind denoising”, namely a fully automatic
denoising on any digital image.

In most images handled by the public and even by scientists, the noise model is indeed
imperfectly known or unknown. Recent progress in noise estimation permits to estimate
from a single image a noise model which is simultaneously signal and frequency dependent.
We describe here a multiscale denoising algorithm [39] adapted to this broad noise model.
This leads to a blind denoising algorithm which can be tested for example on scans of old
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(a) Original (b) BM3D

(c) Non local Bayes (d) Neural Network

Figure 6.1. (b), (c) and (d) are the denoised versions of the original image corrupted by some Gaussian
noise with standard deviation at 25. The figure shows that a blindly learned algorithm by neural network
can outperform all carefully hand-crafted algorithms. Nevertheless the resulting neural network is still
unpractical, necessitating tens of millions of connections to denoise a single patch.

(a) output features

Figure 6.2. A random selection of output features. Most of the output features resemble classic wavelets.

photographs, for which the noise model is unknown.
Blind denoising is the conjunction of a noise estimation method followed by the appli-

cation of an adapted denoising method. Yet, to cope with the broad variety of observed
noises, the noise model must be far more comprehensive than the usual white Gaussian noise.
Because images have undergone nonlinear operations and filters, a flexible denoising method
must cope with a noise model that depends on the signal, but also on the spatial frequency (in
technical terms, a coloured noise). The archives of the online executions at the IPOL journal
of seven classic denoising methods, namely DCT denoising [72–74], TV denoising [31, 61],
K-SVD [40, 48], NL-means [8, 10], BM3D [21, 37], BLS-GSM [58] and NL-Bayes [41] are
full with puzzling noisy images.
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There are only a few references on blind denoising approaches: Portilla [56], [55], Rabie
[57] and Liu, Freeman, Szeliski and Kang [46]. Portilla’s method is an adaptation of the
BLS-GSM algorithm, which models wavelet patches at each scale by a Gaussian scale mixture
(GSM), followed by a Bayesian least square (BLS) estimation for wavelet patches. The “noise
clinic” described in this section is based on a noise signal and frequency noise estimator
proposed by Colom et al. [19, 20], relying on a Ponomarenko et al. general principle [54] to
build a noise patch model.

As evident in its formula (4.7), the NL-Bayes method described in section 4 only requires
the knowledge of a local Gaussian patch model and of a Gaussian noise model. We already
saw in Algorithm 3 how to estimate the local patch Gaussian model, described by an empirical
mean and an empirical covariance. So we only need to hint at how to estimate the covariance
matrix of the noise. The noise model being signal dependent, for each intensity i in the
range intensity [0, 255] of the image a noise covariance matrix Cni must be estimated. The
noise model for each group of patches similar to P̃ will depend on P̃ through their mean
i. The reference intensity for the current 3D group P(P̃ ) must therefore be estimated to
apply (4.7) with the appropriate noise covariance matrix. This intensity is simply estimated
as the average of all pixels contained in P(P̃ ). So we need to estimate the noise covariance
matrices {Cni}i∈[0,255]. Colom et al., [20], proposed an adaptation of the Ponomarenko et
al. [54] method estimating a frequency dependent noise to estimate noise in JPEG images.
Given a patch size κ× κ, the method extracts from the image a set with fixed cardinality of
sample blocks with lowest variance, and with mean approximately equal to i. These blocks
are therefore likely to contain only noise. They are transformed by a DCT, and an empirical
standard deviation of their DCT coefficients is computed. This algorithm computes for every
intensity i with a multi-frequency noise estimate given by a κ2 × κ2 matrix

Mi := E

(
DNi (DNi)

t
)

(7.1)

where D is the κ2 × κ2 matrix of the discrete cosine transform (DCT) and Ni denotes the
κ × κ stochastic noise patch model at intensity i. This method estimates the variances of
the DCT coefficients of noise blocks and not their covariances. The covariance matrices are
assumed to be diagonal, since generally the DCT decorrelates the noise.

For a given intensity i, the covariance matrix of the noise is Cov(Ni) = E
(
NiN

t
i

)
which

leads to
DCov(Ni)Dt = DE (NiN

t
i

)Dt = E

(
DNi (DNi)

t
)
= Mi (7.2)

thanks to (7.1). The DCT being an orthogonal transform , from (7.2) we get Cov(Ni) =
DtMiD.

We shall apply the blind denoising to a real noisy image for which no noise model was
available. To illustrate the algorithm structure and its action, we present the noisy input image,
the denoised image, the difference image = noisy - denoised, the average noise curve over
high frequencies, and the average noise curve over low frequencies. The results are shown in
Figure 7.1. As the noise curves illustrate, the noise is frequency and signal dependent.

Results on old photographs. Scanned old photographs form a vast image corpus for which
the noise model can’t be anticipated. The noise is chemical, generally with big grain and
further altered by the scanning and JPEG encoding. Figure 7.2 shows results obtained by the
Noise Clinic over this kind of noisy images. The results compare well with those obtained
with blind BLS-GSM [55, 56], another state-of-the-art blind denoising algorithm.
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Figure 7.1. Top: Illustration of blind denoising of a JPEG image, the “Frog” image. It is advised to
zoom in the high quality pdf file to see detail. Left, noisy image, middle denoised image and right,
difference image. Bottom: noise variance estimation of the “Frog” image, as a function of the image
value and of the local spatial DCT frequency . Left: average of the low frequency curves in the DCT.
Right: average of high frequencies.

Figure 7.2. Blind denoising results on two old photographs. The first is a portrait of young Marylin
Monroe. The second is a detail of a group photograph at the Solvay conference, 1927. For both, a crop
of a scan of the original image is followed result of the Noise Clinic. It is advised to zoom in the pdf to
see image details.

8. Conclusion

Fifty years effort have ended up with denoising methods that can be fully described with six
short formulas that guarantee optimality for a definite image model: these formulas are : (2.2)
and (2.4) for the Wiener-Fourier transform thresholding assuming an image sparsity model;
(3.1) for the neighborhood filter and (3.2) for NL-means, both assuming a self-similarity
model; (4.7) for nonlocal Bayes, which assumes again an image self-similarity and local
Gaussian behavior for patches. Finally the single formula (5.3) for global Bayesian denoising,
which is asymptotically optimal given a (virtually infinite) sample set of image patches. The
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global (Bayesian or neural) methods bypass the question of a mathematical image model by
using an in extenso model, namely all image patches of the world. For this precise reason,
they are still impractical. On the other hand, the best simple image models obtain a denoising
performance equivalent to global methods. This is encouraging for mathematical modeling!
But are the three main image mathematical models compatible? The answer is yes: the
Bayesian self-similarity image model (Nonlocal Bayes) combines the three main principles.
Indeed, the Bayesian local estimate of a patch is a diagonal operator on the patch basis given
by the local Gaussian model. Similarly, a recent method, dual domain denoising [36], also
shows excellent performance by alternating and iterating a neighborhood filter with a DCT
transform thresholding.
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Scaling in kinetic mean-field models for
coarsening phenomena

Barbara Niethammer

Abstract. We consider two paradigms of coarsening systems in materials science, Ostwald Ripening
and Grain Growth. Experimental observations suggest that for large times such systems evolve in a
universal statistically self-similar fashion. One approach to capture this behaviour is to utilize kinetic
mean-field models for the particle size distributions. We review recent progress in the derivation and the
analysis of such equations for our two model examples.
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1. Introduction

Two fundamental examples of coarsening phenomena in materials science are Ostwald
Ripening and Grain Growth. Ostwald Ripening occurs as the last stage of numerous phase
transition processes that appear when, due to a change in temperature or pressure for example,
the energy of a multicomponent system prefers two different phases of a material such that
a homogeneous mixture becomes unstable and separates into two stables phases. Typical
examples are phase separation in binary alloys upon cooling or the formation of liquid droplets
in a supersaturated vapor.

If one of the phases has smaller volume fraction, this minority phase appears in the form
of small droplets, that first grow from a uniform background supersaturation. In the late stage
of the phase transition when the supersaturation has become small, surface energy kicks in
and the droplets start to interact in order to minimize their total surface area. In so-called
diffusion controlled Ostwald Ripening, the limiting mechanism of this interaction is mass
transfer by diffusion. Mass is transferred from the smaller particles, that have relatively large
surface area, to the larger ones which have relatively small surface area. As a consequence
larger particles grow, smaller ones shrink and disappear. This coarsening process is commonly
known as Ostwald Ripening, named after Wilhelm Ostwald who was the first to describe and
explain this phenomenon.

Grain growth on the other hand denotes the coarsening of grains in a polycrystalline
material. Roughly speaking, such a polycrystal appears if a metal melt is cooled below the
melting temperature. First, small nuclei of solid crystals are created with a random orientation
of their crystal lattice. These nuclei grow, touch each other and finally build a solid block
composed of crystals in different orientations. Due to this mismatch of grain orientations
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the surfaces where crystals touch carry surface energy. The late stage in the evolution of the
polycrystal is driven by the reduction of this surface energy and is facilitated by migration
of atoms along the grain boundaries. Also here, one observes that smaller grains shrink and
disappear, while larger ones grow.

Both, Ostwald Ripening and grain growth serve as paradigms for the so-called scaling
hypothesis. Based on experimental observations one expects that after some transient stage,
the system of particles, i.e. droplets or grains, forgets about its initial configuration and
evolves in a universal statistically self-similar fashion. The latter means that the average
particle size follows a simple power law in time and the size distribution of droplets rescaled
with respect to this mean size develops into a unique stationary form.

In the following we will discuss how one can investigate this self-similar long-time
behaviour within a kinetic mean-field type model. The strategy is, similar as in gas dynamics,
to derive from a well-established ’microscopic model’, that is a continuum model for the
evolution of the individual particles, an evolution equation for the particle size distribution
and analyze the long-time behaviour of solutions. In analogy to the Boltzmann equation such
models are often loosely called kinetic models. The difficulties one faces are at least two-fold.
To derive a closed model for the size distribution one typically needs to consider a certain
small parameter limit in which interactions are weak, or one needs to make some closure
assumptions that are in general hard to justify. The analysis of the long-time behaviour of
solutions of the resulting evolution equation poses additional mathematical challenges, since
the inherent difficulty is that the equations are typically non-local such that well-established
mathematical tools such as comparison principles cannot be applied.

In this article we review progress that has been obtained in recent years for the two
phenomena described above. While the theory for Ostwald Ripening started long ago with
the classical work of Lifshitz, Slyozov and Wagner [20, 38] and is by now well-developed,
grain growth is much less understood. We discuss here some attempts to investigate two-
dimensional grain growth via kinetic models. We will also briefly connect the results to
a related problem, that is self-similar long-time behaviour in Smoluchowski’s coagulation
equation.

2. Ostwald Ripening

As indicated above, one can in general expect to justify a kinetic mean-field model in cases
where one has in a certain sense weak interaction between particles. Ostwald Ripening is
accessible to a mathematical analysis in a small parameter regime that is still relevant for
applications which is the regime where the volume fraction of particles is small. In this case
one observes in experiments that particles are approximately shaped as balls and essentially
do not move in space. Thus we can characterize a particle by a single quantity, its radius,
and to investigate statistical self-similarity we can study the evolution of the particle radius
distribution. In the following we will always assume that the volume fraction of the particles
is small; this regime is also called the dilute regime.

The Mullins-Sekerka evolution. Our starting point for the analysis of Ostwald Ripening is
a free boundary problem that is known in the metallurgical literature as the Mullins-Sekerka
model. We consider a simplified version of this model that preserves the spherical shape of
particles which as described before is appropriate in the dilute regime. In this model particles,
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called Pi, are distributed in a domain Ω ⊂ R
3 and are characterized by their fixed centers

Xi ∈ Ω and their radii Ri(t). Particles interact by diffusion, but in late-stage coarsening
we can assume that mass exchange between particles is much faster than the growth of the
interfaces. Hence we can use a quasi-steady approach, that is we assume that the potential
u relaxes at each time instantaneously to equilibrium. This gives that for each time t the
potential u = u(x, t) solves

Δu = 0 in Ω\ ∪i Pi

u =
1

Ri
on ∂Pi .

(2.1)

The second equation in (2.1) is the well-known Gibbs-Thomson law which accounts for
surface tension. To define the potential uniquely, we couple (2.1) with a no-flux condition on
the boundary, that is

∂u

∂�n
= 0 on ∂Ω . (2.2)

We easily convince ourselves that if all particles have the same size, the potential u is constant
(indeed equal to the inverse radius of the particles). However, if particles have different sizes,
this induces gradients in the potential and these gradients drive the system towards a state
of lower energy. The Gibbs-Thomson law in (2.1) implies that u is large at small particles
which have large surface area compared to their volume, and small at large particles. Hence,
mass diffuses from the small to the large particles. The growth rate of a particle is simply
given by the total flux towards the particle, that is

d

dt

(4πR3
i

3

)
=

∫
∂Pi

∂ u

∂�n
dS , (2.3)

where here �n denotes the outer normal to the particle.
It is not difficult to show that if we start with a finite number of particles, which do not

overlap, the problem (2.1)-(2.2) is well-posed and depends Lipschitz-continuously on the radii
of the particles. As a consequence, the full time-dependent system (2.1)-(2.3) is well-posed
for short times. We can extend such a local solution up to a time when a particle vanishes or
when two particles touch. In the first case we just eliminate the particle and continue with the
remaining ones. In this way we obtain a continuous in time, piecewise smooth solution. In the
second case, where particles touch, there is no way to extend the solution in a reasonable way.
In fact, the simplifying assumption that particles are spherical is not a good approximation
when particles are close.

However, we are interested in the dynamics of a large set of particles with small volume
fraction, and we expect that the event that particles touch is rare if it occurs at all. Hence it is
plausible that it does not have an influence on the global behavior of the system. As we shall
see, the latter is true to leading order, but not if one is interested in higher order effects. We
will return to this issue later in this section.

As long as the evolution is well-posed we easily verify that it preserves the total volume
of the particles and decreases the surface energy. Indeed, we have

d

dt

∑
i

R3
i = 0 (2.4)
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and
d

dt

∑
i

R2
i = −π

2

∫
Ω

|∇u|2 dx ≤ 0 . (2.5)

In contrast to other curvature driven evolutions, such as the mean curvature flow, the Mullins-
Sekerka evolution (2.1)-(2.3) is nonlocal. More precisely, the evolution of the radius of one
particle depends on all the other particles in the system, since all particles interact via the
potential u. A key difficulty is that a priori the interaction range between particles is large
due to the slow decay of the fundamental solution of Laplace’s equation. The challenge is to
derive the effective growth law of a particle in a sea of surrounding particles.

The leading order mean-field theory (LSW-theory). The classical LSW-theory of Ost-
wald Ripening is based on the idea that in the dilute regime the particle size is much smaller
than the typical distance between the nearest neighbours. Hence one can assume that one
particle interacts with all the others only through a common spatially constant mean-field
u∞(t). We then solve for particle Pi

−Δu = 0 in R
3\Pi

u =
1

Ri
on ∂Pi

u → u∞ as |x| → ∞ ,

(2.6)

whose solution is given by

u(x, t) = u∞ +
1− Riu∞
|x − Xi| .

Using this solution in (2.3) we obtain the simple law

d

dt

(4π
3

R3
i

)
= Riu∞ − 1 , (2.7)

that is a particle grows if its radius is larger than 1
u∞(t) , the critical radius, while it shrinks

if it is smaller. So far, we have not specified u∞. In the above approximation we have not
yet taken into account that the evolution preserves the total volume of the particles. This
constraint determines u∞ and implies that

u∞ =

∑
i :Ri>0 1∑

i Ri
=

1

mean radius
, (2.8)

that is in this approximation the critical radius is just the mean radius. Recall that in the
coarsening picture the critical radius typically increases, so that over time more and more
particles start to shrink and finally disappear.

Based on (2.7) we can now derive an equation for the one-particle number density,
that is the expected number of particles with radius R in (R,R + dR), which we denote
by f = f(R, t). The system (2.7)-(2.8) translates without further approximation into the
following evolution law for f :

∂tf + ∂R

( 1

R2
(Ru∞(t)− 1) f

)
= 0 (2.9)
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with

u∞(t) =

∫∞
0

f(R, t) dR∫∞
0

Rf(R, t) dR
=:

1

〈R〉 . (2.10)

On the level of equations (2.9)-(2.10) we can now investigate statistical self-
similarity. More precisely, we can ask whether the equation has specific self-similar so-
lutions, and if so, given some initial data f0, whether solutions with such data converge
towards a self-similar profile or not.

One can easily check that the equation has a scale invariance R ∼ t1/3 which is inherited
from the Mullins-Sekerka evolution. Furthermore it is also not difficult to find that (2.9) has
self-similar solutions, but not only one but a one-parameter family of the form f(R, t) =
t−4/3Fa(R/t1/3) with u∞ = (at)1/3 and a ∈ (0, 4

9 ]. All of the self-similar profiles Fa

have compact support, F4/9 is smooth, the other ones behave like power laws at the end of
their support. Interestingly, while all these solutions were found in the work by Lifshitz and
Slyozov [20], Wagner [38] found only the smooth one and ignores the others, seemingly due
to a computational error. As a consequence of this, Wagner concludes that this solution that
he thought to be unique characterizes the large-time behaviour of all solutions. Lifshitz and
Slyozov on the other hand, argued that only the smooth self-similar solution is stable. To
do this, however, they took effects into account that have been neglected in equation (2.9),
namely the collision, or ’encounters’ as they call it, of particles. As a consequence of these
predictions they obtain universal growth rates of the coarsening process, such as for example
that the mean radius evolves as

(
4
9 t
)1/3

.

Shortcomings of the LSW-theory. After the LSW theory was published many experiments
were undertaken to test the validity of its predictions. However, it turned out that the agreement
with experiments was not very good. Typically one observes much larger coarsening rate and
much broader size distributions (see for example the excellent reviews [36, 37]). In addition
to these discussions, also the predictions of universal self-similar behaviour of solutions
within the LSW model were the subject of a vigorous discussion in the applied literature
[2–4, 17, 18].

It took some time until all of these issues were investigated via a more rigorous mathe-
matical analysis, but interestingly enough, different groups came up with the same conclusion
around the same time. More precisely, it was predicted via asymptotic analysis in [13] and in
a mathematically rigorous way in [30] (see also [5] for a related model) that the long-time
behaviour of solutions to the LSW model is not universal, but depends on the contrary sensi-
tively on the initial data, more precisely on the behaviour at the end of the support or in other
words on the largest particles in the system. Loosely speaking, if the data behave like a power
law of power p, the solution converges to the self-similar solution with the same power law.
The notion “to behave like a power law” is made precise in [30], the technical term being that
the data must be regularly varying with power p at the end of their support (for more details
on regular varying functions see e.g. [1]).

To summarize, we have seen that the LSW theory has two short-comings. First, there is a
significant discrepancy with experimental data and, second, there is only a weak selection
of self-similar asymptotic states. Both of these shortcomings suggest that some important
mechanisms have been neglected in the LSW model. Since it can be rigorously derived in
the limit of vanishing volume fraction from the Mullins-Sekerka evolutions using averaging
methods [28, 29, 31, 32], the model clearly represents the leading order theory. Thus, to
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overcome the disadvantages of the LSW model, higher order effects have to be taken into
account.

Higher order effects. There are at least two higher order effects of completely different
nature, that have to be investigated. The first effect are screening induced fluctuations in the
particles densities, the second encounters of particles.

By screening induced fluctuations we mean the following. Recall that in the derivation
of the LSW mean-field model the crucial assumption was that one particle interacts with
all the others only via a common mean-field. This neglects the screening effect, which is
the same as in electrostatics, and implies that a particle is screened by the particles in its
neighbourhood from the influence of the particles that are further away. As a consequence,
larger particles that have been growing for a while, and more likely to be surrounded by
smaller than average sized particles and can thus grow faster than predicted by the mean-field
theory. Similarly, smaller particles shrink faster than predicted by the mean-field theory. In
addition, the continuous vanishing of particles leads to the fact that the effective range of
interactions of a particle gets larger in time, such that new particles enter the interaction radius.
This type of noise could lead to an effective diffusion which again could act as a selection
mechanism for self-similar solutions.

Encounters of particles happen on the other hand if two particles become close. Even
though particles do essentially not move in space, the larger particles grow and finally come
close to some other ones. These close particles eventually merge and form one larger particle.
Since the largest particles dominate the long-time behaviour of the system, this effect has to
examined closely.

In a first instance, one has to estimate the order of the size of these different correction
terms. The screening effect can be most easily understood by referring to electrostatics. We
briefly recall an argument that gives us the size of the correction coming from the screening
effect. The parameters of a coarsening system are a number density n, the average radius
〈R〉 and the volume fraction of particles ε ∼ n〈R〉3 5 1. Referring to electrostatics it can
be seen that the screening length ξ, that is the effective range of particle interactions, scales
as ξ ∼ (4πn〈R〉)−1/2. Then the number of particles within the screening radius scales as
nξ3 ∼ ε−1/2. As a consequence one expects that fluctuations are of a size of order O(ε1/4)
and the order of size of a correction term in the evolution equation for f should be ε1/2. In
comparison, the fraction of particles involved in collisions should scale as ε. Hence, one
would expect that screening effects are more relevant, and perhaps for this reason this effect
was investigated quite a lot in the applied literature (see e.g. [23, 24, 39–41]), whereas
encounters are only studied rarely [21, 25].

A self-consistent derivation from the Mullins-Sekerka evolution that takes
screening effects into account is given in [33]. The screening effects appear in an exten-
sion of the LSW model as a diffusion term in the size variable, that is the equation reads

∂tf + ∂R

( 1

R2

( R

〈R〉 − 1
)
f
)
=

√
ε∂R
(
D(R)∂Rf

)
, (2.11)

where 〈R〉 denotes again the average radius and D(R) is a complicated nonlocal term, which
we do not give in detail here. A formal asymptotic analysis gives the existence of a unique
self-similar solution to (2.11) with infinite support and exponential decay that furthermore
predicts a correction to the average radius of the order ε1/4.
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In a next step one has to compare these predictions with the ones for a model that takes
collisions of particles into account. Such an equation has already been suggested in [20]. It
reads

∂tf + ∂R

( 1

R2

( R

〈R〉 − 1)
)
f
)
= εQ(f, f)(R) , (2.12)

where Q is a quadratic coagulation term with a kernel that is additive in the rescaled volume
variable. (We refer to the last section for a brief discussion of coagulation equations since Q
looks awkward stated in the radius variable.)

The effect of the correction term on the right hand side of (2.12) has already been discussed
on a formal level in the appendix of [20], but seems to have not been noticed much. At least
it is not often discussed in papers that investigate the drawbacks and extension of the LSW
model. The analysis suggests that there is a self-similar solution of (2.12) with infinite support
and exponential decay that predicts a correction to the average growth rate of order 1

| ln 1
ε |2

which is indeed much larger than the correction given by (2.11). The analysis in [20] is based
on a formal iteration scheme which was made fully rigorous in [15]. This result may on first
glance seem very surprising given the discussion above. However, the explanation is quite
intuitive. Equation (2.11) contains diffusive terms and changes the trajectory of each particle
slightly. As we know from the discussion of the leading order LSW theory, the long-time
behaviour is dominated by the largest particles in the system. There are only very few largest
particles and so the effect of diffusion of these particles on the whole system is not very large.
On the other hand, the coagulation term is a kinetic term and models that two particles can
merge and form a large particle. In particular, two average sized particles can merge and form
a large particle. However, there are many average sized particles in the system and thus this
kinetic effect has a much larger influence on the long-time behaviour of the system than the
diffusive type correction terms of (2.11).

3. Grain Growth

With grain growth one denotes coarsening of grains in a polycrystalline material. As described
in the introduction, coarsening happens due to the desire of the system to reduce the surface
energy of grains which is due to a mismatch of the orientation of the different single crystal
lattices.

We are interested in a kinetic description of a system of a large number of grains, which
seems presently only possible in the significantly simpler case of two-dimensional grain
growth. In the following we therefore restrict our considerations to two-dimensional networks
of grain boundaries that meet in triple junctions. For simplicity we assume that these grains
cover a finite rectangle and satisfy periodic boundary conditions on the boundary of this
rectangle. As we have seen before, we need to identify the variables which characterize the
grains. In the case of grains, we will need two quantities, the area a of a grain and its so-called
topological class n, which is the number of neighbours, or equivalently the number of edges
of the grain. In order to set up a kinetic mean-field model we need to derive how the area of
a grain and the number of neighbours change in time. The difficulty lies in the fact that as
compared to Ostwald Ripening there is no small parameter regime here that allows to derive
such evolution laws in a certain limit.

In order to proceed one can however make the assumption that the surface energy density
carried by the grain boundaries is constant, i.e. their energy is proportional to their length.
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Furthermore one assumes that triple junctions have a large relative mobility such that one
can assume that they adjust instantaneously to achieve local equilibrium of forces. As a
consequence of these two assumptions the grain boundaries move according to the mean
curvature flow while all angles at the triple junctions are 2π/3. In this setting one can easily
derive the celebrated von Neumann–Mullins law for the area a(t) at time t > 0 of a single
grain with n edges [27]:

d

dt
a (t) = Mσ

π

3
(n − 6) . (3.1)

Here M denotes the mobility of the grain boundaries and σ is the surface tension.
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Figure 3.1. Neighbor switching

The mean curvature flow for such a network is well–defined [19, 22] until two vertices
on a grain boundary collide, after which topological rearrangements may take place. If an
edge vanishes, an unstable fourfold vertex is produced, which immediately splits up again
such that two new vertices are connected by a new edge. As a consequence two neighbouring
grains decrease their topological class (i.e., the number of edges), whereas the other two
grains increase it (Fig. 3.1). Moreover, grains with topological class 2 ≤ n ≤ 5 can vanish
such that some vertices and edges disappear as illustrated in Figure 3.2. We now introduce
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Figure 3.2. Grain vanishing

the number densities fn (a, t) of grains with topological class n ≥ 2 and area a ≥ 0 at time
t ≥ 0. As long as no topological rearrangements take place, the von Neumann–Mullins law
(3.1) implies that fn evolves according to

∂tfn (a, t) + (n−6) ∂afn (a, t) = 0 .

Since the characteristics enter the domain a > 0 for n > 6, this equation must be supple-
mented with boundary conditions at a = 0 for n > 6, but one does not need any boundary
condition for n = 2, ..., 6. It is reasonable to assume that no new grains are created during
the coarsening process, which implies that

fn (0, t) = 0 for n ≥ 7 . (3.2)
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The key question now is how to incorporate topological changes in our model. Following
Fradkov [11] one defines a ’collision’ operator J̃ that couples the equations for different
topological classes, that is one introduces topological fluxes η+n and η−n that describe the flux
from class n to n + 1 and from n to n − 1, respectively, and set

(J̃f)n = η+n−1 + η−n+1 − η+n − η−n

with η+1 = η−2 = 0 due to n ≥ 2. In order to close the model one needs to express the fluxes
η+n and η−n in terms of fn. This is only possible if one assumes that no correlations between
the grains develop during the evolution. It is not at all clear, whether such an assumption is
reasonable. However, it seems the only way to proceed to obtain a tractable kinetic model.
Under this mean-field assumption, Fradkov [11] suggests that the fluxes are given by

η+n = Γβ nfn , η−n = Γ (β + 1)nfn, (3.3)

where the coupling weight Γ = Γ(f) describes the intensity of topological changes and
depends on the complete state of the system in a self-consistent way, see (3.6) below. The free
parameter β measures the ratio between switching and vanishing events and Fradkov et al
[12] try to determine β by comparing the results of numerical simulations with experimental
data. They suggest that β should roughly be 0.5.

Assumption (3.3) implies that the collision terms are given by J̃f = ΓJf with

(Jf)2 = 3 (β + 1) f3 − 2βf2,

(Jf)n = (β + 1) (n + 1) fn+1 − (2β + 1)n fn + β (n − 1) fn−1

(3.4)

for 2 < n < ∞. Notice that this definition ensures the zero balance property

∞∑
n=2

(Jf)n (a, t) = 0 for all a, t > 0,

which reflects that the number of grains with given area does not change due to switching or
vanishing events. To summarize, the complete kinetic model is given by

∂tfn (a, t) + (n − 6) ∂afn (a, t) = Γ
(
f(t)
)
(Jf)n (a, t) , (3.5)

where (a, t) ∈ (0,∞)2 and n ≥ 2 with boundary conditions (3.2) and (Jf)n given by (3.4).
It remains to determine the coupling weight Γ in dependence of f . The key idea is to choose
Γ such that the total area

A(t) =

∞∑
n=2

Yn(t) with Yn(t) =

∫ ∞

0

afn(a, t) da

is conserved during the evolution. One easily checks that dA/dt = P , where P is the
polyhedral defect defined by

P (t) =

∞∑
n=2

(n − 6)Xn(t) with Xn(t) =

∫ ∞

0

fn(a, t) da.
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The polyhedral formula P = 0 resembles Euler’s formula for networks with triple junctions
and states that the average number of neighbours per grain is 6. One now readily verifies that
dP/dt = 0 holds if and only if

Γ
(
f(t)
)
=

5∑
n=2

(n − 6)
2
fn(0, t)

∞∑
n=2

nXn(t)− 2 (β + 1)X2(t)
. (3.6)

In particular, (3.6) guarantees the polyhedral formula as well as the conservation of area
provided that the initial data satisfy P = 0. Well-posedness of the Fradkov model, both for
N < ∞ and N = ∞, has been established in [14] for β ∈ (0, 2). It is obvious from (3.6) that
a main difficulty is to control the nonlocal quantity Γ. We also remark that a related simplified
model has been considered in [6].

To study self-similar long-time behaviour of Fradkov’s model by analytical tools seems
to be very challenging. A first step that is already not easy is to prove the existence of a
self-similar solution. This has been done in [16] and the main ideas of the proof are as follows.

Self-similar solutions to (3.5) take the form

fn(a, t) =
gn(ξ)

t2
, ξ =

a

t
≥ 0 ,

where the sequence g = (gn)n≥2 of self-similar profiles satisfies

−2gn − (ξ + 6− n
)
g′n = Γ

(
Jg
)
n

(3.7)

for some positive constant Γ as well as the boundary conditions gn(0) = 0 for n > 6.
The main mathematical difficulty in the existence proof for self-similar solutions is due to

the fact that the ordinary differential equation (3.7) is singular at ξ = n− 6 and has different
transport directions for ξ < n − 6 and ξ > n − 6. In [16] the existence of weak self-similar
solutions is established, both for the system above and for a corresponding finite dimensional
analogue, that is for the case that there is a maximal topological class N < ∞. Weak solution
means that each function gn satisfies∫ ∞

0

gn
(
(ξ + 6− n)φ′ − φ

)
dξ + (6− n)+ gn(0)φ(0) = Γ(g)

∫ ∞

0

(
Jg
)
n
φ dξ (3.8)

for all smooth test functions φ with compact support in [0, ∞).
The main result in [16] gives for β ∈ (0, 2) the existence of a weak non-negative solution

that decays fast in n and ξ in the sense that

N∑
n=2

(
eλnXn +

∫ ∞

0

eλξgn(ξ) dξ
)

< ∞

for all 0 < λ < ln (1 + 1/β), where Xn =
∫∞
0

gn(ξ) dξ.
The strategy for proving this result is inspired by the existence proof for self-similar

solutions to coagulation equations in [10]. One first introduces a finite-dimensional dynamical
model that can be regarded as a semi-discrete upwind scheme for (3.5) in self-similar variables,
and which involves the discretization length 0 < ε 5 1. Standard results from the theory of
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dynamical systems then imply the existence of nontrivial steady states for each sufficiently
small ε. In a next step one shows that these steady states converge as ε → 0 to a self-similar
profile for the Fradkov model for N < ∞. To pass to the limit N → ∞ one needs to establish
exponential decay of Xn and uniform estimates for higher moments. The resulting tightness
estimates allow then to obtain a solution for the infinite system.

The discrete scheme also gives naturally rise to a corresponding numerical algorithm that
allows to study convergence to self-similar form by numerical simulations. These indicate
that for any given set of parameters β, A > 0, and 6 < N < ∞ there exists only one solution
that is both self-similar and dynamically stable. However, it remains open whether there exist
unstable self-similar solutions, and whether for N = ∞ there exist self-similar solutions that
do not decay exponentially.

In conclusion, we have seen that the kinetic model for grain growth, despite the simplifi-
cations in the derivation, is still difficult to analyze. In addition to the crucial assumption that
grains are uncorrelated, it relies heavily on the von-Neumann Mullins law, for which there is
no three-dimensional analogue, and with this on the assumption that the surface energy of
the grains are constant. Both assumptions are certainly very restrictive. Recent progress in
numerical methods on the other hand, make numerical simulations of the full microscopic
model competitive. For example, in [7, 8] develop numerical methods that can deal with a
large number of grains (about 650000 in 2-d and 64000 in 3-d) and can also include surface
energies that depend on the misorientation of the grains. The results of kinetic models should
certainly be tested against the results from such simulations.

4. Connection with coagulation equations and conclusion

We briefly address here a related topic which is the analysis of self-similarity in Smolu-
chowski’s mean-field model for coagulation. This equation has been derived by Smolu-
chowski in 1917 to qualitatively predict coagulation in a homogeneous colloidal gold solution.
Since then this model has been used in a large variety of mass aggregation phenomena, for
example in aerosol physics, polymerization, pattern formation in nanostructures, but also on
very large scales in the clustering of stars.

In this model one considers a system of particles that are uniformly distributed in space
and are characterized by their size ξ ∈ (0,∞), while n(ξ, t) denotes the number density of
particles of size ξ. The main assumptions in the model are that only binary coagulation is taken
into account and that the rate at which two particles of size ξ and η coagulate is proportional to
n(ξ)n(η). The proportionality factor is given by a rate kernel K(ξ, η) which is a symmetric,
nonnegative function that represents all the microscopic details of the coagulation process.
With these assumptions the rate equation for n(ξ, t) becomes

∂tn(ξ, t) =
1

2

∫ ξ

0

K(ξ − η, η)n(ξ−η, t)n(η, t) dη − n(ξ, t)

∫ ∞

0

K(ξ, η)n(η, t) dη . (4.1)

Many different examples of kernels K can be found in the literature, but we mention here as
a typical and important example only Smoluchowski’s kernel

K(ξ, η) =
(
ξ1/3 + η1/3

)(
ξ−1/3 + η−1/3

)
. (4.2)

This kernel has been derived under the assumption that in R
3 spherical clusters of diameter

ξ1/3 move independently by Brownian motion and coagulate quickly when they become
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close. It is well known by now that this equation preserves the total mass
∫∞
0

ξn(ξ, t) dξ if
the kernel grows at most linearly, whereas gelation takes place, i.e. the loss of mass at finite
time, if K grows faster than linearly. In both cases mass is shifted to larger and larger clusters
as time proceeds and one expects that, for homogeneous kernels, this happens in a self-similar
fashion. Thus, one is here also interested in finding self-similar solutions and characterize
the large-time behaviour of solutions to (4.1) for given initial data. For the solvable kernels
K ≡ const., K = ξ + η and K = ξη, this issue is by now well-understood (see [26] and
the references therein), but for all the other nonsolvable kernels, many questions are still
unresolved. For kernels of homogeneity γ < 1 some progress has been made in recent
years. The existence of self-similar solutions has been established [9, 10, 34], but uniqueness
remains basically an open question even though recently a first such uniqueness result has
been obtained for kernels that are close to constant [35]. Furthermore, also the question of
dynamic stability of such solutions is still completely open. The difficulties in the analysis
of this equation in self-similar variables are in principle the same as in the models that we
discussed above. First, the model is nonlocal and no comparison principles are applicable.
Furthermore, there is a competition between transport terms and a coagulation/collision term
that has a diffusive character. The transport terms keep a memory of the initial data and the
main question is whether the latter terms have enough mixing properties to drive the system
nevertheless to a dynamic equilibrium.

Ackowledgments. I am very grateful to Bob Pego, Juan Velázquez, Felix Otto, Michael
Herrmann, Philippe Laurençot and Joe Conlon for illuminating discussions and longstanding
collaborations over the years on the subjects discussed here.
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Computing global invariant manifolds:
Techniques and applications

Hinke M. Osinga

Abstract. Global invariant manifolds play an important role in organising the behaviour of a dynamical
system. Together with equilibria and periodic orbits, they form the so-called skeleton of the dynamics
and offer geometric insight into how observed behaviour arises. In most cases, it is impossible to find
invariant manifolds explicitly and numerical methods must be used to find accurate approximations.
Developing such computational techniques is a challenge on its own and, to this date, the focus has pri-
marily been on computing two-dimensional manifolds. Nevertheless, these computational efforts offer
new insights that go far beyond a confirmation of the known theory. Furthermore, global invariant
manifolds in dynamical systems theory not only explain asymptotic behaviour, but more recent devel-
opments show that they are equally useful for explaining short-term transient dynamics. This paper
presents an overview of these more recent developments, in terms of novel computational methods, as
well as applications that have stimulated recent advances in the field and highlighted the need for new
mathematical theory.
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1. Introduction

Dynamical systems theory is very much characterised by its geometrical and topological as-
pects; classical textbooks, such as [6, 29, 33, 62, 63, 68], for example, rely on sketches to
illustrate ideas. Therefore, it seems natural to have a computational toolbox that can produce
numerical approximations to illustrate how this theory manifests itself in actual dynamical
systems. The development of such a toolbox has proven to be a challenge in itself, which
perhaps explains the apparent split of the field into those who use sketches and those who
employ numerical computations; the two groups tend to interact too little. In fact, numerical
computations are often used in realistic applications in collaboration with other scientists.
There seems to exist a perception that this direction of research may lead to new numerical
challenges, but does not contribute to the development of new theory, while theoreticians
push the boundaries of dynamical systems and offer new insights via conjectures and then
proofs. This paper aims to highlight how the development of dedicated computational meth-
ods arising from real applications can also lead to new dynamical systems theory. The focus

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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here will be on continuation methods for the computation of global invariant manifolds of
vector fields.

Continuation methods for dynamical systems were designed for the bifurcation analysis
of equilibria and periodic orbits. Pseudo-arclength continuation is used to track such invari-
ant objects in a parameter [41]. Continuation of equilibria is relatively straightforward and
involves finding an approximation to a uniquely defined parametrised solution family of an
algebraic problem. The continuation of periodic orbits is already harder, because it requires
solving a two-point boundary value problem (2PBVP) in conjunction with a suitable restric-
tion to select a unique orbit from the infinite family of phase-shifted ones. The method of
orthogonal collocation with piecewise polynomials [7, 10] is now widely adopted for this
purpose, because it is very accurate and allows adaptive mesh selection; this particular so-
lution method is implemented in the popular packages Auto [16, 17], which is also part
of the package XPPAut [21], and MatCont [15]. By extending the system to include
suitable monitoring functions, the same approach can be used to continue codimension-one
bifurcations in two parameters. In fact, the initiative behind the package MatCont [15]
aims to have implementations for the continuation of all codimension-one and -two bifurca-
tions of equilibria and periodic orbits, both for continuous- and discrete-time deterministic
systems [27, 46].

The continuation of periodic orbits is only one example of a 2PBVP set-up. Global in-
variant manifolds can also be formulated in terms of a 2PBVP. This idea has been applied to
detect and continue homoclinic and heteroclinic bifurcations [36]. For example, the Hom-
Cont extension to Auto can be used to compute such codimension-one bifurcations and
determine the location of codimension-two points, such as homoclinic flip bifurcations [12];
these methods have also been developed for discrete-time systems [9], which is implemented
for one-dimensional manifolds in the command-line version of MatCont. Here, we apply
the 2PBVP set-up in the context of computing two-dimensional global manifold of flows.
We used Auto to continue the 2PBVPs for the manifold computations in this paper. Four
case studies illustrate the fruitful interplay between advancing the reach of the numerical
methods and developing new dynamical systems theory.

This paper is organised as follows. In Section 2 we consider stable and unstable invari-
ant manifolds, that is, manifolds that are globally invariant under the flow of the vector field
and, either in forward or in backward time, converge to compact invariant objects, such as
equilibria and periodic orbits. As specific examples, we consider the stable manifold of the
origin in the Lorenz system in Section 2.1 and, in a more applied context in Section 2.2,
the interpretation of a stable manifold as an isochrone for a particular phase point along a
periodic orbit. In Section 3, we consider invariant manifolds as a tool to explain the effects
of finite-time perturbations. In the example in Section 3.1, which is related to the notion of
isochrones, we predict a delay or advance of the phase in response to a short-time pertur-
bation. We then consider excitability in Section 3.2, and compute the excitability threshold
in the context of a system for which no saddle equilibria or other saddle invariant manifolds
are present. We conclude this review in Section 4 with a brief discussion that also mentions
some directions of further research.
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2. Stable and unstable manifolds

Stable and unstable manifolds of equilibria, periodic orbits, or other compact normally hy-
perbolic invariant manifolds of saddle type are an important part of the so-called skeleton of
a dynamical system. While the attractors organise the eventual, asymptotic behaviour of the
system, stable and unstable manifolds describe the global structure of the system, dictating
which initial condition goes where, and in what manner.

To fix ideas and notation, let us restrict to vector fields from now on and consider global
invariant manifolds of equilibria or periodic orbits. Recall that an equilibrium p is hyperbolic
if all eigenvalues of the Jacobian matrix evaluated at p have non-zero real part; similarly, a
periodic orbit Γ is hyperbolic if all Floquet multipliers of the linearisation have magnitudes
different from 1, except for the Floquet multiplier associated with the direction tangent to Γ;
we refer to [46] for details. The stable manifold of p or Γ, denotedW s(p) orW s(Γ), consists
of all trajectories of the flow that converge to p or Γ in forward time; the unstable manifold of
p or Γ, denoted Wu(p) or Wu(Γ), is its stable manifold when considering the time-reversed
flow. The Stable Manifold Theorem [62] guarantees the existence of local (un)stable mani-
folds of hyperbolic equilibria and periodic orbits associated with their (un)stable eigenvalues
or Floquet multipliers, and these manifolds can be extended globally by the flow in either
forward or backward time. Furthermore, these manifolds are as smooth as the vector field
itself, and they are tangent to the manifolds of the corresponding linearisation.

From these definitions, we deduce that a one-dimensional stable or unstable manifold of
an equilibrium p of a vector field consists of two trajectories; each trajectory converges to
p in forward or backward time, in a direction tangent to the eigenvector associated with the
(strong) stable or unstable eigenvalue, such that the two trajectories together with p form a
single smooth (immersed) manifold [62]. From a computational point of view, it is straight-
forward to compute such one-dimensional manifolds: by selecting an initial point along
the appropriate eigenvector at a small distance from p, integration backward (for the stable
manifold) or forward in time (for the unstable manifold) generates an orbit segment as an
approximation of an arbitrarily long first piece of the manifold. Such an integration produces
an ordered list of suitably distributed points on this first piece of the manifold, allowing for
its straightforward visualisation as a smooth curve.

A two-dimensional (un)stable manifold, on the other hand, is a lot more difficult to com-
pute and visualise. The challenge lies in the fact that the manifold is now a surface formed
by a one-parameter family of trajectories. Hence, a computational method must include
instructions how to generate a suitable mesh representation of this surface. Perhaps the
simplest approach for designing an algorithm to compute two-dimensional (un)stable mani-
folds is to select (discretised) orbit segments from the one-parameter family that defines the
manifold. Here, a first orbit segment is computed in the same way as for one-dimensional
manifolds, by integration up to the time or length required. Continuation can then be used
to follow this first orbit segment as its starting point is varied along a one-dimensional curve
in the two-dimensional eigenspace; additional orbit segments are selected from the family
as dictated by the spacing between them. This approach often requires a post-processing
step of remeshing to visualise the surface. The complementary approach is to ignore the dy-
namics on the manifold and view it geometrically, for instance, as a family of geodesic level
sets. In this case, the mesh is generated as a growing structure based on geometric features,
and this aspect can be used for direct visualisation; the disadvantage is that the dynamics on
the manifold may cause geometric obstructions, e.g., when there exists a connecting orbit
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from one equilibrium or periodic orbit to another. We refer to the survey paper [45] for more
details on these two (and other) approaches.

In the case studies presented here, we use both approaches, and each uses a formulation
via two-point boundary value problems (2PBVP) that are solved by one-parameter continua-
tion with the 2PBVP solver Auto [16, 17]. We compute a finite set of (discretised) geodesic
level sets with the algorithm from [42, 43] if we are interested in the two-dimensional man-
ifold as a surface; this method generates a mesh with good geometric properties and allows
for elaborate visualisation. We compute a one-parameter family of orbit segments [44, 45] if
we are interested in how a manifold intersects another two- (or higher-)dimensional object,
such as a plane or a sphere. Here, we compute the orbit segments up to this intersection
and then consider and plot their end points; the orbit segments are selected based on a max-
imum distance between them, and so the end points give a good mesh representation of the
intersection curves.

In the next sections we show how these computational methods can be employed to
help understand the topological and geometric nature of the dynamics of a given system. In
particular, they allow us to gain insights into different aspects of global dynamics, and we
are even able to formulate precise conjectures based on our numerical findings.

2.1. The Lorenz manifold. As the leading example, we consider the stable manifold of
the origin of the Lorenz equations. Recall that Lorenz introduced these equations as a much
simplified model of convection in the atmosphere [48]. They take the form of three ordinary
differential equations, ⎧⎨

⎩
ẋ = σ (y − x),
ẏ = � x − y − x z,
ż = x y − β z.

(2.1)

Lorenz used the classical values σ = 10, � = 28 and β = 8/3 as representative parameters.
The famous butterfly attractor is the associated globally attracting chaotic set. Note that the
origin 0 is always an equilibrium of system (2.1), and it is of saddle type for the classical
parameter values. There are two further, symmetrically-related equilibria, denoted p± that
lie at the centres of the ‘wings’ of the butterfly attractor. The origin is hyperbolic with one
unstable and two stable eigenvalues, which means that it has a one-dimensional unstable and
a two-dimensional stable manifold. The equilibria p± each have a pair of complex conju-
gate unstable eigenvalues, with corresponding two-dimensional unstable manifolds, and one
stable eigenvalue, with associated one-dimensional stable manifold. The two-dimensional
stable manifold of the origin received its name Lorenz manifold in the survey paper [45]
where all contributors used it as their test-case example. From a computational point of
view, it is challenging to compute the Lorenz manifold, because there is an order of magni-
tude difference between the two stable eigenvalues. This means that, locally near the origin,
a small disk will quickly transform into an elongated ellipse when carried by the flow back-
ward in time. The nonlinear terms do not balance this effect, so that it is very hard to design
algorithms that construct a high-quality mesh on the surface.

Figure 2.1 shows the Lorenz manifold W s(0) computed as a surface, that is, computed
as a family of geodesic level sets [42, 43]. The outer boundary corresponds to the approxi-
mate geodesic level set at distance 162.5. The surface W s(0) is intersected with the plane
Σ� = {z = � − 1 = 27}, and the part of W s(0) that lies above Σ�, as well as Σ� itself, is
rendered transparent. In this way, we can see the three equilibria 0 and p±, with their one-
dimensional manifolds: the unstable manifoldWu(0) of 0 and the stable manifoldsW s(p±)
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W s(p+) W s(p−)

W s(0)
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Figure 2.1. The Lorenz manifoldW s(0), computed up to geodesic distance 162.5, and its intersection
with the plane Σ�; the section Σ� and the part of W s(0) above it are rendered transparent. Also
shown are the equilibria 0 and p±, the one-dimensional manifolds Wu(0) and W s(p±), and the
tangency locus C on Σ�. Reproduced from Osinga, Krauskopf, Hittmeyer, “Chaos and wild chaos in
Lorenz-type systems,” in Z. Al-Sharawi, J. Cushing and S. Elaydi (eds.) 19th Conference on Difference
Equations and Applications (in press), with permission from Springer-Verlag; see [59, Figure 4].

of p±. The intersection curves and points of these manifolds with Σ� are also indicated. The
plane Σ� is the Poincaré section that was used to analyse the nature of the dynamics on the
attractor, which is believed to be the closure of Wu(0). The return map is typically defined
on the part in between p±, where the flow points down from Σ�. The two hyperbolic curves
denoted C separate this region from the regions where the flow points up; the flow is tangent
toΣ� onC. The restriction of this return map to the Lorenz attractor can be approximated by
a one-dimensional map, for which it is relatively straightforward to prove that it has chaotic
dynamics [1, 30, 77]. The proof that the Lorenz attractor is indeed chaotic was completed
only in 1999, and required computer assistance in the form of interval arithmetic [73, 76].
The reduction to a one-dimensional map requires the existence of a (one-dimensional) in-
variant foliation on Σ� that is transverse to the Lorenz attractor. We can see a few of the
leaves in this foliation, namely, the intersection curves W

s
(0) := W s(0) ∩ Σ�; see [59] for

more details.
The Lorenz manifold is a complicated surface. It cannot intersect (contain) the one-

dimensional manifolds W s(p±), and for the classical parameter values, it also does not
intersect Wu(0). In particular, due to the spiralling nature of Wu(0) (and the attractor),
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W s(0) winds in a helical manner around the z-axis, which is contained in W s(0), while
additional helices are formed in symmetric pairs very close to but off the z-axis. At the
same time, W s(0) spirals around W s(p±). Over the years, the challenge of computing the
Lorenz manifold has shifted to the challenge of understanding its geometry. We view the
Lorenz manifold as a key object for understanding how the chaotic dynamics manifests it-
self globally in the Lorenz system (2.1). Chaotic dynamics is characterised by the presence
of sensitive dependence on initial conditions. Two nearby points on the Lorenz attractor
quickly diverge under the flow; as a quantative measure, the signature or pattern of oscilla-
tions around p+ and p− will initially be identical, but after some time the two trajectories
will move apart in such a way that the signature will be completely different. Switches be-
tween oscillations around p+ and p−, respectively, are organised by the close passage near
0. More precisely, W s(0) acts as a local separatrix between trajectories that continue os-
cillating around p+, say, and those that switch to oscillating around p−. Since the Lorenz
attractor is a global attractor, any two points in phase space exhibit sensitive dependence
on initial conditions, and this is organised globally by W s(0). This means that the global
invariant manifold W s(0) separates any two points in R

3 and is dense in R
3.

It is mind-boggling to realise that such innocent-looking equations as the Lorenz sys-
tem (2.1) give rise to a two-dimensional surface that lies dense in its three-dimensional phase
space! This is an actual realised example of a space-filling surface. In order to visualise this
topological property, and to study its characteristics further, we consider the intersection
of W s(0) with a sphere SR that is centred at the point (0, 0, 27) ∈ Σ� on the z-axis (the
mid-point on the line segment between p±) and has large enough radius so that all bounded
invariant objects are inside it; more precisely, we choose R = 70.7099, which is the dis-
tance from the centre of SR to the second intersection point of the small-amplitude branch
of W s(p±) with Σ�. Note that SR is a compact surface so that any intersection curve with
W s(0) must either be a closed curve or an arc with ends that accumulate on some sets, in
this case the intersection points W s(p±)∩SR. Since W s(0) is dense in R3, the intersection
curves in Ŵ s(0) must densely fill SR.

Figure 2.2 shows W s(0) intersected with the sphere SR. To highlight the situation on
and inside SR, only one half of W s(0) is shown, corresponding to the part that lies in the
half space {y ≥ 0}; the sphere SR is rendered transparant. Many more curves in Ŵ s(0) are
shown than those generated by the computed part of the surface W s(0). Indeed, the curves
in Ŵ s(0) were computed directly, using the continuation of the family of trajectories that
start on SR and end on a small ellipse around 0 in the linear stable eigenspace of 0; the
selected curves are associated with trajectories that satisfy these boundary conditions with
a given maximal integration time [19]. The relatively large unfilled region on SR shown in
Figure 2.2 would be filled eventually, but only when an extremely large maximal integration
time is used; two nearby points in these regions, while converging quickly to the Lorenz
attractor, will take a comparatively large time to separate. Note the single curve that crosses
through the middle of this region; it is the first intersection of W s(0) with SR, that is, tra-
jectories starting from points on this curve flow straight to 0 without excursions around p+

or p−. Hence, the unfilled region is directly related to the fact that trajectories on the Lorenz
attractor visit a small neighbourhood of 0 far less frequently than similarly small neighbour-
hoods elsewhere on the Lorenz attractor [70, Appendix F]. Figure 2.2 also illustrates the
structure of Ŵ s(0); the computed curves in Ŵ s(0) are the first of this set of curves that fills
SR densely, and they show that this process is taking place in a certain order associated with
a Cantor set; see [19, 59] for more details.
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W s(p+)

W s(p−)

W s(0)

Ŵ s(0)

0

p−

SR

Figure 2.2. The Lorenz manifold W s(0) for � = 28 intersecting the sphere SR with R = 70.7099

in the set Ŵ s(0); also shown are the equilibria 0 and p− and the one-dimensional manifolds Wu(0)
andW s(p±). Reproduced from Osinga, Krauskopf, Hittmeyer, “Chaos and wild chaos in Lorenz-type
systems,” in Z. Al-Sharawi, J. Cushing and S. Elaydi (eds.) 19th Conference on Difference Equations
and Applications (in press), with permission from Springer-Verlag; see [59, Figure 2].

The study of the Lorenz manifold is ongoing, with a focus on the transitions that occur
en route to chaos as a parameter is varied; often, � is varied, which is proportional to the
Rayleigh number of the convection [48]. For � small enough, there is no chaotic dynamics.
After a first homoclinic bifurcation, called the homoclinic explosion point, a so-called pre-
turbulent regime is created, where a chaotic saddle is present; this first transition has been
widely studied, for example, in [2, 18, 19, 38–40, 51–53, 64, 65, 70]. For details on the
transition from pre-turbulent to turbulent dynamics, see also [18, 26, 80]; for more recent
developments, see [13].

2.2. Isochrones. Isochrones were introduced in 1974 by Winfree [78] to characterise the
behaviour of an oscillating system subjected to a brief external stimulus; the same external
stimulus can have different effects depending on when it is applied. Such studies are useful,
for example, to understand how signalling in neuronal networks is organised. Conceptually,
the idea is very simple: the oscillations in the model are generated by an attracting periodic
orbit Γ, which is typically assumed to be the only attractor in the system; any perturbation
away from the periodic orbit, will result in a transient response that converges back to Γ,
but perhaps with a different phase as before. The isochrones foliate the basin of attraction
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of Γ in such a way that points on the same isochrone converge to Γ with the same phases.
Guckenheimer [28] in a follow-up paper from 1975 explained that isochrones are nothing
other than the pointwise stable manifolds of Γ. This means that each ischrone is invariant
under the time-T map, where T is the period of Γ, and manifold theory can be used to show
that isochrones must, therefore, be as smooth as the vector field itself and tangent to the
linear stable eigenbundle of Γ [33].

From a geometric point of view, the isochrones form a nice manifold family that fo-
liates the basin of attraction such that all isochrones accumulate on each other near the
basin boundary. Winfree already realised this [25, 79], and studied the accumulation of one-
dimensional isochrones in the two-dimensional FitzHugh–Nagumo system [24, 54] onto a
repelling equilibrium enclosed by the attracting periodic orbit. Winfree expected to be able
to compute the isochrones and visualise their geometry spiralling towards this repelling equi-
librium, but to his surprise, he encountered serious numerical accuracy issues that could not
be overcome at the time [79].

Isochrones have recently enjoyed a new surge of interest, fuelled in part by develop-
ments requiring controlled positioning onto specific isochrons. Numerous examples can be
found in the context of biological applications, such as neuronal models, where the exter-
nal stimulus represents a current injection coming from a large underlying neuronal net-
work [23]. However, isochrones are also studied, for example, when regulating synchroni-
sation of power networks that contain a large number of small energy generators, such as
wind mills; see [47, 50, 60] for references. These important applications go hand in hand
with a renewed interest in the development of appropriate numerical methods to compute
isochrones [22, 31, 32, 37, 47, 49, 60, 69, 72]. In particular, we have overcome the accuracy
issues reported by Winfree and are now able to compute the isochrones of the FitzHugh–
Nagumo system reliably [47].

To illustrate some of these recent results, and discuss the difficulties encountered, we
consider here a Hodgkin–Huxley model [35] that is reduced to the two-dimensional form
studied in [60]. The model is described by the following system of two equations in terms
of the membrane potential V and one of the gating variables n,{

V̇ = −[INa + IK + ILeak] + Iapp,
ṅ = αn(V ) (1− n)− βn(V )n.

(2.2)

Here, the different currents are given by

INa = gNa [m∞(V )]3 (0.8− n) (V − VNa),

IK = gK n4 (V − VK),

ILeak = gL(V − VL),

and Iapp is the applied current to stimulate the system so that an attracting periodic exists;
we use Iapp = 10 throughout. The so-called quasi-steady-state function m∞(V ) is derived
from the equilibrium assumption of a second gating variable m and is given by an equation
of the same form as for n, that is,

m∞(V ) =
αm(V )

αm(V ) + βm(V )
.

The functions αj(V ) and βj(V ), with j = n,m have the form

αj(V ) =
aj(V + Vj)

1− exp[−(V + Vj)/kj ]
and βj(V ) = bj exp

(−(V + Ej)

τj

)
.
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gNa = 120.0 gK = 36.0 gLeak = 0.3
VNa = 50.0 VK = −77.0 VL = −54.4

an = 0.01, Vn = 55.0, kn = 10.0 bn = 0.125, En = 65.0, τn = 80.0
am = 0.1, Vm = 55.0, km = 10.0 bm = 4.0, Em = 65.0, τm = 18.0

Table 2.1. Parameters used in the two-dimensional reduced Hodgkin–Huxley model (2.2).

The particular constants used in this example are given in Table 2.1.
System (2.2) evolves on two different time scales; the membrane potential varies fast over

a range of order O(102), while n, which represents a fraction of open potassium channels,
varies slowly over a unit range. While this time-scale separation is not made explicit in
the model, one can see it in its spiking behaviour: the time series in V of the attracting
periodic orbit Γ of this system has a long subthreshold plateau followed by a rapid large-
amplitude spike. One main interest in such systems arises from the question whether it is
possible to elicit a spike from the system via a small perturbation from an arbitrary point
along the subthreshold plateau. It is generally believed that such a pertubation need only
bring the system to a high enough level for V , the precise value of which is called the
spiking threshold.

Figure 2.3 shows Γ together with 100 isochrones. The isochrones are distributed uni-
formly in time along Γ. This means that most isochrones are located on the subthreshold
part, which is the lower, approximately horizontal segment of the closed (grey) curve in Fig-
ure 2.3(a). The isochrones are coloured according to a (cyan-to-magenta) colour gradient,
starting from the maximal point on Γ (with respect to V ), in the (clockwise) direction of the
flow. Any perturbation away from Γ will land on a particular isochrone and relax back to
Γ in phase with the point on Γ associated with this isochrone. The colour coding seems to
reveal a clear spiking threshold, where all isochrones appear to align with each other. We fo-
cus on the situation near n = 0.525 and zoom into a neighbourhood of the perceived spiking
threshold for this n-value, as shown in Figure 2.3(b). Here, we see that the isochrones do
not merely align, but form a much more complicated structure, where each isochrone passes
n = 0.525 several times while preserving its order in the foliation. This means that a pertur-
bation close to the perceived spiking threshold could result in any arbitrary phase shift and
the relationship between the size of the perturbation and the resulting phase shift, at least in
this region of sensitivity, is highly nontrivial.

The characterisation of this stretched region of extreme phase sensitivity is related to the
accumulation of isochrones near the basin boundary. Due to the two-dimensional nature of
the flow, the periodic orbit Γ encloses an equilibrium at (n, V ) ≈ (0.4026,−59.61), which
is repelling. The enlargement in Figure 2.3(c) illustrates the intricate spiralling nature of the
isochrones accumulating onto this equilibrium. The extreme phase sensitivity, not only near
the equilibrium, is organised by the repelling slow manifold associated with the repelling
branch of the cubic critical manifold; see [47, 60] for more details.

The computation of the isochrones uses a two-point boundary value set-up that is essen-
tially the same as a stable-manifold calculation [47, 60]. We continue a one-parameter family
of orbit segments with integration times equal to integer multiples of the period of Γ. By re-
stricting one end point to a small interval along the linear stable eigendirection at a point
γ ∈ Γ, the points at the other end of such a family of orbit segments forms the isochrone
associated with γ. The resulting algorithm computes the isochrone as a curve parametrised
by arclength and avoids the numerical accuracy issues reported by Winfree [79]. The con-



1110 Hinke M. Osinga

0.3 0.4 0.5 0.6 0.7 0.8

−80

−60

−40

−20

0

20

40

0.525−1e−8 0.525 0.525+1e−8

−48.8004

−48.8003

0.39 0.4 0.41

−62

−61

−60

−59

−58

−57

n

V

n

V

n

V

(a) (b)

(c)

Figure 2.3. Extreme phase sensitivity near the excitability threshold in the reduced Hodgkin–Huxley
model (2.2). Shown are the isochrones of 100 points along the periodic orbit (grey) that are distributed
uniformly in time. Panel (b) shows the phase sensitivity in an enlargement near n = 0.525; and
panel (c) illustrates how the isochrones organise the phase sensitivity near the equilibrium at (n, V ) ≈
(0.4026,−59.61).

tinuation of the 2PBVP can trace the isochrone through regions of extreme phase sensitivity,
because the entire orbit segments associated with ends points on different isochrones that are
indistinguishable in this region, remain well separated.

3. Slow manifolds and transient effects

The example of the Hodgkin–Huxley model (2.2) in Section 2.2 illustrates that an excitability
threshold can be much more complicated than generally assumed. Moreover, it highlights
the need for a deeper mathematical understanding of bursting behaviour. The analysis of
bursting goes back to the 1980s when Rinzel, at the 1986 ICM, proposed a simple approach
to classifying bursting mechanisms in excitable systems [67]. Rinzel utilises the fact that
excitable systems typically feature variables that evolve on rather different time scales. More
precisely, the model can be written as{

ẋ = f(x, y),
ẏ = ε g(x, y),

(3.1)

where x ∈ R
n and y ∈ R

m, with n,m ≥ 1. Here, 0 < ε 5 1 represents the single
time-scale separation between y and x. If we take the singular limit ε → 0 then y becomes
a vector of parameters and the equation for x, called the fast subsystem, exhibits dynamics
that depends on the choice for y. Rinzel discusses the case with m = 1 in detail. Bursting,
or spiking, occurs when the one-parameter bifurcation diagram in y of the fast subsystem
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exhibits hysteresis, and the y-nullcline is positioned such that the slow evolution of y causes
an oscillation of y across this hysteresis regime. This idea of freezing the slow variable can
even be used when ε is not explicitly present in the equations. For example, in the reduced
Hodgkin–Huxley model (2.2), the variable V was found to be at least 100 times faster than
n. Hence, one can view n as a parameter and analyse the one-dimensional fast subsystem
given by the equation for V . Three equilibria co-exists for n approximately in the interval
[0.3085, 0.7072], both end points of which are fold points; the branches corresponding to the
highest and lowest V -values are stable. Furthermore, n is decreasing on the lower branch and
increasing on the upper branch in the hysteresis interval. One concludes that the full two-
dimensional system exhibits a relaxation oscillation that traces the two branches of stable
equilibria, interspersed by two (fast) jumps approximately at the fold points; the relaxation
oscillation is the (gray) periodic orbit shown in Figure 2.3(a).

Different bursting patterns arise when there are additional bifurcations along the branches
of equilibria. For example, multi-spike bursting oscillations arise when the upper branch
includes a Hopf bifurcation, so that the fast subsystem exhibits periodic oscillations over a
range of y-values; this case was already discussed in [67], but see also the example in the
next section, where the fast subsystem undergoes a subcritical Hopf bifurcation, which gives
rise to a family of unstable (saddle) periodic orbits, but nevertheless, generates a multi-spike
burst. Bursting behaviour can also be organised by a slow-fast system with two or more slow
variables; see [14] for a detailed discussion and literature overview.

The case studies presented in the following two sections are using the same ideas as
introduced by Rinzel [66, 67], but utilise recent developments in manifold computations to
enhance this approach and enlarge it applicability.

3.1. Predicting the phase response. In complete analogy to the two-dimensional reduced
Hodgkin–Huxley model (2.2), we consider, here, the problem of phase resetting for a model
of a pituitary cell. The model is four dimensional and uses the same Hodgkin–Huxley for-
malism as described in detail for system (2.2). One equation is for the membrane potential
V , two are for channel gating variables n and m, and one is for calcium balance in the cell
body: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

CmV̇ = −[ICaL + ICaT + IK + IKCa + ILeak] + Iapp,

ṅ =
n∞(V )− n

τn
,

ṁ =
m∞(V )− m

τm(V )
,

Ċa = Jexchange + f β (Jinflux − Jefflux).

(3.2)

A full description of the model can be found in [71]; we only mention here that Iapp = 0 by
default; it is only used for perturbing the spiking behaviour of the cell. Rather than eliciting
a single spike, system (3.2) with Iapp = 0 exhibits a series of spikes during the active
phase of the periodic orbit Γ. As for the reduced Hodgkin–Huxley model (2.2), most of the
time is spent on a subthreshold plateau, and one is interested in understanding the response
to perturbations away from this subthreshold segment of Γ. One particular difficulty with
this model is to achieve an ‘active’ phase shift, in the sense that the perturbation brings the
membrane potential up into the active phase and gives rise to a spike train before V drops
back down to subthreshold levels.

System (3.2) has three different time scales: just as for the reduced Hodgkin–Huxley
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Figure 3.1. Stable manifolds of the equilibrium eM and periodic orbit ΓH of the fast subsystem of (3.2)
with Ca = 1.

model (2.2), the membrane potential V varies on a much faster time scale than the two
gating variables n andm. The calcium concentration varies even more slowly than the gating
variables and it is this variable Ca that is singled out in the geometric singular perturbation
theory, leaving a three-dimensional fast subsystem for analysis. The (V, n,m)-subsystem
has two families of Ca-dependent stable equilibria, denoted eH and eL for the active and
silent phases, respectively. The branch eL exists only for large enough Ca, and coexists
with a family eM of saddle equilibria that meet at a fold. The branch eH destabilises in a
subcritical Hopf bifurcation for a Ca-value to the right of this fold point. Hence, there is
a Ca-interval for which the two stable equilibria eH and eL coexist. The situation seems
similar to the case discussed in Section 2.2, but the Hopf bifurcation gives rise to a family of
saddle periodic orbits ΓH that coexist with eH and eL for large enough Ca in the bistability
interval.

We use the analysis of the fast subsystem to explain the difficulty in achieving an active
phase shift. To this end, we focus on a single Ca-value, namely Ca = 1, for which all three
equilibria as well as the saddle periodic orbit are present. A perturbation in the form of a
current Iapp is applied during the silent phase, such that Ca = 1, that is, (approximately)
from the equilibrium eL. We assume that the transient effects caused by the perturbation are
of such a short-time nature that Ca remains practically at 1. If this is indeed the case, then
Iapp must be such that eL, which for this new value of Iapp is most certainly no longer an
equilibrium, flows towards the basin of attraction of eH. Again, we assume that this transient
motion is so fast that Ca hardly changes. As soon as the basin boundary is crossed, Iapp can
be switched off and we may assume that the dynamics will switch back to its unperturbed
course with the required phase shift. Figure 3.1 shows the equilibria and periodic orbit
of the fast subsystem for Ca = 1. Also shown are the two-dimensional stable manifolds
W s(eM) and W s(ΓH) of eM and ΓH, respectively. The manifolds W s(eM) and W s(ΓH)
were computed with the same method described in Section 2.1. The basin boundary of eH is
the separatrix W s(ΓH), but W s(eM) also acts as a kind of separatrix, because a crossing of
W s(eM) leads to one or more spikes before relaxation back to eL.
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Figure 3.2. Starting from eL, an applied current Iapp = 6.69 results in two excursions inside the basin
of attraction of eH while spiralling towards an attractor outside this basin.

For Iapp > 0 small enough, the fast subsystem has a similar set of three equilibria and
one periodic orbit. Hence, for Iapp > 0 small enough, the flow will simply push eL to the
corresponding (lower) stable equilibrium for the new value of Iapp; this will not lead to an
active phase shift. For Iapp > 0 large enough, however, only one equilibrium exists, which
can be associated with the active phase. For example, if Iapp = 6.69, a unique attracting
equilibrium exists near eH. Unfortunately, this equilibrium lies outside the basin of attraction
of eH. This is the case for all values of Iapp for which only one equilibrium exists. Figure 3.2
illustrates the possible transient behaviour while Iapp = 6.69. The trajectory departs from
eL and spirals towards the attractor for this Iapp-value. On its way, W s(ΓH) is crossed
four times, creating two short time windows in which the applied current could be reset to
Iapp = 0 and an active phase shift could possibly occur.

From this analysis we predict two successful perturbation protocols, both of which re-
quire holding Iapp at a positive value for a certain (nontrivial) amount of time. Subsequent
dynamic testing of these perturbation protocols for the full four-dimensional system indeed
showed that an active phase shift can be achieved only for two particular segments in the
silent phase. Perhaps more importantly, this research provided the precise ranges of values
to use for Iapp and the time duration befor reset to Iapp = 0; until these results were known,
researchers had been unable to find any kind of active phase reset for this type of pituitary
cell model. We refer to [71] for more details.

It is interesting to note that the stable manifold of the coexisting saddle equilibrium eM
controls the number of spikes seen in a transient burst. The accumulation of W s(eM) onto
W s(ΓH) occurs in the fast subsystem, but it is very similar to the isochrones accumulating
onto a slow manifold, which occurs in the full system; for example, see the structure of
the isochrones for the reduced Hodgkin–Huxley model in Section 2.2. As yet, there are no
good methods available to compute higher-dimensional isochrones and the precise analogy
remains a challenging area of research.

3.2. Excitability thresholds. The idea of using an applied current to elicit a spike or spike
train from the model can be further refined to establish exactly how many spikes will be
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generated after such a perturbation. In [56, 57] we considered a five-dimensional model that
closely mimics the bursting behaviour of a pyramidal neurone in the so-called CA1 and CA3
regions of the hippocampus. Such CA1/CA3 cells are known to play an important role in
the onset of Alzheimer’s disease [5, 11, 55]. In experiments, these cells are subjected to a
short current injection and the response of their membrane potential is recorded. A model
for such a cell, constructed with the Hodgkin–Huxley formalism, offers insight into how
the different currents bring about the various responses. Furthermore, the model can give
a precise mathematical mechanism explaining how new spikes in the spike train are added
when a parameter is varied.

The model combines equations for the membrane potential and four gating variables, cor-
responding to activation of slow inward and fast and slow outward currents, and inactivation
of the slow inward current. Here, we consider only the model for a CA3 pyramidal neurone;
the model for the CA1 neurone can be obtained by using a different set of parameters [55].
The parameters are such that the system is at its resting potential, which is an attracting equi-
librium in the model; we refer to [56] for more details on the model equations. We study
the transient response of this system when it is perturbed away from the stable equilibrium
by an applied current of 20μA/cm2 for a duration of only 3ms. When the conductance
parameter gSI corresponding to the slow inward current is varied, this same short current-
injection protocol leads to a variety of responses. More precisely, the strength and duration
of the applied current is chosen such that, over a range of gSI-values, the perturbation pushes
the system past the top of a first spike; the difference between responses is characterised by
what happens after the current injection, during the transient phase when the applied current
is switched off and the system relaxes back to its stable equilibrium. Figure 3.3 shows three
such responses, namely, for gSI = 0.1, for which the response immediately relaxes back
to equilibrium, gSI = 0.5, for which the relaxation occurs via a non-monotonic route, and
gSI = 0.6mS/cm2, for which the response exhibits two further spikes before relaxation
back to equilibrium.

The transformation from a single-spike to a three-spike response occurs via a spike-
adding sequence, but the gSI-interval of the two-spike response is very small and an example
of such a response is not shown in Figure 3.3. In fact, experimental findings also report
that it is difficult to obtain a two-spike response [11]. In order to investigate the mechanism
underlying the spike-adding behaviour, at least from a mathematical point of view, we use
geometric singular perturbation theory by utilising the different time scales in the model.
Both the gating variables mSO and hSI, corresponding to activation of the slow outward
current and inactivations of the slow inward current, respectively, are much slower than the
other variables. Therefore, we consider the fast subsystem, represented by the membrane
potential V , and the gating variables mSI and mFO corresponding to the slow inward and
fast outward currents, respectively.

Since we now have two slow variables, the equilibria in this fast subsystem are organised
in families that form surfaces in the five-dimensional phase space. In fact, they form a single
folded sheet, if one allows hSI to attain non-physical values. The lower segment (with respect
to V ) of this sheet consists of attracting equilibria, one of which corresponds to the stable
equilibrium of the full five-dimensional system. The upper segment (with respect to V ) is
organised in much the same way as for the fast subsystem of (3.2) in Section 3.1: there exists
a curve of subcritical Hopf bifurcations, which give rise to a two-parameter family of saddle
periodic orbits. For the CA3 neurone model, this family of saddle periodic orbits undergoes a
fold that stabilises the family before ending at a curve of homoclinic bifurcations. Figure 3.4
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Figure 3.3. The same short current-injection protocol leads to different responses when a parameter
is varied. Reproduced from Nowacki, Osinga, Tsaneva-Atanasova, “Dynamical systems analysis of
spike-adding mechanisms in transient bursts,” Journal of Mathematical Neuroscience 2 (2012): 7,
with permission from Springer-Verlag; see [56, Figure 1].

shows these two-parameter families of equilibria and maxima and minima of the periodic
orbits for gSI = 0.5615, which is a special value with respect to the behaviour of the full
system, but representative for the geometric organisation of the equilibria and periodic orbits
of the fast subsystem. The projection is onto (hSI,mSO, V )-space, showing V against the
two slow variables hSI and mSO. The surface of equilibria is labelled in segments according
to the stability changes due to fold or Hopf bifurcations. The lower sheet is labelled Sa

1 ;
past the first fold, — which occurs along a curve with hSI outside its physical range and is
not shown in Figure 3.4, — the equilibria are of saddle type and labelled Sr

1 . There are two
further folds that occur in quick succession, leading to an attracting segment Sa

2 and another
saddle segment Sr

2 . The upper fold (with respect to V ) gives rise to a segment for which the
equilibria have two unstable eigenvalues, and is labelled Sr

3 ; the upper attracting segment,
on the other side of the Hopf curve, is labelled Sa

3 . Similarly, the families of periodic orbits
are denoted P r and P a.

Overlayed on the two-parameter families of equilibria are orbit segments of trajectories
of the full five-dimensional system, starting from the point when the current injection has
been switched off. From panels (a) to (f), the conductance gSI ≈ 0.5615 is increasing, but
only over an exponentially small interval; all gSI-values round to 0.5615. Figure 3.4 illus-
trates the significance of this value gSI ≈ 0.5615, because in an exponentially small interval
near this value, the orbit segment undergoes a dramatic transition that causes the creation
of a new spike. While it is hard to see from such three-dimensional projections how this is
organised in the five-dimensional phase space, Figure 3.4 gives a clear impression that the
orbit segment tracks the unstable sheets Sr

1 and Sr
2 during the transition; we checked that this

is indeed the case. A new spike is created when, at a special parameter value for gSI, the orbit



1116 Hinke M. Osinga

Figure 3.4. A spike-adding transition for the CA3 pyramidal neurone model with gSI ≈ 0.5615 in-
creasing over an exponentially small interval. Reproduced from Nowacki, Osinga, Tsaneva-Atanasova,
“Dynamical systems analysis of spike-adding mechanisms in transient bursts,” Journal of Mathemati-
cal Neuroscience 2 (2012): 7, with permission from Springer-Verlag; see [56, Figure 5].

segment does not immediately relax back to Sa
1 , but is captured by the sheet S

r
1 . At first, the

orbit segment tracks Sr
1 for only a short while before dropping down to Sa

1 ; see Figure 3.4(a).
However, as gSI increases, the orbit segment not only tracks Sr

1 , but continues along Sr
2 up

to its fold with Sr
3 before dropping back downd to Sa

1 ; see Figures 3.4(b) and (c). The
transformation proceeds via the topological change that, after tracking Sr

1 and Sr
2 , the orbit

segment jumps up before dropping down to Sa
1 ; see Figure 3.4(d). Subsequently, the track-

ing along Sr
1 and Sr

2 is gradually withdrawn, while the jump up develops into a real spike.
We remark that the spike-adding transition for the CA3 neurone model is relatively com-
plicated, involving two slow variables and a transition between two saddle-unstable sheets
Sr
1 and Sr

2 . There features are important for the biology and help mimic precise details of
the experimental results. However, the minimal ingredients for a spike-adding transition as
illustrated in Figure 3.4 can be provided by a three-dimensional model with a single slow
variable; see [61].

The spike-adding transition is initialised at the moment when the perturbation at the end
of the short current injection is such that the orbit segment is captured by Sr

1 . If we assume
that the two slow variables hSI and mSO hardly change, we can illustrate this capture in
(mSI,mFO, V )-space with respect to the fast subsystem. Figure 3.5 shows two views of the
stable manifold of the saddle equilibrium eM on Sr

1 for the fast subsystem in (mSI,mFO, V )-
space with hSI = 0.6865 and mSO = 0.02534; in both views, the vertical axis is V . The
manifold W s(eM) separates the basins of attraction of the two stable equilibria eL on Sa

1

and eH on Sa
3 ; compare Figure 3.4. In the full five-dimensional phase space, W s(eM) is
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Figure 3.5. The stable manifold of the saddle equilibrium eM on Sr
1 with hSI = 0.6865 and mSO =

0.02534.

not a separatrix; it is not even an invariant manifold and eL, eM and eH are not equilibria.
We interpret Figure 3.5 in the following way. A spike-adding transition occurs when the
parameter gSI is such that the trajectory perturbed from the stable equilibrium of the full
system lands exponentially close to W s(eM) immediately after the 3ms current injection.
Here, W s(eM) represents the stable manifold of the equilibrium eM on Sr

1 that corresponds
to the (approximate) hSI- and mSO-values at the time immediately after the 3ms current
injection. As shown in Figure 3.5, the trajectory of the full five-dimensional system starts at
a point near eH, because the perturbation gave rise to a first spike. It lies (approximately) on
W s(eM) and, thus, converges to eM. Since the fast directions dominate, hSI and mSO hardly
change at first, and we can follow the convergence almost up to eM in this ‘frozen’ image.
Close to eM, or more precisely, close to Sr

1 , the slow dynamics dominates and the trajectory
starts tracking Sr

1 with hSI and mSO varying over a relatively large range; see Figure 3.4.
The excitability threshold in this system is not organised by the existence of a stable man-

ifold in the full system, associated with a saddle equilibrium or other saddle-type invariant
object. The role of the excitability threshold is taken over by unstable (saddle) slow mani-
folds that exist due to the presence of multiple time scales in the system. As argued here,
the spike-adding dynamics is organised by the special events when a perturbation causes a
shift exactly onto the stable manifold of a saddle slow manifold. One must be cautious here,
because neither slow manifolds nor their stable manifolds are uniquely defined [14, 20]. In
our case study, we consider the situation in the singular limit, for which the required stable
manifold is uniquely defined, but for the full system, this means that the spike adding will be
spread over an exponentially small parameter interval, during which the pertubation causes a
shift onto stable manifolds of a family of saddle slow manifolds. The precise nature of such
a transition, while observed numerically, has yet to be analysed in detail theoretically.
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4. Conclusions

The case studies presented in this paper demonstrated that the continuation of two-point
boundary value problems for the computation of global invariant manifolds is a powerful
tool for the investigation of practical issues arising in applications, as well as questions
in dynamical systems theory. In fact, these methods are so accurate that they allow for
detailed quantitative predictions and the formulation of specific conjectures. Computations
based on boundary-value-problem formulations can be used widely in dynamical systems;
in particular, they are very well suited for the investigation of systems with multiple time
scales. Moreover, they allow for a systematic investigation of transient phenomena.

We conclude this paper by mentioning a few directions of future research. In related
and ongoing work, we consider the organisation of phase space near global bifurcations,
including the Shilnikov bifurcation [4] and homoclinic flip bifurcations [3]. We also want to
explore higher-dimensional systems, with a particular focus on hetero-dimensional cycles;
an example with explicit equations of a system with hetero-dimensional cycles has only
recently been found [81]. Such cycles are known to be related to the existence of wild
chaos that can arise in vector fields of dimension at least four [8, 34, 74, 75]. We also
continue our study of systems with multiple time scales and are particularly interested in
interactions between slow manifolds and global invariant manifolds of such systems [14].
Furthermore, we would like to characterise the different mechanisms of spike adding in
transient bursts [57, 61]. Finally, the computational approach to analyse transient bursts can
also be employed in different applications. We are particularly interested in the stability
analysis of a structure during an earthquake. The so-called failure boundary in this problem
is similar to the excitability threshold studied in this paper. Initial computations that employ
continuation of a two-point boundary value problem to find such failure boundaries directly,
show that the boundary is formed in a complicated way, composed of piecewise-smooth
segments from the solution family [58].
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inequalities arising in elastoplasticity
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Abstract. Mathematical models of many classes of nonsmoooth problems in mechanics take the form
of variational inequalities. Elastoplasticity, which is a theory of solids that exhibit path-dependent
and irreversible behaviour, yields a variational inequality that is not of standard elliptic or parabolic
type. Properties of the corresponding abstract problem are reviewed, as are the conditions under which
fully discrete approximations converge. A solution algorithm, motivated by the predictor-corrector
algorithms that are common in elastoplastic problems, is constructed for the abstract problem and
shown to converge.
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1. Introduction

Mathematical models of a large class of problems in solid and fluid mechanics take the form
of systems of partial differential equations, in space and time. For example, the equation

ρ
∂2u

∂t2
− Δ̄u = f (1.1)

describes the motion of an isotropic linear elastic solid. For a problem posed on a domain
Ω ⊂ R

d (d = 2, 3) and on a time interval [0, T ], u : Rd × [0, T ] → R
d is the displacement

vector, f is a prescribed body force, ρ is the mass density of the body, and

Δ̄u := (λ + μ)∇ divu+ μ div∇u (1.2)

is the Lamé operator, with λ and μ being strictly positive material scalars. A complete
description of the problem requires in addition a set of boundary and initial conditions. In
the event that the data does not depend on time, (1.1) becomes the equilibrium equation

−Δ̄u = f . (1.3)

Initial-boundary value or boundary value problems of this kind may be formulated alterna-
tively in weak or variational form. In addition to providing a useful setting for establishing
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well-posedness, the weak formulation also serves as the starting point for obtaining approxi-
mate solutions using the Galerkin finite element method. Consider for example the boundary
value problem (1.3) with a homogeneous boundary condition: that is, u = 0 on the bound-
ary ∂Ω. Setting V = [H1

0 (Ω)]
d in which H1

0 (Ω) = {v ∈ L2(Ω), ∂v/∂xi ∈ L2(Ω), v =
0 on ∂Ω} is the Sobolev space of functions with zero trace on the boundary, the weak form
of the boundary value problem corresponding to (1.3) is that of finding u ∈ V that satisfies

a(u,v) = 〈�,v〉 ∀v ∈ V . (1.4)

Here a(·.·) : V × V → R is a bilinear form and 〈·, ·〉 : V ′ × V → R denotes duality
pairing between members of the topological dual V ′ and V . The bilinear form a and linear
functional � are defined by

a(u,v) =

∫
Ω

[
λ(divu)(div v) + 2με(u) : ε(v)

]
dx , (1.5a)

�(v) =

∫
Ω

f · v dx , (1.5b)

with
ε(u) := 1

2 (∇u+ [∇u]T ) (1.6)

being the symmetric gradient of u, or strain tensor: in component form εij(u) =
1
2 (∂ui/∂xj

+∂uj/∂xi). Problem (1.4) has a unique solution given that there are positive constants
C and α such that a is continuous: |a(u,v)| ≤ C‖u‖V ‖v‖V , and V -ellliptic: (v,v) ≥
α‖v‖2V .

It is readily shown that a solution to the classical formulation (1.3) with the specified
boundary condition is also a solution to the weak problem (1.4). Conversely, a solution to
the weak problem solves the classical problem provided that the weak solution is sufficiently
smooth.

Many problems in mechanics and other areas of physics take the form of variational
inequalities. These arise in situations, for example, in which a problem is posed on a subset
that is not a subspace; or when the model is described by functions that are not differentiable.
A classical example of the former is the obstacle problem, in which the deformed shape is
sought of a membrane subjected to a transverse force f and which lies above an obstacle
described by a continuous function g : R2 → R. The classical formulation of the problem
takes the form of a set of complementarity conditions

u − g ≥ 0 , −Δu − f ≥ 0 , (u − g)(Δu − f) = 0 in Ω . (1.7)

HereΔ is the Laplacian operator. These state respectively that the membrane lies on or above
the obstacle, the net force on the membrane is nonnegative, and thirdly, that the net force and
relative displacement are not simultaneously positive. Assuming once again a homogeneous
Dirichlet boundary condition and defining the closed convex set K = {v ∈ H1

0 (Ω) | v ≥
g a.e in Ω}, the weak formulation of this problem takes the form of an elliptic variational
inequality (EVI): find u ∈ K that satisfies∫

Ω

∇u · ∇(v − u) dx ≥
∫
Ω

f(v − u) dx ∀v ∈ K . (1.8)

A second example of a variational inequality in one that arises as a result of the pres-
ence of a nondifferentiable function in its description. Slow steady flows of Bingham fluids
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provide an example of such a model. Denote by M the set of d × d symmetric matrices or
second-rank tensors: that is, M = {σ = (σij) |σji = σij , i, j = 1, . . . , d}. Also, define
the deviator τD of τ ∈ M by τD = σ − (1/d)(tr τ )I . Bingham fluids are rigid-viscous
fluids for which flow takes place only if the stress deviator σD exceeds a threshold given by
a specified function g. With ε defined as in (1.6), the flow condition is given in terms of the
velocity v by

ε(v) =

⎧⎨
⎩

1

2μ

(
1− g

|σD|
)
σD if |σD| > g ,

0 if |σD| ≤ g .
(1.9)

Here μ is the viscosity of the fluid and g is the yield limit. The condition of incompressibility
tr ε(v) = div v = 0 is built into the model by specifying the flow in terms of the stress
deviator. The equation for momentum balance

−divσ = f (1.10)

completes the description of the problem. The corresponding weak formulation of the prob-
lem is then as follows: assuming a homogeneous Dirichlet boundary condition and with
V = [H1

0 (Ω)]
d as before, find v ∈ V that satisfies

a(v,w − v) + j(w)− j(v) ≥ 〈�,w − v〉 ∀ v ∈ V . (1.11)

Here
a : V × V → R, a(v,w) =

∫
Ω

με(v) : ε(w) dx ,

j : V → R, j(w) =

∫
Ω

g|ε(w)| dx ,
(1.12)

and � is as in (1.5b). The Bingham flow problem has been studied mathematically in [5, 6,
21]. Conditions for existence and uniqueness of the solution are given in [5] (Chapter 1,
Section 5).

Variational inequalities of the types (1.8) and (1.11) may be formulated in a unified way
as follows. Let V be a real Hilbert space with inner product (·, ·) and norm ‖ · ‖. Let K be a
set in the space V and let j : K → R. We extend j to all of V by defining

j(v) = +∞ if v ∈ V/K. (1.13)

Recall that j : V → R ≡ R ∪ {±∞} is proper if j(v) > −∞ for all v ∈ V and j(v) �≡ ∞.
This property of j is valid if K is nonempty. Also recall that j : V → R is lower semi-
continuous (l.s.c.) if

vn −→
n→∞v in V =⇒ j(v) ≤ lim inf

n→∞ j(vn).

The extension j : V → R is l.s.c. if and only if K ⊂ V is closed and j : K → R is l.s.c.
Then the general problem becomes one of finding u ∈ K such that

a (u, v − u) + j(v)− j(u) ≥ 〈�, v − u〉 ∀ v ∈ K . (1.14)

The case (1.8) is recovered by defining j(v) = 0 for v ∈ K, while a VI of the kind (1.11) is
recovered by setting K = V .

We have the following result.
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Theorem 1.1. Let V be a real Hilbert space, K ⊂ V a non-empty, closed and convex subset,
and a : V × V → R a continuous bilinear form with the property that a is V −elliptic: that
is, a(v, v) ≥ α‖v‖2 for some positive constant α. Assume also that j : K → R is convex and
l.s.c. Then for any � ∈ V ′, the elliptic variational inequality (1.14) has a unique solution.
Moreover, the solution u depends Lipschitz continuously on �.

Returning to problems of evolution, to formulate these properly we need to define spaces
of functions as maps from a time interval to a Banach space. Thus, given a Banach space X ,
Lp(0, T ;X) denotes the space of (equivalence classes of) measurable functions from [0, T ]
to X for which

‖f‖Lp(0,T ;X) :=
[ ∫ T

0

‖f‖pX dx
]1/p

< ∞ . (1.15)

This is a Banach space with norm defined by (1.15). For integer m ≥ 0 and real p ≥ 1, we
denote by Wm,p(0, T ;X) the space of functions f ∈ Lp(0, T ;X) such that the generalized
ith time derivative f (i) satisfies f (i) ∈ Lp(0, T ;X). This is a Banach space with the norm

‖f‖Wm,p(0,T ;X) :=
[ m∑

i=0

‖f (i)‖Lp(0,T ;X)

]1/p
. (1.16)

For the case m = 0 we use the conventional notation W 0,p(0, T ;X) ≡ Lp(0, T ;X), while
we set Wm,2(0, T ;X) ≡ Hm(0, T ;X).

An example of a parabolic variational inequality is the problem of finding

u ∈ L2(0, T ;V ) with u̇ ∈ L2(0, T ;V ′) and u(0) = u0,

such that for almost all t ∈ [0, T ], u(t) ∈ K and

(u̇(t), v − u(t)) + a(u(t), v − u(t)) ≥ 〈f(t), v − u(t)〉 ∀ v ∈ K. (1.17)

Conditions for the existence and uniqueness of a solution u, u̇ ∈ L2(0, T ;V )∩L∞(0, T ;H)
are given in [8, Chapter 6, Section 2], for f, ḟ ∈ L2(0, T ;V ′) and for some time interval
[0, T ].

Unsteady slow flows of Bingham fluids provide an example of a parabolic VI. For such
a situation the problem (1.11) is generalized to one of finding v ∈ L2(0, T ;V ) such that

(v̇(t),w − v(t)) + a(v(t),w− v) + j(w)− j(v) ≥ 〈�(t),w− v(t)〉 ∀w ∈ L2(0, T ;V )
(1.18)

where 〈�(t),v〉 = ∫
Ω
f(t) · v dx.

Basic results on variational inequalities, including those presented in this section, may
be found in [5, 7, 12, 13], for example.

An abstract VI motivated by elastoplasticity. The focus of this work will be on a class of
variational inequalities that arise in the context of elastoplasticity, which describes materials
whose behaviour is a combination of elasticity and non-reversible path-dependence. The
abstract inequality, which is related to but is nontrivially distinct from parabolic VIs such as
(1.17), takes the following form: given a Hilbert space W , find w : [0, T ] → W , w(0) = 0,
such that for almost all t ∈ (0, T ), ẇ(t) ∈ W and

a(w(t), z − ẇ(t)) + j(z)− j(ẇ(t)) ≥ 〈�(t), z − ẇ(t)〉 ∀ z ∈ W . (1.19)
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Here a(·, ·) and �(·) are respectively a bilinear form and linear functional, and j(·) is a
positively homogeneous functional. The inequality (1.19) is in fact the differential inclusion

Aw(t)− �(t) ∈ ∂j(ẇ(t)), (1.20)

in which ∂j denotes the subdifferential of j and the operator A : V → V ′ is defined by
〈Aw, z〉 = a(w, z).

It is assumed here that the formulation (1.19) possibly incorporates a situation in which
the VI is required to be satisfied on a convex subset K ⊂ W , as for example in (1.17). For
such a situation j would be extended from K to all of W as in (1.13), without a change in
notation.

Elastoplasticity. We describe the relationship between (1.19) and the problem of elasto-
plasticity. The variables of interest are the displacement u, plastic strain p and a scalar-
valued hardening variable η. The problem is described by the equilibrium equation, an
elastic relation between the stress σ and elastic strain, and a flow relation. The equilibrium
equation is

−divσ = f (1.21)

and the elastic relation is given by

σ(u,p) = C[ε(u)− p] := λ tr(ε(u)− p) + 2μ(ε(u)− p) (1.22)

where the total strain ε is defined in (1.6), p is the plastic strain tensor, and C is the elasticity
tensor, given here for isotropic bodies in terms of the strictly positive scalar Lamé parameters
λ and μ which were earlier introduced in (1.2).

To describe plastic behaviour we require first the notion of an elastic region: this is a
convex region E ⊂ M× R given by

E = {(σ, g) ∈ M× R | ϕ(σ) + g − c0 ≤ 0} . (1.23)

The function g is defined as a function of the nonnegative hardening variable η with g(0) = 0:
for convenience in what follows we assume a linear relationship, so that

g(η) = −k2η (1.24)

in which k2 > 0 is a specified material coefficient.
In its most basic form flow takes place in the direction to the normal to the surface E

when the pair (σ, g) lies on the surface {(σ, g) ∈ M×R | ϕ(σ)+g = 0}. More compactly,

(ṗ, η̇) ∈ NE(σ, g) , (1.25)

in which the normal cone NE(σ, g) is defined by

NE(σ, g) = {(q, ζ) | (τ − σ) : q + (h − g)ζ ≤ 0 ∀(τ , h) ∈ E} . (1.26)

A more general form of the flow relation makes provision for translation of the stress in
E by a multiple of the plastic strain. This extension, known as linear kinematic hardening,
leads to (1.25) being modified to read

(ṗ, η̇) ∈ NE(σ − k1p, g) , (1.27)
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in which k1 is a nonnegative scalar. The form (1.27) will be adopted in what follows.
The relation (1.27) may be expressed in an alternative form by introducing the indicator

function IE :

IE : M → R , IE(τ ) =
{

0 τ ∈ E
+∞ otherwise .

(1.28)

Noting that NE is equivalent to the subdifferential of the indicator function of E , that is,
NE = ∂IE , (1.29)

it follows that the relation (1.27) may be inverted in the sense that

(ṗ, η̇) ∈ NE(σ − k1p, g) ⇐⇒ (σ − k1p, g) ∈ ∂I∗E(ṗ, η̇) . (1.30)

Here the Legendre-Fenchel conjugate f∗ : X → R of a proper, convex, lsc function f on a
normed space X is defined by

f∗(x∗) = sup
x∈X

〈x∗, x〉 − f(x) . (1.31)

In the language of convex analysis I∗E is called the support function of IE , while in the context
of plasticity theory it is known as the dissipation function, as it characterizes the dissipation
or rate of irreversible plastic work.

We take as a simple but physically important example of (1.23) the Mises-Hill condition.
For this case, ϕ(σ) = |σD| where, for any τ ∈ M, |τ |2 =

∑
i,j τijτij , and as before

σD := σ − (1/d)(trσ)I is the deviator of σ. Then the support or dissipation function is
given by

I∗E(q, ζ) =
{

c0|q| |q| ≤ ζ ,
+∞ otherwise .

(1.32)

The weak form of the problem of elastoplasticity then follows from (1.21) together with
(1.22) to give a weak form of the equilibrium equation; and by expanding (1.30) and inte-
grating over the domain to obtain a weak form for the flow inequality. These two steps lead
to the following problem: find u(t) and p(t) that satisfy∫

Ω

σ(u,p) : ε(v) dx =

∫
Ω

f · v dx , (1.33a)∫
Ω

I∗E(q) dx ≥
∫
Ω

I∗E(ṗ) dx +

∫
Ω

[σ(u,p)− k1p : q] : (q − ṗ) dx +

∫
Ω

g(η)(ζ − η̇) dx

(1.33b)

for all v, q and ζ defined in suitable spaces.
The spaces V,Q and M of displacements, plastic strains and hardening variables are

defined respectively by

V := [H1
0 (Ω)]

3,

Q :=
{
q = (qij)3×3 : qji = qij , qij ∈ L2(Ω), tr q = 0 a.e. in Ω

}
, (1.34)

M := L2(Ω).

In the case of Q the inner product is generated by [L2(Ω)]3×3. We set W := V × Q × M ,
which is a Hilbert space with the inner product

(w, z)W := (u,v)V + (p, q)Q + (η, ζ)M
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and the norm ‖z‖W := (z, z)1/2W , where w = (u,p, η) and z = (v, q, ζ), and define the
subset

Wp := {z = (v, q, ζ) ∈ W : I∗E(q, ζ) < ∞ a.e. in Ω}
= {w ∈ W : |q| ≤ ζ a.e. in Ω} (1.35)

which is a nonempty, closed, convex cone in W .
The problem (1.33) may be cast in the form of the VI (1.19) by setting w = (u,p, η),

z = (v, q, ζ), and defining

a : W × W → R, a(w, z) =
∫
Ω

[
σ(u,p) : ε(v − q) + k1p : q + k2ηζ

]
dx , (1.36a)

j : W × R, j(z) =
∫
Ω

I∗E(q) dx, (1.36b)

l : W → R, 〈l, z〉 =
∫
Ω

f · v dx. (1.36c)

Then the problem (1.33) is as follows: find w ∈ Wp that satisfies

a(w(t), z − ẇ(t)) + j(z)− j(ẇ(t)) ≥ 〈l(t), z − ẇ(t)〉 ∀ z ∈ Wp . (1.37)

In the following section we will review the conditions under which the abstract problem
(1.19) has a unique solution. Thereafter the focus of the work will be on issues pertaining to
approximations of the VI. The first topic in this context will be that of convergence of fully
discrete approximations based on the use of finite elements in space. Thereafter, attention
will shift to the construction and analysis of an algorithm for determining approximate so-
lutions. The essence of the algorithm is a predictor-corrector approach which in the context
of elastoplasticity is suggested by the pair of relations characterizing the problem: an equa-
tion of equilibrium, and a flow relation that takes the form of an inequality. We will also
discuss the interpretation of the algorithm, notably the corrector step which is referred to in
the computational plasticity literature as a return map.

2. Well-posedness of the abstract VI

We return to (1.19) and set out conditions for existence of a unique solution. The bilinear
form a : W × W → R is assumed to symmetric, bounded, and W -elliptic: that is,

a(w, z) = a(z, w) ∀w, z ∈ W,

and there exist constants c0, c1 > 0 such that

|a(w, z)| ≤ c1‖w‖W ‖z‖W , a(z, z) ≥ c0‖z‖2W ∀w, z ∈ W.

Theorem 2.1. Let W be a Hilbert space; K ⊂ W a nonempty, closed, convex cone; a:
W ×W → R a bilinear form that is symmetric, bounded, and W -elliptic; � ∈ H1(0, T ;W ′)
with �(0) = 0; and j : K → R nonnegative, convex, positively homogeneous, and Lipschitz
continuous. Then there exists a unique solution w of (1.19) satisfying w ∈ H1(0, T ;W ).
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Furthermore, w : [0, T ] → W is the solution to problem (1.19) if and only if there is a
function w∗(t): [0, T ] → W ′ such that for almost all t ∈ (0, T ),

a(w(t), z) + 〈w∗(t), z〉 = 〈�(t), z〉 ∀ z ∈ W, (2.1)
w∗(t) ∈ ∂j(ẇ(t)). (2.2)

Remark 2.2. Questions of existence and uniqueness of solutions to this problem were first
presented in [22] in the context of elastoplasticity for the case k2 = 0. The results were
extended in [11] to the more general problem.

We observe from (2.1) that w∗ has the regularity property

w∗ ∈ H1(0, T ;W ′). (2.3)

The proof of existence involves two stages: the first entails discretizing in time and es-
tablishing the existence of a family of solutions {wn}Nn=1 to the discrete problem. Time-
discretization involves a uniform partitioning of the time interval [0, T ] according to

0 = t0 < t1 < · · · < tN = T, where tn − tn−1 = k, k = T/N.

We write �n = �(tn). Corresponding to a sequence {wn}Nn=0, we define Δwn to be the
backward difference wn − wn−1, and δwn = Δwn/k to be the backward divided differ-
ence, n = 1, 2, . . . , N . The semidiscrete counterpart of (1.19) is then as follows: given
{�n}Nn=0 ⊂ H ′, �0 = 0, find {wn}Nn=0 ⊂ W with w0 = 0 that satisfies Δwn ∈ K and

a(wn, z −Δwn) + j(z)− j(Δwn) ≥ 〈�n, z −Δwn〉 ∀ z ∈ W , n = 1, 2, . . . , N.
(2.4)

The second stage involves the construction of piecewise linear interpolants wk of the
discrete solutions {wn}Nn=1 and showing that the limit of these interpolants as the time step-
size k approaches zero is in fact a solution of (1.19).

Remark 2.3. Problem (1.37) is readily shown to satisfy the conditions of Theorem 2.1 and
to have a unique solution provided that k̄i := essinfΩki > 0 for i = 1 or i = 2.

3. Fully discrete approximations of the abstract problem

We present in this section an overview of results on the convergence of fully discrete approx-
imations of the problem (1.19). Time discretization is carried out as before to arrive at the
semidiscrete problem (2.4). In addition, we define a family of finite-dimensional subspaces
Wh ⊂ W parametrized by h > 0, with the property that

lim
h→0

inf
zh∈Wh

‖z − zh‖W = 0 ∀ z ∈ W. (3.1)

Set Kh = Wh ∩ K, which is nonempty, since 0 ∈ Kh. Furthermore, Kh is a nonempty,
closed, convex cone in Wh, and in W as well.

Let θ ∈ [ 12 , 1] be a parameter. The fully discrete approximation problem is as follows:
find whk = {whk

n }Nn=0, where whk
n ∈ Wh, 0 ≤ n ≤ N , with whk

0 = 0, such that for
n = 1, 2, . . . , N , δwhk

n ∈ Kh and for all zh ∈ Kh,

a(θ whk
n + (1− θ)whk

n−1, z
h − δwhk

n ) + j(zh)− j(δwhk
n ) ≥ 〈�n−1+θ, z

h − δwhk
n 〉 .

(3.2)
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This problem admits a unique solution whk ⊂ Kh.
The reason for restricting attention to the interval θ ∈ [ 12 , 1] is as follows. The case θ = 1

corresponds to a backward Euler approximation of first derivatives in time, while for θ = 1
2

we have the Crank-Nicolson scheme. The choice θ > 1 is not good, for one would have to
use a value of � outside the time interval [0, T ]. The case θ = 0 is degenerate. The choice
0 �= θ < 1

2 leads to an unstable scheme, as is easily seen by setting j = 0 and K = W . This
choice yields a linear problem, and an analysis along the lines of that in [24], for example,
shows that a perturbation ε in the initial value leads to a perturbation error e with magnitude

|e| =
(1− θ

θ

)n
ε;

for θ < 1
2 , |e| → ∞ as n → ∞ and so small perturbations in the initial conditions result in

arbitrarily large errors in the approximation.
The quantity of interest is the error en = wn − whk

n , 0 ≤ n ≤ N . The following error
estimate is obtained in [10], §11.3.

Theorem 3.1. Suppose that W , K, a, �, and j satisfy the assumptions in Theorem 2.1.
Let w ∈ H1(0, T ;W ) and whk be the solutions to (1.19) and (3.2) respectively. Then if
w ∈ W 3,1(0, T ;W ), the estimates

max
n

‖wn − whk
n ‖W ≤ c k + cEhk

θ if θ �= 1

2
(3.3)

and
max
n

‖wn − whk
n ‖W ≤ c k2 + cEhk

1/2 if θ =
1

2
(3.4)

hold, where

Ehk
θ = inf

zh
j ∈Kh

j=1,...,N

{
k

N∑
j=1

‖ẇj−1+θ − zhj ‖W +
[
k

N∑
j=1

R(ẇj−1+θ, z
h
j )
]1/2}

(3.5)

and

R(ẇj−1+θ, z
h
j ) = a(wn−1+θ, ẇj−1+θ−zhj )+j(ẇj−1+θ)−j(zhj )−〈�n−1+θ, ẇj−1+θ−zhj 〉 .

(3.6)

Remark 3.2. The orders are optimal with respect to the time step-size in the error estimates
(3.3) and (3.4). In particular, for the backward Euler scheme with θ = 1 the approximation is
of first order in time, while the Crank–Nicolson-type scheme with θ = 1

2 gives second-order
accuracy.

Elastoplasticity. We return to the problem (1.37). In the context of finite element approxi-
mations the space Wh is defined by first constructing a partition or mesh T of Ω, assumed
for convenience to be polygonal or polyhedral, into triangles (resp. tetrahedra) such that
Ω = ∪T T . Any two distinct members T1 and T2 of T are either disjoint or share a common
vertex, edge or, in the case d = 3, a common face. Set hT = max{|x− y| , x ,y ∈ T} and
denote by ρT the diameter of the largest disc (for d = 2) or sphere (for d = 3) contained
in T . The mesh T is assumed to be shape-regular in the sense that there exists a constant β
such that hT /ρT ≤ β for all T ∈ T . We define the mesh size h = maxT∈T hT . Set

Pk(T ) := {v : T → R
d | v is a polynomial of degree ≤ k on T} . (3.7)
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LetWh := V h×Qh×Mh be a finite-dimensional subspace ofW , and setKh := Wh∩K =
V h × Kh

0 , where

Kh
0 := {(qh, ζh) ∈ Qh × Mh : |qh| ≤ ζh in Ω}.

We choose

V h = {v = (vi) ∈ V | vi ∈ C(Ω) | vi|T ∈ P1(T )} , (3.8a)
Qh = {q = (qij) ∈ Q | (qij)|T ∈ P0(T )} , (3.8b)
Mh = {ζ ∈ M | ζ|T ∈ P0(T )} . (3.8c)

Assume that u̇ ∈ L2(0, T ; [H2(Ω)]d). Then from the standard interpolation error estimates
for finite elements (see for example [2]), we have

inf
vh∈L2(0,T ;V h)

‖u̇− vh‖L2(0,T ;V ) ≤ c h. (3.9)

Further, assume that ṗ ∈ L2(0, T ; [H1(Ω)]d×d), and η̇ ∈ L2(0, T ;H1(Ω)). Let qh = Πhṗ
be the orthogonal projection of ṗ onto Qh with respect to the inner product of Q. Similarly,
we take ζh = Πhη̇ to be the orthogonal projection of η̇ onto Mh with respect to the inner
product of M . Since ẇ ∈ K and K is convex, we have (Πhṗ,Πhη̇) ∈ Kh

0 , and standard
interpolation estimates again give

‖ṗ−Πhṗ‖L2(0,T ;Q) ≤ c h, (3.10a)

‖η̇ −Πhη̇‖L2(0,T ;M) ≤ c h. (3.10b)

In the backward Euler approximation of the problem whk
0 = 0 and we compute whk

n =
(uhk

n ,phk
n , ηhkn ) : [0, T ] → Wh, n = 1, 2, . . . , N , such that δwhk

n ∈ Kh and

a(whk
n , zh − δwhk

n ) + j(zh)− j(δwhk
n ) ≥ 〈ln, zh − δwhk

n 〉 ∀ zh ∈ Kh. (3.11)

This problem has a unique solution. The quantity R defined in (3.6) can be shown to reduce
to a term involving j(zh)− j(ẇj−1+θ) which depends only on ṗ and qh. Thus we find that
if ẅ ∈ L2(0, T ;W ), then

max
0≤n≤N

‖wn − whk
n ‖2W ≤ c k2 + c k

N∑
n=1

[
inf

vh∈V h
‖u̇n − vh‖2V

+ inf
(qh,ζh)∈Kh

0

(‖ṗn − qh‖Q + ‖η̇n − ζh‖2M
) ]

. (3.12)

The interpolation estimates (3.9) and (3.10) lead to the error bound

max
0≤n≤N

‖wn − whk
n ‖W ≤ c (h1/2 + k). (3.13)

Similarly, for the Crank–Nicolson scheme and suitable smoothness assumptions on the so-
lution of the original problem the error estimate is

max
0≤n≤N

‖wn − whk
n ‖W ≤ c (h1/2 + k2) . (3.14)
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Optimal-order estimates. The O(h1/2) convergence rate in (3.13) and (3.14) for lowest-
order polynomial approximations is determined by the term involving the interpolation of
the plastic strain rate ṗ on the right-hand side of (3.12). An assumption of higher regularity
of the plastic strain and a higher-order approximation would of course improve the estimate
to O(h). In an alternative approach in [1], aimed at obtaining O(h) estimates, the material
functions such as λ and μ in (1.22) are approximated by their constant average values on each
element in the discrete formulation. It is then shown that for the case of piecewise-constant
data and assuming exact integration of the integral involving the loading term, convergence
at the optimal O(h) rate is obtained.

A comment on convergence under minimal regularity. The above error analysis assumes
a certain degree of regularity of the solution to the original problem. Regularity results have
been established for problems in elastoplasticity: for example, in [14, 15] the displacement
components are shown under certain conditions to belong toH3/2−δ(Ω) and the components
of plastic strain and hardening variable to H1/2−δ(Ω), for small δ > 0. It is nevertheless of
interest to show convergence of the various numerical schemes under the minimal regularity
condition of the weak solution.

Recall that the problem (1.19) has a unique solution w ∈ H1(0, T ;W ). Given that
C∞([0, T ],W ) is dense in H1(0, T ;W ), it follows that for any ε > 0 there exists a function
ŵ ∈ C∞([0, T ];W ) such that

‖w − ŵ‖C([0,T ];W ) ≤ c ε. (3.15)

By approximating the solution arbitrarily closely with smooth functions and through a ju-
dicious use of Taylor expansions and density arguments, it has been shown in [9] (see also
[10], §11.4) that the fully discrete solution whk

n converges to w ∈ H1(0, T ;W ) in the sense
that

max
1≤n≤N

‖whk
n − wn‖W → 0 as h, k → 0. (3.16)

4. Solution algorithms

We turn next to the question of constructing convergent and efficient solution algorithms.
The emphasis here is on the solution of the time-discrete variational inequality (2.4), which
in the context of this section could be assumed to be a semidiscrete approximation or the
fully discrete version (3.2) with the backward Euler assumption θ = 1. For convenience
we will focus on the problem in the form (2.4), which by a rearrangement of terms can be
written in the following form: with wn−1 known, find wn ∈ K such that

a(Δwn, z −Δwn) + j(z)− j(Δwn) ≥ 〈Ln, z −Δwn〉 ∀ z ∈ K, (4.1)

where the functional Ln is defined by

〈Ln, z〉 := 〈�n, z〉 − a(wn−1, z) . (4.2)

The objective is to present and discuss a predictor-corrector approach that has its origins
in and exploits the particular structure of the problem of elastoplasticity: see, for example,
[17, 25]. In this context we recognise that members of the space W are pairs of the form
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(u, (p, η)) in which u is the displacement and the pair (p, η) represents the plastic strain
and hardening variable. Thus W is a product space of the form W := V × Λ. With this
decomposition in mind, for the abstract problem (4.1) we define Hilbert spaces V and Λ and
set W = V × Λ, w = (u, λ), and z = (v, ζ).

Next, in order to structure the algorithm as one of predictor-corrector type we will de-
compose the VI (4.1) in a manner corresponding to the structure of the problem (1.37) for
elastoplasticity: this problem is written equivalently as the equation (1.33a) and inequality
(1.33b). To do likewise with the abstract problem we use the bilinearity of a(·, ·) to define
continuous bilinear forms b : V ×V → R, c : Λ×V → R and d : Λ×Λ → R, according to

a(w, z) = b(u, v)− c(λ, v)− c(ζ, u) + d(λ, ζ) . (4.3)

We also introduce continuous linear forms, �1 : V → R and �2 : Λ → R, and a functional,
j : Λ → R, with j assumed to be nonnegative, convex, and Lipschitz continuous, and of the
form

j(ζ) :=

∫
Ω

D(ζ(x)) dx .

The function D is not differentiable at ζ = 0 and is at least twice differentiable everywhere
else.

The problem is then as follows: find u ∈ V and λ ∈ Λ such that

b(u, v)− c(λ, v) = 〈�1, v〉 ∀ v ∈ V, (4.4)
j(ζ)− j(λ)− c(ζ − λ, u) + d(λ, ζ − λ) ≥ 〈�2, ζ − λ〉 ∀ ζ ∈ Λ. (4.5)

For the problem of elastoplasticity we have w = (u, (p, η)) so that the space Λ is given
by

Λ := Q × M (4.6)

with Q and M defined in (1.34). The bilinear form a(·, ·) and linear functional L(·) corre-
sponding to the incremental problem are found from (4.1) and (4.2), and are

a(w, z) :=
∫
Ω

[
C(ε(u)− p) : (ε(v)− q) + k1p : q + k2ηζ

]
dx, (4.7)

〈Ln, z〉 := 〈ln, z〉 − a(wk
n−1, z) . (4.8)

It follows that the bilinear forms appearing in the algorithmic formulation are given by

b : V × V → R, b(u,v) :=

∫
Ω

C ε(u) : ε(v) dx, (4.9)

c : Q × V → R, c(q,v) :=

∫
Ω

C q : ε(v) dx, (4.10)

d : (Q × M)× (Q × M) → R,

d(p, η; q, ζ) :=

∫
Ω

(Cp : q + k1p : q + k2ηζ) dx. (4.11)

The linear functional Ln(·) may likewise be decomposed by writing it in the form

〈Ln, z〉 := 〈Ln,1,v〉+ 〈Ln,2, q〉,
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in which
Ln,1 : V → R, 〈Ln,1,v〉 :=

∫
Ω

[fn · v − σk
n−1 : ε(v)] dx

and
Ln,2 : Q → R, 〈Ln,2, q〉 :=

∫
Ω

χk
n−1 : q dx,

where

σk
n−1 := C (ε(uk

n−1)− pk
n−1),

χk
n−1 := σk

n−1 + k1p
k
n−1

are known from the previous step of the computation. �

The solution algorithm. In the predictor–corrector strategy we have estimates ui−1 and
λi−1, and we seek new, improved estimates ui and λi.

Here we prove convergence of the algorithm under a general set of conditions: continuity
of the bilinear forms b(·, ·) , c(·, ·) and d(·, ·) are assumed, as are the continuity of the linear
functionals �1 and �2, and the conditions on j(·). But the assumption of (V × Λ)-ellipticity
of a(·, ·) is replaced by the weaker requirements of V -ellipticity of c(·, ·) and Λ-ellipticity of
d(·, ·), with no assumptions of symmetry of these bilinear forms. This would allow for situa-
tions, for example, in which discrete approximations such as certain discontinuous Galerkin
formulations lead to non-symmetric bilinear forms (see for example [3, 4]). An immediate
consequence of the lack of symmetry is that there does not exist an equivalent minimization
problem, so that the proof of convergence must rely on the formulation (4.4)–(4.5).

We begin by introducing various assumptions.

(i) Let V and Λ be two Hilbert spaces.

(ii) Let b : V ×V → R, c : V ×Λ → R and d : Λ×Λ → R be continuous bilinear forms,
with b and d elliptic but not necessarily symmetric. Thus, for some positive constants
b1, b0, c1, d1 and d0,

|b(u, v)| ≤ b1‖u‖V ‖v‖V , b(u, u) ≥ b0‖u‖2V ,

|c(u, λ)| ≤ c1‖u‖V ‖λ‖Λ, (4.12)

|d(λ, ζ)| ≤ d1‖λ‖Λ‖ζ‖Λ , d(λ, λ) ≥ d0‖λ‖2Λ
for all u, v ∈ V and λ, ζ ∈ Λ.

(iii) Let �1 : V → R and �2 : Λ → R be continuous linear forms.

(iv) Let j : Λ → R be a nonnegative, convex and Lipschitz continuous functional.

(v) For w = (u, λ), z = (v, ζ) ∈ V × Λ we define a(·, ·) by (4.3).

Note that with these conditions the abstract problem (4.4)–(4.5) has a unique solution
w = (u, λ) ∈ V × Λ.

The abstract algorithm is given in the following general form:
Given w0 = (u0, λ0) ∈ V × Λ, for i = 1, 2, . . . ,

Predictor: Compute (ui, λ∗i) ∈ V × Λ such that

b(ui, v)− c(λ∗i, v) = 〈�1, v〉 ∀ v ∈ V , (4.13)
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j(i)(ζ)− j(i)(λ∗i) + d(λ∗i, ζ − λ∗i)
≥ 〈�2, ζ − λ∗i〉+ c(ζ − λ∗i, ui) ∀ ζ ∈ Λ . (4.14)

Corrector: Compute λi ∈ Λ such that

j(ζ)− j(λi) + d(λi, ζ − λi) ≥ 〈�2, ζ − λi〉+ c(ζ − λi, ui) ∀ ζ ∈ Λ (4.15)

where
j(i)(ζ) :=

∫
Ω

D(i)(ζ) dx

with D(i) a smooth convex function, satisfying

D(i)(λi−1) = D(λi−1) , (4.16)

∇D(i)(λi−1) = ∇D(λi−1) , (4.17)

D(ζ) ≤ D(i)(ζ) ∀ ζ ∈ Λ . (4.18)

Some examples of commonly used predictors follow.
The elastic predictor. For this simple case we take λ∗i = λi−1 and there is no need to define
the functional j(i).

While the most straightforward, the use of the elastic predictor leads to slow convergence,
so that various alternatives are preferred. Two of these are summarized next.
The secant predictor. The algorithm corresponding to the secant predictor is obtained by
choosing D(i) to be the quadratic function whose graph lies inside the cone with boundary
the graph of D, and satisfying (4.16)–(4.17).

More precisely, for Λ a space of n-tuples we seek a vector a and a symmetric positive
definite matrix B such that the function

Di(ζ) = D(λi−1) + a · (ζ − λi−1) + 1
2 (ζ − λi) : B(ζ − λi−1)

satisfies (4.16)–(4.18). We find that a = ∇D(λi−1) and B is to be chosen such that

D(ζ) ≤ D(λi−1) +∇D(λi−1)(ζ − λi−1) + 1
2 (ζ − λi) : B(ζ − λi−1)

at least in a small neighbourhood of λi−1. Then all of the conditions (4.16)–(4.18) are
satisfied.
The consistent tangent predictor. This predictor is constructed by considering the following
modified second order Taylor expansion of the function D about λi−1:

Di(ζ) = D(λi−1) +∇D(λi−1) · (ζ − λi−1)

+ 1
2 (ζ − λi−1) : [H(λi−1) + εI](ζ − λi−1) . (4.19)

Here, H(λi−1) is the Hessian matrix of D at λi−1 and I is the identity matrix. In order that
(4.18) be satisfied it is essential that ε > 0, the magnitude of ε being chosen so that Di

satisfies (4.18) at least in a small neighbourhood of λi−1.
The definition (4.19), without the perturbation, leads in the spatially discrete case to the

consistent tangent predictor [26] favoured in computational approaches. As the convergence
analysis in the next section will show, the perturbation is necessary to guarantee convergence
of the algorithm.
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4.1. Convergence analysis of the solution algorithms. We return to the general problem
(4.4)–(4.5) and establish conditions for its convergence. This result was first given in [4];
see also [10].

Theorem 4.1. Under the assumptions on the bilinear forms, functionals and the structural
inequality

r1 :=
c21

b0d0
<

1

3
(4.20)

where c1, b0 and d0 are defined in (4.12), the predictor-corrector algorithm (4.13)–(4.15)
converges. That is,

ui → u in V and λi → λ in Λ as i → ∞ ,

where w = (u, λ) is the solution of the abstract problem (4.4)–(4.5). Furthermore, the error
estimate

‖wi − w‖V×Λ ≤ r0
2r1

1− r1
‖ui − ui−1‖V (4.21)

holds, where wi = (ui, λi) and r0 is defined by

r0 :=

(
1 +

c21
d20

)1/2

. (4.22)

Proof. A sketch of the proof follows.
First, by using the coercivity of b and the continuity of c it can be shown that

b0‖ui − ui−1‖V ≤ c1‖λ∗i − λ∗(i−1)‖Λ,

or

‖ui − ui−1‖V ≤ c1
b0

[
‖λi−1 − λi−2‖Λ + ‖λ∗i − λi−1‖Λ + ‖λ∗(i−1) − λi−2‖Λ

]
. (4.23)

Next, from the properties (4.16) and (4.18) it follows that

d(λ∗i − λi−1, λ∗i − λi−1) ≤ c(λ∗i − λi−1, ui − ui−1).

The coercivity of d and the continuity of c give

‖λ∗i − λi−1‖Λ ≤ c1
d0

‖ui − ui−1‖V . (4.24)

Combining (4.23) and (4.24) we get

(1− r1) ‖ui − ui−1‖V ≤ c1
b0
‖λi−1 − λi−2‖Λ + r1‖ui−1 − ui−2‖V , (4.25)

where r1 is defined in (4.20).
Now we take ζ = λi−1 in (4.15), and then replace i by i − 1 and take ζ = λi in (4.15),

add the two resulting inequalities and use the coercivity of d and the continuity of c to get

‖λi − λi−1‖Λ ≤ c1
d0

‖ui − ui−1‖V . (4.26)
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Combining (4.25) and (4.26) we then obtain

(1− r1) ‖ui − ui−1‖V ≤ 2 r1‖ui−1 − ui−2‖V ,

which gives

‖ui − ui−1‖V ≤ 2r1
1− r1

‖ui−1 − ui−2‖V (4.27)

with r1 defined in (4.20).
An induction procedure based on (4.27) leads to

‖ui − ui−1‖V ≤
(

2r1
1− r1

)i−1

‖u1 − u0‖V . (4.28)

Using this bound and (4.26), we have

‖λi − λi−1‖Λ ≤ c1
d0

(
2r1

1− r1

)i−1

‖u1 − u0‖V . (4.29)

Therefore,

‖wi − wi−1‖V×Λ =
(‖ui − ui−1‖2V + ‖λi − λi−1‖2Λ

)1/2
≤ r0

(
2r1

1− r1

)i−1

‖u1 − u0‖V , (4.30)

where r0 is defined in (4.22). Since r1 < 1/3, 2r1/(1 − r1) < 1 and thus {wi}i≥1 is a
Cauchy sequence in the Hilbert space V × Λ, converging to some limit w∗ = (u∗, λ∗) ∈
V × Λ.

Using the continuity of the bilinear and linear forms we can pass to the limit in (4.13)
and (4.15) and find that w∗ = (u∗, λ∗) solves the abstract problem (4.4) and (4.5). By
the uniqueness of the solution it follows that w∗ = w. Therefore the sequence {wi}i≥1

converges to w.
The estimate (4.21) follows by a further lengthy but straightforward process to show that

‖ui − u‖V ≤ r1‖ui − ui−1‖V +
c1
b0
‖λi−1 − λ‖Λ. (4.31)

We similarly obtain
‖λi − λ‖Λ ≤ c1

d0
‖ui − u‖V . (4.32)

Combining (4.31) and (4.32), we have

‖ui − u‖V ≤ r1‖ui − ui−1‖V + r1‖ui−1 − u‖V
≤ 2 r1‖ui − ui−1‖V + r1‖ui − u‖V

and hence,

‖ui − u‖V ≤ 2 r1
1− r1

‖ui − ui−1‖V . (4.33)

Then with (4.32), we further have

‖λi − λ‖Λ ≤ c1
d0

2 r1
1− r1

‖ui − ui−1‖V . (4.34)

Using (4.33) and (4.34) we obtain (4.21). This completes the proof.
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For the elastoplasticity problem (1.36) with (1.37), the relevant bilinear forms are given
by (4.7)–(4.11). The space V of displacements is as before, and Λ is given by (4.6). With
respect to these spaces, continuity of all of these forms and the functional L are straightfor-
ward. The coercivity of a(·, ·) has been established, so it remains to verify that b(·, ·) and
d(·, ·) are respectively V - and Λ-elliptic. The V -ellipticity of b is in fact trivial, and follows
from the corresponding result for the elastic problem; while for d the desired result follows
from a minor modification of earlier arguments.

The bounding scalar r1 in (4.20) is easily estimated for the elastoplasticity problem.
Assuming for convenience that the material is homogeneous so that the various material
parameters are constants, it is readily shown that

r1 ∼ λ + 2μ

2μ(1 + min(k1, k2))
. (4.35)

It follows that a sufficiently high degree of hardening and therefore a sufficiently large value
of k1 or k2 would suffice to guarantee convergence of the algorithm.

The return map. The version of the algorithm most commonly found in applications, and
which has been developed in various special forms, takes the form of a consistent tangent
predictor step [26] followed by a corrector step that has a simple geometric interpretation,
in the spaces of stresses, known as the return map [16, 25, 27]. The connection between
this form of the corrector and that discussed in this work may be made using the local form
(1.25) of the inequality for plastic flow. Assuming for convenience that g = 0 and k1 = 0,
the time-discrete version of this inequality, using a backward Euler approximation, states
that at time tn

Δp ∈ NE(σn) . (4.36)

The stress at time tn may be written as

σn = σtr
n − CΔpn , (4.37)

where σtr
n = C[ε(un)−pn−1] is the trial elastic stress, that is, the stress at time tn assuming

that no plastic flow takes place in the time step [tn−1, tn]. Using (4.37) the inclusion (4.36)
becomes, at time tn,

C−1(σtr
n − σn) ∈ NE(σn) . (4.38)

In other words, the actual stress σn may be obtained as the orthogonal projection, in the
inner product generated by C−1, of the trial elastic stress onto the convex elastic domain
E . This approach, proposed in an abstract framework in [19, 20], is referred to there as a
catching-up algorithm or sweeping process.

The approach taken in this work has been to formulate and analyse predictor-corrector
schemes with the corrector step based on the catching-up strategy, but to do so in the equiv-
alent framework of the abstract variational inequality (4.1), which is well suited to analysis
and to determining conditions for the entire algorithm to be convergent.

5. Concluding remarks

The focus of this work has been on the numerical analysis of a variational inequality mo-
tivated by a mathematical model of elastoplasticity. Results on the convergence of fully
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discrete – that is, in space and time – approximations of the variational inequality have been
summarized. A predictor-corrector algorithm, of the kind in common use in applications to
elastoplasticity, has been presented and shown to be convergent under mild conditions on the
data.

Rate-independent systems, of which the problem considered in this work is an exam-
ple, have been given a comprehensive treatment in a framework developed by Mielke and
coauthors (see for example [18] and the works cited in this survey paper). The essence of
the framework is a weak formulation based on an energy balance equation and a stability
inequality. Results on well-posedness of a broad range of rate-independent problems have
been established by exploiting this energetic approach. Applications include perfect plastic-
ity, which for the problem (1.21)–(1.30) corresponds to the case k1 = k2 = 0. In this case
the displacement belongs to the space BD(Ω) of functions of bounded deformation, that
is, integrable functions, whose symmetric gradients are bounded measures. The energetic
method has been the basis for analysis of the more complex problem of large-deformation
plasticity [18].

Both theoretical and numerical aspects of elastoplasticity and related mathematical prob-
lems continue to receive abundant attention. A major focus in recent years has been on
strain-gradient theories, which are extensions of the model presented here, and which are
appropriate models at the mesoscale, at which size effects are important. The extensions of
the results reported here to the strain-gradient case are treated in [10], while optimal O(h)
convergence rates are proved in [23] for finite element approximations of a model of strain-
gradient plasticity.
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the National Research Foundation for their support through the South African Research
Chair in Computational Mechanics.
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Uncertainty quantification in Bayesian inversion

Andrew M. Stuart

Abstract. Probabilistic thinking is of growing importance in many areas of mathematics. This paper
highlights the beautiful mathematical framework, coupled with practical algorithms, which results
from thinking probabilistically about inverse problems arising in partial differential equations.

Many inverse problems in the physical sciences require the determination of an unknown field from
a finite set of indirect measurements. Examples include oceanography, oil recovery, water resource
management and weather forecasting. In the Bayesian approach to these problems, the unknown and
the data are modelled as a jointly varying random variable, typically linked through solution of a partial
differential equation, and the solution of the inverse problem is the distribution of the unknown given
the data.

This approach provides a natural way to provide estimates of the unknown field, together with a quan-
tification of the uncertainty associated with the estimate. It is hence a useful practical modelling tool.
However it also provides a very elegant mathematical framework for inverse problems: whilst the
classical approach to inverse problems leads to ill-posedness, the Bayesian approach leads to a natural
well-posedness and stability theory. Furthermore this framework provides a way of deriving and devel-
oping algorithms which are well-suited to the formidable computational challenges which arise from
the conjunction of approximations arising from the numerical analysis of partial differential equations,
together with approximations of central limit theorem type arising from sampling of measures.

Mathematics Subject Classification (2010). Primary 35R30; Secondary 62C10.

Keywords. Inverse problems, Bayesian inversion, uncertainty quantification, Monte Carlo methods,
stochastic partial differential equations.

1. Introduction

Let X,R be Banach spaces and G : X → R. For example G might represent the forward
map which takes the input data u ∈ X for a partial differential equation (PDE) into the
solution r ∈ R. Uncertainty quantification is concerned with determining the propagation
of randomness in the input u into randomness in some quantity of interest q ∈ Q, with Q
again a Banach space, found by applying operatorQ : R → Q toG(u); thus q = (Q◦G)(u).
The situation is illustrated in Figure 1.1.

Inverse problems are concerned with the related problem of determining the input u
when given noisy observed data y found from G(u). Let Y be the Banach space where the
observations lie, let O : R → Y denote the observation operator, define G = O ◦ G, and
consider the equation

y = G(u) + η (1.1)

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Figure 1.1. Uncertainty Quantification

viewed as an equation for u ∈ X given y ∈ Y . The element η ∈ Y represents noise, and
typically something about the size of η is assumed known, often only in a statistical sense,
but the actual instance of η entering the data y is not known. The aim is to reconstruct u
from y. The Bayesian inverse problem is to find the the conditional probability distribution
on u|y from the joint distribution of the random variable (u, y); the latter is determined
by specifying the distributions on u and η and, for example, assuming that u and η are
independent. This situation is illustrated in Figure 1.2.

Figure 1.2. Bayesian Inverse Problem
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To formulate the inverse problem probabilistically it is natural to work with separable
Banach spaces as this allows for development of an integration theory (Bochner) as well as
avoiding a variety of pathologies that might otherwise arise; we assume separability from
now on. The probability measure on u is termed the prior, and will be denoted by μ0, and
that on u|y the posterior, and will be denoted by μy . Once the Bayesian inverse problems has
been solved, the uncertainty in q can be quantified with respect to input distributed accord-
ing to the posterior on u|y, resulting in improved quantification of uncertainty in comparison
with simply using input distributed according to the prior on u. The situation is illustrated in
Figure 1.3. The black dotted lines demonstrate uncertainty quantification prior to incorpo-
rating the data, the red curves demonstrate uncertainty quantification after the data has been
incoprorated by means of Bayesian inversion.

Figure 1.3. Uncertainty Quantification in Bayesian Inversion.

Carrying out the program illusrated in Figure 1.3 can have enormous benefits within a
wide-range of important problems arising in science and technology. This is illustrated in
Figure 1.4. The top two panels show representative draws from the prior (left) and posterior
(right) probability distribution on the geological properties of a subsurface oil field, whilst the
bottom two panels show predictions of future oil production, with uncertainty represented via
the spread of the ensemble of outcomes shown, again under the prior on the left and under
the posterior on the right. The unknown u here is the log permeability of the subsurface,
the data y comprises measurements at oil wells and the quantity of interest q is future oil
production. The map G is the solution of a system of partial differential equations (PDEs)
describing the two-phase flow of oil-water in a porous medium, in which u enters as an
unknown coefficient. The figure demonstrates that the use of data significantly reduces the
uncertainty in the predictions.

The reader is hopefully persuaded, then, of the power of combining a mathematical
model with data. Furthermore it should also be apparent that the set-up described applies to
an enormous range of applications; it is also robust to changes, such as allowing for correla-
tion between the noise η and the element u ∈ X.However, producing Figure 1.4, and similar
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Figure 1.4. Upper panels: typical draws from the prior (left) and posterior (right). Lower panels:
uncertainty in oil production under the prior (left) and posterior (right).

in other application areas, is a demanding computational task: it requires the full power of
numerical analysis, to approximate the forward map G, and the full power of computational
statistics, to probe the posterior distribution. The central thrust of the mathematical research
which underlies this talk is concerned with how to undertake such tasks efficiently. The key
idea underlying all of the work is to conceive of Bayesian inversion in the separable Banach
space X , to conceive of algorithms for probing the measure μy on X and, only once this has
been done, to then apply discretization of the unknown field u, to a finite dimensional space
R

N , and discretization of the forward PDE solver. This differs from a great deal of applied
work which discretizes the space X at the very start to obtain a measure μy,N on R

N , and
then employs standard statistical techniques on RN . The idea is illustrated in Figure 1.5. Of
course algorithms derived by the black route and the red route can lead to algorithms which
coincide; however many of the algorithms derived via the the black route do not behave well
under refinement of the approximation, N → ∞, whilst those derived via the red route do
since they are designed to work on X where N = ∞. Conceptual problem formulation and
algorithm development via the red route is thus advocated.

This may all seem rather discursive, but a great deal of mathematical meat has gone into
making precise theories which back-up the philosophy. The short space provided here is not
enough to do justice to the mathematics and the reader is directed to [72] for details. Here
we confine ourselves to a brief description of the historical context for the subject, given in
section 2, and a summary of some of the novel mathematical and algorithmic ideas which
have emerged to support the philisophy encapsulated in Figure 1.5, in sections 4 and 5.
Section 3 contains some examples of inverse problems which motivated the theoretical work
highlighted in sections 4 and 5, and may also serve to help the reader who prefers concrete
settings. Section 6 contains some concluding remarks.
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Figure 1.5. The red route is conceptually benefical in comparison with the black route.

2. Historical context

A cornerstone in the mathematical development of uncertainty quantification is the book
[28] which unified and galvanized a growing engineering community interested in problems
with random (uncertain) parameters. The next two and a half decades saw remarkable de-
velopments in this field, on both the applied and theoretical sides; in particular a systematic
numerical analysis evolved which may be traced through the series of papers [5–7, 15–
17, 58, 59, 61, 68, 76] and the referenes therein. Inverse problems have a long history and
arise in an enormous range of applications and mathematical formulations. The 1976 article
of Keller [37] is widely cited as foundational in the classical approach to inverse problems,
and the modern classical theory, especially in relation to PDE and integral equations, is
overviewed in a variety of texts: see [25, 38], for example.

The classical theory of inverse problems does not quantify uncertainty: typically it em-
ploys knowledge of the size of η but not its statistical distribution. However as long ago
as 1970 the possibility of formulating PDE inverse problems in terms of Bayes’ formula on
the space X was recognized by Franklin [27] who studied classical linear inverse problems,
such as inverting the heat kernel, from this perspective. That paper focussed on the rational
basis for deriving a regularization using the Bayesian approach, rather than on quantifying
uncertainty, but the posterior (Gaussian in this case) distribution did indeed provide a quan-
tification of uncertainty. However it is arguable that the work of Franklin was so far ahead
of its time that it made little impact when it appeared, primarily because the computational
power needed to approach practical problems from this perspective was not available. The
book of Kaipio and Somersalo [39] in 2005, however, had immediate impact, laying out a
Bayesian methodology for inverse problems, and demonstrating its applicability to a range
of important applications; computer power was ripe for the exploitation of fully Bayesian
analyses when the book was published. However the perspective in [39] corresponded es-
sentially to the black route outlined in Figure 1.5 (N < ∞) and did not take an infinite
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dimensional perspective in X .
In the interim between 1970 and 2005 there had been significant development of the

theory of Bayesian inversion in X for linear problems, building on the work of Franklin
[49, 53], and working directly in the infinite dimensional space X . Lasanen then developed
this into a fully nonlinear theory [44, 45, 47, 48], also working on X . This theoretical work
was not concerned directly with the development of practical algorithms and the need to
interface computational Bayesian practice with numerical analysis; in particular the need to
deal with limits N → ∞ in order to represent elements of X was not addressed. However
others within the Bayesian school of inverse problems were interested in this question; see,
for example, the paper [50]. Furthermore, in contrast to classical inversion, which is (of-
ten by definition [25]) ill-posed, Bayesian inversion comes with a desirable well-posedness
theory on X which, itself, underpins approximation theories [71]; we will survey some of
the developments which come from this perspective in what follows. Cousins of this well-
posedness theory on X may be found in the papers [54, 57] both of which consider issues
relating to perturbation of the posterior, in the finite dimensional setting N < ∞.

The primary applications which drive the theoretical and algorithmic developments high-
lighted in this article are in subsurface geophysics and in the atmosphere-ocean sciences. In
the subsurface two major forces for the adoption of the Bayesian approach to inversion have
been the work of Tarantola and co-workers and of Oliver and co-workers; see the books
[60, 75] for further references. In the ocean-atmosphere sciences the Bayesian perspective
has been less popular, but the book of Bennett [9] makes a strong case for it, primarily in
the oceanographic context, whilst the work of Lorenc [52] has been a powerful force for
Bayesian thinking in numerical weather prediction.

3. Examples

We provide in this section three examples to aid the reader who prefers concrete applications,
and to highlight the type of problems which have motivated the theoretical develepments
overviewed in the following sections. All of the examples can be placed in the general
framework of (1.1).

3.1. Linear inverse problem. Consider the bounded linear map K : X → Y , with X,Y
separable Banach spaces, and the problem of finding u ∈ X from noisy observations y of
the image of u under K, given by

y = Ku + η.

For example if u is the initial condition of the heat equation on bounded open set D ⊂ R
d,

X = L2(D) and K denotes the solution operator for the heat equation over time interval T ,
then this is a widely used example of a classically ill-posed inverse problem. Ill-posedness
arises beause of the smoothing property of the heat kernel and the fact that the noise η may
take y out of the range space of K. Further ill-posedness can arise, for example, if K is
found from the composition of the solution operator for the heat equation over time interval
T with an operator comprising a finite set of point evaluations; the need to find a function u
from a finite set of observations then leads to the problem being under-determined, further
compounding ill-posedness. Linear inverse problems were the subject of the foundational
paper [27], and developed further in [49, 53]. Natural applications include image processing.
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3.2. Data assimilation in fluid mechanics. A natural nonlinear generalization of the in-
verse problem for the heat equation, and one which is prototypical of the inverse problems
arising in oceanography and weather forecasting, is the following. Consider the Navier-
Stokes equation written as an ordinary differential equation in the Hilbert spaceX :=L2

div(T
2)

of square-integrable divergence-free functions on the two-dimensional torus:

dv

dt
+ νAv + B(v, v) = f, v(0) = u ∈ X.

This describes the velocity field v(x, t) for a model of incompressible Newtonian flow [73]
on a two-dimensional periodic domain. An inverse problem protoypical of weather forecast-
ing in particular is to find u ∈ X given noisy Eulerian observations

yj,k = v(xj , tk) + ηj,k.

Like the heat equation the forward solution operator is smoothing, and the fact that the ob-
servations are finite in number further compounds ill-posedness. In addition the nonlinearity
adds further complications, such as sensitive dependence on initial conditions arising from
the chaotic character of the equations for ν 5 1. There are many interesting variants on this
problem; one is to consider Lagrangian observations derived from tracers moving accord-
ing to the velocity field v itself, and the problem is prototypical of inverse problems which
arise in oceanography. Determining the initial condition of models from fluid mechanics
on the basis of observations at later times is termed data assimilation. Both Eulerian and
Lagrangian data assimilation are formulated as Bayesain inverse problems in [13].

3.3. Groundwater flow. The following is prototypical of inverse problems arising in hy-
drology and in oil reservoir modelling. Consider the Darcy Flow, with log permeability
u ∈ X = L∞(D), described by the equation

−∇ · (exp(u)∇p
)
= 0, x ∈ D,

u = g, x ∈ ∂D.

Here the aim is to find u ∈ X given noisy observations

yj = p(xj) + ηj .

The pressure p is a surrogate for the height of the water table and measurements of this
height are made by hydrologists seeking to understand the earths subsurface. The resulting
classical inverse problem is studied in [66] and Bayesian formulations are given in [21, 22].
The space L∞(D) is not separable, but this difficulty can be circumvented by working in
separable Banach spaces found as the closure of the linear span of an infinite set of functions
in L∞(D), with respect to the L∞(D)-norm.

4. Mathematical foundations

In this section we briefly outline some of the issues involved in the rigorous formulation of
Bayesian inversion on a separable Banach space X . We start by discussing various prior
models on X , and then discuss how Bayes’ formula may be used to incorporate data and
update these prior distributions on u into posterior distributions on u|y.
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4.1. Priors: Random functions. Perhaps the simplest way to construct random priors on
a function space X is as follows. Let {ϕj}∞j=1 denotes an infinite sequence in the Banach
space X , normalized so that ‖ϕj‖X = 1. Define the deterministic random sequence γ =
{γj}∞j=1 ∈ �pw(R), where �pw(R) denotes the sequence of p

th−power summable sequences,
when weighted by the sequence w = {wj}∞j=1. Then let ξ = {ξj}∞j=1 denote the i.i.d
sequence of centred random variables inR, normalized to thatEξ21 = 1.We define uj = γjξj
and pick a mean element m ∈ X and then consider the random function

u = m +
∞∑
j=1

ujϕj . (4.1)

The probability measure on the random sequence implies, via its pushforward under the
construction (4.1) a probability measure on the function u; we denote this measure by μ0.
Of course the fact that the ϕj are elements of X does not imply that μ0 is a measure on X:
assumptions must be made on the decay of the sequence γ. For example, using the fact that
the random sequence u = {uj}∞j=1 comprises independent centred random variables we find
that

E
μ0‖u − m‖2X =

∞∑
j=1

γ2
j .

This demonstrates that assuming γ = {γj}∞j=1 ∈ �2(R) is sufficient to ensure that the
random function is almost surely an element of X . If the space X itself is not separable,
this difficulty can be circumvented by working in a separable Banach space X ′ found as the
closure of the linear span of the ϕj with respect to the norm in X .

Expansions of the form (4.1) go by the name Karhunen-Loeve in the Gaussian case [1]
arising when ξ1 is a Gaussian random variable. The so-called Besov case was introduced
in [50] and concerns the case where ξ1 is distributed according to Lebesgue density pro-
portional to a power of exp(−| · |q), subsuming the Gaussian situation as the special case
q = 2. Schwab has been a leading proponent of random functions constructed using com-
pactly supported random variables ξ1 – see [68, 70] and the references therein; although not
so natural from an applications viewpoint, the simplicity that follows from this assumption
allows the study of key issues in uncertainty quantification and Bayesian inversion without
the need to deal with a variety of substantial technical issues which arise when ξ1 is not
compactly supported; in particular integrability of the tails becomes a key technical issue for
non-compactly supported ξ1, and there is a need for a Fernique theorem [26] or its analogue
[22, 50]. For a general treatment of random functions constructed as in (4.1) see the book
Kahane [36].

4.2. Priors: Hierarchical. There are many parameters required in the prior constructions
of the previous subsection, and in many applications these may not be known. In such
situations these parameters can be inferred from the data, along with u. Rather than giving
a general discussion we consider the example of Gaussian priors when X is a Hilbert space.
A draw u from a Gaussian is written as u ∼ N(m,C) where N(m,C) denotes a Gaussian
with mean m and covariance C. Here the covariance operator C is defined by

C = E
μ0(u − m)⊗ (u − m)

=
∞∑
j=1

γ2
jϕj ⊗ ϕj .
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Note that then
Cϕj = γ2

jϕj .

An example hierarchical prior may be constructed by introducing an unknown parameter δ,
which scales the covariance, and positing that

u|δ ∼ N(0, δ−1C).

δ ∼ Ga(α, β).

Here Ga denotes the Gamma distribution, and of course other prior assumptions on δ are
possible. The potential for the use of hierarchical priors in linear inverse problems has been
highlighted in several recent papers, see [8, 10, 11] for example, all in the finite dimensional
context; such models have been studied in the large dimension and infinite dimensional limit
in [2].

4.3. Priors: Geometric. The probability measures constructed through random functions
are inherently infinite dimensional, being built on an infinite sequence of random coeffi-
cients. In the previous subsection we showed how these could be extended to priors which
included an extra unknown parameter δ specifying the scale of the prior; there are numer-
ous generalizations of this basic concept. Here we describe one of them that is particularly
useful in the study of subsurface inverse problems where the geometry imposed by faults,
old fluival structures and so forth is a major determining fact in underground porous medium
fluid flow.

Examples of problems to which our theory applies may be found in Figure 4.1. In the
top left we show a layered structure in which a piecewise constant function is constructed;
this maybe generalized to include faults, as in the bottom left. The top right shows a gener-
alization of the layered structured to allow a different Gaussian random field realization in
each layer, and the bottom right shows a generalization to allow for a channel-like structure,
typical of fluvial deposition.

a1
b1

a2
b2

a3

b3...
...

an
bn ,

,

Figure 4.1. Uncertainty quantification under the prior and the posterior
.

The development of layered prior models was pioneered in [12]. The chanellized struc-
ture as prior was developed in [43] and [78]. All of this work was finite dimensional, but a
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theoretical frameowork subsuming these particular cases, and set in infinite dimensions, is
developed in [35].

4.4. Posterior. Recall that the Bayesuah solutiuon to the inverse problem of funding u from
data y given by (1.1) is to determine the probability distribution on u|y, which lives on the
space X , from the probability distribution of the joint random variable (u, y) which lives on
X × Y. In order to do this we specify to the situation where Y = R

J , so that the number of
observations is finite, and assume that η ∼ N(0,Γ), with Γ an invertible covariance matrix
on R

J . Many generalizations of this are possible, to both infinite dimensions or to non-
Gaussian noise η, but the setting with fnite dimensional data allows us to expose the main
ideas.

We define the model-data mismatch functional, or least squares functional, given by

Φ(u; y) :=
1

2

∣∣Γ− 1
2

(
y − G(u))∣∣2

where | · | denotes the Euclidean norm. Classical Bayesian inversion is concerned with min-
imizing Φ(·; y), typically with incoporation of regularization through addition of a penalty
term (Tikhonov regularization) or through specification of seeking minimizers within a com-
pact subset of X [25]. It is natural to ask how a Bayesian approach relates to such classical
approaches.

Bayes’ formula is typically stated as

P(u|y)
P(u)

∝ P(y|u)

and our wish is to formulate this precisely in the infinite dimensional context where u lives in
a separable Banach space. Given a prior measure μ0 on u and a posterior measure μy on u|y
a typical infinite dimensional version of Bayes’ formula is a statement that μy is absolutely
continuous with respect to μ0 and that

dμy

dμ0
(u) ∝ exp

(
−Φ(u; y)

)
. (4.2)

Note that the righ-hand side is indeed proportional to P(y|u) whilst the left-hand side is an
infinite dimensional analogue of P(u|y)

P(u) . The formula (4.2) implies that the posterior mea-
sure is large (resp. small), relative to the prior measure, on sets where Φ(·; y) is small (resp.
large). As such we see a clear link between classical inversion, which aims to choose ele-
ments of X which make Φ(·; y) small, and the Bayesian approach.

There is a particular structure which occurs in the linear inverse problem of subsection
3.1, namely that if η is distributed according to a Gaussian, then the posterior on u|y is
Gaussian if the prior on u is Gaussian; the prior and posterior are termed conjugate in this
situation, coming from the same class. See [3, 41] for a discussion of this Gaussian conju-
gacy for linear inverse problems in infinite dimensions.

4.5. Well-Posed posterior. For a wide range of the priors and examples given previously
there is a well-posedness theory which accompanies the Bayesian perspective. This theory
is developed, for example, in the papers [13, 21, 22, 35, 71]. This theory shows that the
posterior μy is Hölder in the Hellinger metric with respect to changes in the data y. The
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Hölder exponent depends on the prior, and is one (the Lipschitz case) for many applications.
However it is important to strike a note of caution concerning the robustness of the Bayesian
approach: see [62].

4.6. Recovery of truth. Consider data y given from truth u† by

y = G(u†) + ε η0, η0 ∼ N(0,Γ0).

Thus we have assumed that the data is generated from the model used to construct the poste-
rior. It is then natural to ask how close is the posterior measure μy to the truth u†? For many
of the preceding problems we have (refinements of) results of the type:

For any δ > 0, P
μy(|u − u†| > δ

)→ 0 as ε → 0.

Examples of theories of this type may be found for linear problems of subsection 3.1 in
[3, 4, 41, 42, 46, 65], for the Eulerian Navier-Stokes inverse problems of subsection 3.2 in
[67], and for the groundwater flow problem of subsection 3.3 in [77].

5. Algorithms

The preceding chapter describes a range of theoretical developments which allow for precise
characterizations of, and study of the properties of, the posterior distribution μy. These are
interesting in their own right, but they also underpin algorithmic approaches which aim to
be efficient with respect to increase of N in the approximation of μy by a measure μy,N on
R

N . Here we outline research in this direction.

5.1. Forward error= Inverse error. Imagine that we have approximated the space X by
R

N ; for example we might truncate the expansion (4.1) at N terms and consider the inverse
problem for the N unknown coefficients in the representation of u. We then approximate the
forward map G by a numerical method to obtain GN satisfying, for u in X ,

|G(u)− GN (u)| ≤ ψ(N) → 0

as N → ∞. Such results are in the domain of classical numerical analysis. It is interesting
to understand their implications for the Bayesian inverse problem.

The approximation of the forward map leads to an approximate posterior measure μy,N

and it is natural to ask how expectations under μy , the ideal expectations to be computed,
and under μy,N , expectations under which we may approximate by, for example statistical
sampling techniques, compare. Under quite general conditions it is possible to prove [18]
that, for an appropriate class of test functions f : X → S, with S a Banach space,

‖Eμy

f(u)− E
μy,N

f(u)‖S ≤ Cψ(N).

The method used is to employ the stability in the Hellinger metric implied by the well-
posedness theory to show that μy and μy,N are ψ(N ) close in the Hellinger metric and then
use properties of that metric to bound perturbations in expectations.

5.2. Faster MCMC. The preceding subsection demonstrates how to control errors arising
from the numerical analysis component of any approximation of a Bayesian inverse problem.
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Here we turn to statistical sampling error, and in particular to Markov Chain-Monte Carlo
(MCMC) methods. These methods were developed in the statistical physics community in
[56] and then generalized to a flexible tool for statistical sampling in [33]. The paper [74]
demonstrated an abstract framework for such methods on infinite dimensional spaces.

The full power of using MCMC methodology for inverse problems was highlighted in
[39] and used for interesting applications in the subsurface in, for example, [24]. However
for a wide range of priors/model problems it is possible to show that standard MCMC al-
gorithms, derived by the black route in Figure 1.5, mix in O(Na) steps, for some a > 0
implying undesirable slowing down as N increases. By following the red route in Figure
1.5, however, it is possible to create new MCMC algorithms which mix in O(1) steps.

The slowing down of standard MCMC methods in high dimensions is demonstrated by
means of diffusion limits in [55] for Gaussian priors and in [2] for hierarchical Gaussian
priors. Diffusion limits where then used to demonstrate the effectiveness of the new method,
derived via the red route in Figure 1.5, in [63] and a review explaining the derivation of such
new methods maybe found in [19]. The paper [31] uses spectral gaps to both quantify the
benefits of the method studied in [63] (O(1) lower bounds on the spectral gap) compared
with the drawbacks of traditional methods, such as that studied in [55] (O(N− 1

2 ) upper
bounds on the spectral gap.)

These new MCMC methods are starting to find their way into use within large-scale
engineering inverse problems and to be extended and modified to make them more efficient
in large data sets, or small noise data sets scenarios; see for examples [14, 20, 29].

5.3. Other directions. The previous subsection concentrated on a particular class of meth-
ods for exploring the posterior distribution, namely MCMC methods. These are by no
means the only class of methods available for probing the posterior and here we give a
brief overview of some other approaches that may be used.

The determinsitic approximation of posterior expectations, by means of sparse approxi-
mation of high dimensional integrals, is one approach with great potential. The mathemat-
ical theory behind this subject is overviewed in [68] in the context of standard uncertainty
quantification, and the approach is extended to Bayesian inverse problems and uncertainty
quantification in [70], with recent computational and theoretical progress contained in [69].

It is also possible to combine sparse approximation techniques with MCMC and the com-
putational complexity of this approach is analyzed in [32], and references to the engineering
literature, where this approach was pioneered, are given. The idea of multilevel Monte Carlo
[30] has recently been generalized to MCMC methods; see the paper [32] which analyzes
the computational complexity of such methods, and the paper [40] in which a variant on such
methods was introduced and implemented for the groundwater flow problem.

Another computational approach, widely used in machine learning when complex prob-
ability measures need to be probed, is to look for the best approximation of μy within some
simple class of measures. If the class comprises Dirac measures then such an approach is
known as maximum a posterior estimation and corresponds in finite dimensions, when the
posterior has a Lebesgue density, to finding the location of the peak of that density [39].
This idea is extended to the infinite dimensional setting in [23]. In the context of uncertainty
quantification the MAP estimator itself is not of direct use as it contains no information
about fluctuations. However linearization about the MAP can be used to compute a Gaus-
sian approximation at that point. A more sophisticated approach is to directly seek the best
Gaussian approximation ν = N(m,C) wrt relative entropy. Analysis of this in the infinite
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dimensional setting, viewed as a problem in the calculus of variations, is undertaken in [64].

6. Conclusions

Combining uncertainty quantification with Bayesian inversion provides formidable compu-
tational challenges relating to the need to control, and optimally balance, errors arising from
the numerical analysis, and approximation of the forward operator, with errors arising from
computational statistical probing of the posterior distribution. The approach to this prob-
lem outlined here has been to adopt a way of deriving and analyzing algorithms based on
thinking about them in infinite dimensional spaces, and only then discretizing to obtain im-
plementable algorithms in R

N with N < ∞. This requires formulation and analysis of the
Bayesian inverse problem in infinite dimensions. We have overviewed the mathematical the-
ory that goes into this formulation and analysis, in section 3, and overviewed the algorithmic
developments which follow from it, in section 4.

In some applications it is starting to be feasible to compute accurate approximations of
the Bayesian posterior distribution, and it is to be expected that there will be great strides
in this area over the next decade, both in terms of range of applications and algorithmic
innovation, with the latter based on the infinite dimensional perspective given here, but mak-
ing more careful exploitation of data and structure of the likelihood. Even where the fully
Bayesian approach is out of the question for the forseeable future, for example in weather
forecasting, the Bayesian approach described here can be important as it may be used as a
gold standard against which to benchmark algorithms which are useable in practice. This
approach is employed in [34, 51] in the context of model problems of the type shown in
sections 3.2 and 3.3, and variants on them.

Finally the reader is reminded that this article is in essay form and contains no mathe-
matical details. For an overview of the subject in which mathematical details are given the
reader is refered to [72].
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Abstract. Optimal portfolio construction is one of the most fundamental problems in financial mathe-
matics. The foundations of investment theory are discussed together with modeling issues and various
methods for the analysis of the associated stochastic optimization problems. Among others, the clas-
sical expected utility and its robust extension are presented as well as the recently developed approach
of forward investment performance. The mathematical tools come from stochastic optimization for
controlled diffusions, duality and stochastic partial differential equations. Connections between the
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reconciling normative and descriptive approaches.
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1. Introduction

Financial mathematics is a burgeoning area of research on the crossroads of stochastic pro-
cesses, stochastic analysis, optimization, partial differential equations, finance, economet-
rics, statistics and financial economics. There are two main directions in the field related,
respectively, to the so-called sell and buy sides of financial markets. The former deals with
derivative valuation, hedging and risk management while the latter with investments and
fund management.

Derivatives are financial contracts written on primary financial assets. Their develop-
ment started in the late 1970s with the revolutionary idea of Black, Merton and Scholes
of pricing via “perfect replication” of the derivatives’ payoffs. Subsequently, the universal
theory of arbitrage-free valuation, developed by Kreps, and Harrison and Pliska, was built
on a surprising fit between stochastic calculus and quantitative needs. It revolutionized the
derivatives industry, but its impact did not stop there. Because the theory provided a model-
free approach to price and manage risks, the option pricing methodology has been applied
in an array of applications, among others, corporate and non-corporate agreements, pension
funds, government loan guarantees and insurance plans. In a different direction, applica-
tions of the theory resulted in a substantial growth of the fields of real options and decision
analysis. Complex issues related, for example, to operational efficiency, financial flexibility,
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contracting, and initiation and execution of R&D projects were revisited and analyzed us-
ing derivative valuation arguments. For the last three decades, the theoretical developments,
technological advances, modeling innovations and creation of new derivatives products have
been developing at a remarkable rate. The recent financial crisis cast a lot of blame upon
derivatives and quantitative methods and, more generally, upon financial mathematics. De-
spite the heated debate on what went really wrong, the theory of derivatives remains one of
the best examples of a perfect match among mathematical innovation, technological sophis-
tication and direct real world applicability.

In the complementary side of finance practice, investments deal with capital allocation
under market uncertainty. The objective is not to eliminate the inherent market risks - as
it is the case with derivatives - but to exploit optimally the market opportunities while un-
dertaking such risks. The overall goal is to assess the trade-off between risks and payoffs.
For this, one needs to have, from the one hand, models that predict satisfactorily future asset
prices and, from the other, mechanisms that measure in a practically meaningful way the
performance of investment strategies. There are great challenges in both these directions.
Estimating the drift of stock prices is a notoriously difficult problem. Moreover, building
appropriate investment criteria that reflect the investors’ attitude is extremely complex, for
these criteria need to capture an array of human sentiments like risk aversion, loss aver-
sion, ambiguity, prudence, impatience, etc.. There is extensive academic work, based on the
foundational concept of expected utility, that examines such issues. However, there is still
a considerable gap between academic developments and investment practice, and between
normative and descriptive investment theories. In many ways, we have not yet experienced
the unprecedented progress that took place in the 1980s and 1990s when academia and the
derivatives industry challenged and worked by each other, leading to outstanding scientific
progress in financial mathematics and quantitative finance.

The aim of this paper is to describe the main academic developments in portfolio man-
agement, discuss modeling issues, present various methods and expose some of the current
challenges that the investment research faces.

2. Model certainty and investment management

Models of optimal investment management give rise to stochastic optimization problems
with expected payoffs. There are three main ingredients in their specification: the model for
the stochastic market environment, the investment horizon and the optimality criterion.

The market consists of assets whose prices are modelled as stochastic processes in an
underlying probability space. The associated measure is known as the real, or historical,
measure P. Popular paradigms of prices are diffusion processes (2.2), (2.3), Itô processes
(2.11) and, more generally, semimartingales (sections 3.1 and 3.2). When the price model is
known we say that there is no model uncertainty.

The trading horizon is the time during which trading takes place, typically taken to have
deterministic finite length. Depending on the application, the horizon can be infinitesimal
(high frequency trading), short (hedge funds), medium (mutual funds) or long (pension
funds). Models of infinite horizon have been also considered, especially when intermedi-
ate consumption is incorporated or when the criterion is asymptotic, like optimal long-term
growth, risk-sensitive payoff and others.

The optimality criterion is built upon the utility function, a concept measuring risk and
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uncertainty that dates back to D. Bernoulli (1738). He was the first to argue that utility should
not be proportional to wealth but, rather, have decreasing marginal returns, thus, alluding for
the first time to its concavity property. Bernoulli’s pioneering ideas were rejected at that
time and it took close to two centuries (with the exception of the work of Gossen) to be
recognized. In 1936, Alt and few years later von Neumann and Morgenstern proposed the
axiomatic foundation of expected utility and argued that the behavior of a rational investor
must coincide with that of an individual who values random payoffs using an expected utility
criterion. This normative work was further developed by Friedman and Savage, Pratt and
Arrow. In the latter works, the quantification of individual aversion to risk - via the so
called risk aversion coefficient - was proposed and few years later, Markowitz developed
the influential “mean-variance” portfolio theory. In 1969, Merton built a continuous-time
portfolio management model of expected utility for log-normal stock prices, and since then
the academic literature in this area has seen substantial growth. We refer the reader to the
review article [70] for further details and references.

The expected utility criterion enables us to quantify and rank the outcomes of investments
policies π by mapping the wealth Xπ

T they generate to its expected utility,

Xπ
T → EP (U (Xπ

T )) , (2.1)

where P is the aforementioned historical measure and U a deterministic function that is
smooth, strictly increasing and strictly concave, and satisfies appropriate asymptotic prop-
erties. The objective is then to maximize EP (U (Xπ

T )) over all admissible portfolios. The
portfolios are the amounts (or proportions of current wealth) that are dynamically allocated
to the different accounts. They are stochastic processes on their own and might satisfy (con-
trol) constraints, as it is discussed below.

There are two main directions in studying optimal portfolio problems. Under Marko-
vian assumptions for the asset price processes, the value function is analyzed via PDE
and stochastic control arguments applied to the associated Hamilton-Jacobi-Bellman (HJB)
equation. We discuss this direction in detail next. For more general market settings, the pow-
erful theory of duality is used. This approach yields elegant results for the value function and
the optimal wealth. The optimal portfolios can be then characterized via martingale repre-
sentation results for the optimal wealth process (see, among others, [27, 28, 30, 31, 55, 56]).
We discuss the duality approach in sections 3.1 and 3.2 herein.

2.1. A diffusion market model and its classical (backward) expected utility criterion.
We consider the popular paradigm in which trading takes place between a riskless asset
(bond) and a risky one (stock). The stock price is modelled as a diffusion process whose
coefficients depend on a correlated stochastic factor. Stochastic factors have been used in
a number of academic papers to model the time-varying predictability of stock returns, the
volatility of stocks as well as stochastic interest rates (for an extended bibliography, see the
review article [67]).

From the technical point of view, a stochastic factor model is the simplest and most
direct extension of the celebrated Merton model in which stock dynamics are taken to be
log-normal (see [40]). However, as it is discussed herein, relatively little is known about
the regularity of the value function, and the form and properties of the optimal policies once
the log-normality assumption is relaxed and correlation between the stock and the factor is
introduced. This is despite the Markovian nature of the problem at hand, the advances in the
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theories of fully nonlinear PDE and stochastic optimization of controlled diffusion processes,
as well as the available computational tools.

Specifically, complete results on the validity of the Dynamic Programming Principle,
smoothness of the value function, existence and verification of optimal feedback controls,
representation of the value function and numerical approximations are still lacking. The
only cases that have been extensively analyzed are the ones of homothetic utilities (exponen-
tial, power and logarithmic). In these cases, convenient scaling properties reduce the HJB
equation to a quasilinear one (even linear, see (2.9)). The analysis, then, simplifies consider-
ably both from the analytic as well as the probabilistic points of view (see, for example, [52]
and [66]).

The lack of rigorous results for the regularity and other properties of the value function,
when the utility function is general, limits our understanding of the structure of the optimal
policies. Informally speaking, the first-order conditions in the HJB equation yield that the
optimal feedback portfolio consists of two components (see (2.7)). The first is the so-called
myopic portfolio and has the same functional form as the one in the classical Merton prob-
lem. The second component, usually referred to as the excess hedging demand, is generated
by the stochastic factor. Conceptually, very little is understood about this term. In addition,
the sum of the two components may become zero which implies that it is optimal for a risk
averse investor not to invest in a risky asset with positive risk premium. A satisfactory expla-
nation for this counter intuitive phenomenon - related to the so-called market participation
puzzle - is also lacking.

We continue with the description of the market model. The stock price St, t ≥ 0, is
modelled as a diffusion process solving

dSt = μ (Yt)Stdt + σ (Yt)StdW
1
t , (2.2)

with S0 > 0. The stochastic factor Yt, t ≥ 0, satisfies

dYt = b (Yt) dt + d (Yt)
(
ρdW 1

t +
√

1− ρ2dW 2
t

)
, (2.3)

with Y0 = y, y ∈ R. The process Wt =
(
W 1

t ,W 2
t

)
, t ≥ 0, is a standard 2−dim Brownian

motion, defined on a filtered probability space (Ω,F ,P) . The underlying filtration is Ft =
σ (Ws : 0 ≤ s ≤ t) , and it is assumed that ρ ∈ (−1, 1) . The market coefficients f = μ, σ, b
and d satisfy global Lipschitz and linear growth conditions and the non-degeneracy condition
σ (y) ≥ l > 0, y ∈ R. The riskless asset offers constant interest rate r > 0.

Starting with an initial endowment x, at time t ∈ [0, T ) , the investor invests at fu-
ture times s ∈ (t, T ] in the riskless and risky assets. The present value of the amounts
allocated in the two accounts are denoted, respectively, by π0

s and πs. The investor’s (dis-
counted) wealth is, then, given by Xπ

s = π0
s + πs. It follows that it satisfies dXπ

s =

σ (Ys)πs

(
λ (Ys) ds+dW 1

s

)
, where λ (Ys) =

μ(Ys)−r
σ(Ys)

.

Aportfolio, πs, is admissible if it is self-financing,Fs-adapted,EP

(∫ T
t

σ2 (Ys)π
2
sds
)

< ∞
and the associated discounted wealth satisfies the state constraintXπ

s ≥ 0, P−a.s. We denote
the set of admissible strategies by A.

Frequently, portfolio constraints are also present which further complicate the analysis.
Notable cases are the so-called drawdown constraints, for which Xπ

t ≥ αmax0≤s≤t X
π
s

with α ∈ (0, 1) , leverage constraints, when |πt| ≤ g (Xπ
t ) for an admissible function g, and

stochastic target constraints, for which Xπ
T ≥ ZT for a random level ZT .
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The objective, known as the value function (or indirect utility), is formulated as

V (x, y, t;T ) = sup
A

EP (U (Xπ
T )| Ft,X

π
t = x, Yt = y) , (2.4)

for (x, y, t) ∈ R+×R× [0, T ]. The utility function U : R+ → R is C4 (R+) , strictly increas-
ing and strictly concave, and satisfies certain asymptotic properties (see, among others, [55]
and [56]). As solution of a stochastic optimization problem, the value function is expected
to satisfy the Dynamic Programming Principle (DPP), namely,

V (x, y, t) = sup
A

EP (V (Xπ
s , Ys, s)| Ft,X

π
t = x, Yt = y) , (2.5)

for s ∈ [t, T ] . This is a fundamental result in optimal control and has been proved for a
wide class of optimization problems. For a detailed discussion on the validity (and strongest
forms) of the DPP in problems with controlled diffusions, we refer the reader to [18] (see,
also [6, 8, 14, 33, 35, 65]). Key issues are the measurability and continuity of the value
function process as well as the compactness of the set of admissible controls. A weak ver-
sion of the DPP was proposed in [9] where conditions related to measurable selection and
boundness of controls are relaxed. Related results for the case of bounded payoffs can be
found in [3] and, more recently, new results appeared in [71].

Besides its technical challenges, the DPP exhibits two important properties of the value
function process. Specifically, the process V (Xπ

s , Ys, s) , s ∈ [t, T ] , is a supermartingale
for an arbitrary admissible investment strategy and becomes a martingale at an optimum
(provided certain integrability conditions hold). Moreover, observe that the DPP yields a
backward in time algorithm for the computation of the maximal expected utility, starting at
expiration with U and using the martingality property to compute the solution conditionally
for earlier times. For this, we occasionally refer to the classical problem as the backward
one.

The Markovian assumptions on the stock price and stochastic factor dynamics allow us
to study the value function via the associated HJB equation, stated in (2.6) below. Funda-
mental results in the theory of controlled diffusions yield that if the value function is smooth
enough then it satisfies the HJB equation. Moreover, optimal policies may be constructed
in a feedback form from the first-order conditions in the HJB equation, provided that the
candidate feedback process is admissible and the wealth SDE has a strong solution when the
candidate control is used. The latter usually requires further regularity on the value function.
In the reverse direction, a smooth solution of the HJB equation that satisfies the appropri-
ate terminal and boundary (or growth) conditions may be identified with the value function,
provided the solution is unique in the appropriate sense. These results are usually known
as the “verification theorem” and we refer the reader to [6, 8, 14, 33, 35, 65] for a general
exposition on the subject.

In maximal expected utility problems, it is rarely the case that the arguments in either
direction of the verification theorem can be established. Indeed, it is difficult to show a
priori regularity of the value function, with the main difficulties coming from the lack of
global Lipschitz regularity of the coefficients of the controlled process with respect to the
controls and from the non-compactness of the set of admissible policies. It is, also, difficult
to establish existence, uniqueness and regularity of the solutions to the HJB equation. This
is caused primarily by the presence of the control policy in the volatility of the controlled
wealth process which makes the classical assumptions of global Lipschitz conditions of the
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equation with regards to the non linearities to fail. Additional difficulties come from state
constraints and the non-compactness of the set of admissible portfolios.

Regularity results for the value function (2.4) for general utility functions have not been
obtained to date except, as mentioned earlier, for the special cases of homothetic preferences.
The most general result in this direction, and in a much more general market model, was
obtained using duality methods in [32] where it is shown that the value function is twice
differentiable in the spatial argument but without establishing the continuity of the derivative.
Because of lack of general rigorous results, we proceed with an informal discussion about
the optimal feedback policies. For the model at hand, the associated HJB equation is

Vt +max
π

(
1

2
σ2 (y)π2Vxx + π (μ (y)Vx + ρσ (y)d (y)Vxy)

)
(2.6)

+
1

2
d2 (y)Vyy + b (y)Vy = 0,

with V (x, y, T )=U (x) , (x, y, t) ∈ R+×R× [0, T ] .The verification results would yield that
under appropriate regularity and growth conditions, the feedback policy π∗s = π∗ (X∗

s , Ys, s) ,
s ∈ (t, T ] , with

π∗ (x, y, t) = −λ (y)

σ (y)

Vx (x, y, t)

Vxx (x, y, t)
− ρ

d (y)

σ (y)

Vxy (x, y, t)

Vxx (x, y, t)
, (2.7)

and Xπ∗
s solving dXπ∗

s = σ (Ys)π
(
Xπ∗

s , Ys, s
) (

λ (Ys)ds+ dW 1
s

)
, is admissible and opti-

mal.
Some answers to the questions related to the characterization of the solutions to the

HJB equation may be given if one relaxes the requirement to have classical solutions. An
appropriate class of weak solutions turns out to be the so called viscosity solutions ([11, 35,
36, 61]). Results related to the value function being the unique viscosity solution of (2.6)
are rather limited. Recently, it was shown in [50] that the partial Vx (x, y, t) is the unique
viscosity solution of the marginal HJB equation. Other results, applicable for non-compact
controls but for bounded payoffs, can be found in [3].

A key property of viscosity solutions is their robustness (see [36]). If the HJB has a
unique viscosity solution (in the appropriate class), robustness is used to establish conver-
gence of numerical schemes for the value function and the optimal feedback laws. Such
numerical studies have been carried out successfully for a number of applications. However,
for the model at hand, no such studies are available. Numerical results using Monte Carlo
techniques have been obtained in [12] for a model more general than the one herein. More
recently, the authors in [50] proposed a Trotter-Kato approximation scheme for the value
function and an algorithm on how to construct ε−optimal portfolio policies.

Important questions arise on the dependence, sensitivity and robustness of the optimal
feedback portfolio, especially of the excess hedging demand term, in terms of the market
parameters, the wealth, the level of the stochastic factor and the risk preferences. Such
questions are central in financial economics and have been studied, primarily in simpler
models in which intermediate consumption is also incorporated. Recent results for more
general models can be found, for example, in [34]. For diffusion models with a perfectly
correlated stochastic factor, qualitative results can be found, among others, in [29] and [62]
and for log-normal models in [7, 25, 42, 64]. However, a qualitative study for general utility
functions and/or arbitrary factor dynamics has not been carried out to date. Another open
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question, which is more closely related to applications, is how one could infer the investor’s
risk preferences from her investment targets. This is a difficult inverse problem and has been
partially addressed in [41] and [45].

Example 2.1. A commonly used utility function is the homothetic U (x) = xγ

γ , x ≥ 0,

γ ∈ (0, 1) . In this case, the value function is given by (see [66])

V (x, y, t) =
xγ

γ
(F (y, t))

δ (2.8)

where δ = 1−γ
1−γ+ρ2γ and F solves the linear equation

Ft +
1

2
d2 (y)Fyy +

(
b (y) + ρ

γ

1− γ
λ (y)a (y)

)
Fy +

1

2

γ

(1− γ) δ
λ2 (y)F = 0, (2.9)

with F (y, T ) = 1. The Feynman-Kac formula then yields the probabilistic representation

V (x, y, t) =
xγ

γ

(
EP̄

(
e
∫ T
t

1
2

γ
(1−γ)δ

λ2(Ȳs)ds
∣∣∣ Ȳt = y

))δ
(2.10)

where Ȳt, t ∈ [0, T ] , solves dȲt = (b
(
Ȳt

)
+ ρ γ

1−γλ
(
Ȳt

)
a
(
Ȳt

)
)dt+ d

(
Ȳt

)
dW P̄

t , with W P̄

being a standard Brownian motion under a measure P̄.

2.2. An Itô market model and its forward performance criterion. Besides the difficul-
ties discussed earlier, there are other issues that limit the development of a flexible enough
optimal investment theory in complex market environments. One of them is the “static”
choice of the utility function at the specific investment horizon. Indeed, once the utility
function is a priori specified, no revision of risk preferences is possible at any intermediate
trading time. In addition, once the horizon is chosen, no investment performance criteria
can be formulated for horizons longer than the initial one. As a result, extending the in-
vestment horizon (due to new incoming investment opportunities, change of risk attitude,
unpredictable price shocks, etc.) is not possible.

Addressing these limitations has been the subject of a number of studies and various
approaches have been proposed. With regards to the horizon length, the most popular al-
ternative has been the formulation of the investment problem in [0,∞) and either incorpo-
rating intermediate consumption or optimizing the investor’s long-term optimal behavior.
Investment modes with random horizon have been also considered, and the revision of risk
preferences has been partially addressed by recursive utilities (see, for example, [13] and
[59]).

An alternative approach which addresses both shortcomings of the expected utility ap-
proach has been proposed recently by the author and Musiela (see, [43–45]). The associated
criterion, the so called forward performance process, is developed in terms of a family of
utility fields defined on [0,∞) and indexed by the wealth argument. Its key properties are
the (local) martingality at an optimum and (local) supermartingality away from it. These
are in accordance with the analogous properties of the classical value function process, we
discussed earlier, which stem out from the Dynamic Programming Principle (cf. (2.5)). In-
tuitively, the average value of an optimal strategy at any future date, conditional on today’s
information, preserves the performance of this strategy up until today. Any strategy that fails
to maintain the average performance over time is, then, sub-optimal. We refer the reader to
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[44] and [45] for further discussion on this new concept and its connection with the classical
expected utility theory.

Next, we introduce the definition of the forward performance process and present old and
more recent results. The market environment consists of one riskless security and k stocks.
For i = 1, ..., k, the stock price Si

t , t > 0, is an Itô process solving

dSi
t = Si

t

(
μi
tdt + σi

t · dW j
t

)
(2.11)

with Si
0 > 0. The process Wt =

(
W 1

t , ...,W k
t

)
is a standard d−dim Brownian motion,

defined on a filtered probability space (Ω,F ,P) with Ft = σ (Ws : 0 ≤ s ≤ t) . The coeffi-
cients μi

t and σi
t, i = 1, ..., k, are Ft−adapted processes with values in R and R

d, respec-
tively. For brevity, we denote by σt the volatility matrix, i.e., the d×k randommatrix

(
σji
t

)
,

whose ith column represents the volatility σi
t of the ith risky asset. The riskless asset has

the price process B satisfying dBt = rtBtdt with B0 = 1, and a nonnegative Ft−adapted
interest rate process rt. Also, we denote by μt the k×1 vector with coordinates μi

t. The pro-
cesses μt, σt and rt satisfy the appropriate integrability conditions and it is further assumed
that (μt − rt1)∈Lin

(
σT
t

)
.

The market price of risk is given by the vector λt =
(
σT
t

)+
(μt − rt1) , where

(
σT
t

)+
is

theMoore-Penrose pseudo-inverse of σT
t . It is assumed that, for all t>0, EP

∫ t
0
|λs|2 ds<∞.

Starting at t = 0 with an initial endowment x ∈ D, D ⊆ [−∞,∞] , the investor invests
dynamically among the assets. The (discounted) value of the amounts invested are denoted
by π0

t and πi
t , i = 1, ..., k, respectively. The (discounted) wealth process is, then, given by

Xπ
t =
∑k

i=0 πi
t, and satisfies

dXπ
t =

k∑
i=1

πi
tσ

i
t · (λtdt + dWt) = σtπt · (λtdt + dWt) , (2.12)

where the (column) vector, πt =
(
πi
t; i = 1, ..., k

)
. The admissibility set, A, consists of

self-financing Ft−adapted processes πt such that EP

∫ t
0
|σsπs|2 ds < ∞, and Xπ

t ∈ D, for
t ≥ 0.

The initial datum is taken to be a strictly concave and strictly increasing function of
wealth, u0 : D → R with u0 ∈ C4 (D). The specification of admissible initial conditions
deserves special attention and is discussed later (see (2.20)).

Next, we present the definition of the forward performance process. The one below
is a relaxed version of the original definition, given in [44], where stronger integrability
conditions were needed.

Definition 2.2. An Ft−adapted process U (x, t) is a local forward performance process if
for t ≥ 0 and x ∈ D:

i) the mapping x → U (x, t) is strictly concave and strictly increasing,

ii) for each π ∈ A, the process U (Xπ
t , t) is a local supermartingale, and

iii) there exists π∗ ∈ A such that the process U
(
Xπ∗

t , t
)
is a local martingale.

Variations of the above definition have appeared, among others, in [15] and [49]. In [69],
the alternative terminology “self-generating”was introduced, for the forward performance
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satisfies, for all 0 ≤ t ≤ s,

U (x, t) = ess sup
A

EP (U (Xπ
s , s)| Ft, Xπ

t = x) . (2.13)

Note that in the classical (backward) case (0 ≤ t ≤ s ≤ T ) the above property is a di-
rect consequence of the DPP. In the forward framework, however, it defines the forward
performance process. Clearly, if for the backward problem with finite horizon T one uses
as terminal utility UT (x) = U (x, T ), the backward and the forward problems coincide on
[0, T ] .

The axiomatic construction of forward performance is an open problem, and results have
been derived only for the exponential case (see [69]). More recently, the authors in [49]
proposed a class of forward performances processes that are deterministic functions of un-
derlying stochastic factors (see, for example, (2.24) herein).

2.2.1. Stochastic PDE for the forward performance process. In [46] a stochastic PDE
was derived as a sufficient condition for a process to be a forward performance. In many
aspects, the forward SPDE is the analogue of the HJB equation that appears in the classical
theory of stochastic optimization.

Proposition 2.3.

i) Let U (x, t) , (x, t) ∈ D× [0,∞) , be an Ft−adapted process such that the mapping
x → U (x, t) is strictly concave, strictly increasing and smooth enough so that the Itô-
Ventzell formula can be applied to U (Xπ

t , t) , for any strategy π ∈ A. Let us, also,
assume that the process U (x, t) satisfies

dU (x, t) =
1

2

∣∣Ux (x, t)λt + σtσ
+
t ax (x, t)

∣∣2
Uxx (x, t)

dt + a (x, t) · dWt, (2.14)

where the volatility a (x, t) is an Ft−adapted, d−dimensional and continuously differ-
entiable in the spatial argument process. Then, U (Xπ

t , t) is a local supermartingale
for every admissible portfolio strategy π.

ii) Assume that the stochastic differential equation

dXt = −Ux (Xt, t)λt + σtσ
+
t ax (Xt, t)

Uxx (Xt, t)
· (λtdt + dWt)

has a solution Xt, with X0 = x, and Xt ∈ D, t ≥ 0, and that the strategy π∗t , t ≥ 0,
defined by

π∗t = −σ+
t

Ux (Xt, t)λt + ax (Xt, t)

Uxx (Xt, t)

is admissible. Then, Xt corresponds to the wealth generated by this investment strat-
egy, that is Xt = Xπ∗

t , t > 0. The process U
(
Xπ∗

t , t
)

is a local martingale and,
hence, U (x, t) is a local forward performance value process. The process π∗t is opti-
mal.

An important ingredient of the forward SPDE is the forward volatility process a (x, t) .
This is a novel model input that is up to the investor to choose, in contrast to the classical
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value function process whose volatility process is uniquely determined from its Itô decompo-
sition. In general, the forward volatility may depend explicitly on t, x, U and its derivatives,
as it is, for instance, shown in the examples below. More general dependencies and admissi-
ble volatility representations have been proposed in [15].

The initial condition u0(x) is an additional model input. In contrast to the classical
framework where the class of admissible (terminal) utilities is rather large, the family of
admissible forward initial data can be rather restricted.

The analysis of the forward performance SPDE (2.14) is a formidable task. The reasons
are threefold. Firstly, it is not only degenerate and fully nonlinear but is, also, formulated
forward in time, which might lead to “ill-posed” behavior. Secondly, one needs to specify
the appropriate class of admissible volatility processes, namely, volatility inputs that gener-
ate strictly concave and strictly increasing solutions of (2.14). The volatility specification is
quite difficult both from the modelling and the technical points of view. Thirdly, as men-
tioned earlier, one also needs to specify the appropriate class of initial conditions u0 (x) . As
it has been shown in [45] and discussed in the sequel, even the simple case of zero volatility
poses a number of challenges.

Addressing these issues is an ongoing research effort of several authors; see, among
others, in [4, 15, 16, 46, 49] and [51].

2.2.2. The time-monotone case and its variants. A fundamental class of forward perfor-
mance processes are the ones that correspond to non-volatile criteria, a (x, t) ≡ 0, t ≥ 0.
The forward performance SPDE (2.14) simplifies to

dU (x, t) =
1

2
|λt|2 U2

x (x, t)

Uxx (x, t)
dt, (2.15)

and, thus, its solutions are processes of finite variation. In particular, they are decreasing in
time, as it follows from the strict concavity requirement. The analysis of these processes was
carried out in [45], and we highlight the main results next.

There are three functions that play pivotal role in the construction of the forward perfor-
mance process, as well as of the optimal wealth and optimal portfolio processes. The first
function is u : D× [0,∞) → R,with u ∈ C4,1 (D× [0,∞)) , solving the HJB type equation

ut =
1

2

u2
x

uxx
, (2.16)

and satisfying an admissible initial condition, U (x, 0) = u0 (x) (see (2.20)).
The second function is the so-called local absolute risk tolerance r : D× [0,∞) → R+,

defined by r (x, t) = − ux(x,t)
uxx(x,t)

. It solves an autonomous fast-diffusion type equation,

rt +
1
2r

2rxx = 0, with r (x, 0) = − u′
0(x)

u
′′
0 (x,t)

.

The third is an increasing space-time harmonic function, h : R × [0,∞) → D, defined
via a Legendre-Fenchel type transformation

ux (h (x, t) , t) = e−x+ 1
2 t. (2.17)

It solves the (backward) heat equation

ht +
1

2
hxx = 0, (2.18)
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with initial condition h (x, 0) =
(
u

′
0

)(−1)

(e−x) .

Using the classical results of Widder (see [63]) for the representation of positive solu-
tions1 of (2.18), it follows that h (x, t) must be given in the integral form

h (x, t) =

∫
S

eyx−
1
2y

2t − 1

y
ν (dy) , (2.19)

where ν is a positive, finite, Borel measure with support S ∈ [−∞,∞] . Detailed analysis on
the interplay among the support S, the range of h, the structure and the asymptotic properties
of u can be found in [45]. It was also shown therein that there is a one-to-one correspondence
between such solutions of (2.18) to strictly increasing and strictly concave solutions of (2.16)
(see, Propositions 9, 13 and 14).

One then sees that the measure ν becomes the defining element in the entire construction,
for it determines the function h and, in turn, u and r. How this measure could be extracted
from various distributional investment targets is an interesting question and has been dis-
cussed in [41] and [45].

We also see that the definition (cf. (2.17)) of the auxiliary function h and its structural
representation (2.19) dictate that the initial utility u0 (x) , x ∈ D, is given by

(u′0)
(−1)

(x) =

∫
S

e−y ln x − 1

y
ν (dy) . (2.20)

In other words, only utilities whose inverse marginals have the above form can serve as initial
conditions. Characterizing the set of admissible initial data u0 (x) for general volatile per-
formance criteria and, moreover, provide an intuitively meaningful financial interpretation
for them is an interesting open question.

We summarize the general results next. As (2.21) and (2.22) below show, one obtains
rather explicit stochastic representations of the optimal wealth and portfolio policies, despite
the ill-posedness of the underlying problem, the complexity of the price dynamics, and the
path-dependence nature of all quantities involved.

Proposition 2.4. Let u : D × [0,∞) → R be a strictly increasing and strictly concave
solution of (2.16), satisfying an admissible initial condition u (x, 0) = u0 (x) , and r (x, t)
be its local absolute risk tolerance function. Let also h : R× [0,∞) → D be the associated
harmonic function (cf. (2.17)). Define the market-input processes At and Mt, t ≥ 0, as

Mt =

∫ t

0

λs · dWs and At = 〈M〉t =
∫ t

0

|λs|2 ds.

Then, the process U (x, t) = u (x,At) , t ≥ 0, is a forward performance. Moreover, the
optimal portfolio process is given by

π∗,xt = r
(
Xπ∗

t , At

)
σ+
t λt = hx

(
h(−1) (x, 0) + At + Mt, At

)
σ+λ. (2.21)

The optimal wealth process Xπ∗
t solves dXπ∗

t = σtσ
+
t λtr

(
Xπ∗

t , At

) · (λtdt + dWt) with
Xπ∗

0 = x, and is given by

Xπ∗
t = h

(
h(−1) (x, 0) + At + Mt, At

)
. (2.22)

1Widder’s results are not applied to h (x, t) directly, for it might not be positive, but to its space derivative
hx (x, t) .
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Representations (2.21) and (2.22) enable us to study the optimal processes in more de-
tail. Among others, one can draw analogies between option prices and their sensitivities
(gamma, delta and other “greeks”) and study analogous quantities for the optimal invest-
ments. Moreover, one can study the distribution of hitting times of the optimal wealth,
calculate its moments, running maximum, Value at Risk, expected shortfall and other invest-
ment performance markers.

Example 2.5.

i) Let D = R and ν = δ0, where δ0 is a Dirac measure at 0. Then, h (x, t) = x and
u (x, t) = 1 − e−x+ t

2 . The forward performance process is, for t ≥ 0, U (x, t) =

1− e−x+
At
2 (see [43] and [69]).

ii) Let D = R+ and ν = δγ , γ > 1. Then h (x, t) = 1
γ eγx−

1
2γ

2t. Since ν ((0, 1]) = 0,

it turns out that u (x, t) = kx
γ−1
γ e−

γ−1
2 t, k = 1

γ−1γ
γ−1
γ . The forward performance

process is, for t ≥ 0,

U (x, t) = kx
γ−1
γ e−

γ−1
2 At . (2.23)

There exist two interesting variants of the time-monotone forward performance process,
which correspond to non-zero volatility processes. To this end, consider the auxiliary pro-
cesses Yt, Zt, t ≥ 0, solving

dYt = Ytδt · (λtdt + dWt) and dZt = Ztϕt · dWt,

with Y0 = Z0 = 1 and the coefficients δt and ϕt being Ft−adapted and bounded (by a
deterministic constant) processes. We further assume that δt, ϕt ∈ Lin (σt) .

• The benchmark case: a (x, t) = −xUx (x, t) δt. Then, U (x, t) = u
(

x
Yt

, A
(δ)
t

)
with

A
(δ)
t =

∫ t
0
|λs − δs|2 ds is a forward performance process. The factor Yt normalizes

the wealth argument and, thus, can be thought as a benchmark (or a numeraire) in
relation to which one might wish to measure the performance of investment strategies.

• The market-view case: a(x, t) = U (x, t)ϕt. Then, U (x, t) = u
(
x,A

(ϕ)
t

)
Zt with

A
(ϕ)
t =

∫ t
0
|λs + ϕs|2 ds is a forward performance process. The factor Zt can be

thought as a device offering flexibility to the forward solutions in terms of the asset
returns. This might be needed if the investor has different views about the future market
movements or faces trading constraints. In such cases, the returns need to be modified
which essentially points to a change of measure, away from the historical one. This is
naturally done through an exponential martingale.

2.2.3. The stochastic factor case and its forward volatility process. We now revert to
the stochastic factor example with dynamics (2.2) and (2.3), studied earlier under the clas-
sical (backward) formulation, and we examine its forward analogue. To this end, consider a
process U (x, t) , t ≥ 0, given by

U (x, t) = v (x, Yt, t) , (2.24)

for a deterministic function v : R+×R× [0,∞). Then, the SPDE (2.14) takes the form

dU (x, t) =
1

2

(λ (Yt) vx (x, Yt, t) + ρd (Yt) vxy (x, Yt, t))
2

vxx (x, Yt, t)
dt
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+ρd (Yt) vy (x, Yt, t) dW
1
t +
√

1− ρ2d (Yt) vy (x, Yt, t) dW
2
t ,

with the forward volatility given by a (x, t) = (ρ,
√
1− ρ2)d (Yt) vy (x, Yt, t) . One then

sees that if v satisfies (2.6) but now with an admissible initial (and not terminal) condition,
say v (x, y, 0) = u0 (x) , the process given in (2.24) is a forward performance. Solving
(2.6) with an initial condition is an open problem because it not only inherits the difficulties
discussed in the previous section but, now, one needs to deal with the ill-posedness of the
HJB equation.

The homothetic case u0 (x) = xγ

γ , γ ∈ (0, 1) , has been extensively studied in [51].
Therein, it is shown that the forward performance process is given by an analogous to (2.8)
formula, namely,

U (x, t) =
1

γ
xγ (f (Yt, t))

δ (2.25)

provided that f (y, t) satisfies the linear equation (2.9) with initial (and not terminal) condi-
tion f (x, 0) = 1. This problem is more general than (2.18) due to the form of its coefficients,
and, thus, more involved arguments needed to be developed. The multi-dimensional ana-
logue of (2.25) was recently analyzed in [49]. Therein, f (y, t) solves a multi-dimensional
ill-posed linear problem with state-dependent coefficients. For such problems, there is no
standard existence theory. The authors addressed this by developing a generalized version
of the classical Widder’s theorem.

Forward versus backward homothetic utilities. It is worth commenting on the different fea-
tures of the three homothetic performance processes (2.10), (2.23) and (2.25). Tthe tradi-
tional value function (2.10) requires, for each s ∈ [t, T ) forecasting of the market price
of risk in the remaining trading horizon [s, T ) . In contrast, both (2.23) and (2.25) are con-
structed path-by-path, given the information for the market price of risk up to today, in [0, s] .
The process (2.23) is decreasing in time, while (2.25) is not.

3. Model uncertainty and investment management

In the previous section, a prevailing assumption was that the historical measure P is a priori
known. This, however, has been challenged by a number of scholars and gradually led to the
development of selection criteria under model uncertainty, otherwise known as ambiguity
or Knightian uncertainty. Pathbreaking work was done by Gilboa and Schmeidler in [22]
and [58] who built an axiomatic approach for preferences not only towards risk - as it was
done by von Neumann and Morgenstern for (2.1) - but also towards model ambiguity. They
argued that such preferences can be numerically represented by a “coherent” robust utility
functional of the form

Xπ
T → inf

Q∈Q
EQ (U (Xπ

T )) , (3.1)

where U is a classical utility function and Q a family of probability measures. These mea-
sures can be thought as corresponding to different “prior” market models and the above
infimum serves as the “worst-case scenario” in model misspecification.

A standard criticism for the above criterion, however, is that it allows for very limited,
if at all, differentiation of models with respect to their plausibility. As discussed in [57],
if, for instance, the family of prior models is generated from a confidence set in statistical
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estimation, models with higher plausibility must receive a higher weight than models in the
boundary of the confidence set. Furthermore, one should be able to incorporate information
from certain stress test models and observed discrepancies with outcomes of models of pos-
sible priors. Such shortcomings of criterion (3.1) stem primarily from the axiom of certainty
independence in [22]. Maccheroni et al. [37] relaxed this axiom and proposed a numerical
representation of the form

Xπ
T → inf

Q∈Q
(EQ (U (Xπ

T )) + γ (Q)) , (3.2)

where U is a classical utility function and the functional γ (Q) serves as a penalization
weight to each Q-market model.

The specification and representation of robust preferences and their penalty functionals
have recently attracted considerable attention. It turns out that there is a deep connection be-
tween them, monetary utility functionals and risk measures. The latter, denoted byϕ (X) and
ρ (X) , respectively, are mappings on financial positions X , represented as random variables
on a given probability space (Ω,F ,P) withX ∈ L∞. They are related as ϕ (X) = −ρ (X) .

Coherent risk measures were first introduced in [1] and were later extended to their con-
vex analogues by [19, 21, 23]. Risk measures constitute one of the most active areas in finan-
cial mathematics with a substantial volume of results involving several areas in mathematics
spanning from capacity theory and Choquet integration to BSDE, nonlinear expectations and
stochastic differential games.

The (minimal) penalty function associated with a convex risk measure and its associated
concave monetary utility functional, is defined, for probability measures Q 5 P, by

γ (Q) = sup
X∈L∞

(EQ (−X)− ρ (X)) = sup
X∈L∞

(ϕ (X)− EQ (X)) . (3.3)

Extending criterion (3.1) to (3.2) is in direct analogy to generalizing the coherent risk
measures to their convex counterparts. There is a substantial body of work on representation
results for (3.3) which is, however, beyond the scope of this article.

Recent generalizations to (3.2) include the case

Xπ
T −→ inf

Q.P

G (Q,EQ (U (Xπ
T ))) , (3.4)

where G is the dual function in the robust representation of a quasi-concave utility func-
tional.

In the sequel, we provide representative results on portfolio selection under the classical
robust criterion (3.2) and its recently developed robust forward analogue.

3.1. Classical robust portfolio selection. The problem of portfolio selection in a finite
horizon [0, T ] with the coherent robust utility (3.1) was studied by [53], [60] and others. Its
generalization, corresponding to the convex analogue (3.2), was analyzed, among others, in
[57] and we present below some of the results therein.

For an extensive overview of robust preferences and robust portfolio choice we refer the
reader to the review paper [20].

The market model in [57] is similar to the standard semimartingale model in [30] and
[31]. There is one riskless and d risky assets available for trading in [0, T ] , T < ∞. The
discounted price processes are modelled by a d−dim semimartingale St =

(
S1
t , ..., S

d
t

)
,
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t ∈ [0, T ] , on a filtered probability space
(
Ω,F , (Ft)0≤t≤T ,P

)
. For t ∈ [0, T ] , the control

policies αt =
(
α1
t , ..., α

d
t

)
are self-financing, predictable and S−integrable processes. The

associated discounted wealth process, Xα
t , is then given byXα

t = x+
∫ t
0
αs ·dSs, and needs

to satisfy Xα
t ≥ 0, t ∈ [0, T ] . This formulation is slightly different than the ones in sections

2.1 and 2.2 in that the controls αt now denote the number of shares (and not the discounted
amounts) held at time t in the stock accounts.

For x > 0, X (x) stands for the set of all discounted wealth processes satisfying X0 ≤ x
and Xt ≥ 0, t ∈ (0, T ] . The classical (absence of arbitrage) model assumption is that
M �= ∅, where M denotes the measures equivalent to P under which each Xt ∈ X (1) ,
t ∈ (0, T ] , is a local martingale (see [30]).

The value function of the robust portfolio selection problem is then defined, for x ≥ 0,
as

v (x) = sup
X∈X (x)

inf
Q∈Q

(EQ (U (XT )) + γ (Q)) , (3.5)

where γ is a minimal penalty function as in (3.3) and Q = {Q 5 P| γ (Q) < ∞} .
Because of the semimartingale assumption for the stock prices, classical stochastic opti-

mization arguments do not apply and the duality approach comes in full force. As mentioned
in the previous section, this approach has been extensively applied to portfolio choice prob-
lems and provides general characterization results of the value function and optimal policies
through the dual problem, which is in general easier to analyze. There is a rich body of work
in this area and we refer the reader, among others, to the classical references [28, 30, 31].

In the presence of model ambiguity, there is an extra advantage in using the duality
approach because the dual problem simply involves the minimization of a convex functional
while the primal one requires to find a saddle point of a functional which is concave in one
argument and convex in the other.

We now describe the main notions and results in [57]. We stress, however, that for
the ease of presentation we abstract from a number of detailed modeling assumptions and
technical conditions.

We recall that the convex conjugate of the utility function U is defined, for y > 0, as
Ũ(y)=supx>0 (U(x)− xy) . Then, for every measureQ, uQ (x)=supX∈X (x) EQ (U(XT ))
is a traditional value function as in (2.4). It was established in [30] that, for Q ∼ P with fi-
nite primal value function uQ (x) , the bidual relationships uQ (x) = infy>0 (ũQ (y) + xy)
and ũQ (y) = supx>0 (uQ (x)− xy) hold, where the dual value function ũQ (y) is given by

ũQ (y) = infY ∈YQ(y) EQ

(
Ũ (YT )

)
, for Q ∈ Q. The space YQ (y) is the set of all positive

Q−supermartingales such that Y0 = y and the product XY is a Q−supermartingale for all
X ∈ X (1) .

In analogy, one then defines in [57] the dual function of the robust portfolio problem by

ũ (y) = inf
Q∈Q

(ũQ (y) + γ (Q)) = inf
Q∈Q

inf
Y ∈YQ(y)

(
EQ

(
Ũ (YT )

)
+ γ (Q)

)
.

Then, for y > 0 such that ũ (y) < ∞, a pair (Q, Y ) is a solution to the dual convex
robust problem if Q ∈ Q, Y ∈ YQ (y) and ũ (y) = EQ(Ũ (YT )) + γ (Q) . Let also
Qe = {Q ∈ Q|Q ∼ P}.

Theorems 2.4 and 2.6 in [57] provide characterization results for the primal and dual
robust value functions, as well as for the optimal policies. In the next two propositions, we
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highlight some of their main results.

Proposition 3.1. Assume that for some x > 0 and Q0 ∈ Qe, uQ0 (x) < ∞ and that
ũ (y) < ∞ implies that, for some Q1 ∈ Qe, ũQ1 (y) < ∞. Then, the robust value function
u (x) is concave and finite, and satisfies

u (x) = sup
X∈X (x)

inf
Q∈Q

(EQ (U (XT )) + γ (Q)) = inf
Q∈Q

sup
X∈X (x)

(EQ (U (XT )) + γ (Q)) .

Moreover, the primal and the dual robust value functions u and ũ satisfy

u (x) = inf
y>0

(ũ (y) + xy) and ũ (y) = sup
x>0

(u (x)− xy) .

If ũ (y) < ∞, then the dual problem admits a solution, say (Q∗, Y ∗) that is maximal, in that
any other solution (Q, Y ) satisfies Q 5 Q∗ and YT = Y ∗

T , Q−a.s.

Note that the optimal measure Q∗ might not be equivalent to P (see, for instance, ex-
ample 3.2 in [57]). In such cases, one can show that the Q∗-market may admit arbitrage
opportunities.

The existence of optimal policies requires the additional assumption that for all y > 0
and each Q ∈ Qe the dual robust value function satisfies ũQ (y) < ∞.

Proposition 3.2. For any x > 0, there exists an optimal strategy X∗ ∈ X (x) for the robust
portfolio selection problem. If y > 0 is such that ũ′ (y) = −x and (Q∗, Y ∗) is a solution
of the dual problem, then X∗

T = I (Y ∗
T ) , Q

∗-a.s. for I (x) = −Ũ ′ (x) , and (Q∗, Y ∗) is a
saddle point for the primal robust problem,

u (x) = inf
Q∈Q

(EQ (U (X∗
T )) + γ (Q)) = EQ∗ (U (X∗

T )) + γ (Q∗) = uQ∗ (x) + γ (Q∗) .

Furthermore, the product X∗
t Y

∗
t Z∗t is a martingale under P, where Z∗t , t ∈ [0, T ] , is the

density process of Q∗ with respect to P.

Example 3.3. Examples of penalty functionals

• Coherent penalties: γ takes the values 0 or∞. Then, (3.2) reduces to (3.1).

• Entropic penalties: γ (Q) = H (Q|P), where the entropy function H is defined, for
Q 5 P, as

H (Q|P) =
∫

dQ

dP
ln

(
dQ

dP

)
dP = sup

Y ∈L∞

(
EQ (Y )− lnEP

(
eY
))

. (3.6)

In this case, infQ∈Q (EQ (U (XT )) + γ (Q)) = lnEP

(
e−U(XT )

)
and the robust port-

folio problem (3.5) reduces to the standard one of maximizing EP

(
e−U(XT )

)
.

• Dynamically consistent penalties: γt (Q) = EQ

(∫ T
t

h (ηs) ds
∣∣∣Ft

)
, t ∈ [0, T ) ,

where the filtration (Ft)t∈[0,T ] is generated by a d−dim Brownian motion. Then, for

every measureQ5P, there exists a d-dim predictable process ηt with
∫ T
0
|ηt|2 dt<∞,

Q-a.s. and dQ
dP = E (∫

0
ηt · dWt

)
T
where E (M)t = exp (Mt − 〈M〉t) for a contin-

uous semimartingale Mt. The function h satisfies appropriate regularity and growth
conditions (see example 3.4 in [57]). The specific choice h (x) = 1

2 |x|2 corresponds
to (3.6).
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• Shortfall risk penalties: γ (Q) = infλ>0

(
λx + λEP

(
f∗
(
1
λdQ/dP

)))
, for Q 5 P,

and where f : R → R is convex and increasing and x is in the interior of f (R),
and f∗ denotes its Legendre-Fenchel transform. The associated risk measure is given
by ρ (Y ) = inf {m ∈ R|EP (f (−Y − m)) ≤ x} , Y ∈ L∞, and is the well known
shortfall risk measure introduced by Föllmer and Schied. Its dynamic version is
weakly dynamically consistent but fails to be dynamically consistent.

• Penalties associated with statistical distance functions: γ (Q) = EP (g (dQ/dP)) , for
Q 5 P and suitable functions g.

3.2. Forward robust portfolio selection. We consider the model as in [69] with d + 1
securities whose prices, (S0;S) = (S0

t , S
1
t , ..., S

d
t ), t ≥ 0, with S0 = 1 (the numeraire)

and St, t ≥ 0, is a d-dim càdlàg locally bounded semimartingale on a complete filtered
probability space (Ω,F , (Ft)t∈[0,∞),P). The wealth process is given by Xα

t = x +
∫ t
0
αs ·

dSs, t ≥ 0. The set A of admissible policies consists of weight portfolios αt that are
predictable and, for each T > 0 and t ∈ [0, T ] , are S-integrable and Xα

t > −c, c > 0. We
denote the set of probability measures that are equivalent to P by Q. For further details and
all technical assumptions, see [69] and [26].

Definition 3.4.

i) A random field is a mapping U : Ω × R × [0,∞) → R which is measurable with
respect to the product of the optional σ-algebras on Ω× [0,∞) and B(R).

ii) A utility field is a random field such that, for t ≥ 0 and ω ∈ Ω, the mapping x →
U(ω, x, t) is P-a.s. a strictly concave and strictly increasing C1(R) function, and sat-
isfies the Inada conditions limx→−∞ ∂

∂xU(ω, x, t) = ∞ and limx→∞ ∂
∂xU(ω, x, t) =

0. Moreover, for each x ∈ R and ω ∈ Ω, the mapping t → U(ω, x, t) is càdlàg on
[0,∞), and for each x ∈ R and T ∈ [0,∞), U(·, x, T ) ∈ L1(P).

For simplicity, the ω−notation is suppressed in U(x, t). Next, the concept of an admis-
sible penalty function is introduced.

Definition 3.5.

i) Let T > 0 and t ∈ [0, T ] , and QT = {Q ∈ Q : Q|FT
∼ P|FT

}. Then, a mapping
γt,T : Ω×QT → R+∪{∞}, is a penalty function if γt,T is Ft-adapted, Q →γt,T (Q)
is convex a.s., for Q ∈ QT , and for κ∈L∞+ (Ft), Q → EQ (κγt,T (Q)) is weakly
lower semi-continuous on QT .

ii) For a given utility random field U(x, t), γt,T is an admissible penalty function if,
for each T > 0 and x ∈ R, EQ (U(x, T )) < ∞ for all Q ∈ Qt,T , with Qt,T =
{Q ∈ QT : γt,T (Q) < ∞, a.s.} .

Using the above notions, the following definition of the robust forward performance
process was proposed in [26]. Because of the presence of the penalty term in (3.7) below,
it is more convenient to formulate this concept in terms of the self-generation property (cf.
(2.13)).

Definition 3.6. Let, for t ≥ 0, U (x, t) be a utility field and, for T > 0 and t ∈ [0, T ] , γt,T
be an admissible family of penalty functions. Define the associated value field as a family of
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mappings u(·; t, T ) : L∞ → L0(Ft;R ∪ {∞}), given by

u(ξ; t, T ) = ess sup
π∈Abd

ess inf
Q∈Qt,T

(
EQ

(
U(ξ +

∫ T

t

αs · dSs, T )

∣∣∣∣∣Ft

)
+ γt,T (Q)

)
,

(3.7)
with ξ ∈ L∞ (Ft) and Abd being the set of admissible policies in A that yield bounded
wealth processes. Then, the pair (U, γt,T ) is a forward robust criterion if, for T > 0 and
t ∈ [0, T ], U(ξ, t) is self-generating, that is U(ξ, t) = u(ξ; t, T ), a.s..

Preliminary results for the dual characterization of forward robust preferences were re-
cently derived in [26]. The dual of the utility field U (x, t) is defined, for (y, t) ∈ R+ ×
[0,∞) , as Ũ (y, t) = supx∈R (U (x, t)− xy) . One, then, defines the dual value field, for
T > 0 and t ∈ [0, T ] , as the mapping ũ (·, t, T ) : L0

+

(Ft) −→ L0(Ft,R∪{∞}) given by

ũ(η; t, T ) = ess inf
Q∈Qt,T

ess inf
Z∈Za

T

(
EQ

(
Ũ
(
ηZt,T /Zt,T

Q, T
)∣∣∣Ft

)
+ γt,T (Q)

)
. (3.8)

Herein, Zt,T = ZT /Zt ( resp. Z
Q
t,T = ZQ

T /ZQ
t ), where Zs (resp. ZQ

s ), s = t, T, is the well
known density process for the absolutely continuous local martingale measures (resp. Q)
(for further details, see [69]).

In turn, the pair
(
Ũ , γt,T

)
, for an admissible family of penalty functions γt,T , is said to

be self-generating if Ũ(η, t) = ũ(η; t, T ), for all η ∈ L0
+(Ft). Under additional assump-

tions, it was shown in [26] that the primal and the dual value fields satisfy, for all T > 0
and t ∈ [0, T ], the bidual relationships u(ξ; t, T ) = essinfη∈L0

+(Ft) (ũ(η; t, T ) + ξη) and
ũ(η; t, T ) = ess supξ∈L∞(Ft) (u(ξ; t, T )− ξη) , for ξ ∈ L∞(Ft) and η ∈ L0

+(Ft). It was
also shown that the primal criterion (U, γt,T ) is self-generating, and thus a forward robust

criterion, if and only if its dual counterpart
(
Ũ , γt,T

)
is self-generating.

There are several open questions for the characterization and construction of the robust
forward performance process. For example, there are certain assumptions on Qt,T in Defi-
nition 3.5 (see Assumption 4.5 in [26]) which might be difficut to remove. Another issue is
whether the penalty functions need to be themselves dynamically consistent, in that whether
they need to satisfy γt,T (Q) = γt,s(Q) + EQ (γs,T (Q)| Ft) , for T > 0 and t ∈ [0, T ] . As
Definition 3.5 stands, this property is not needed as long as the pair (U (x, t) , γt,T ) is self-
generating. However, examples (either for the primal or the dual forward robust criterion)
for non dynamically consistent penalty functions have not been constructed to date. We re-
mind the reader that classical robust utilities are well defined even if the associated penalties
are not time-consistent, with notable example being the penalty associated with the shortfall
risk measure. It is not clear, however, if in the forward setting such cases are indeed viable.

Because of the model ambiguity and the semimartingale nature of the asset prices, it is
not immediate how to obtain the robust analogue of the forward performance SPDE (2.14).
Some cases have been analyzed in [26]. Among others, it is shown that when asset prices
follow Itô processes and the forward robust criterion is time-monotone, then its dual Ũ (x, t)
solves a fully non-linear ill-posed PDE with random coefficients.

The time-monotone case with logarithmic initial datum, U (x, 0) = lnx, and time-
consistent quadratic penalties can be explicitly solved. The optimal policy turns out to be a
fractional Kelly strategy, which is widely used in investment practice. The fund manager in-
vests in the growth optimal (Kelly) portfolio corresponding to her best estimate of the market
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price of risk. However, she is not fully invested but, instead, allocates in stock a fraction α∗t
of her optimal wealth that depends on her “trust” in this estimate. Her “trust” is modelled by
a process δt that appears in the quadratic penalty. As δt ↑ ∞ (infinite trust in the estimation),
α∗t converges to the classical Kelly strategy associated with the most likely model while if
δt ↓ 0 (no trust in the estimation), α∗t converges to zero and deleveraging becomes optimal.

4. Concluding remarks

Despite the numerous advances on the theoretical development and analysis of portfolio
management models and their associated stochastic optimization problems, there is rela-
tively little intersection between investment practice and academic research. As mentioned
in the introduction, the two main reasons for this are the fundamental difficulties in esti-
mating the parameters for the price processes and the lack of practically relevant investment
performance criteria.

While estimating the volatility of stock prices is a problem extensively analyzed (see, for
example, [2] and [47]), estimating their drift is notoriously difficult (see, among others, [17]
and [39]). Note that drift estimation is not an issue in derivative valuation, for pricing and
hedging do not require knowledge of the historical measure but, rather, of the martingale
one(s). As a result, there is no need to estimate the drift of the underlying assets. Recently,
a line of research initiated by S. Ross ([54]) on the so called Recovery Theorem investigates
if the historical measure can be recovered from its martingale counterpart(s) (see also [10]).

The lack of a realistic investment performance criterion poses equally challenging ques-
tions. There are two issues here: the form of the criterion per se, and its dynamic and
time-consistent nature. A standard criticism from practitioners is that utility functions are
elusive and inapplicable concepts. Such observations date back to 1968 in the old note of
F. Black ([5]). Indeed, in portfolio practice, managers and investors have investment targets
(expected return, volatility limits, etc.) and companies have constraints on their reserves and
risk limits, and it is quite difficult, if possible at all, to map these inputs to a classical utility
function. The only criterion that bridges part of this gap is the celebrated mean-variance
one, developed by H. Markowitz ([38]), which corresponds to a quadratic utility with coef-
ficients reflecting the desired variance and associated optimal mean. However, this widely
used criterion is essentially a single-period one. In a multi-period setting, it becomes time-
inconsistent, in contrast to criteria used in derivative pricing which are by nature dynamically
consistent. It is not known to date how to construct genuinely dynamic and time-consistent
mean-variance or other practically relevant investment criteria. Some attempts towards this
direction can be found in the recent works [48] and [68].

Acknowledgements. The author would like to thank B. Angoshtari and S. Kallblad for their
comments and suggestions.
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The internet and the popularization of
mathematics

Étienne Ghys

Abstract. In this paper, “popularization of mathematics” is understood as the attempt to share some of
the current mathematical research activity with the general public. I would like to focus on the internet
as a powerful tool to achieve this goal. I report on three personal experiences: the making of two
animation films available on the web, the participation to a web-journal aimed at a wide audience, and
the filming of a 15 minute video clip.

Mathematics Subject Classification (2010). Primary 00A09, 97A80; Secondary 97A40.

Keywords. Popularization of mathematics, internet.

1. Introduction

Even though the International Congress of Mathematicians has been devoting one of its
sections to mathematical education for quite some time, the inclusion of “popularization” in
its realm is rather recent. Only five talks discussed this topic in previous congresses [11, 20–
22, 25]. Among these contributions, I would like to mention Ian Stewart’s article which
analyzes in depth the many possible types of media which can be used for popularization.
He focuses on magazines, newspapers, books, radio and television but barely mentions the
internet. Eight years later, the internet is unavoidable. It has changed our everyday life, be
it private or professional. I am convinced that in 2014, the internet should be the main tool
for the popularization of mathematics and that the mathematical community has the duty of
learning how to use this incredible communication instrument. This is not easy and much
remains to be done.

I would like to report on three very specific experiences in which I have been involved
in recent years: the production of two mathematical films freely available on the web, the
creation of a web-based journal aimed at a wide audience and the recording of a very short
clip for the web. My intention is to illustrate some of the difficulties that mathematicians can
encounter in these kinds of ventures and to propose possible improvements.

This paper is not an attempt to describe in a systematic way all the issues related to
mathematics and the internet. My only purpose is to give an account of a very personal
experience.

It is a pleasure to thank Jos Leys and Aurélien Alvarez for their collaboration, as well
as all the members of the editorial board of Images des Mathématiques. I also thank Marie
Lhuissier for her very helpful comments.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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2. Why popularization?

Amazingly, most articles related to popularization begin with a section trying to explain
why this is a honorable occupation. A similar section in a paper dedicated to geometry
or topology, for example, would seem inappropriate in the proceedings of the ICM. It is
a fact that most of our colleagues are not convinced that popularization is a respectable
mathematical activity. There is a need for justification.

My first comment would be that preparing any kind of “popular” presentation is a real
challenge, and very frequently forces you to understand much better the topic you want
to present: a profitable investment for mathematicians! In [13] Sir Christopher Zeeman
explained that after delivering his Christmas lectures in 1978 [24], he received a message
from the chairman of the British Science Research Council who “tickled him off for wasting
his time popularizing on TV instead of doing research”. Zeeman answered that these lectures
had in fact inspired a research paper in dynamical systems.

Let me quote David Hilbert in the introduction of his famous lecture in Paris during the
ICM 1900[12]1 .

“A mathematical theory is not to be considered complete until you made it so
clear that you can explain it to the man you meet on the street. For what is clear
and easily comprehended attracts and the complicated repels us.”

Moreover, again from an egocentric point of view, popularization (like teaching) is highly
rewarding for the working mathematician. A typical research paper has a few dozens readers
(in favorable cases) and this can be frustrating, but a good popular paper can easily be read
by thousands of web-users.

At the wider level of mathematics as a whole, Lásló Lovász explains clearly the impor-
tance of communication [19]:

“A larger structure is never just a scaled-up version of the smaller. In larger and
more complex animals an increasingly large fraction of the body is devoted to
“overhead”: the transportation of material and the coordination of the function
of various parts. In larger and more complex societies an increasingly large
fraction of the resources is devoted to non-productive activities like transporta-
tion information processing, education or recreation. We have to realize and
accept that a larger and larger part of our mathematical activity will be devoted
to communication.”

Note that this comment primarily applies inside mathematics, with all its subcultures
in danger of blowing up into many disconnected components. But it also applies to the
communication from inside to outside mathematics, which is the subject of popularization.
The ever expanding mathematical body requires more elaborate and stronger links to remain
connected to the society at large.

In the same paper, Lovász asks for a special training of our students:

“While full recognition of expository work is still lacking, the importance of
it is more and more accepted. On the other hand, mathematics education does
little to prepare students for this. Mathematics is a notoriously difficult subject

1 As a matter of fact, Hilbert quotes “un mathématicien français du temps passé” who seems to be Gergonne.
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to talk about to outsiders (including even scientists). I feel that much more effort
is needed to teach students at all levels how to give presentations, or write about
mathematics they learned. (One difficulty may be that we know little about the
criteria for a good mathematical survey).”

From another point of view, the necessity of popularizing mathematics is a direct con-
sequence of the significant decrease of the number of math students, or more generally of
scientific students: it is therefore a matter of survival for our discipline. It is our duty to
explain to the young generation why mathematics is so beautiful and gratifying, and can be
a wonderful option for their careers. A few decades ago, the prestige of science in society
was much higher and there was some kind of natural flux coming into mathematics.

Of course, one should emphasize that popularizing mathematics does not only consist in
advertising academic careers and in producing more research mathematicians! There is also
an obvious utilitarian economic issue since our contemporary world needs more scientists
and therefore more mathematicians. If we want more engineers, scientists and mathemati-
cians, we need a general population which is at least aware of the existence of mathemati-
cians. A significant part of the population is indeed convinced that there is nothing more to
do in mathematics, and that the field has been closed since the ancient Greeks. Somehow, the
most important goal of popularization is not necessarily to convey a specific mathematical
content, but to explain that math/science could be a real option for themselves, or for their
kids, or at least to show that it is a respectable activity, useful for society at large. More than
two thousand years ago, Archimedes wrote Sand-Reckoner as a letter to his powerful king.
That was a way of expressing the necessity of science for his kingdom. Today, we do not
care about kings, but taxpayers want to understand what we are doing with their money and
they deserve candid answers.

One should of course not forget the cultural aspect of mathematics, so obvious for pro-
fessional mathematicians and so unknown to the general population. We have to explain that
it is important for the “man on the street” to have some taste for mathematics (or science in
general) in the same way as, for instance, it is important to enjoy the arts. Such a taste is not
necessarily related to the “usefulness” of mathematics, say for economics or engineering sci-
ences, and does not require a deep understanding of technical details. One should make clear
that mathematics can be fun and interesting to everybody, just as literature can be enjoyed at
many levels.

The choice of popularizing science is clearly a political and democratic issue. As a
historical example, in 1841 François Arago, then director of the Paris observatory, built a
large lecture hall in the heart of the main building, entirely dedicated to his weekly lectures
on “Popular Astronomy”. These lectures, aimed at the general public, were indeed a great
popular success (see the marvelous notes [2]). His successor, Urbain Leverrier, decided to
transform the observatory into an efficient modern laboratory, fully devoted to research. He
demolished Arago’s lecture hall2 :

“The amphitheater is and will remain purposeless. The Observatory should not
compete with the organizations of public instruction located in the very center
of Paris, which suffice for their task. An institution which is requested to work
at the progress of science [...] must look for the most absolute tranquility” [17].

Two great scientists and two different approaches to the relationship between science and

2 and turned it into a private apartment for his personal use!
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society.
For more on this topic, including a discussion on the history of popularization, I refer

to [13].

3. The specificity of the internet

Of course, mathematics is already present at many levels on the internet. One finds thou-
sands of blogs, some of them very popular among... professional mathematicians (for ex-
ample Tao’s blog) but most are not related to popularization. One also finds many websites
of teachers sharing their enthusiasm for mathematics but they are usually connected to edu-
cation and not to mathematical research. The Khan Academy provides a fantastic example
of an internet access to education: it contains thousands a short clips covering mathematics
from elementary to high school (and even some calculus). Wikipedia is an incredible success
in general, and in mathematics in particular, but one should probably not qualify it as pop-
ularization. I would like to restrict myself here to websites dedicated to the presentation of
some current mathematical developments to the general population (and therefore not aimed
at professional mathematicians). Even with this restriction, one finds hundreds of websites,
from individual blogs (for instance www.science4all.org) to institutional ones (among many
more examples accromath.uqam.ca, plus.maths.org, maddmaths.simai.eu, interstices.info).
Many institutions have subsections of their home pages devoted to outreach (for example,
www.simonsfoundation.org).

The internet is an incredible jungle. Unlike mathematical papers or books, which are
more or less built on similar structures, there is no unity on the web. The first mistake
would be to try to export our professional habits and to produce webpages which look like
mathematical books, with theorems and lemmas. A new tool should not be used to do what
we have been doing for many years, even if we can do it faster or more easily : it should
instead be used to do something new and more efficient.

Pictures, movies, music, podcasts or apps provide innovative and fascinating instruments
to communicate mathematics, in a way which is very different from traditional texts. It is
not the purpose of this paper to discuss the potential use of these new tools in research but
I mention for instance that some online mathematical journals include short videos by the
authors, presenting their own papers3 .

In the domain of popularization, the possibilities are infinite and are still to be explored.
As an example, one could easily break the traditional ordering in a mathematical text and let
the reader-viewer-listener4 choose his/her own trajectory inside a rich network of possibili-
ties, according to his/her own background or taste, making him/her more of an actor than a
passive reader. This may be the most important paradigmatic shift implied by the internet :
from information organized in totally ordered lists to information located in a network. One
could almost say that the information is not located on specific places but coincides with the
network as a whole. A graph is much more than its vertices.

3 Could a movie be considered as a bona fide proof of a theorem? Hilbert discusses the status of a picture:
“The use of geometrical signs as a means of strict proof presupposes the exact knowledge and complete mastery
of the axioms which underlie those figures; and in order that these geometrical figures may be incorporated in the
general treasure of mathematical signs, there is necessary a rigorous axiomatic investigation of their conceptual
content” [12]. For instance, the movie Outside In is very close to an actual proof of Smale’s inversion theorem [18].

4 The internet does not give access to smell, taste and touch... so far!
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One should realize that when we surf the internet, we hop from webpage to webpage and
usually spend a very short time on a given page. The typical “bounce rate” of a website is
about 1/2: after viewing the entry page, half of the visitors immediately go somewhere else.
Also, web-users do not read linearly, from top to bottom. One could argue that similar facts
also apply to mathematical books or papers and that nowadays most of us “read” dozens
of preprints at the same time, hopping from theorem to theorem, in the hope of finding
something that could be useful for our research. However, the two hopping styles are very
different. We should study and understand much better this new reading style on the web,
closer to a random walk in a graph than to a motionless scholar reading in a library.

A related aspect of the internet, which is a priori in contradiction with the spirit of mathe-
matical research, is its incredible speed and reactivity. Mathematicians usually spend months
(or years) writing papers which will be read by a handful of people while web-users spend a
few minutes posting tags with an improbable spelling on their Facebook Wall. Clearly these
are two different communication modes and we should be able to switch from one to the
other, keeping in mind their advantages and drawbacks. Inside the realm of mathematical
research, nobody would deny the fundamental importance of long, difficult and carefully
written papers. This requires time and is not compatible with “speed science”. At some
other moments, the researcher needs a quick answer to a specific question and he or she can
frequently get immediate answers from MathOverflow : the “blog” style is efficient in these
cases.

Is “speed science” compatible with popularization? Does it make sense for graduate stu-
dents to participate in tournaments like the Three Minute Thesis competition? Even though
most of us are reluctant to work at such a speed and look for peace, the answer to these
questions has to be yes, if we do not want to lose contact with the younger generation. More
importantly, in many cases (but nor all), I believe that a good popularization can be speedy,
especially when the expected public has no connection at all with mathematics.

Another important aspect that makes the internet different is related to the validation
problem. Everything can be posted on the internet, the best and the worst. No “referees” are
present to prevent mistakes. Very often the general public would like to get some kind of
certification that the content of a webpage is valid. This should be the role of mathematicians
and we have to be creative in this respect. Can we trust the “wisdom of the crowds” and
promote some verification in which everyone is encouraged to participate, in the spirit of
Wikipedia? On the contrary, should we “export” some of our traditional refereeing methods
based on anonymity?

The internet is the kingdom of wild plagiarism. It is amazing to see how a given text
can travel from place to place, often subject to various “simplifications” or “additions”, fre-
quently with no mention of the original author. Mathematicians should understand that it
is in some sense a great honor that their contributions are “duplicated” in many places. Of
course, ideally, this should be done under the control of the author, but it is much better to
accept it as a rule of the game. Trying to prevent this natural diffusion would be fighting a
rearguard battle.

All these apparent drawbacks should be seen positively as powerful new opportunities.
The ability to get information on almost any aspect of knowledge within a few clicks is
of course a revolution. Older mathematicians remember their endless searches in libraries,
going through the many (paper) volumes of Mathematical Reviews. Today, the published
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mathematical literature is easily available5 and arxiv.org provides access to preprints in real
time. This high connectivity did not only change the everyday life of researchers. Ama-
teurs surfing the web can now find quickly all kinds of information, for example on popular
mathematics... if we know how to create easily accessible quality websites.

In a nutshell, the internet is working in a way which may not always look compatible
with our tradition. We have to adapt and to learn how to play this new wonderful instrument.

4. First example: Dimensions and Chaos

4.1. Genesis of the project. In 2006, as I was preparing slides for a general public talk [6],
I wanted to use some mathematical images that I liked on the website www.josleys.com. I
therefore asked the webmaster for permission to use them. After my talk, I thanked him
and asked for more information concerning his website. Jos Leys is a mechanical engineer
who recently retired from a major chemical company. “At last, I can do mathematics!”, he
told me... Jos’ mathematical background is typical for an engineer trained forty years ago:
he had mastered pretty well classical analytic and differential geometry, but of course has
no idea of contemporary mathematics at a research level. However, he has been interested
in fractal geometry and computers since the early 80’s. He genuinely loves mathematics.
An article in Pour la Science portrayed him as an artist-geometer. At the same time, I was
preparing a plenary lecture for ICM 2006 and my intention was to present, among other
things, a result connecting periodic orbits in the Lorenz attractor and closed geodesics on the
modular surface [7]. To my mind, this was a very visual theorem, but I did not know how to
transform in practice my imprecise mental images into actual images. I therefore asked Jos
for help in producing pictures. We did produce beautiful pictures, some of them being rather
intricate, in particular those related to modular forms. Quickly, we realized that in order to
explain ideas from dynamical systems, it was in fact best to use pictures in motion: movies!
I was quite satisfied with the result and about one third of my talk in Madrid turned out to
consist of movies. After the talk, Jos told me: “Now you have to explain to me the meaning
of the movies I prepared with you”. I was facing Hilbert’s challenge: to make it so clear that
you can explain it to the man you meet on the internet.

We first wrote some kind of “visual article”, including movies, that we published in the
web Feature column of the AMS [10]. However, this was not aimed at a “popular level”
and Jos wanted something much more elementary. For instance, it was not possible to use
complex numbers without explaining what they are... We therefore decided to produce a
fully fledged film from scratch, starting at a very elementary level and, hopefully, going
to our target: periodic orbits of the Lorenz attractor and closed geodesics on the modular
surface. We were very optimistic but we quickly realized that it was not realistic in a single
film. Soon, Aurélien Alvarez, who was at the time a graduate student, joined our team. So
far, we “only” have produced parts 1 and 2, each two hours long, of a saga which could very
well turn out to be infinitely long.

Part 1 is entitled “Dimensions”. Its main purpose is to provide an introduction to dimen-
sion 4. More precisely, it gives a presentation of the 3-sphere inside 4-space and of the Hopf
fibration.

Part 2 is entitled “Chaos”. It is an elementary introduction to dynamical systems. The

5 I don’t comment here on the price of mathematical journals.
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final chapters try to give a very rough idea of current conjectures on the statistical theory of
strange attractors, like the Lorenz butterfly.

We are still far away from the modular surface and its geodesics!

4.2. The making of Dimensions. The first decision was to produce a film that would be
split into “chapters”, each being 13 minutes long (which is some kind of time unit in the
video world). These chapters had to be as independent of each other as possible, and the
mathematical level had to be increasing. Chapter 1 should be understandable by young
children and the final chapters by undergraduates. The main idea was to propose to the
spectator some kind of menu in which (s)he can select what (s)he wants. Some would only
look at the first two chapters, others would only look at the last two and some would only
look at chapters 5 and 6, for instance. Of course, this necessitated the careful writing of a
scenario, in such a way that the many subsets look (and are) coherent. It would be frustrating
for a spectator to see a film which leads him/her to a final chapter which is not understandable
to him/her.

Here is the structure of the first movie Dimensions.

• Chapter 1 (dimension two) is very elementary. It contains the description of the 2-
sphere in space, with its parallels and meridians, and shows the stereographic projec-
tion.

• Chapter 2 (dimension three) is still elementary and is based on the famous popular
novel Flatland [1].

• Chapters 3 and 4 get into the fourth dimension. They rely heavily on regular polytopes
in dimension 4, seen as drawn on the 3-sphere, and then projected stereographically
on 3-space (and then on the 2-dimensional computer screen).

• Chapters 5 and 6 (complex numbers) contain a visual introduction to complex num-
bers. These chapters are completely independent from the others and have been used
quite a lot in classrooms.

• Chapters 7 and 8 (Hopf fibration) are the hardest parts. We show the linking of Hopf
circles and the wonderful Villarceau circles on tori of revolution.

• Chapter 9 (proof) is special. It contains the complete proof that the stereographic
projection maps circles to circles (or straight lines). This proof uses nothing above
the level of secondary school, and we could very well have put this chapter right after
chapter 1. We wanted to explain that mathematics is above all a matter of proofs, not
only pictures.

For example, we propose the following combinations of chapters: Junior High School (1
or 1-2 or 1-2-9), High School (1-2-3-4-9, or 5-6), Undergraduates (2-3-4-5-6 or 5-6-(7-8-9)),
College (7-8), General public (1-2-3-4).

The second decision was to tell a story. Each chapter is “presented” by a famous math-
ematician, from Hipparchus (for chapter 1), to Heinz Hopf (describing his fibration), along
with Adrien Douady (explaining complex numbers). It is well known that the rich and long
history of mathematics is a powerful vector for popularization. Naturally, the scenario is not
written as a course, in any sense of the term. For instance, our presentation of complex num-
bers is not intended as a substitute to some kind of tutorial. Many teachers have used it in
their classes as a complement or sometimes as an introduction. We explain the general idea
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of complex numbers, we show their geometric meaning (which unfortunately disappeared
from many high school curricula), we deform (conformally!) the portrait of Douady, and
we finally illustrate these notions with beautiful pictures of the Mandelbrot set. We try to
be precise but never formal. The commentaries and the images are of course supposed to be
understandable but we are aware of the fact that some spectators get lost along the way. In
this (unwanted but likely) case, the film should be attractive enough to keep the attention.

Technically, Dimensions is an animation movie. Most of the 185 000 images have been
produced using the (free) software PovRay. This is of course a huge amount of work. Di-
mensions was released in 2008, after 18 months of elaboration.

We quickly realized that many fellow mathematicians were happy to help, in many ways.
For instance, we could provide subtitles in 20 languages and soundtracks in 8 spoken lan-
guages. The concept of mathematical community is not an abstraction!

We also developed a website www.dimensions-math.org (also in many languages), giv-
ing extra information and references.

4.3. The economic model. We believe that mathematical popularization should be freely
accessible on the web. We therefore decided that all movies could be freely downloaded on
our website, under a Creative Commons licence. As a result, we were happy to see that the
movies quickly could diffuse all over the web, primarily on YouTube.

We also produced a DVD that is sold on the website at a nominal price. This is a non
profit activity and all benefits are immediately “invested” to offer DVDs to some organiza-
tions (like for instance the International Mathematical Olympiads, or MathEnJeans, etc.).

4.4. Chaos. Our second movie Chaos was released in January 2013 and is based on the very
same model. We tell the story of dynamical systems, going slowly from periodic motions
and limit cycles to chaotic examples, including Smale’s horseshoe and the Lorenz attractor.

• Chapter 1 (Motion and determinism) is a non technical preview of the whole story,
explaining determinism, sensitivity to initial conditions, and giving a hint that one
could understand chaotic systems through statistical methods.

• Chapters 2 and 3 (Vector fields, and Mechanics) are very basic and can be used in
the classroom: they give a very quick introduction to velocity, acceleration and forces.
They are independent from the other chapters.

• Chapter 4 (Oscillations) gives an introduction to limit cycles.

• Chapters 5, 6, 7 (Billiards, Horseshoe, Lorenz butterfly) describe three historical ex-
amples of chaotic behavior.

• Chapters 8, 9 (Statistics, Chaotic or not?) introduce to the concept of physical mea-
sure (Sinai-Ruelle-Bowen) in a very intuitive way and to the general conjecture of
Palis describing the statistical behavior of a typical dynamical system.

We could benefit from help not only from friends in the mathematical community all
around the world, but also from a famous French actor and Brazilian singer6 , who dubbed
the commentaries!

6 Thierry Lhermitte and Thalma de Freitas.
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4.5. Assessment. Of course, I would not report on these movies if I were not convinced
that this turned out to be a success. It is difficult to quantify the number of viewers or even
of downloads. The website Dimensions has five mirrors (in Beijing, Mexico, New York,
Rio and Tokyo) and the only objective data is that they had more than two million unique
visitors, from all countries in the world. Obviously, none of my previous productions has
been so widely distributed and it was a real pleasure for us to receive congratulations from
kids in the middle of China.

We received thousands of emails thanking us for our work, and asking for more. It is
not easy to get some clear view of our audience from these emails since their diversities is
very impressive, from very young children to people seing improbable connections between
the fourth dimension and spirituality... Nevertheless, one could say that many viewers are
amateurs in a way or another. They probably found on the web the popular mathematics that
they were looking for.

Did we only reach amateurs who were already convinced? We did not have clearly in
mind this “target” when we started the project. Clearly, amateurs should not be neglected
and one should carefully analyze their requirements. However, the public of those who have
no connection at all with mathematics is probably more important and requires a specific
approach, with a much weaker mathematical content.

As for the DVD’s, we produced 20 000 copies which have been either sold or offered. I
am convinced that our choice of Creative Commons was the right decision and that no other
economic option would have generated such a diffusion for mathematical movies. According
to a private publisher that we have contacted at the beginning of the project, there is no
market for this kind of film.

From the non positive side, it is clear that a two hour film entirely produced by three
persons, with no budget, cannot be compared with a Pixar production. Obviously, it is
the work of amateurs, with many drawbacks, especially related to the rhythm, which is
sometimes too slow. Another difficulty is that we should have planned the scenario and the
storyboard in their smallest details before starting the production of the first chapters. It is
unclear whether it would have been more efficient to develop a much more expensive project
and to involve professionals: this would have implied too much of a burden and would have
hidden what drives much of us: the fun of doing mathematics.

A successful aspect of the films is the splitting into individual chapters which are more or
less independent and can be combined in many possible paths, depending on the viewer. This
has been appreciated. However, we have to admit that we did not use the full flexibility of
internet. It would have probably been more efficient to produce something more interactive,
in which the web-user could make more choices, in the spirit of video games. Of course, this
would have been technically much more difficult, probably beyond our capabilities.

One could probably assert that Dimensions and Chaos deal with mathematics which are
easy to popularize: topology, geometry and dynamics. It would be clearly more difficult to
produce a film on algebra, number theory or modern algebraic geometry. In these cases, one
should choose other internet tools. Even so, it is possible that some domains cannot be shared
with the general population. However, this may not be a serious problem. Many aspects of
astronomy for instance are too technical to be presented to a wide audience, but astrophysi-
cists have enough beautiful pictures or fascinating stories to popularize their discipline in an
exceptional way.
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5. Second example: Images des Mathématiques

5.1. Genesis of the project. In the 1980’s, the French Centre National de la Recherche
Scientifique (CNRS) decided to publish, once every two years, a volume entitled Images des
Mathématiques (IdM for short). The idea was to include a dozen articles giving some illus-
tration of recent mathematical progress. The target of this booklet was not clearly defined
but instructions were given to the authors that they should not write for their colleagues. A
small number of issues appeared but the publication stopped very quickly. This publication
was expensive, the published articles were in practice only readable by colleagues, and the 7
000 copies were very badly distributed.

In 2004 and 2006, Jacques Istas and myself edited two more volumes... with the same
weaknesses. We realized that many of the printed copies did not go out of the strict circle
of mathematical researchers and even that many were not opened at all... Even worse, most
articles were not understandable by mathematicians from outside the field of the author. This
was a waste of money and energy.

We decided to create a web journal, still hosted by the CNRS, with the same title, ded-
icated to explaining current mathematical research outside of the circle of research mathe-
maticians, if possible to Hilbert’s “man on the street”. The main idea was to ask for the help
of many colleagues and to create a large editorial board. This would provide an analogue
of a daily newspaper, giving “news from the mathematical community” as often as possible,
ideally daily... Five years after the opening, in January 2009, about 2000 articles have been
published (see below).

Of course, this initiative is not isolated. In 2008, IMU and ICMI commissioned a project
to revisit the intent of Felix Klein when he wrote “Elementary Mathematics from an Ad-
vanced Standpoint” one hundred years earlier [14]. As explained by the Klein committee:
“The aim is to produce a book for upper secondary teachers that communicates the breadth
and vitality of the research discipline of mathematics and connects it to the senior secondary
school curriculum. The 300-page book, prepared in more than 10 languages, will be written
to inspire teachers to present to their students a more informed picture of the growing and
interconnected field represented by the mathematical sciences in today’s world. We expect
this will be backed up by web, print, and DVD resources.” See the website blog.kleinproject.

As one can see, the expected audience of IdM is slightly different since the Klein project
is written for teachers. Moreover, the Klein project is more thought as a data base than as a
magazine giving information at a continuous pace.

5.2. Structure of IdM. IdM is organized like any research mathematical journal. The edi-
torial board consists of about twenty mathematicians, each being in charge of some section
of the journal (see this page). In turn, each section has its own sub-committee taking all
editorial decisions relative to this section. The union of the editorial board and all sub-
committees contains about sixty colleagues. As examples of sections: history, conjectures,
current research, press review etc.

IdM publishes two kinds of contributions, articles and columns.
Articles are close to research papers in the sense that they are evaluated in a process which

is similar to the standard refereeing system. When an article is submitted for publication
(authors are almost always invited to contribute by a member of the board), it is deposited
on a private page. A few hundred volunteers have agreed to read and comment papers before
publication. A dozen of these volunteers are selected for each submitted article and they
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have access to the private page containing the draft of the paper. Typically, one half of
these “referees” are professional mathematicians. These referees can comment the paper in
a forum accessible to the author, to the other referees, and to the editors. Note in particular
that the referees are not anonymous, even though some of them are only identified through a
pseudonym. The process of evaluation then takes the form of a “conversation”, through this
forum, between the author and the referees, and this implies a continuous change of the text.
When the editor in charge considers that the paper is ready, it can be published. Typically,
this process takes about two months. About one thousand such articles have been published
in the last five years.

Most articles are original and have been written for IdM. The few exceptions are related
to some partnerships with some other journals, agreeing to share some papers. I mentioned
earlier the “plagiarism” question. Many blogs do not hesitate to copy parts of articles pub-
lished elsewhere. Of course, one should criticize this behavior if the original author is not
mentioned. However, I am in favor of the idea that a given article might be published in
different places, in different forms, for different publics, preferably with the agreement and
participation of the author.

Columns are much shorter and usually with much lighter mathematical content. This is
somehow the blog part of IdM. A certain number of colleagues have agreed to be columnists
and they are encouraged to publish short contributions, of course related to mathematics, but
typically from a different point of view. This could be for instance a political opinion, or the
review of a book, of a movie, or even a joke... Of course, these columns are not refereed
but a small team checks them before their (quick) publication. IdM has now published about
one thousand of these columns.

The question of the nature of the public is of course fundamental. IdM is in principle
aimed at the general public but clearly a significant part of our readers are mathematicians.
Many are teachers or students, or have some relationship with mathematics, so that they are
mathematicians in some way or another. One of the main difficulties is to ignore research
mathematicians, since IdM is not for them! The idea would be to propose something widely
accessible (to French readers) but it is of course impossible to write texts which are suitable
for everybody. We adopted a code inspired by the ski slopes rating colors, from the easy
green slope to the black one, and even off-piste. The green slope requires in principle no
knowledge in mathematics.

From the financial point of view, IdM is almost cost-free and receives a modest support
from CNRS.

5.3. Assessment of IdM. The audience of IdM (as measured with Google Analytics) has
been steadily increasing since the opening of IdM (with a quasi-periodic modulation, related
to weekends, vacations etc.). Today, IdM receives about 4000 visitors a day. This is much
less than what we would expect but one should keep in mind that this web journal is only
available to French speaking readers (although the project of translating into Spanish is on
schedule).

The main difficulty encountered by IdM is to find authors. As a rule, authors are math-
ematicians and not journalists. Most of our colleagues are under a publication pressure for
their own career and, unfortunately, this kind of article is not yet considered valuable enough
to be included in their publication list. A possible improvement, giving value to these pop-
ularization articles, would be to include them in databases, like MathSciNet or Zentralblatt7
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. Indeed, from my own experience, the refereeing process in IdM is far more advanced than
in most “standard” research journals.

Moreover, potential authors quickly realize that writing such articles is far from easy and
requires a lot of work. More often than not, they have great difficulties in understanding
that most of the words that they use daily are simply not in the vocabulary of the potential
readers. Most mathematicians have a totally wrong idea of the mathematical knowledge
of the general population. It is clearly difficult to explain a recent mathematical idea to
“the man you meet on the street” and even sometimes it may be impossible. The main
comment from non-mathematicians about articles from IdM is: “too complex and too long”.
Our community has to train students in this kind of exercise and this should be included in
university curricula. Somehow, one could think of IdM as some kind of laboratory where we
practice and improve our ability to write such papers.

One could reasonably question the fact that the authors of IdM are not journalists. Of
course, journalists usually know their readers much better than mathematicians do. However,
they (usually) do not know mathematics as we know it, from inside. I am convinced that the
popularization of mathematics should not be entirely delegated to journalists. It is the duty
of mathematicians to spread mathematics in the general public. See the article by M. Emmer
on the relationship journalists-mathematicians, in [13].

The “semi-public” refereeing system works rather well. As described above, it involves
a dozen volunteers for each article who share with the author a private forum. Almost al-
ways, the published paper is significantly different from its original version. Professional
mathematicians are used to the “dry style” of referees reports. Sometimes, comments from
professionals on articles submitted to IdM are expressed so strongly that the non profession-
als are impressed and hesitate to give their own opinion and remain silent. Usually, non
professionals would like to say “I don’t understand” and professionals “You forgot to add
such and such theorems”. As for the authors it is not uncommon that they have difficulties
accepting comments on their papers by “referees” who are not experts, even though they
represent a good sample of their readers.

Of course visitors are welcome to add comments at the end of articles, after publication.
However, we noticed some rather surprising behavior on the part of the readers. Many
hesitate a lot before posting a comment by some kind of self censorship. They seem to be
“impressed” by the expertise of some authors.

We conducted a survey to get a better understanding of our readers. As we could imagine,
a significant minority of our visitors consists of researchers in mathematics. A majority are
teachers or students. We still do not reach the very young. Clearly the articles are too long
and too difficult. Sadly, it should be noted that 80% of our visitors are male.

Another difficulty is related to the navigation inside IdM. We should use all the possibil-
ities of the internet in order to propose multiple choices to our readers. Unfortunately, most
visitors do not understand that behind the home page, there is a large data base of articles.
We need keywords, tags and all sorts of modern navigation tools. A web designer is cur-
rently analyzing the structure of the “back office” of IdM and will propose solutions. This
has of course a cost.

Even though there is still a lot of progress to be made, collaborating with the editorial
board of IdM is a challenging and exciting experience.

7 As of today, the administrators of these two databases have not answered our proposal for reviewing articles
from IdM.
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6. Third example : popular lectures, les Ernest

The idea of popular science lectures is certainly not new. For instance, in 1825 Michael
Faraday inaugurated the Royal Institution Christmas Lectures aimed at a “juvenile auditory”.
Since 1967, they are broadcast on the BBC television network and they are very successful.
One had to wait until 1978 before one of these series could be dedicated to mathematics (by
Christopher Zeeman [24] and Marcus du Sautoy in 2006 [4]).

Nowadays, it has become fashionable for many mathematics departments or institutions
to organize popular lectures. It is even common to include them in the program of scientific
meetings, including the ICM. The main problem, not always understood by the organizers,
is to define the public as clearly as possible and to make sure that it comes! It is impossible
for the speaker to prepare a lecture if he or she does not know whether the audience will be
“juvenile” or “retired" or consisting of professional mathematicians. All these publics are
interesting but very different... Suppose for example that the speaker plans to explain that

√
2

is irrational and discovers that all spectators have a PhD in mathematics. I have personally
had several bad experiences of this kind that I will not describe here.

It has also become usual to film these lectures and to post them on the internet. In many
cases, the result is a disaster. As explained earlier, the internet is not a new tool for doing
what we have been doing for many years. A mathematical lecture filmed with one fixed
camera, with no film editing, can be very useful for research mathematics but is certainly not
adapted to a popular presentation of mathematics. One problem is the length. Frequently,
a live lecture in front of an active public can last one hour and still be a great success. The
same lecture posted on the internet will have a very different reception. The web-viewer can
(and probably will) hop to some other place with one click. Looking at a static blackboard
on a screen quickly becomes boring unless this is a technical research talk and you are really
interested in a proof.

One of the standard mistakes from the organizers is to inform the speaker that his/her talk
will be recorded one second before the start of the lecture. Theater and cinema are certainly
different activities.

For the internet, it is fundamental to enable the spectator to see many different aspects of
the lecture. There should be a subtle balance between views of the speaker, of his/her slides,
and of the public in the room. This implies a serious editing of the film and a competent
technical staff. Everything should be prepared well in advance, in coordination with the
speaker.

I would like to report on two personal examples that were quite successful. I gave a
public lecture in 2010 in Paris, on the occasion of the Clay Conference in honor of the proof
of the Poincaré conjecture [8]. The conditions were optimal: the wonderful amphitheater
of the Institut d’Océanographie, a public of high school students (and some distinguished
colleagues on the first row), and above all the very professional editing by François Tisseyre,
who has a long experience in filming mathematics (see for instance [3]). However, even
though the editing seems to me very good, I do not think that the video is adapted to the
internet: too long and not directly intended for the web.

Les Ernest is an association of young students from the École Normale Supérieure of
Paris8 . They understood that the internet is not just a way of broadcasting standard lectures.

“One ambition : to offer a format for lectures adapted to the new media. [...]

8 Les Ernest is a nickname for the goldfish swimming in a pond of the ENS.
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Knowledge should be shared democratically. More than ever, new approaches,
frequently interdisciplinary, are necessary to understand our world. Usual lec-
tures are not compatible with the internet code."

Les Ernest are producing films which are very short : 15 minutes. They cover all kinds of
subjects, but they seem to have hesitated to include a lecture on mathematics, since I recorded
the first one (after a computer scientist) in 2014 [9]. These clips are primarily intended for
the internet. However, the organizers are convinced that it is important for the speaker to
have a public in front of him or her, but only as a motivation. For instance, the lights are
oriented in a way which enables special effects on the web, even though it implies that the
speaker barely sees the spectators. The staff uses an impressive number of cameras and they
work very hard on the editing. More importantly, they prepare the lecture in advance with
the speaker, give him/her useful tips, and describe in great detail the targeted audience. A
collaboration between the speaker and the organization team is maybe the key to success.

One of the difficulties with a 15 minute film is that it is short ! We have to know exactly
what to say and, above all, what not to say. Should one prepare a detailed speech in advance?
I fear that most mathematicians are not actors and this would lead to an artificial tone. We
should certainly not improvise in such circumstances. I believe one should prepare some
kind of rather precise framework, containing some key sentences, and, of course, rehearse
several times in front of a clock.

This association is very close in spirit to the TED Conferences (Technology, Entertain-
ment, Design) which also contain a relatively small number of mathematics lectures. As two
model examples of short popular internet lectures, I would recommend [5] and [23]. Note
in particular that in these examples, the speakers do not go into any mathematical detail, but
both do give a fairly good image of the role of mathematicians.

All these are one-shot videos and one could wonder whether one should not prepare
popular internet lectures as one produces a movie, filming many more rushes than necessary
for the final product, and spending most of the time in the editing. Again this is the difference
between theater and cinema.

7. Some conclusions and suggestions

Among the many possible communication tools that can be used for popularizing mathe-
matics, the internet is probably the most powerful and efficient. A single individual or a
very small group of mathematicians can produce webpages which can be viewed by many
web-users, at almost no cost.

We have to learn the language which is adapted to this media and which is very different
from the traditional language in mathematics: different in speed, depth and length. The
point is not to transmit everything about mathematical research, but something about it.
Sometimes, it is even sufficient to transmit nothing besides the fact that there exists a very
active field of research called mathematics.

The most important mistake that should be avoided is to do on the internet what we are
used to do in papers, books, classrooms, lecture halls etc. The internet enables us to develop
new concepts.

We have to train the younger generations of mathematicians in these techniques. Almost
every mathematician should have some training but we should also encourage some students
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to specialize in popularization. More importantly, we should consider them as colleagues,
with a well defined field of expertise, just like algebraists, geometers or analysts, and we
should not consider them contemptuously as “mere journalists”.

This implies that popularization has to be evaluated in a rigorous way, just as research
papers are refereed. Two centuries ago, the mathematical community was able to develop
a system of journals, some of them being specialized, whose “qualities” can be (more or
less) compared. There is a need for the creation of mathematical journals specializing in
popularization, following strict validation criteria for the acceptance of their published “pa-
pers”. This will not be easy, since indeed, these papers are never printed on paper... and
can take many different forms, far away from our usual introduction-theorem-lemma-proof-
conclusion mathematical “literature”.

These journals should be considered as “standard” mathematics journals, indexed by the
main data bases, supported by the national mathematical societies etc. Published papers
should appear proudly in the CVs of mathematicians and should be taken into account by
the various hiring or promotion committees.

In short, a mathematician answering the traditional question from a colleague “What’s
your field?" should not feel anymore ashamed when he or she replies “I work on populariza-
tion of mathematics".

En passant, note that almost all references below are freely available on the web...
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Teaching and learning “What is Mathematics”

Günter M. Ziegler and Andreas Loos

Abstract. “What is Mathematics?” [with a question mark!] is the title of a famous book by Courant
and Robbins, first published in 1941, which does not answer the question. The question is, however,
essential: The public image of the subject (of the science, and of the profession) is not only relevant
for the support and funding it can get, but it is also crucial for the talent it manages to attract — and
thus ultimately determines what mathematics can achieve, as a science, as a part of human culture, but
also as a substantial component of economy and technology.

In this lecture we thus

• discuss the image of mathematics (where “image” might be taken literally!),
• sketch a multi-facetted answer to the question “What is Mathematics?,”
• stress the importance of learning “What is Mathematics” in view of Klein’s “double discontinu-

ity” in mathematics teacher education,
• present the “Panorama project” as our response to this challenge,
• stress the importance of telling stories in addition to teaching mathematics, and finally
• suggest that the mathematics curricula at schools and at universities should correspondingly have

space and time for at least three different subjects called Mathematics.

Mathematics Subject Classification (2010). Primary 97D30; Secondary 00A05, 01A80, 97D20.

Keywords. “What is Mathematics?”, the image/the images of mathematics, Klein’s “double discon-
tinuity”, teaching mathematics, telling stories about mathematics, the “Panorama of Mathematics”
project.

1. What is Mathematics?

Defining mathematics. According to Wikipedia in English, in the March 2014 version, the
answer to “What is Mathematics?” is

Mathematics is the abstract study of topics such as quantity (numbers),[2] struc-
ture,[3] space,[2] and change.[4][5][6] There is a range of views among mathemati-
cians and philosophers as to the exact scope and definition of mathematics.[7][8]

Mathematicians seek out patterns[9][10] and use them to formulate new conjec-
tures. Mathematicians resolve the truth or falsity of conjectures by mathemati-
cal proof. When mathematical structures are good models of real phenomena,
then mathematical reasoning can provide insight or predictions about nature.
Through the use of abstraction and logic, mathematics developed from counting,

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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calculation, measurement, and the systematic study of the shapes and motions
of physical objects. Practical mathematics has been a human activity for as
far back as written records exist. The research required to solve mathematical
problems can take years or even centuries of sustained inquiry.

None of this is entirely wrong, but it is also not satisfactory. Let us just point out that the fact
that there is no agreement about the definition of mathematics, given as part of a definition
of mathematics, puts us into logical difficulties that might have made Gödel smile.1

The answer given by Wikipedia in the current German version, reads (in our translation):

Mathematics [. . . ] is a science that developed from the investigation of geo-
metric figures and the computing with numbers. For mathematics, there is no
commonly accepted definition; today it is usually described as a science that
investigates abstract structures that it created itself by logical definitions using
logic for their properties and patterns.

This is much worse, as it portrays mathematics as a subject without any contact to, or interest
from, a real world.

The borders of Mathematics. Is mathematics “stand-alone”? Could it be defined with-
out reference to “neighboring” subjects, such as physics (which does appear in the English
Wikipedia description)? Indeed, one possibility to characterize mathematics describes the
borders/boundaries that separate it from its neighbors. Even humorous versions of such
“distinguishing statements” such as

• “Mathematics is the part of physics where the experiments are cheap.”

• “Mathematics is the part of philosophy where (some) statements are true — without
debate or discussion.”

• “Mathematics is computer science without electricity.” (So “Computer science is
mathematics with electricity.”)

contain a lot of truth and possibly tell us a lot of “characteristics” of our subject. None of
these is, of course, completely true or completely false, but they present opportunities for
discussion.

What we do in Mathematics. We could also try to define mathematics by “what we do
in mathematics”: This is much more diverse and much more interesting than the Wikipedia
descriptions! Could/should we describe mathematics not only as a research discipline and
as a subject taught and learned at school, but also as a playground for pupils, amateurs,
and professionals, as a subject that presents challenges (not only for pupils, but also for
professionals as well as for amateurs), as an arena for competitions, as a source of problems,
small and large, including some of the hardest problems that science has to offer, at all levels
from elementary school to the millennium problems [4, 21]?

1According to Wikipedia, the same version, the answer to “Who is Mathematics” should be

Mathematics, also known as Allah Mathematics, (born: Ronald Maurice Bean[1]) is a hip hop
producer and DJ for the Wu-Tang Clan and its solo and affiliate projects.

This is not the mathematics we deal with here.
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What we teach in Mathematics classes. Education bureaucrats might (and probably should)
believe that the question “What is Mathematics?” is answered by high school curricula. But
what answers do these give?

This takes us back to the nineteenth century controversies about what mathematics should
be taught at school and at the Universities. In the German version this was a fierce debate.
On the one side it saw the classical educational ideal as formulated by Wilhelm von Hum-
boldt (who was involved in the concept for and the foundation 1806 of the Berlin University,
now named Humboldt Universität, and to a certain amount shaped the modern concept of
a university); here mathematics had a central role, but this was the classical “Greek” math-
ematics, starting from Euclid’s axiomatic development of geometry, the theory of conics,
and the algebra of solving polynomial equations, not only as cultural heritage, but also as a
training arena for logical thinking and problem solving. On the other side of the fight were
the proponents of “Realbildung”: Realgymnasien and the technical universities that were
started at that time tried to teach what was needed in commerce and industry: calculation
and accounting, as well as the mathematics that could be useful for mechanical and electrical
engineering — second rate education in the view of the classical German Gymnasium.

This nineteenth century debate rests on an unnatural separation into the classical, pure
mathematics, and the useful, applied mathematics; a division that should have been over-
come a long time ago (perhaps since the times of Archimedes), as it is unnatural as a classi-
fication tool and it is also a major obstacle to progress both in theory and in practice. Nev-
ertheless the division into “classical” and “current” material might be useful in discussing
curriculum contents — and the question for what purpose it should be taught; see our dis-
cussion in Section 8.

The Courant–Robbins answer. The title of the present paper is, of course, borrowed from
the famous and very successful 1941 book by Richard Courant and Herbert Robbins [3].
However, this title is a question — what is Courant and Robbins’ answer? Indeed, the book
does not give an explicit definition of “What is Mathematics,” but the reader is supposed
to get an idea from the presentation of a diverse collection of mathematical investigations.
Mathematics is much bigger and much more diverse than the picture given by the Courant–
Robbins exposition. The presentation in this section was also meant to demonstrate that we
need a multi-facetted picture of mathematics: One answer is not enough, we need many.

2. Why should we care?

The question “What is Mathematics?” probably does not need to be answered to motivate
why mathematics should be taught, as long as we agree that mathematics is important.

However, a one-sided answer to the question leads to one-sided concepts of what math-
ematics should be taught.

At the same time a one-dimensional picture of “What is Mathematics” will fail to moti-
vate kids at school to do mathematics, it will fail to motivate enough pupils to study math-
ematics, or even to think about mathematics studies as a possible career choice, and it will
fail to motivate the right students to go into mathematics studies, or into mathematics teach-
ing. If the answer to the question “What is Mathematics”, or the implicit answer given by
the public/prevailing image of the subject, is not attractive, then it will be very difficult to
motivate why mathematics should be learned — and it will lead to the wrong offers and the
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wrong choices as to what mathematics should be learned.
Indeed, would anyone consider a science that studies “abstract” structures that it created

itself (see the German Wikipedia definition quoted above) interesting? Could it be relevant?
If this is what mathematics is, why would or should anyone want to study this, get into this
for a career? Could it be interesting and meaningful and satisfying to teach this?

Also in view of the diversity of the students’ expectations and talents, we believe that
one answer is plainly not enough. Some students might be motivated to learn mathematics
because it is beautiful, because it is so logical, because it is sometimes surprising. Or because
it is part of our cultural heritage. Others might be motivated, and not deterred, by the fact
that mathematics is difficult. Others might be motivated by the fact that mathematics is
useful, it is needed — in everyday life, for technology and commerce, etc. But indeed, it is
not true that “the same” mathematics is needed in everyday life, for university studies, or in
commerce and industry. To other students, the motivation that “it is useful” or “it is needed”
will not be sufficient. All these motivations are valid, and good — and it is also totally
valid and acceptable that no single one of these possible types of arguments will reach and
motivate all these students.

Why do so many pupils and students fail in mathematics, both at school and at univer-
sities? There are certainly many reasons, but we believe that motivation is a key factor.
Mathematics is hard. It is abstract (that is, most of it is not directly connected to everyday-
life experiences). It is not considered worth-while. But a lot of the insufficent motivation
comes from the fact that students and their teachers do not know “What is Mathematics.”

Thus a multifacetted image of mathematics as a coherent subject, all of whose many
aspects are well connected, is important for a successful teaching of mathematics to students
with diverse (possible) motivations.

This leads, in turn, to two crucial aspects, to be discussed here next: What image do
students have of mathematics? And then, what should teachers answer when asked “What is
Mathematics”? And where and how and when could they learn that?

3. The image of Mathematics

A 2008 study by Mendick et al. [16], which was based on an extensive survey among British
students, was summarized as follows:

Many students and undergraduates seem to think of mathematicians as old,
white, middle-class men who are obsessed with their subject, lack social skills
and have no personal life outside maths.

The student’s views of maths itself included narrow and inaccurate images that
are often limited to numbers and basic arithmetic.

The students’ image of what mathematicians are like is very relevant and turns out to be a
massive problem, as it defines possible (anti-)role models, which are crucial for any decision
in the direction of “I want to be a mathematician.” If the typical mathematician is viewed
as an “old, white, male, middle-class nerd,” then why should a gifted 16-year old girl come
to think “that’s what I want to be when I grow up”? Mathematics as a science, and as a
profession, looses (or fails to attract) a lot of talent this way! However, this is not the topic
of this presentation.
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On the other hand the first and the second diagnosis of the quote from [16] belong to-
gether: The mathematicians are part of “What is Mathematics”!

And indeed, looking at the second diagnosis, if for the key word “mathematics” the
images that spring to mind don’t go beyond a per se meaningless “a2 + b2 = c2” scribbled
in chalk on a blackboard — then again, why should mathematics be attractive, as a subject,
as a science, or as a profession?

We think that we have to look for, and work on, multi-facetted and attractive represen-
tations of mathematics by images. This could be many different, separate images, but this
could also be images for “mathematics as a whole.”

4. Four images for “What is Mathematics?”

Striking pictoral representations of mathematics as a whole (as well as of other sciences!)
and of their change over time can be seen on the covers of the German “Was ist was” books.
The history of these books starts with the series of “How and why” Wonder books published
by Grosset & Dunlop, New York, since 1961, which was to present interesting subjects
(starting with “Dinosaurs,” “Weather,” and “Electricity”) to children and younger teenagers.
The series was published in the US and in Great Britain in the 1960s and 1970s, but it was
and is much more successful in Germany, where it was published (first in translation, then in
volumes written in German) by Ragnar Tessloff since 1961. Volume 18 in the US/UK version
and Volume 12 in the German version treats “Mathematics”, first published in 1963 [10], but
then republished with the same title but a new author and contents in 2001 [1]. While it
is worthwhile to study the contents and presentation of mathematics in these volumes, we
here focus on the cover illustrations (see Fig. 1), which for the German edition exist in four
entirely different versions, the first one being an adaption of the original US cover of [9].

All four covers represent a view of “What is Mathematics” in a collage mode, where the
first one represents mathematics as a mostly historical discipline (starting with the ancient
Egyptians), while the others all contain a historical allusion (such as pyramids, Gauß, etc.)
alongside with objects of mathematics (such as prime numbers or π, dices to illustrate prob-
ability, geometric shapes). One notable object is the oddly “two-colored” Möbius band on
the 1983 cover, which was changed to an entirely green version in a later reprint.

One can discuss these covers with respect to their contents and their styles, and in par-
ticular in terms of attractiveness to the intended buyers/readers. What is over-emphasized?
What is missing? It seems more important to us to

• think of our own images/representations for “What is Mathematics”,

• think about how to present a multi-facetted image of “What is Mathematics” when we
teach.

Indeed, the topics on the covers of the “Was ist was” volumes of course represent interesting
(?) topics and items discussed in the books. But what do they add up to? We should compare
this to the image of mathematics as represented by school curricula, or by the university
curricula for teacher students.

In the context of mathematics images, let us mention two substantial initiatives to collect
and provide images from current mathematics research, and make them available on inter-
net platforms, thus providing fascinating, multi-facetted images of mathematics as a whole
discipline:
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1963 1983

2001 2010

Figure 4.1. The four covers of “Was ist was. Band 12: Mathematik” [10] and [1]
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• Guy Métivier et al.: “Image des Maths. La recherche mathématique en mots et en
images” [“Images of Maths. Mathematical research in words and images”], CNRS,
France, at images.math.cnrs.fr (texts in French)

• Andreas D.Matt, Gert-Martin Greuel et al.: “IMAGINARY. open mathematics,” Math-
ematisches Forschungsinstitut Oberwolfach, at imaginary.org (texts in German, En-
glish, and Spanish).

The latter has developed from a highly successful travelling exhibition of mathematics im-
ages, “IMAGINARY — through the eyes of mathematics,” originally created on occasion
of and for the German national science year 2008 “Jahr der Mathematik. Alles was zählt”
[“Year of Mathematics 2008. Everything that counts”], see www.jahr-der-mathematik.de,
which was very successful in communicating a current, attractive image of mathematics to
the German public — where initiatives such as the IMAGINARY exhibition had a great part
in the success.

5. Teaching “What is Mathematics” to teachers

More than 100 years ago, in 1908, Felix Klein analyzed the education of teachers. In the
introduction to the first volume of his “Elementary Mathematics from a Higher Standpoint”
he wrote (our translation):

“At the beginning of his university studies, the young student is confronted with
problems that do not remind him at all of what he has dealt with up to then, and
of course, he forgets all these things immediately and thoroughly. When after
graduation he becomes a teacher, he has to teach exactly this traditional ele-
mentary mathematics, and since he can hardly link it with his university math-
ematics, he soon readopts the former teaching tradition and his studies at the
university become a more or less pleasant reminiscence which has no influence
on his teaching.” [12]

This phenomenon — which Klein calls the double discontinuity — can still be observed. In
effect, the teacher students “tunnel” through university: They study at university in order to
get a degree, but nevertheless they afterwards teach the mathematics that they had learned
in school, and possibly with the didactics they remember from their own school education.
This problem observed and characterized by Klein gets even worse in a situation (which we
currently observe in Germany) where there is a grave shortage of Mathematics teachers, so
university students are invited to teach at high school long before graduating from university,
so they have much less university education to tunnel at the time when they start to teach in
school. It may also strengthen their conviction that university mathematics is not needed in
order to teach.

How to avoid the double discontinuity is, of course, a major challenge for the design of
university curricula for mathematics teachers. One important aspect however, is tied to the
question of “What is Mathematics?”: A very common highschool image/concept of math-
ematics, as represented by curricula, is that mathematics consists of the subjects presented
by highschool curricula, that is, (elementary) geometry, algebra (in the form of arithmetic,
and perhaps polynomials), plus perhaps elementary probability, calculus (differentiation and
integration) in one variable — that’s the mathematics highschool students get to see, so they
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might think that this is all of it! Could their teachers present them a broader picture? The
teachers after their highschool experience studied at university, where they probably took
courses in calculus/analysis, linear algebra, classical algebra, plus some discrete mathemat-
ics, stochastics/probability, and/or numerical analysis/differential equations, perhaps a pro-
gramming or “computer-oriented mathematics” course. Altogether they have seen a scope
of university mathematics where no current research becomes visible, and where most of the
contents is from the nineteenth century, at best. The ideal is, of course, that every teacher
student at university has at least once experienced how “doing research on your own” feels
like, but realistically this rarely happens. Indeed, teacher students would have to work and
study and struggle a lot to see the fascination of mathematics on their own by doing mathe-
matics; in reality they often do not even seriously start the tour and certainly most of them
never see the “glimpse of heaven.” So even if the teacher student seriously immerges into
all the mathematics on the university curriculum, he/she will not get any broader image of
“What is Mathematics?”. Thus, even if he/she does not tunnel his university studies due to
the double discontinuity, he/she will not come back to school with a concept that is much
broader than that he/she originally gained from his/her highschool times.

Our experience is that many students (teacher students as well as classical mathematics
majors) cannot name a single open problem in mathematics when graduating the university.
They have no idea of what “doing mathematics” means — for example, that part of this is
a struggle to find and shape the “right” concepts/definitions and in posing/developing the
“right” questions and problems.

And, moreover, also the impressions and experiences from university times will get old
and outdated some day: a teacher might be active at a school for several decades — while
mathematics changes! Whatever is proved in mathematics does stay true, of course, and in-
deed standards of rigor don’t change any more as much as they did in the nineteenth century,
say. However, styles of proof do change (see: computer-assisted proofs, computer-checkable
proofs, etc.). Also, it would be good if a teacher could name “current research focus topics”:
These do change over ten or twenty years. Moreover, the relevance of mathematics in “real
life” has changed dramatically over the last thirty years.

6. The Panorama project

For several years, the present authors have been working on developing a course (and even-
tually a book [15]) called “Panorama der Mathematik” [“Panorama of Mathematics”] . It
primarily addresses mathematics teacher students, and is trying to give them a panoramic
view on mathematics: We try to teach an overview of the subject, how mathematics is done,
who has been and is doing it, including a sketch of main developments over the last few
centuries up to the present — altogether this is supposed to amount to a comprehensive (but
not very detailed) outline of “What is Mathematics.” This, of course, turns out to be not
an easy task, since it often tends to feel like reading/teaching poetry without mastering the
language. However, the approach of Panorama is complementing mathematics education in
an orthogonal direction to the classic university courses, as we do not teach mathematics
but present (and encourage to explore); according to the response we get from students they
seem to feel themselves that this is valuable.

Our course has many different components and facets, which we here cast into questions
about mathematics. All these questions (even the ones that “sound funny”) should and can be
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taken seriously, and answered as well as possible. For each of them, let us here just provide
at most one line with key words for answers:

• When did mathematics start?
Numbers and geometric figures start in stone age; the science starts with Euclid?

• How large is mathematics? How many Mathematicians are there?
The Mathematics Genealogy Project had 178854 records as of 12 April 2014.

• How is mathematics done, what is doing research like?
Collect (auto)biographical evidence! Recent examples: Frenkel [7], Villani [20].

• What does mathematics research do today? What are the Grand Challenges?
The Clay Millennium problems might serve as a starting point.

• What and how many subjects and subdisciplines are there in mathematics?
See the Mathematics Subject Classification for an overview!

• Why is there no “Mathematical Industry”, as there is e.g. Chemical Industry?
There is! See e.g. Telecommunications, Financial Industry, etc.

• What are the “key concepts” in mathematics? Do they still “drive research”?
Numbers, shapes, dimensions, infinity, change, abstraction, . . . ; they do.

• What is mathematics “good for”?
It is a basis for understanding the world, but also for technological progress.

• Where do we do mathematics in everyday life?
Not only where we compute, but also where we read maps, plan trips, etc.

• Where do we see mathematics in everyday life?
There is more maths in every smart phone than anyone learns in school.

• What are the greatest achievements of mathematics through history?
Make your own list!

An additional question is how to make university mathematics more “sticky” for the tunnel-
ing teacher students, how to encourage or how to force them to really connect to the subject
as a science. Certainly there is no single, simple, answer for this!

7. Telling stories about Mathematics

How can mathematics be made more concrete? How can we help students to connect to the
subject? How can mathematics be connected to the so-called real world?

Showing applications of mathematics is a good way (and a quite beaten path). Real
applications can be very difficult to teach since in most advanced, realistic situation a lot
of different mathematical disciplines, theories and types of expertise have to come together.
Nevertheless, applications give the opportunity to demonstrate the relevance and importance
of mathematics. Here we want to emphasize the difference between teaching a topic and
telling about it. To name a few concrete topics, the mathematics behind weather reports and
climate modelling is extremely difficult and complex and advanced, but the “basic ideas”
and simplified models can profitably be demonstrated in highschool, and made plausible in
highschool level mathematical terms. Also success stories like the formula for the Google
patent for PageRank [17], see [14], the race for the solution of larger and larger instances of
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the Travelling Salesman Problem [2], or the mathematics of chip design lend themselves to
“telling the story” and “showing some of the maths” at a highschool level; these are among
the topics pesented in the first author’s recent book [24], where he takes 24 images as the
starting points for telling stories — and thus developing a broader multi-facetted picture of
mathematics.

Another way to bring maths in contact with non-mathematicians is the human level.
Telling stories about how maths is done and by whom is a tricky way, as can be seen from
the sometimes harsh reactions on www.mathoverflow.net to postings that try to excavate the
truth behind anecdotes and legends. Most mathematicians see mathematics as completely
independent from the persons who explored it. History of mathematics has the tendency to
become gossip, as Gian-Carlo Rota once put it [18]. The idea seems to be: As mathematics
stands for itself, it has also to be taught that way.

This may be true for higher mathematics. However, for pupils (and therefore, also for
teachers), transforming mathematicians into humans can make science more tangible, it can
make research interesting as a process (and a job?), and it can be a starting/entry point for
real mathematics. Therefore, stories can make mathematics more sticky. Stories cannot
replace the classical approaches to teaching mathematics. But they can enhance it.

Stories are the way by which knowledge has been transferred between humans for thou-
sands of years. (Even mathematical work can be seen as a very abstract form of storytelling
from a structuralist point of view.) Why don’t we try to tell more stories about mathemat-
ics, both at university and in school — not legends, not fairy tales, but meta-information on
mathematics — in order to transport mathematics itself? See [23] for an attempt by the first
author in this direction.

By stories, we do not only mean something like biographies, but also the way of how
mathematics is created or discovered: Jack Edmonds account [6] of how he found the blos-
som shrink algorithm is a great story about how mathematics is actually done. Think of
Thomas Harriot’s problem about stacking cannon balls into a storage space and what Kepler
made out of it: the genesis of a mathematical problem. Sometimes scientists even wrap their
work into stories by their own: see e.g. Leslie Lamport’s Byzantine Generals [13].

Telling how research is done opens another issue. At school, mathematics is traditionally
taught as a closed science. Even touching open questions from research is out of question,
for many good and mainly pedagogical reasons. However, this fosters the image of a perfect
science where all results are available and all problems are solved — which is of course
completely wrong (and moreover also a source for a faulty image of mathematics among
undergraduates).

Of course, working with open questions in school is a difficult task. None of the big
open questions can be solved with an elementary mathematical toolbox; many of them are
not even accessible as questions. So the big fear of discouraging pupils is well justified. On
the other hand, why not explore mathematics by showing how questions often pop up on
the way? Posing questions in and about mathematics could lead to interesting answers — in
particular to the question of “What is Mathematics, Really?”

8. Three times Mathematics at school?

So, what is mathematics? With school education in mind, the first author has argued in [22]
that we are trying cover three aspects the same time, which one should consider separately
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and to a certain extent also teach separately:

Mathematics I: A collection of basic tools, part of everyone’s survival kit for modern-day
life — this includes everything, but actually not much more than, what was covered by
Adam Ries’ “Rechenbüchlein” [“Little Book on Computing”] first published in 1522,
nearly 500 years ago;

Mathematics II: A field of knowledge with a long history, which is a part of our culture
and an art, but also a very productive basis (indeed a production factor) for all modern
key technologies. This is a “‘story-telling” subject.

Mathematics III: An introduction to mathematics as a science — an important, highly de-
veloped, active, huge research field.

Looking at current highschool instruction, there is still a huge emphasis on Mathematics I,
with a rather mechanical instruction on arithmetic, “how to compute correctly,” and basic
problem solving, plus a rather formal way of teaching Mathematics III as a preparation for
possible university studies in mathematics, sciences or engineering. Mathematics II, which
should provide a major component of teaching “What is Mathematics,” is largely missing.
However, this part also could and must provide motivation for studying Mathematics I or III!

9. What is Mathematics, really?

There are many, and many different, valid answers to the Courant–Robbins question “What
is Mathematics?”

A more philosophical one is given by Reuben Hersh’s book “What is Mathematics, Re-
ally?” [11], and there are more psychological ones, on the working level. Classics include
Jacques Hadamard’s “Essay on the Psychology of Invention in the Mathematical Field” and
Henri Poincaré’s essays on methodology; a more recent approach is Devlin’s “Introduction
to Mathematical Thinking” [5], or Villani’s book [20].

And there have been many attempts to describe mathematics in encyclopedic form over
the last few centuries. Probably the most recent one is the gargantuan “Princeton Companion
to Mathematics” [8], edited by Tim Gowers et al., which indeed is a “Princeton Companion
to Pure Mathematics.”

However, at a time where Zentralblatt MATH counts more than 100.000 papers and
books per year, and 24821 submissions to the math and math-ph sections of arXiv.org in
2013, it is hopeless to give a compact and simple description of what mathematics really
is, even if we had only the “current research discipline” in mind. The discussions about the
classification of mathematics show how difficult it is to cut the science into slices, and it is
even debatable whether there is any meaningful way to separate applied research from pure
mathematics.

Probably the most diplomatic way is to acknowledge that there are “many mathematics.”
Some years ago Tao [19] gave an open list of mathematics that is/are good for different
purposes — from “problem-solving mathematics” and “useful mathematics” to “definitive
mathematics”, and wrote:

“As the above list demonstrates, the concept of mathematical quality is a high-
dimensional one, and lacks an obvious canonical total ordering. I believe this
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is because mathematics is itself complex and high-dimensional, and evolves in
unexpected and adaptive ways; each of the above qualities represents a different
way in which we as a community improve our understanding and usage of the
subject.”

In this sense, many answers to “What is Mathematics?” probably show as much about the
persons who give the answers as they manage to characterize the subject.
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One hundred years after the Great War (1914–2014)
A century of breakdowns, resumptions and fundamental changes in

international mathematical communication

Reinhard Siegmund-Schultze

Abstract. The paper describes and analyzes changing political, social and institutional conditions for
international mathematical communication during the last one hundred years. The focus is on theWest-
ern Hemisphere and on relatively peaceful times between and after the two wars. Topics include the
boycott against German and Austrian science, Rockefeller support for the internationalization of math-
ematics, the mass exodus of mathematicians from Europe in the 1930s, the resumption of mathematical
contacts after WWII, the growing awareness of mathematics in the Soviet Union, and the emigration
of Russian scholars to the West before and after the Fall of the Iron Curtain. Some emphasis is put on
the barriers of language and culture between European, American and Russian mathematics and on the
influence of Bourbaki during various periods. Several decisive events from the history of the ICM and
the IMU are mentioned for their bearing on international communication.
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Keywords. International mathematical communication, World War I and II, emigration of mathemati-
cians.

1. Introduction

When the German Nazis rose to power in 1933 the mass emigration from Europe, above all
of the Jewish people, began. In the context of immigration the secretary of the American
Mathematical Society, Roland Richardson said in June 1934:

Since the war, we have been constantly compelled to think of colleagues as
nationals and not as citizens in the international domain. [41, p. 16]

It is well-known that the rise of the Nazis can be related to that key catastrophe of the
20th century, World War I, which had poisoned international relations also more broadly.

We are gathering exactly one hundred years after the outbreak of that war. The mathe-
matical world was smaller then, more focused on Europe and the United States. Our discus-
sion will still have a bias towards the Western Hemisphere which is less justified for recent
decades in view of the development of mathematics in Asia, South America and elsewhere.

We will try to give a short overview of major changes in the social and political condi-
tions that affected international mathematical communication during the past one hundred
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years. Global political events and strategies came of course quite often in ideological and
philosophical wrapping and in this respect there are connections of ‘internationalism’ in sci-
entific and mathematical communication with educational ideals, with notions of modernity
in society, particularly due to the growing social impact of mathematics. An example of the
connection between modernity ideals in mathematics and science and ideals in society and
culture is the young group of French mathematicians in the 1930s, called Bourbaki, whose
goal of an internationally aware, modern mathematics, was paralleled by programmatic at-
titudes in other social, cultural and political domains.1 The use of natural languages, in
particular the growing importance of English, is an eminently political phenomenon with
economic context, and is at the same time intimately connected to communication in the sci-
ences. The most recent striking changes in the conditions of international communication in
mathematics are of course due to increasing globalization and the digital revolution. While
much has changed, there are some invariants too, which are maybe even the more surprising,
in particular a certain stability of national educational ideals.

One major conclusion which can be drawn from the past one hundred years is that inter-
national mathematical communication depends on political conditions and power constella-
tions, and that mathematicians must for this very reason carve out – by active organizational
and political engagement – such working conditions, which are least vulnerable to abrupt
political changes. One consequence has been the re-definition in 1985 of the notion of a
“country” in the statutes of the International Mathematical Union (IMU), which now say in
§4:

The term ‘country’ is to be understood as including diplomatic protectorates and
any territory in which independent scientific activity in mathematics has been
developed, and in general shall be construed as to secure the broadest and most
effective participation of mathematicians in the scientific work of the Union.2

It therefore seems reasonable in the following discussion to use ‘international’ in the
sense of ‘inter-country’ relations in the broader meaning of ‘country’ as outlined in the re-
vised statutes of the IMU.

A complete history of mathematics in the 20th century which does justice to its enor-
mous technical complexity has yet to be written. First approaches have been made both by
historians of mathematics and working mathematicians.3 Also in the following no detailed
discussion can be given of ‘mathematical communication’ between individuals and schools
in mathematical research,4 in teaching and application, and we take for granted the changes

1 Former ‘Bourbakist’ Pierre Cartier acknowledges the ideological dimension in Bourbaki, which was person-
ified by some of its members at the time, such as Jean Delsarte and André Weil. See [36, pp. 26–27]. Cartier
explicitly mentions the manifesto of the surrealists as a parallel event. See [22] for more details from that per-
spective. Liliane Beaulieu, in her unpublished dissertation of 1990, provides much on the social and ideological
background of Bourbaki, information which cannot be found elsewhere in the literature.

2 Statutes of IMUApproved by the General Assembly on August 16, 2010. Olli Lehto, the longstanding secretary
of the IMU, describes in detail [20, pp. 245–250] why the IMU, which continues to have “international” in its name,
was forced in 1985 to delete in its statutes the attribute “national” from its “adhering organizations” in order to
enable both the People’s Republic of China and Taiwan to participate.

3 See [2, 6–9, 11, 16, 23, 26, 27].
4 The standpoint of the outsider vis-à-vis national schools often triggered fruitful developments. Just to give two

examples: The Austrian Ernst Fischer and the Hungarian Frigyes Riesz combined results of the French and German
schools in the Riesz-Fischer Theorem (1907). In the late 1930s the Frenchman André Weil saw and utilized deeper
connections between German arithmetical research and the theory of geometric correspondences of the Italians
[34].
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in the technical means of communication in the past hundred years: with respect to the latter
a reference to air traffic and email should suffice. However, ‘international mathematical com-
munication’ is much more than the two aspects just mentioned and it includes, for instance,
international comparisons which inform national developments and induce change in ‘na-
tional mentalities’. We will go into some of these conditions and relevant political events,
and provide literature for further and detailed study. Applied mathematics performed in
non-academic environments, hybrid disciplines such as aerodynamics and statistics, which
are not core fields at the present ICM, are not covered in the following discussion. Let us just
say that in these fields and their institutions usually exist very specific problems with respect
to international communication.5

Let me first make some tentative and preliminary remarks about the current situation in
international communication.

The identity of the mathematician has greatly changed and the social role of mathematics
has strongly increased worldwide since the Great War, the latter for instance evidenced by
the digital revolution. However, primary and secondary school teaching in mathematics and
undergraduate university education remain predominantly national (country) tasks. Also re-
search is mostly supported by national institutions, in spite of the existence of supranational
agencies such as EU, OECD, and UNESCO, and of internationally acting private enterprise,
and even though the individuals thus supported are not confined in their origin to the given
national system. The global political situation, after Nine-Eleven, in the Near East, Ukraine,
and some parts of Asia is by no means safer than it was at the outbreak of the Great War a
hundred years ago. Science, including mathematics, has to accept its part of responsibility
for the development of new weapons and other technical means of conflict and destruction.
After the fall of the Iron Curtain (and partly caused by it), developing countries like China,
India and Brazil aspire for mathematical prowess in a similar way to newborn nations like
Poland, and economically and politically growing ones such as the United States and So-
viet Russia after World War I. There is no dearth of new and old nationalisms, including
appeals for scientific boycotts (conjuring up the memory of the boycott after the Great War).
Particularly in the past 25 years, post-modernist indifference has given way to renewed fun-
damentalism and anti-scientific resentment, while justified and nuanced criticism of science
and its impact on society has increased as well.

International comparisons of educational and science systems continue to be on the
agenda, exemplified by PISA and TIMSS, even though some of these comparisons are dis-
puted in their methodology and predictive value. The United States remains the only scien-
tific superpower, somewhat similar to the predominance of Germany around 1914. This is
also demonstrated by the figures for invited talks at the present congress: 64, i.e., about one
third of the 190 sectional speakers come from U.S. institutions, while roughly another sixth
and twelfth come from French and UK-institutions respectively, adding up to over a half of
the total of invited speakers. That only four of the sectional and none of the plenary speakers
is currently employed by Russian institutions does not mirror the representation of Russian-
born (and Russian-socialized) mathematicians at the present congress, which is apparently
much stronger.

5 The reference to big companies such Microsoft, Google and Apple, which act internationally but are still based
on national systems with all legal repercussions and implications for corporative and national loyalties (case E.
Snowden) might suffice to warn against an extension of our discussion into this direction. Keyfitz, in an article on
industrial mathematics published in connection with the Madrid ICM in 2006 [18], emphasizes the differences in
the identity of the industrial mathematician compared to the academic mathematician.
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A somewhat similar picture is presented by the dominance of American institutions in re-
lation to the origin of many Fields medalists of recent decades, again with French institutions
ranking second.6

At least two things seem to have greatly changed in the 21st century.
First, in a globalized world attacks on and defenses of mathematics are not usually based

on nationally sanctioned ideological tenets, as was the case in the 1930s when slogans such
as “mathematics is a function of race” or “set theoretic mathematics is bourgeois idealism”
figured in political campaigns.7

Second, there seems to be a leveling of what once were considered to be recognizable
national styles within mathematics [39], while there continue to exist recognizable styles
of internationally structured research schools: this is of course partly connected to the lev-
eling of natural languages in mathematics, the adoption of English as the lingua franca in
mathematics and other fields of science and continuing emigration of students and trained
mathematicians. Much could be said about communication under war conditions – or partly
the absence of it – and the influence of military funding and secrecy regulations on inter-
national mathematical collaboration. Research on this question is gradually developing.8
Of course, in times of war national, as opposed to international, communication dominates.
However, international comparisons, mentioned above, are crucial at these times too. The
military funding of mathematics and resulting implications for international collaboration
also in relatively peaceful times has repeatedly caused discussions among mathematicians in
various countries. For the U.S. we have, for instance, the following statement by a leading
mathematical educationalist:

Many of us are military-oriented because of the long involvement of mathemat-
ics in military science. But we also tend to be internationalists since mathe-
matics is an international culture, independent of language and politics. This
characteristic has sometimes got us into trouble, or at least made us suspect as
security risks. [14, p. 430]

With a focus on times of relative peace and ‘normality’ of international communication
it seems reasonable to divide the past hundred years roughly in three main periods: Interbel-
lum,9 Postwar and Cold War, and, thirdly, the ongoing Information Technology Revolution,
the latter partly triggered by (in the former East) and partly triggering the fall of the Iron
Curtain. My discussion concentrates on the first period of the three since this period has
been subject to the greatest amount of historical research.

2. Interbellum

The Great War had deep consequences for the international landscape in mathematics and for
the emotions and mentalities of mathematicians. While the concrete impact of nationalistic

6 When we talk about American, we are referring to the United States.
7 The 20th century, from 1917 to 1989, has been, in the opinion of many, the ideological age. See also Cartier in

[36, p. 27].
8 See [6], and in it [44], as an approach to an international comparative perspective and providing more literature.

See also [15].
9 Given the mass exodus triggered by the Nazi rule in Germany one could argue that this period be divided in

two: before and after 1933.
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sentiment stirred by the war on world-wide research in mathematics is difficult to evaluate,
the more material consequences of the Great War are not. On the French side, a large number
of the students of the École Normale Supérieure had perished in the war [3]. New nations
appeared on the political scene: Polish mathematics became a power house of set theory
and functional analysis during the 1920s and 1930s. The experiences of the War had shown
the growing importance of science in the competition of nations. This had repercussions
for mathematical institutions, for instance the foundation of journals, series of monographs
(Springer)[32], and institutes for applied mathematics.10

In the U.S. and Russia, with enough resources of their own, the War (accompanied on
the Russian side by a political revolution and its consequences) led, by different roads, to a
shared world dominance in mathematics (which was finally accomplished after World War
II).

In the United States, plans designed immediately after the War for developing the sci-
entific publication system ([38, 53]) and applied mathematics ([43]) were temporarily post-
poned in favor of developing personnel and strengthening research. The War had put an end
to the tradition of Americans going to Europe, in particular to Germany and France, for study
[31]. The impoverishment of European states, not just the defeated ones, and political un-
rest in the Soviet Union created unique possibilities for recruiting first class personnel from
Europe.11 The superior material strength of the U.S. (above all the system of private univer-
sities) led to a first and early wave of emigration, which – combined with the effects of the
forced emigration from Europe after 1933 – bore fruit some twenty years later. But Amer-
ican postdocs went also in increasing numbers in the opposite direction, to Europe, mainly
supported by the Rockefeller and Guggenheim philanthropies. American mathematics in
general became much more research conscious than before the war. At the same time Asian
students (partly supported by the Boxer Indemnity Scholarship Program predating WWI)
began to appear in greater numbers in the U.S., and soon exceeded the number of European
undergraduate students there [53, p. 492].

Although the Soviet Union faced growing political isolation, and a loss of scientific per-
sonnel and although the language divide persisted, contacts with French [13] and German
mathematicians flourished there before 1933, for instance in Göttingen.12 We will see be-
low, that the relationship of the Russians to the Americans, in particular to the Rockefeller
Philanthropy, remained strained. But due to its – compared to the U.S.– broader and older
mathematical traditions and due to a critical scientific mass and size of its own, Soviet math-
ematics was able to develop strongly even in the 1930s and 1940s when its international
isolation once again increased.

In Western Europe the ‘boycott of German and Austrian science’ organized by the vari-
ous international scientific unions (including the mathematical one), which had been founded
in the aftermath of the war, had a great impact on the emotions of scientists and on the official
channels of communication; as is well known Germany and Austria were excluded from the
international congresses of mathematicians in Strasbourg (1920) and Toronto (1924). How-
ever, it is less clear what impact this actually had on the informal mathematical collaboration

10 In Poland the first specialized international journal of mathematics appeared: Fundamenta Mathematicae
(1920). Institutes for applied mathematics were founded in St. Petersburg by V. Steklov (c.1920), in Berlin by
R. von Mises (1920), following older traditions in Göttingen under C. Runge (1904), and in Italy by M. Picone
(1927).

11Mathematicians who emigrated from Russia such as S. Lefschetz, N. Minorsky, J. Shohat, J. Tamarkin, S.
Timoshenko, often had interests and training in applications.
12 P.S. Aleksandrov was a frequent guest.
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between individuals and mathematical schools, although singular drawbacks cannot be de-
nied.13 Many informal networks of collaboration survived the war (such as the one between
G.H. Hardy in England, Harald Bohr in Denmark and Edmund Landau in Germany) or were
even extended (with Copenhagen becoming a hub for international collaboration in mathe-
matical physics), and some Germans felt that those among the mostly French and Belgian
mathematicians (such as Émile Picard) who insisted on the boycott, were increasingly isolat-
ing themselves. Arguably, by the late 1920s and early 1930s, mathematics in Germany, par-
ticularly in Göttingen, had become the most ‘internationalized’ of all national mathematical
cultures in the world. This was true relative to a number of metrics: the nationality and ori-
gin of mathematicians teaching and studying at German universities; the number of German
mathematicians sent abroad either as postgraduate students via, for example, Rockefeller’s
International Education Board, or as guest professors like Richard Courant, and Wilhelm
Blaschke; national origins of authors of articles in German journals; the international impor-
tance of the German publication system in mathematics; and the variety of topics discussed.

And still, Germany was no longer as dominant a mathematical world power as it had been
before the war. There were shortcomings in algebraic topology which, as a ‘modern’ and
axiomatic mathematical sub-discipline, had reached firm ground in the U.S., particularly
at Princeton, since the early 1920s. Similar remarks concern lack of work in functional
analysis and real functions; this was partly reinforced by reservation on the German side
against contacts with Polish and French mathematicians, resentments which did not exist
on the part of the Austrians (H.Hahn, E. Helly, E. Fischer etc.). In probability theory, the
French and Russian schools were much stronger than the German one, Richard von Mises
being essentially the only contributor on the German side during the 1920s. The English
and Scandinavian, and somewhat later American, schools took the lead in mathematical
statistics.

A look at international mathematical communication should not be restricted to research
systems but has to include the development of school systems and educational ideals, which
played an increasing role within developing mass education, affecting norms and standards in
mathematics as well; international comparison was important in these developments because
it inspired national developments, even though often merely in a propagandistic manner by
exaggerating or distorting foreign investment and accomplishments.14 The developing U.S.
school system has often been criticized by American educators themselves, both before and
after World War I, for unwillingness to learn from foreign (European) experience. W.L.
Duren, himself very much involved in educational policies, found in 1989, that the U.S. in
1918 “set forth the agenda of social development and personal fulfillment as the aims of
secondary education, and relegated the mastery of subjects to low priority” which in his
opinion resulted in a growing “isolation from European Mathematics” [14, p. 405].

It would take a broader discussion of the history of mathematical education (which is
not intended here), whether mutual “isolation” in Duren’s sense, meaning self-contained
development of educational systems, was not partially an international phenomenon, and
not restricted to the U.S. Suffice it to say that the “mastery of subjects” by students and

13 Bru observes [7, p. 176] that the ICM in Bologna 1928 was a missed opportunity to establish connections
between parallel French (J. Hadamard, M. Fréchet), Czech (B. Hostinský) and German/Austrian (R. von Mises)
work on Markov chains. Out of political resentment von Mises had chosen not to go to Bologna and remained
unaware of the presentations given there for several years. Conversely, the French did not learn about the progress
which von Mises had made with the help of the theory of positive matrices (G. Frobenius).
14 Discussing the 19th century, Parshall finds that “educational reform ... represented a sort of international

common denominator in the formation of these national mathematical constituencies.” [25, p. 1581].
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teachers themselves remains hotly debated today on an international scale.
The controversial discussion of educational ideals leads back to the influence of the

Rockefeller Philanthropy, whose main international agency in the 1920s was the “Interna-
tional Education Board” [41]. Its twofold aim was helping European mathematics to recover
and American mathematics to develop and broaden, however, rather in the elitist sense of
“making the peaks higher” than relegating the “mastery of subjects to low priority.” Rocke-
feller’s support for mathematics is probably world-wide the most important factor for in-
ternationalization in the 1920s, only comparable with the effect of the mass exodus from
Europe after 1933. It was affected through Rockefeller’s international fellowship program
and Rockefeller’s financing of the new mathematical institute buildings in Paris (later to be
called Institut Poincaré) and Göttingen, which opened respectively in 1928 and 1929. Al-
though the Rockefeller people, advised both by Americans (O. Veblen and G.D. Birkhoff)
and Europeans (R. Courant, É. Borel, H. Bohr etc.) did not have short- sighted goals such
as the brain-drain of European mathematicians, the priority of national American values and
developments in the eyes of the philanthropy was never in doubt. The predominance of
private money in funding American mathematics until WWII was epitomized by the name
“National Research Council Fellowships” for the Rockefeller-financed grants reserved for
American candidates, who usually had to pass lower quality standards than European candi-
dates. Rockefeller policies revealed a clear preference for American and Western European
fellows over Eastern European, in particular Russian ones, who were only occasionally and
indirectly (through West European sponsors) supported. The philanthropy did not originally
reach out beyond Europe and North America either. As late as 1932, for instance, a Rocke-
feller officer said that “we are not permitted to consider subjects from India.” [41, p. 222].
It was only in the mid-thirties and finally during WWII that – for obvious political reasons –
South American candidates were increasingly supported by Rockefeller and other American
philanthropies.

The focus of Rockefeller support on Göttingen sharpened jealous institutional conflicts
within Germany, in particular with mathematicians in Berlin (L. Bieberbach, E. Schmidt, R.
von Mises) who were skeptical of some traits of modernization, in particular international-
ization. These included developments in commercial publishing, when for instance some
mathematicians half-jokingly called the Springer Grundlehren series the ‘yellow peril’. This
overlapped with concerns for content and language, for instance in mathematical reviewing,
where Springer’s new Zentralblatt, founded in 1931, published abstracts in English unlike
its older rival Jahrbuch über die Fortschritte der Mathematik [38].

At the same time developments within mathematics, influenced by David Hilbert’s ax-
iomatic method, supported internationalization of mathematics, based on commonalities in
the mathematics of various national schools. The American E.T. Bell called “abstract spaces”
a “typical example of the internationalism of mathematics” [2, p. 543]. Again it is a diffi-
cult problem to decide whether Emmy Noether’s school of abstract algebra in Göttingen in
the late 1920s primarily fostered internationalization or whether it was already a result of
it. Certainly, a particular abstract and structural style of presentation, as in the famous book
of Noether’s student B. L. van der Waerden, Moderne Algebra, made it easier for the disci-
pline to cross boundaries of language and mentality, to ‘internationalize.’ Indeed, between
1932 and 1935 several American (Garrett Birkhoff, Saunders Mac Lane) and French (Jean
Dieudonné, Henri Cartan) mathematicians witnessed – by their own testimony – a kind of
quasi-religious ‘conversion’ toward abstract algebra in the Noetherian sense. This marked
the beginnings of the French group of young mathematicians, Bourbaki, which later became
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the quintessential propagandist of the structural approach in various mathematical disciplines
[11].

For all the internationality reached in Göttingen’s mathematics towards the end of the
1920s there remained a feeling even among their leading figures that not everything was se-
cure and irreversible in international mathematical communication. Throughout the 1920s
nationalist resentments persisted among various European scholars and students, above all
in Germany, towards a revision of the results of World War I. In Göttingen anti-Semitic ac-
tions, particularly in the student body, increased political tensions. In the mind of Hilbert
and other modernist and internationalist mathematicians this political insecurity contributed
to maybe exaggerated concerns about a possible anti-Cantorian backlash in the logical foun-
dations of mathematics [22]. This was the case not least because the principal opponent of
mathematical formalism, the Dutch intuitionist amd topologist L.E.J. Brouwer, seemed to
personify both the mathematical and the political counter-revolution. Together with nation-
alistic German mathematicians such as Ludwig Bieberbach, Brouwer opposed the participa-
tion of German mathematicians in the ICM of Bologna in 1928 out of concerns for German
national pride. Although Bologna finally saw the reappearance of a German delegation, the
intended and actual15 presentations of old and frail Hilbert at the congress expressed his
double concerns and contain some element of desperation, maybe aggravated by the state of
his health.16 In a 3-page political talk Hilbert intended to say at Bologna:

It is a complete misunderstanding of our science to construct differences or even
incompatibilities according to peoples and races, and the reasons for which this
has been done are very shabby ones. Mathematics knows no races. . . . For
mathematics, the whole cultural world is a single country.17

At Bologna mathematicians agreed that there were still international conflicts and there-
fore decided to reconvene in the politically neutral surroundings of Zürich in 1932.18

The following year, 1929, saw the beginning of the Great Depression, and even the
resourceful Rockefeller Philanthropy had to reduce its activities in Europe, focusing from
now on even more on the U.S. The seizure of power by the German Nazis in 1933 brought
international mathematical communication for mathematicians within Germany almost to
a standstill. Bieberbach, who had become a Nazi, would soon speak deprecatingly about
“international formalism” [38, p. 320] in mathematics.

Under their political regimes in the 1930s, both German [35] and Russian mathemati-
cians became internationally isolated towards each other and towards the West. They had

15 Hilbert presented a plenary talk in Bologna on “Problems of the foundation of mathematics” where he reiterated
his famous “In mathematics there is no ignorabimus”, already known from his talk at the ICM in Paris 1900.
16 Even the state of his health had political connotations, because Hilbert was finally cured by American medica-

tion (provided through the Rockefeller philanthropy) while the renowned German health system had been unable to
help him.

17 Although this passage has been quoted all over the place as part of an actual talk given by Hilbert (e.g. in [20,
p. 48] and even though it follows closely a manuscript in the handwriting of Hilbert’s wife Käthe, I have so far no
reason to believe that this additional, political talk was actually given. Neither the Proceedings of the Congress in
Bologna nor any of the many published reports on the Congress mention Hilbert’s talk, not even in connection with
some social event of the congress. A detailed letter from Hasso Härlen to Brouwer, dated Eislingen, 27 September
1928, about Bologna does not mention it either, which is probably the most convincing counter-evidence so far,
although a page or so is missing at the end of the letter. Thanks go to Dirk van Dalen (Utrecht) for providing a
transcription of this letter.

18 Härlen to Brouwer, 27 September 1928. This was, in a way, a duplication of the political decision to have the
very first ICM in Zürich 1897.
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their participation in foreign congresses curtailed by their regimes, their private mail was
controlled, and their publication in international journals diminished. The influential inter-
national conference on topology in Moscow in September 1935 was about the last inter-
national event with participation of Russian mathematicians before the war. From 1934,
Springer’s abstracting journal Zentralblatt was edited from Copenhagen in order to avoid
the possibility of political influence by the German government. The editor, who had had
the post since 1931, was the German-Austrian refugee and historian of mathematics Otto
Neugebauer. Neugebauer was also responsible for Springer’s Ergebnisse (‘Results’) series,
and in that context he wrote on 14 March 1937 to his friend Richard Courant, who was by
then in New York:

You will certainly be interested to learn that Kolmogoroff and Khintchine had
big scandals in Russia due to their Ergebnisse-reports, published in Germany.
As a matter of fact, in Russia there is now flourishing the same idiotic national-
ism as in the Third Reich. Of course you should not write about these things to
Russia, but you ought to know because of the Yellow Books. For instance I do
not believe that either one of the two would now be able to write a Yellow Book
without danger.19

Inside Germany and Russia the communication and the publications systems continued
to work relatively undisturbed – in Germany of course only after the disruptive and shameful
events of expelling Jewish mathematicians from their posts. The Russian publication system
was highly subsidized by the state, and foreign literature was often published in pirated
translations. The German mathematical publication system, headed by Springer, especially
monographs and Zentralblatt, remained internationally strong throughout the 1930s. For the
Hitler regime, which pursued policies of economic autarchy, it became a source of much
coveted foreign currency.

Just as before, at the time of the boycott, ‘internationalism’ meant cooperation primar-
ily between mathematicians from politically allied countries. The insurmountable dogma of
anti-Semitism in German politics created additional problems for the international commu-
nication of German mathematicians. A striking example is the journal Compositio Mathe-
matica, which had been founded around 1930 by Brouwer in the Netherlands, at that time
supported by Bieberbach, Brouwer’s ally in anti-boycott policies. The journal was expressly
intended to further the development of mathematics and, at the same time, international co-
operation. When Compositio Mathematica finally appeared for the first time in 1934, its
international editorial board included several Jews, who had fled from Germany. This led to
a withdrawal of German mathematicians from the board. The journal was suspended during
the war when the Netherlands were occupied by German forces [21, p. 235].

The divided internationalism on the German side led to an expansion of contacts of Ger-
man mathematicians to Asia, renewing older contacts made in the 1920s, when scholars both
from Germany (Th. v. Kármán, W. Blaschke) and from Western countries (J. Hadamard, N.
Wiener) had assumed guest lectureships in the East. Of course there existed older contacts
between Japanese and German mathematicians from around 1900 particularly in number
theory through Teiji Takagi.20 After 1933 Chinese students increasingly came to study in

19 Courant Papers New York University Archives, no call number. My translation from German. Neugebauer was
alluding to the two influential books on probability theory of Kolmogorov and A. Khinchin which appeared in 1933
and 1934 in German in the Ergebnisse series.
20 Takagi, who had been studying in Göttingen in around 1900, wrote his most important paper in 1920 which
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Germany. While the full story of German-Asian mathematical relations during the Nazi era
is not yet documented historically, the importance of Chinese geometer S. S. Chern’s stay in
Hamburg from 1934 and his communication with Erich Kähler and Wilhelm Blaschke have
been repeatedly stressed.21

Particularly in the case of Italy, political alliances made collaboration for German math-
ematicians easier [42]. The leading researcher in algebraic geometry and politically well-
connected Italian mathematician Francesco Severi said at the end of his talk at a conference
in 1938 in German Baden-Baden:

I hope that the important progress that Germany has realized in modern alge-
bra, will allow her magnificent mathematicians to penetrate deeper and deeper
into algebraic geometry which has been cultivated in Italy over the past 40
years; and that the connections between German science and Italian science,
which have already been so close in this domain at the time of our masters,
become more intimate every day, as they are today in the political and general
cultural realm. [34, p. 15]

Severi’s main partner on the German side, H. Hasse, declared in 1939 vis-à-vis American
mathematicians that there was a “state of war between Germans and Jews,” thus supporting
the introduction of policies into the Zentralblatt which prevented German-authored papers
being reviewed by Jewish mathematicians. Somewhat later, during the war, Hasse tried
to involve French mathematicians under occupation and some French prisoners of war in
collaboration with the Germans [42].

The increasing division of internationality showed clearly at the Oslo ICM of July 1936.
Italian mathematicians were forbidden by the Fascist regime to participate. This was a re-
action to the international boycott of Italy, following the Italo-Abyssinian war and the occu-
pation of Ethiopia by Italy in May 1936. Russian mathematicians were also prevented from
coming; their participation having been a specific point on the agenda of a meeting of the
Politburo of the Communist Party.

Mathematics at the time of Oslo still bore all the marks of ‘little science’ in the words
of D.J. de Solla Price [28]. Compared with today, there was a relatively small attendance
of a few hundred mathematicians at the International Congresses and a limited number of
countries participating in them. The numbers had actually gone down, apparently due to
the economic situation around 1932 and the political situation around 1936, from 836 in
Bologna, through 667 in Zürich to officially 487 in Oslo.22 At the same time, the 1930s
saw an increase of smaller, specialized international mathematical meetings (topology, foun-
dations, probability, applied mathematics), a fact which had, of course, implications for the
decisions of mathematicians, in particular their willingness and ability to attend big con-
gresses in addition to small ones.23 After the war, international conferences on specialized

introduced the Takagi class-field theory generalizing Hilbert’s class field. Hasse included Takagi’s theory in his
treatise on class field theory a few years later. Also a lectureship in Japan (1923–1928) of the German mathematician
Wilhelm Süss should be mentioned because Süss became influential in German mathematics in the 1930s.
21 Tobies lists 14 mathematics PhD students in Germany from China for the period 1907-1945, 13 of whom

received their degree after the Nazis had come to power in 1933, several during the war [47, p. 18]. However,
somewhat surprisingly, none from Japan is listed.
22 Even the 487 participants recorded in the Oslo Proceedings was an exaggeration, because the Russian and Ital-

ian delegates listed did not attend. It was 1950 in Cambridge, MA, that for the first time over 1000 mathematicians
took part, namely about 1700 [12, p. 151].
23 Details about this development are given in [51, p. 316].
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topics, developed as one of the main activities of the new IMU.24
On the other side of the political divide, in the traditional Western countries, the mass

exodus from Germany, and later from German occupied territories, particularly Austria and
Poland, brought about a total reshuffling of international communication, a strong increase in
oral communication, changes in research subjects, in teaching, and in mentalities. While the
emigrants had to adapt to the new environments, mathematics in the host countries, above
all in the United States and in Great Britain, gained considerably [45].

For mathematicians who hitherto had been for the most time divided by the Atlantic, it
was refreshing to experience new oral communication. Abraham Flexner, the director of the
Princeton Institute for Advanced Study, wrote in April 1935 to a Rockefeller official about
one of the internationally leading mathematicians of the time, the German Carl Ludwig
Siegel:

Siegel . . . made a very deep impression upon the mathematicians here. They
obviously knew of him while he was still in Frankfurt, but I don’t think that
they realized how able he was until they had the opportunity for closer personal
contact. [41, p. 197]

This reminds us of a quote from André Weil’s historical plenary talk at the 1978 ICM at
Helsinki: “We all know by experience how much is to be gained through personal acquain-
tance when we wish to study contemporary work; our meetings and congresses have hardly
any other purpose.” [52, p. 229]

As to the confrontation of different research mentalities during immigration, George
Birkhoff’s talk at the semi-centennial celebration of the AMS in 1938 is revealing. He
said among other things that American research on what he called “Special Analysis”25
had not been very widespread, because Americans tended “to take our mathematics as se-
rious business (while) . . .many of the most astonishing mathematical developments began
as a pure jeu d’esprit.”[5, p. 307]. The Polish immigrant Stanislas Ulam, who was then at
Harvard, considered this as a sign of “lack of self-confidence” and said it “was strange to
me”. However, he continued: “it was less objectionable than the European arrogance” [48,
pp. 87–88]. Together with “Special Analysis”, concrete classical analysis in a broader sense
was introduced to the U.S. by some immigrants. Two American students of Polish analyst
and immigrant Antoni Zygmund wrote in 1989:

He [Zygmund] realized that fundamental questions of calculus and analysis
were still not well understood. In a sense, he was ‘bucking the modern trends’.
[10, p. 347]

Finally, under war conditions, long experiences in cooperating with state bureaucra-
cies, with the military, and industrial environments made immigrants such as Courant and
Theodore von Kármán inspiring partners for American mathematicians, who traditionally
had mostly functioned in purely academic environments [43].

Amongst all these gains and mutual profits, the losses of the exodus from Europe should
not be forgotten. These occurred foremost at an individual level. Mathematicians had been

24 See [20, p. 170]. The ICM at Cambridge, MA in 1950 had – in addition to the usual program – specialized
conferences on algebra, applied mathematics, analysis, and topology. Chandler and Magnus discuss the importance
of international specialized meetings in a special chapter in their book on The History of Combinatorial Group
Theory, devoted to “modes of communication” [9].
25 Birkhoff mentioned N. Wiener on Tauberian theorems, E. Hille, J. Tamarkin and D. V. Widder on Laplace–

transformations and L. L. Silverman on summation of divergent series.
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rooted up from their scientific and personal environments. Others did not make it and were
killed back in Europe, for instance in Nazi camps. Until this day unpublished manuscripts
are found in papers left by victims of the purge. Especially during the war there existed
restrictions and secrecy regulations for immigrants from enemy countries, even if they had
been expelled from those countries. The internment of German immigrants in Britain and
of Japanese in the U.S. is well known. Mathematical communication even between allies,
such, as the British and the Americans, was temporarily disturbed.26

Also the losses for mathematics in the deserted mathematical environments in Europe
should not be ignored. These losses partly resulted from interrupted communication chan-
nels between Europe and the U.S. One could mention here the young and brilliant mathe-
matician and fervent Nazi, Oswald Teichmüller, who was killed in the war, and whose works
were temporarily forgotten.27

Much later, in 1977, the son of George Birkhoff, Garrett, an influential mathematician in
his own right, spoke about the decisive new level of internationalization within the American
mathematical community resulting from the developments of the 1930s and from the war.
But he did not forget to add that at least some Americans (and he apparently included his
father) viewed the impoverishment of the European scientific cultures around 1940 with
mixed feelings and as potentially dangerous for the harmonic development of world science
as a whole [4, p. 77].

3. Postwar-Cold War

Considerably less historical research has hitherto been done on international mathematical
communication after World War II, than on the period before the war . Therefore the follow-
ing remarks are by necessity less complete than those in the preceding section.

As a consequence of mass immigration and due to much increased state funding during
and after World War II (much funneled through the department of defense and, since its
foundation in 1950, through the National Science Foundation, NSF), the United States came
out of the war as one of two mathematical super-powers, with the Soviet Union being the
other. In his 1946 obituary of George Birkhoff, topologist Oswald Veblen from Princeton
alluded to the AMS semi-centenary of 1938:

Among the unconscious revelations of the address on “Fifty years of Ameri-
can Mathematics,” one of the most vivid is that of the depth and sincerity of
Birkhoff’s devotion to the cause of mathematics, and particularly “American
mathematics.” . . . It may be added that a sort of religious devotion to American
mathematics as a “cause” was characteristic of a good many of his predeces-
sors and contemporaries. It has undoubtedly helped the growth of science dur-
ing this period. By now, mathematics is perhaps strong enough in the United
States to be less nationalistic. [49, p. xx]

One might add that both mass immigration and the experience of the Nazi crimes, partic-
ularly Auschwitz, had essentially eradicated xenophobia and - above all - anti-Semitism in

26 See [44], [45].
27 The so called ‘Teichmüller-theory’, disclosing deep connections between Riemann surfaces and quasi-

conformal mappings, began to reappear after a publication of Lars Ahlfors in 1953. Its temporary neglect is partly
due to the fact that important papers of Teichmüller’s were published in the Nazi-journal Deutsche Mathematik.
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American academia, sentiments which had still been very palpable in Birkhoff’s talk before
the AMS in 1938.

Former immigrants continued to help Americans in various ways to develop a new Amer-
ican mathematical culture. In the last months of the war immigrants to the U.S., such as Her-
mann Weyl and Richard Courant, and American mathematicians such as Arnold Dresden
and AMS secretary John Robert Kline, discussed how to improve mathematical education
in the U.S. and utilize the experiences of the immigrants in this process. In a letter to Weyl,
Dresden emphasized that “we should discuss not merely the problems of graduate education
but the entire range of mathematical education beginning with the elementary schools.” On
18 February 1945, the four mathematicians mentioned and a few other Americans and immi-
grants28 met at Dresden’s institution, Swarthmore College, PA, and produced a memoran-
dum where they criticized the level of teachers and their preparation, stressed the importance
of the history of mathematics for education,29 and emphasized:

It would also be useful to become acquainted with measures taken in foreign
countries, particular England and Russia, for the betterment of mathematical
education.30

The group proposed the appointment of commissions “to study the matters presented in
this report;” however, no immediate consequences of the report are known to this author.

The recovery of international contacts after the war was difficult for various resource-
related and political reasons, including political mistrust (McCarthyism, Stalinism). Sci-
entists had to find ways out of the secrecy regulations of war research, which soon were
complemented by new ones at the beginning of the Cold War.

Again, early and recent immigrants to the U.S. were instrumental in this process. In 1963
the English analyst Mary Cartwright, who worked on non-linear vibrations and oscillations
from the early 1940s, reported about restrictions of international communication even with
the American allies during the war. She alluded to the language barrier between English and
Russian, but also to the role of early immigrants to the U.S., such as Nicolas Minorsky, who
helped to overcome that barrier:

While Littlewood and I were attacking special problems, Lefschetz, Levinson,
Minorsky and others in the United States, impelled to a large extent by applica-
tions connected with the war, were beginning to prepare the way for a clearer
unified and more easily handled mathematical theory. . . . Minorsky’s book, ‘In-
troduction to non-linear mechanics’ was first published as a ‘Restricted’ report
under the auspices of the U.S. Navy and appeared in parts between 1944 and
1946. This made the Soviet work more easily available to those who could ob-
tain it, but the material was still very indigestible. [8, pp. 196–197]

The resumption of international mathematical congresses and the re-foundation of the In-
ternational Mathematical Union in 1951 have been described by Lehto [20]. He has stressed
the role which Americans such as Marshall Stone and immigrants to the U.S. such as Courant
played in this process. The contribution of victims of National Socialism who had remained

28 H.W.Brinkmann, E. J. Miles, O. Ore, and H. Rademacher.
29 Contrary to these proposals, history unfortunately finds only a marginal place in modern mathematical didac-

tics.
30Weyl Papers, ETH Zürich, Hs 91: 196.
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in Germany such as E. Kamke was also substantial.31 Those individuals and the dismal
experiences with the old Union ensured that a boycott of German mathematics after WWII
was out of the question, in spite of all the justified bitter feelings in many countries about the
Nazi crimes.

Several of the immigrants and also some other British, French and American mathe-
maticians visited Germany [45]. This happened originally on post-war missions in order
to evaluate German personnel and research during the war. In Germany the Mathematical
Institute in Oberwolfach (Black Forest), which had been founded under the Nazis in 1945,
became a place for the resumption of international contacts in mathematics. It is today an
internationally well established and coveted place of international mathematical meetings,
together with others, for instance Luminy (France) or the Banff International Research Sta-
tion (Canada).

Nevertheless, at least in the beginning of renewed contacts there was – not unexpect-
edly in view of the open wounds of the war – plenty of misunderstanding between German
mathematicians and foreigners, including emigrants. Restrictions were imposed on German
research in more applied domains as a result of decisions by the Allied Control Council in
Germany. One problem concerned the publication rights for German books seized by the
U.S., where companies such as Dover republished large amounts of books during and after
the War in original German, without paying royalties to the authors. However, it has been
argued that the seizure of German books contributed to keeping German mathematics and
the German language alive in the minds of the international community, at least for a while
[40].

A second wave of emigration from Europe started after the war, not least caused by
the precarious working and living conditions, especially in postwar Germany. The start of
the brain drain from Europe to the United States not only affected German mathematics.
Courant’s Institute at New York University became a center of attraction for immigrants
from several European countries.

The return to their home-countries of French and of some (if only a few) German em-
igrants after the war, and the rapidly increasing number of foreign students in the United
States led to the importation and re-importation of certain mathematical sub-disciplines to
Germany and to Europe. The influence of Bourbaki, has to be mentioned here. Many ideals
of internationality and modernity in mathematics at least in the Western Hemisphere (for in-
stance ‘math = set theory’) were partly mediated by Bourbaki in the decades to come; some
influences on international educational ideals (New Math in various national forms) have
been strongly criticized. There are even indications that the abstract, structural approach of
Bourbaki deepened the divide between West European and Russian mathematicians.32 This
happened although in the 1930s Hilbert’s axiomatic method had influenced both Bourbaki
and Russian mathematicians, such as Andrey Kolmogorov.33 In an interview of 1990, V.I.
Arnold, a noted student of Kolmogorov, deplored the increasing distance of some parts of
abstract mathematics from applications and went as far as saying:

In the last thirty years the prestige of mathematics has declined in all countries.

31 Evidence for this can be found in the files of the American Mathematical Society at Brown University, Provi-
dence.
32 One Romanian mathematician claims that adherence to Bourbaki was understood in some quarters in East

Europe as a token of resistance again Soviet dominance, with old relations to France being part of the picture [33,
p. 564].
33 Think of Kolmogorov’s axiomatics of probability of 1933.
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I think that mathematicians are partially to be blamed as well (foremost, Hilbert
and Bourbaki). [19, p. 379]

Already at Harvard in 1950, at the postponed ICM which originally had been planned for
1940, German and Japanese mathematicians from the former enemy countries took part in
roughly the same numbers (about 10 in each case) as other non-American countries. How-
ever, there were no participants from the Soviet Union or any other Socialist countries.34
The East European countries joined the International Mathematical Union in the late 1950s,
East Germany as an independent country only in 1964. The People’s Republic of China did
not become a member of the Union until 1986.

However, participation in the ICM did not necessarily require membership of the IMU, as
Bologna 1928 had shown. The Russians returned to the international scene at the Amsterdam
ICM in 1954. The importance of Kolmogorov’s plenary, which enabled Western mathemati-
cians such as Jürgen Moser to connect to largely unknown Russian research, has been repeat-
edly stressed [8]. Kolmogorov’s lecture was entitled “General theory of dynamical systems
and classical mechanics,” and it was presented and published (in the Proceedings) in original
Russian. While Soviet mathematician had given plenary talks in West European languages
(mostly French and German) at earlier ICMs (for instance Nikolay Luzin in Bologna 1928),
from the 1930s they had begun publishing almost exclusively in Russian, a practice which
they continued after the war. This prompted the American Mathematical Society, with fund-
ing from the Office of Naval Research, to begin a Russian translation project in 1947. The
Society of Industrial and Applied Mathematics (SIAM) followed suit in 1956 with support
from the NSF. Due to the retrospective American translation program, the early results of the
Russian school of the 1930s in non-linear mechanics and dynamical systems around Nikolay
M. Krylov and Nikolay Bogolyubov became internationally better known. These results had
built on even earlier work both by Henri Poincaré and Aleksandr Lyapunov at the turn of
the century and connected to research by Russian physicists such as Leonid Mandelstam and
by industrial mathematicians such as the Dutch radio-engineer Balthasar van der Pol. Some
indigenous traditions (George Birkhoff as a follower of Poincaré), but above all the presence
in the U.S. of early immigrants such as Minorsky (see above) from Russia with interests in
applications ensured that the Russian results did not fall on totally unprepared ground in the
West.

The ‘Sputnik crisis’ in 1957 caused American mathematicians to look even more closely
at the work being done in the Soviet Union. However, the role of English as the lingua franca
in the sciences and in mathematics would soon become overwhelming. At the ICM in Nice
in 1970 all the plenary speakers, including the Russians, gave their talks in English with the
exception of Lev Pontryagin, who used French.

Inner-German mathematical communication seems to have helped in overcoming the
language barrier between Russians and Western mathematicians. Although the East and
West Germans had each officially belonged to their own adherent organization of the IMU
from 1964 – and their relationship has therefore to be considered ‘international’ in the un-
derstanding of this presentation – they continued to collaborate in projects such as editing
the leading abstract journal Zentralblatt für Mathematik until the 1970s. Many reviews of

34 One East German (E. Hölder) and one Pole (A. Mostowski) are listed in the Proceedings as belonging to the
German and Polish delegations. However, neither of them appear as “members” or “authors” of the Congress and
they were probably not present, maybe due to visa restrictions from either their own countries or the American side.
The politically motivated visa problems which Laurent Schwartz faced before he could participate in the congress
and receive the Fields medal there have been described in his autobiography (1997).
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Russian papers were written by East Germans who knew the language from school or had
even studied mathematics in the Soviet Union [37].

The economic superiority of the West, which gradually began to affect the infrastructure
of mathematical research too and perpetuated the brain drain of mathematicians from many
countries worldwide in particular to the U.S., increasingly defined the rules in scientific and
cultural communication. Of course there continued and continue to exist until today many
mathematicians in Europe and other places in the world, who work on an equal level with the
Americans, among them many Russians. Nevertheless there is no doubt about the superior
technological and industrial infra-structure, in particular with respect to computing facilities
and software-development, which existed in the U.S., even long before the current revolution
in information technology. Although this superiority was sometimes opposed with resent-
ment (documented for instance by the British mathematician Alan Turing), it was admitted
even self-critically by Russians35 and by Western European applied mathematicians such as
the Frenchman Louis Couffignal, the cybernetics pioneer, and by Jacques-Louis Lions, the
numerical analyst. However, the close collaboration of Lions with Soviet applied mathe-
matician Guriy Marchuk in the 1960s showed that the assumption of underdevelopment and
isolation of Russian computing does not give the full picture. Lions sometimes felt that the
lack of instruments increased the theoretical depth of their collaborative work.

Until the end of the Cold War, international relations in mathematics, at least in Western
countries, were very much characterized by movement of personnel and human resources.
Shortly before the Iron Curtain came down, Duren, said about “foreign graduate students”:

Besides the women, the other unanticipated source of mathematical talent that
made the crops of expansion Ph.D.s after 1963 better than we had any right to
expect came from abroad. Their numbers have been increasing year by year,
relative to native-born Americans, until in 1987 more than half of American
Ph.D. degrees in mathematics were awarded to foreign students. . . . These stu-
dents are not only selected for ability from a world pool of mathematical talent
(excluding only the Soviet Bloc countries), they also tend to be better trained in
certain areas such as hard analysis and mechanics. This may make them better
than Americans in applied mathematics. [14, p. 436]

Duren cites also the former French cabinet member J. J. Servan Schreiber, who insisted
at the same time (1987) that “America must remain the world’s graduate university for the
sake of both U.S. and world economic, technological, and intellectual development.” [14,
p. 437]

Problems of international communication between East and West concerned not just lan-
guages and economic infrastructure but remained very much political until the end of the
Cold War and the fall of the Iron Curtain, including problems of military funding, which
often caused discussions within national communities of mathematicians.

It was only after the political turn around 1990 that historical reports appeared regu-
larly in journals such as the Notices of the American Mathematical Society about former
travel-restrictions for East European mathematicians, special programs such as IREX (Inter-
national Research and Exchanges Board), which had allowed some exchange of personnel,
defections of some scholars to the West etc. The complete history of these abnormalities and
disturbances of international communication has yet to be written.

35 See the contribution of A.P. Ershov and M. R. Shura-Bura in [23], written long before the fall of the Iron
Curtain.
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Lehto describes in detail the controversies and diplomatic efforts around the 1983 ICM
in Warsaw (postponed due to martial law there) [20]. He discusses the negotiations about
the membership of the People’s Republic of China in IMU. He suggests, based on the expe-
riences of the IMU representatives who negotiated in Moscow 1980, that the anti-Semitism
which disturbed the Russian relationship with the IMU, was not necessarily imposed by the
political regime but was supported by influential Russian mathematicians themselves [20,
p. 217]. However, there is little doubt that the suppression of Jewish mathematicians in
the Soviet Union, denying them travel to the West, often combined with attacks on U.S.-
supported Israel, reflected a growing feeling among leading figures of the system of being
doomed in the Cold War, and anti-Semitism thus foreshadowed the fall of the Iron Curtain.
Indeed, since the 1970s there had been an emigration of Russian-Jewish mathematicians,
mostly via Israel, a movement which overlaps with the third and most recent period of inter-
national mathematical communication to be discussed in this paper.

4. International mathematical communication after the fall of the Iron Curtain
and conclusions

The Iron Curtain fell in 1989 not least due to Western superiority in communication tech-
nologies, partly based on mathematics. Because that singular political event entailed another
wave of worldwide migration of mathematicians one may safely date the last and most re-
cent period in international mathematical communication from that year 1989, epitomizing
an overlap of deep political and technological changes. It is probably too early to come to
final conclusions about these very recent events and their consequences for world mathemat-
ics. Therefore we will try to weave several of them – with some emphasis on variants and
invariants – into a tentative summary of a century of international mathematical communi-
cation.

International mathematical collaboration on the research level has continued to celebrate
success: two of the most spectacular recent mathematical accomplishments, the proofs of
the Fermat and the Poincaré conjectures have profited much – partly when the proofs were
checked for correctness – from the internationalism of mathematicians.

There are obvious recent changes in communication technologies, such as the posting
of articles on the arXiv.org website starting in August 1991, which is now hosted and oper-
ated by Cornell University in the United States and continues and replaces the tradition of
pre-prints from the pre-computer age. Old and new problems of publishing peer reviewed
articles have been hotly debated recently on an international scale, for instance in responses
to and in massive support for an initiative by Fields medalist Timothy Gowers. The new
element caused by modern technologies is the shift of the working load in the publishing
process to scholars and academic institutions and the diminished role of print on paper, with
undiminished or even increased profits on the part of commercial publishers. The resulting
conflict reignites old tensions between the mathematical community and commercial pub-
lishers dating back to the 1920s. This older tradition has also some potential to dampen
the current crisis as revealed in the following passage from the 2012-memo “The Cost of
Knowledge”:36

36 http://thecostofknowledge.com/. Cf. statement of purpose, p. 3.
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One reason for focusing on Elsevier rather than, say, Springer is that Springer
has had a rich and productive history with the mathematical community.

Not only in relation to publishers but also among mathematicians themselves, the ethics of
professional competition and publishing has been increasingly discussed in recent decades,
triggered by spectacular events such as Grigoriy Perelman’s refusal to accept the Clay Insti-
tute Millenium prize money for his confirmation of the Poincaré conjecture.

New forms of collaboration between mathematicians, based on the new communication
technologies, have been proposed and enacted, for example the Polymath Project, initiated
by Gowers in 2009.

Discussions on and comparison of the various national educational systems from the pri-
mary up to the tertiary level continue unabated. Topics such as mathematical competence of
teachers and the relation between authority and freedom in class room remain on the agenda.
It seems as though the strong traditions of school training in the sciences and mathematics
in East European countries have been jeopardized and partly destroyed after the fall of the
Iron Curtain. The usually higher scoring of pupils from some Asian countries in comparative
surveys may indicate a further rise of mathematics in Asia in the future. The International
Commission for Mathematical Instruction (ICMI), founded at the ICM in Rome 1908, has
meanwhile expanded its activities considerably and organizes independent international con-
gresses (ICME since 1969). While historiography of mathematics has often been recognized
in principle as an important part and stimulus of mathematical education, as for example in
the initiative at Swarthmore in 1945 discussed above, this recognition has not necessarily
translated into an emphasis on history in national educational programs. A criticism of the
neglect of the history of mathematics, within a representative publication of the mathematics
education community, has recently been published by one educator [17]. In this respect the
situation seems to have deteriorated in the last two decades, again partly as a result of the
dissolution of strong centers of history of mathematics in Eastern Europe [46].

Throughout the past century the differences in educational systems and in research pri-
orities have been a stimulus for world-wide collaboration. Even today there seem to exist
certain advantages in Europe and Asia in some fields of research and school education on
which the U.S. continue to rely. In a 1998 report of the American NSF one finds the follow-
ing evaluation:

Although the United States is the strongest national community in the mathe-
matical sciences, this strength is somewhat fragile. If one took into account only
home-grown experts, the United States would be weaker than Western Europe.
. . . Western Europe is nearly as strong in mathematics as the United States, and
leads in important areas. It has also benefited by the presence of émigré Soviet
mathematical scientists.37

Indeed, on the side of the mobility of personnel, the most visible change of international
mathematical communication in recent decades is the massive emigration of Russian mathe-
maticians as described by the Israeli-Russian functional analyst Vitali Milman, who himself
was instrumental in this process:

The emigration of mathematicians from the Soviet Union to Israel began in the
early 1970s. . . . Every mathematical center in the West was touched and en-

37 Report of the Senior Assessment Panel for the International Assessment of the U.S. Mathematical Sciences,
March 1998, 69 pp., p. 27, at http://www.nsf.gov/pubs/1998/nsf9895/nsf9895.pdf.
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riched by this movement. But only a few people understood that, while benefi-
cial for these individual centers, it bore elements of tragedy for mathematics as
a whole. [24, p. 216]

Milman goes on describing the “elements of tragedy” and the losses for Russian and World
mathematics induced by this process, the importance of national mentalities in the creation
of mathematics, referring to the

The concept of the ‘Russian mathematical school’, . . . which is extremely dif-
ficult to explain to a Westerner, encompasses traditions that prescribe ways of
studying mathematics and a code of behavior for mathematicians. It is more
an intellectual necessity (and a game) than it is work. Scholars raised in the
traditions of the Russian mathematical school do not study mathematics for the
sake of a salary. [24, p. 216]

While Milman arrives at an optimistic conclusion and assumes that “the Russian mathe-
matical school and its traditions will be preserved: they will take root in a new country and a
new environment.” [24, p. 228], his Russian colleague Anatoliy Vitushkin, publishing in the
same volume, is less upbeat:

Perestroika has brought a lot of changes: one can go anywhere, [however]
those who work in state-controlled institutes earn ridiculously small salaries.
. . . Many mathematicians have left for other countries. . . . They appear to lose
shape from hunting for jobs. Not all of them, certainly. Manin is always Manin,
and Arnold as well . . . . [50, p. 473]

Similar and broader concerns have been discussed in recent years on the pages of the
Notices of the American Mathematical Society. Fears were articulated for the education of
young Russian mathematicians who had been traced and recruited for instance through the
system of mathematical ‘Olympiads,’ which had an international dimension as well. The
prominent Belgian mathematician Pierre Deligne said earlier this year:

They have also the tradition of Olympiads, and they are very good at detecting
promising people in mathematics early on in order to help them. The culture
of seminars is in danger because it’s important that the head of the seminars is
working full-time in Moscow, and that is not always the case. There is a whole
culture which I think is important to preserve. That is the reason why I used half
of the Balzan Prize to try to help young Russian mathematicians. [29, p. 183]

One Russian mathematician remembered the loss for those remaining in Russia, which was
particularly strongly felt before the political turn:

Emigrants at that time disappeared completely behind the iron curtain, and we
had a feeling that they were lost forever. [30, pp. 164–165]

Together with Deligne, other mathematicians, particularly in the U.S., have helped to pre-
serve the Russian mathematical culture and have learned from it, as exemplified by American
support for the new ‘Independent University of Moscow’ [1].
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The history of international mathematical communication and our discussion in partic-
ular have shown that international mathematical communication is not necessarily unprob-
lematic or a guaranty for a healthy development of our science. ‘Internationalization’ (or
‘internationality’ considered as its result) without equal chances or even equal rights of the
participants in international collaboration is generally problematic, as the extreme case of the
Nazi strategies during the occupation of Europe show. The exodus of scientists from Europe
was, to be sure, a source of a tremendous push in the ‘internationalization’ of mathematics,
especially in the sense of new and literally unexpected personal encounters and oral commu-
nication. However, here, as in later examples of international mathematical communication
mentioned in this paper, the historian cannot construct an uncritical success story but has
also to look at the losses for mathematics and for its individuals, which were often equally
substantial as the gains.
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Mathematics of engineers: Elements for a new
history of numerical analysis

Dominique Tournès

Abstract. The historiography of numerical analysis is still relatively poor. It does not take sufficient
account of numerical and graphical methods created, used and taught by military and civil engineers in
response to their specific needs, which are not always the same as those of mathematicians, astronomers
and physicists. This paper presents some recent historical research that shows the interest it would be
to examine more closely the mathematical practices of engineers and their interactions with other
professional communities to better define the context of the emergence of numerical analysis as an
autonomous discipline in the late 19th century.
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1. Introduction

Few recent books have been devoted to the history of numerical analysis. Goldstine [18] was
a pioneer. His work focuses primarily on identifying numerical methods encountered in the
works of some great mathematicians: Newton, Maclaurin, Euler, Lagrange, Laplace, Leg-
endre, Gauss, Cauchy and Hermite. The main problems are the construction of logarithmic
and trigonometric tables necessary for astronomical calculations, Kepler’s equation, the Lu-
nar theory and its connection with the calculation of longitudes, the three-body problem and,
more generally, the study of perturbations of orbits of planets and comets. Through these
problems we assist to the birth of finite difference methods for interpolating functions and
calculating quadratures, developments in series or continued fractions for solving algebraic
equations and differential equations, and the method of least squares for finding optimal so-
lutions of linear systems with more equations or less equations than unknowns. At the end of
the book, a few pages involve Runge, Heun, Kutta, Moulton, that is to say, some characters
who can be considered as being the first applied mathematicians identified as such in the late
19th century and the beginning of the 20th. In Goldstine’s survey, numerical analysis is thus
the fruit of a few great mathematicians who developed the foundations of today’s numerical
methods by solving some major problems of astronomy, celestial mechanics and rational
mechanics. These numerical methods were then deepened by professional applied mathe-
maticians appearing in the late 19th century, which was the time when numerical analysis, as
we know it today, structured itself into an autonomous discipline. In this story, a few areas
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of inspiration and intervention other than astronomy are sometimes mentioned incidentally,
but no engineer is explicitly quoted.

While Goldstine actually begins his history in the 16th century, Chabert [7] gives more
depth to the subject by examining numerical algorithms in a variety of texts from various
civilizations since Antiquity. Besides the famous previously mentioned problems of astron-
omy such as Kepler’s equation, the determination of orbits of comets, the brightness of stars,
etc., there are some references to other domains, for example the theory of vibrating strings
or the signal theory. Some engineers are mentioned, in general in connection with secondary
points. Only one of them, Cholesky, is quoted for a significant contribution consisting in
an original method for solving linear systems (see Section 3). Despite these few openings
compared to previous work, most numerical analysis questions addressed in Chabert’s book
are presented as abstract mathematical problems, out of context.

In a more recent collective book edited by Bultheel and Cools [6], the birth of modern
numerical analysis is located precisely in 1947, in a paper of John von Neumann (1903–
1957) and Herman Goldstine (1913–2004) [23] which analyzes for the first time in detail
the propagation or errors when solving a linear system, in conjunction with the first uses
of digital computers. The authors recognize naturally that a lot of numerical calculations
were made long before this date in various questions of physics and engineering, but for
them the problem of the practical management of calculations made by computer actually
founds the field of numerical analysis and this apparently technical problem is at the origin
of the considerable theoretical developments that this domain generated since the mid-20th
century. In this book written not by historians but by specialists of numerical analysis, it
is interesting to note that the accepted actors of the domain do not trace the history of their
discipline beyond what characterizes their current personal practices.

In fact, the birth of numerical analysis, in the modern sense of the term, should not be
connected to the advent of digital computers, but to the distinction between pure mathemat-
ics and applied mathematics (formerly “mixed mathematics”), which is clarified gradually
throughout the 19th century with a more and more marked separation between the two do-
mains in scientific journals, institutions and university positions1. The development of new
calculating instruments – before computers, there were numerical and graphical tables, slide
rules, mechanical instruments of integration, desktop calculators, etc. – has also contributed
to set up a new equilibrium between analytical, numerical and graphical methods. This is ac-
tually around 1900 that mathematicians began to formulate, in concrete terms, what is meant
by “applied mathematics”. Germany, and particularly Göttingen, played a leading role in
this international process of institutionalization of applied mathematics as an autonomous
domain [26, p. 60–63]. Encouraged by Felix Klein, Carl Runge (1856–1927) and Rudolf
Mehmke (1857–1944) assumed in 1901 the editorship or the Zeitschrift für Mathematik und
Physik and devoted this journal to applied mathematics. In 1904, Runge accepted the first
full professorship of applied mathematics at the University of Göttingen. In 1907, German
applied mathematicians adopted the following definition:

The essence of applied mathematics lies in the development of methods that will
lead to the numerical and graphical solution of mathematical problems.2

1A very interesting workshop on this subject took place in March 2013 in Oberwolfach, organized by Moritz Ep-
ple, Tinne Hoff Kjeldsen and Reinhard Siegmund-Schultze, and entitled “From ‘Mixed’ to ‘Applied’ Mathematics:
Tracing an important dimension of mathematics and its history” [13].

2“Das Wesen der angewandten Mathematik liegt in der Ausbildung und Ausübung von Methoden zur nu-
merischen und graphischen Durchführung mathematischer Probleme” (quoted in [27, p. 724]).
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Recent research has shown that engineers have constituted a bridge between mathemat-
ics and their applications since the 18th century, and that problems encountered in ballistics,
strength of materials, hydrodynamics, steam engines, electricity and telephone networks
played also an important role in the creation of original numerical and graphical methods of
computation. In fact, the mathematical needs of engineers seem very different from those
of mathematicians. To illustrate this with a significant example, consider the problem of the
numerical solution of equations, a pervasive problem in all areas of mathematics interven-
tion. Léon-Louis Lalanne (1811–1892), a French civil engineer who, throughout his career,
sought to develop practical methods for solving equations, wrote what follows as a summary
when he became director of the École des ponts et chaussées:

The applications have been, until now, the stumbling block of all the methods
devised for solving numerical equations, not that, nor the rigor of these pro-
cesses, nor the beauty of the considerations on which they are based, could
have been challenged, but finally it must be recognized that, while continuing to
earn the admiration of geometers, the discoveries of Lagrange, Cauchy, Fourier,
Sturm, Hermite, etc., did not always provide easily practicable means for the
determination of the roots.3

Lalanne says that as politely as possible, but his conclusion is clear: the methods advo-
cated by mathematicians are not satisfactory. These methods are complicated to understand,
long to implement and sometimes totally impracticable for ground engineers, foremen and
technicians, who, moreover, did not always receive a high-level mathematical training.

Given such a situation, 19th century engineers were often forced to imagine by them-
selves the operational methods and the calculation tools that mathematicians could not pro-
vide them. The objectives of the engineer are not the same as those of the mathematician,
the physicist or the astronomer: the engineer rarely needs high accuracy in his calculations,
he is rather sensible to the speed and simplicity of their implementation, especially since he
has often to perform numerous and repetitive operations. He needs also methods adapted for
use on the ground, and not just for use at the office. Finally, priority is given to methods that
avoid performing calculations by oneself, methods that provide directly the desired result
through a simple reading of a number on a numerical or graphical table, on a diagram, on a
curve or on the dial of a mechanical instrument.

In this paper, I would want to show, through some examples from recent historical re-
search, that the engineers, so little mentioned so far in the historiography of numerical anal-
ysis, have contributed significantly throughout the 19th century to the creation of those nu-
merical and graphical methods that became an autonomous discipline around 1900. More
than that, I shall underline that their practical methods have been sometimes at the origin of
new theoretical problems that inspired also pure mathematicians.

3“Les applications ont été, jusqu’à ce jour, la pierre d’achoppement de tous les procédés imaginés pour la
résolution des équations numériques, non pas que, ni la rigueur de ces procédés, ni la beauté des considérations sur
lesquelles ils se fondent, en aient reçu la moindre atteinte; mais enfin il bien reconnaître que, sans cesser de mériter
l’admiration des géomètres, les découvertes de Lagrange, de Cauchy, de Fourier, de Sturm, d’Hermite, etc., n’ont
pas fourni toujours des moyens facilement praticables pour la détermination des racines” [20, p. 1487].
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2. From Civil engineering to nomography

The 19th century is the moment of the first industrial revolution, which spreads throughout
the Western world at different rates in different countries. Industrialization causes profound
transformations of society. In this process, the engineering world acquires a new identity,
marked by its implications in the economic development of industrial states and the struc-
turation of new professional relationships that transcend national boundaries. Linked to the
industrial revolution, enormous computational requirements appeared during the 19th cen-
tury in all areas of engineering sciences and caused an increasing mathematization of these
sciences. This led naturally to the question of engineering education: how were engineers
prepared to use high-level mathematics in their daily work and, if necessary, to create by
themselves new mathematical tools?

The French model of engineering education in the early 19th century is that of the École
polytechnique, founded in 1794.4 Although it had initially the ambition to be comprehen-
sive and practice-oriented, this school promoted quickly a high-level teaching dominated by
mathematical analysis. This theoretical teaching was then completed, from the professional
point of view, by two years in application schools with civil and military purposes. Such a
training model, which subordinates practice to theory, has produced a corporation of “schol-
arly engineers” capable of using the theoretical resources acquired during their studies to
achieve an unprecedented mathematization of the engineering art. This model is considered
to have influenced the creation of many polytechnic institutes throughout Europe and to the
United States.

A paradigmatic example of a corpus of mathematical tools, constituting an autonomous
knowledge which was created from scratch by engineers themselves to meet their needs, is
that of nomography.5 The main purpose of nomography is to construct graphical tables to
represent any relationship between three variables, and, more generally, relationships be-
tween any number of variables. Among the “Founding Fathers” of nomography, four were
students at the École polytechnique: Lalanne, Charles Lallemand (1857–1938), Maurice
d’Ocagne (1862–1938) and Rodolphe Soreau (1865–1936). The only exception in this list
is the Belgian engineer Junius Massau (1852–1909), an ancient student and then professor
at the school of civil engineering of the University of Ghent, but, in this school of civil en-
gineering, the training was comparable to that of the École polytechnique, with high-level
courses of mathematics and mechanics.

During the years 1830–1860, the sector of public works experiences a boom in France
and more generally in Europe. The territories of the different countries are covered progres-
sively by vast networks of roads, canals, and, after 1842, of railways. These achievements re-
quire many tedious calculations of surfaces of “cut and fill” on cross-sections of the ground.
Cut and fill is the process of earthmoving needed to construct a road, a canal or a railway.
You have to cut land where the ground level is too high and then transport this land to fill the
places where the ground level is too low. And to calculate roughly the volume of land to be
transported, you have to decompose this volume in thin vertical slices, evaluate the area of
each slice and sum all these elementary areas.

Civil engineers tried different methods of calculation more or less expeditious. Some,
like Gaspard-Gustave Coriolis (1792–1843), have calculated numerical tables giving the sur-

4On the professional milieu of French engineers during the 19th century and the École polytechnique, see the
papers by Bruno Belhoste and Konstantinos Chatzis ([2, 9]).

5This Section is an abridged and synthetic version of developments contained in my papers [30, 32, 34].
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faces directly based on a number of features of the road and its environment. Other engineers,
especially in Germany and Switzerland, designed and built several kinds of planimeters, that
is mechanical instruments used to quickly calculate the area of any plane surface. These
planimeters, which concretize the continuous summation of infinitesimal surfaces, had sig-
nificant applications in many other scientific fields beyond cuts and fills. Still others, like
Lalanne, have imagined replacing numerical tables by graphical tables, cheaper and eas-
ier to use. It is within this framework that nomography developed itself and was deepened
throughout the second half of the 19th century.

First principles of nomography. The departure point of nomography lies in the fact that a
relationship between three variables α, β and γ can be considered, under certain conditions,
as the result of the elimination of two auxiliary variables x and y between three equations,
each containing only one of the initial variables. One can then represent the equation by
three sets of lines in the plane x-y, one of them parametrized by α, the second by β and the
third by γ. On this kind of graphical table, called a “concurrent-line abaque”, a solution of
the equation corresponds to an intersection point of three lines.

Isolated examples of graphical translation of double-entry tables are found already in the
first half of the 19th century, mainly in the scope of artillery, but this is especially Lalanne
who gave a decisive impetus to the theory of graphical tables. In 1843, he provided con-
sistent evidence that any law linking three variables can be graphed in the same manner as
a topographic surface using its marked level lines. His ideas came to a favorable moment.
Indeed, the Act of June 11, 1842 had decided to establish a network of major railway lines
arranged in a star from Paris. To run the decision quickly, one felt the need for new ways
of evaluating the considerable earthworks to be carried out. In 1843, the French government
sent to all engineers involved in this task a set of graphical tables for calculating the areas of
cut and fill on the profile of railways and roads.

Curves other than straight lines are difficult to construct on paper. For this reason,
Lalanne imagined the use of non-regular scales on the axes for transforming curves into
straight lines. By analogy with the well-known optical phenomenon previously used by cer-
tain painters, he called “anamorphosis” this general transformation process. After Lalanne,
the graphical tables resting on the principle of concurrent lines spread rapidly until becom-
ing, in the third quarter of the 19th century, very common tools in the world of French
engineers.

Massau succeeded Lalanne to enrich the method and its scope of application. For that,
he introduced a notion of generalized anamorphosis, seeking what are the functions that can
be represented using three pencils of lines. Massau put in evidence that a given relationship
between three variables can be represented by a concurrent-straight-line abaque if, and only
if, it can be put into the form of a determinant of the type∣∣∣∣∣∣

f1(α) f2(α) f3(α)
g1(β) g2(β) g3(β)
h1(γ) h2(γ) h3(γ)

∣∣∣∣∣∣ = 0.

These determinants, called “Massau determinants”, played an important role in the sub-
sequent history of nomography; they are encountered in research until today. As an appli-
cation of this new theory, Massau succeeded in simplifying Lalanne’s abaques for cuts and
fills. With Massau’s publications, the theory of abaques was entering into a mature phase,
but in the same time a new character intervened to orient this theory towards a new direction.
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From concurrent-line abaques to alignment nomograms. In 1884, when he is only 22
years old, d’Ocagne observes that most of the equations encountered in practice can be
represented by an abaque with three systems of straight lines and that three of these lines,
each taken in one system, correspond when they meet into a point. His basic idea is then
to construct by duality, by substituting the use of tangential coordinates to that of punctual
coordinates, a figure in correlation with the previous one: each line of the initial chart is
thus transformed into a point, and three concurrent lines are transformed into three aligned
points. The three systems of marked straight lines become three marked curves. Through this
transformation, a concurrent-straight-line abaque becomes an “alignment abaque”, which is
easier to use.

A given relationship between three variables is representable by an alignment abaque if,
and only if, it can be put into the form of a Massau determinant, because it is clear that the
problem of the concurrency of three straight lines and the problem of the alignment of three
points, dual to each other, are mathematically equivalent. As his predecessors, d’Ocagne
applied immediately his new ideas to the problem of cuts and fills, actually one of the main
problems of civil engineering.

After this first achievement in 1891, d’Ocagne deepened the theory and applications of
alignment abaques until the publication of a large treatise in 1899, the famous Traité de
nomographie, which became for a long time the reference book of the new discipline. A
little later, he introduced the generic term “nomogram” to replace “abaque”, and the science
of graphical tables became “nomography”. From there, alignment nomograms were quickly
adopted by many engineers for the benefit of the most diverse applications. At the turn of
the 20th century, nomography was already an autonomous discipline well established in the
landscape of applied sciences.

Mathematical implications of nomography. The mathematical practices of engineers are
often identified only as “applications”, which is equivalent to consider them as independent
from the development of mathematical knowledge in itself. In this perspective, the engineer
is not supposed to develop a truly mathematical activity. We want to show, through the
example of nomography, that this representation is somewhat erroneous: it is easy to realize
that the engineer is sometimes a creator of new mathematics, and, in addition, that some of
the problems which he arises can in turn irrigate the theoretical research of mathematicians.

Firstly, the problem of general anamorphosis, that is to say, of characterizing the rela-
tionships between three variables that can be put in the form of a Massau determinant, has
inspired many theoretical research to mathematicians and engineers: Cauchy, Saint-Robert,
Massau, Lecornu, and Duporcq have brought partial responses to this problem before that in
1912 the Swedish mathematician Thomas Hakon Gronwall (1877–1932) gives a complete
solution resulting in the existence of a common integral to two very complicated partial
differential equations. But, as one can easily imagine, this solution was totally inefficient,
except in very simple cases.

After Gronwall, other mathematicians considered the problem of anamorphosis in a dif-
ferent way, with a more algebraic approach that led to study the important theoretical prob-
lem of linear independence of functions of several variables. These mathematicians, like
Kellogg in the US, wanted to find a more practical solution not involving partial differential
equations. A complete and satisfactory solution was finally found by the Polish mathe-
matician Mieczyslaw Warmus (1918–2007). In his Dissertation of 1958, Warmus defined
precisely what is a nomographic function, that is a function of two variables that can be
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represented by an alignment nomogram, and classified nomographic functions through ho-
mography into 17 equivalence classes of Massau determinants. Moreover, he gave an effec-
tive algorithm for determining if a function is nomographic and, if true, for representing it
explicitly as a Massau determinant.

Beyond the central problem of nomographic representation of relationships between
three variables, which define implicit functions of two variables, there is the more general
problem of the representation of functions of three or more variables. Engineers have ex-
plored various ways in this direction, the first consisting in decomposing a function of any
number of variables into a finite sequence of functions of two variables, which results in
the combined use of several nomograms with three variables, each connected to the next by
means of a common variable.

Such a practical concern was echoed unexpectedly in the formulation of the Hilbert’s
13th problem, one of the famous 23 problems that were presented at the International Congress
of Mathematicians in 1900 [19]. The issue, entitled “Impossibility of the solution of the gen-
eral equation of the 7th degree by means of functions of only two arguments” is based on the
initial observation that up to the sixth degree, algebraic equations are nomographiable.

Indeed, up to the fourth degree, the solutions are expressed by a finite combination of
additions, subtractions, multiplications, divisions, square roots extractions and cube roots
extractions, that is to say, by functions of one or two variables. For the degrees 5 and 6,
the classical Tschirnhaus transformations lead to reduced equations whose solutions depend
again on one or two parameters only. The seventh degree is then the first actual problem, as
Hilbert remarks:

Now it is probable that the root of the equation of the seventh degree is a function
of its coefficients which does not belong to this class of functions capable of
nomographic construction, i. e., that it cannot be constructed by a finite number
of insertions of functions of two arguments. In order to prove this, the proof
would be necessary that the equation of the seventh degree is not solvable with
the help of any continuous functions of only two arguments [19, p. 462].

In 1901, d’Ocagne had found a way to represent the equation of the seventh degree
by a nomogram involving an alignment of three points, two being carried by simple scales
and the third by a double scale. Hilbert rejected this solution because it involved a mobile
element. Without going into details, we will retain that there has been an interesting dialogue
between an engineer and a mathematician reasoning in two different perspectives. In the
terms formulated by Hilbert, it was only in 1957 that the 13th problem is solved negatively
by Vladimir Arnold (1937–2010), who proved to everyone’s surprise that every continuous
function of three variables could be decomposed into continuous functions of two variables
only.

3. From topography to linear systems

The French military engineer André-Louis Cholesky (1875–1918) offers us the occasion of
a perfect case study. Before 1995, not many details were known on his life. In 1995 (120
years after his birth), the documents about him kept in the archives of the army at the Fort de
Vincennes (near Paris) were open to the public. In 2003, we had the chance that a grandson
of Cholesky, Michel Gross, donated the personal archives of his grandfather to the École
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polytechnique.6
Cholesky was born on 15 October 1875, in Montguyon, a village near Bordeaux, in the

south-west of France. On October 1895, he was admitted to the École polytechnique and,
two years later, he was admitted as a sous-lieutenant at the École d’application de l’artillerie
et du génie in Fontainebleau. He had to spend one year at the school and then to serve for one
year in a regiment of the army. He had there courses on artillery, fortification, construction,
mechanics, topography, etc.

Cholesky as a topographer. Between 1902 and 1906, he was sent to Tunisia and then to
Algeria for several missions. In 1905, he was assigned to the Geographical Service of the
Staff of the Army. In this service, there were a section of geodesy and a section of topogra-
phy. Around 1900, following the revision of the meridian of Paris, the extent of the meridian
of Lyon and a new cadastral triangulation of France had been decided. These missions were
assigned to the section of geodesy together with the establishment of the map of Algeria, and
a precise geometric levelling of this country. The problem of the adjustment (or compensa-
tion) of networks (corrections to be brought to the measured angles) concerned many officers
of the Geographical Service, eager to find a simple, fast and accurate method. According to
Commandant Benoît, one of his colleagues, it was at this occasion that Cholesky imagined
his method for solving the equations of conditions by the method of least squares.

Cholesky is representative of these “scholarly engineers” of whom we spoke above. Due
to his high-level mathematical training, he was able to work with efficiency and creativity
in three domains: as a military engineer, specialized in artillery and in topography, able
to improve and optimize the methods used on the ground at this time; as a mathematician
able to create new algorithms when it is necessary; and as a teacher (because in parallel to
his military activities, he participated during four years to the teaching by correspondence
promoted by the École spéciale des travaux publics founded in Paris by Léon Eyrolles).

Concerning topography, Cholesky is well known among topographers for a levelling
method of his own: the method of double-run levelling (double cheminement in French).
Levelling consists in measuring the elevation of points with respect to a surface taken as
reference. This surface is often the geoid in order to be able to draw level curves, also called
“contour lines”. Double-run levelling consists in conducting simultaneously two separate
survey traverses, very close to each other, and comparing the results so as to limit the effects
of some instrumental defects. This method is still taught and used today.

Cholesky’s method for linear systems. As said before, Cholesky is a good example of an
engineer creating a new mathematical method and a new algorithm of calculation for his
own needs. Cholesky’s method for linear systems is actually an important step in the history
of numerical analysis. A system of linear equations has infinitely many solutions when the
number of unknowns is greater than the number of equations. Among all possible solutions,
one look for the solution minimizing the sum of the squares of the unknowns. This is the
case in the compensation of triangles in topography which interested Cholesky. The method
of least squares is very useful and is much used in many branches of applied mathematics
(geodesy, astronomy, statistics, etc.) for the treatment of experimental data and fitting a
mathematical model to them. This method was published for the first time by Legendre in
1806. Its interpretation as a statistical procedure was given by Gauss in 1809.

6Claude Brezinski has classified these archives and published a lot of papers about the life and work of Cholesky:
see [3], [4] and [5]. For this Section, I took a lot of information in these papers.
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As it is known, the least square method leads to a system with a symmetric positive
definite matrix. Let us describe Cholesky’s method to solve such a system. Let A be a
symmetric positive definite matrix. It can be decomposed as A = LLT , where L is a
lower triangular matrix with positive diagonal elements, which are computed by an explicit
algorithm. Then the system Ax = b can be written as LLTx = b. Setting y = LTx, we
have Ly = b. Solving this lower triangular system gives the vector y. Then x is obtained as
the solution of the upper triangular system LTx = y.

What was the situation before Cholesky? When the matrix A is symmetric, Gauss
method makes no use of this property and needs too many arithmetical operations. In 1907,
Otto Toeplitz showed that an Hermitian matrix can be factorized into a product LL∗ with
L lower triangular, but he gave no rule for obtaining the matrix L. That is preceisely what
Cholesky did in 1910. Cholesky’s method was presented for the first time in 1924 in a
note published in the Bulletin géodésique by commandant Benoît, a French geodesist who
knew Cholesky well, but the method remained unknown outside the circle of French mili-
tary topographers. Cholesky method was rebirth by John Todd who taught it in his numer-
ical analysis course at King’s College in London in 1946 and thus made it known. When
Claude Brezinski classified Cholesky’s papers in 2003, he discovered the original unpub-
lished manuscript where Cholesky explained his method7. The manuscript of 8 pages is
dated 2 December 1910. That was an important discovery for the history of numerical anal-
ysis.

4. From ballistics to differential equations

The main problem of exterior ballistics is to determine the trajectory of a projectile launched
from a cannon with a given angle and a given velocity. The differential equation of motion
involves the gravity g, the velocity v and the tangent inclination θ of the projectile, and the
air resistance F (v), which is an unknown function of v:8

g d(v cos θ) = vF (v) dθ.

To calculate their firing tables and to adjust their cannons, the artillerymen have used for
a long time the assumption that the trajectory is parabolic, but this was not in agreement
with the experiments. Newton was the first to research this topic taking into account the air
resistance. In his Principia of 1687, he solved the problemwith the hypothesis of a resistance
proportional to the velocity, and he got quite rough approximations when the resistance is
proportional to the square of the velocity. After Newton, Jean Bernoulli discovered the
general solution in the case of a resistance proportional to any power of the velocity, but
his solution, published in the Acta Eruditorum of 1719, was not convenient for numerical
computation.

This problem of determining the ballistic trajectory for a given law of air resistance is
particularly interesting because it stands at the crossroads of two partly contradictory con-
cerns: on the one hand, the integration of the differential equation of motion is a difficult

7This manuscript has been published in 2005 in the Revue d’histoire des mathématiques [3].
8In fact, the problem is more complex because we must take into account other factors like the variations of

the atmospheric pressure and temperature, the rotation of the Earth, the wind, the geometric form of the projectile
and its rotation around its axis, etc. However these effects could be often neglected in the period considered here,
because the velocities of projectiles remained small.
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problem which interests the mathematicians from the point of view of pure analysis; on the
other hand, the artillerymen on the battlefield must determine quickly the firing angle and
the initial velocity of their projectile in order to attain a given target, and for that practical
purpose they need firing tables precise and easy to use. This tension between theoreticians,
generally called ballisticians, and practitioners, described rather to be artillerymen, is seen
in all synthesis treatises of the late 19th and early 20th century. I shall content myself with
one quotation to illustrate this tension. In 1892, in the French augmented edition of his main
treatise, Francesco Siacci (1839–1907), a major figure in Italian ballistics, writes:

Our intention is not to present a treatise of pure science, but a book of immediate
usefulness. Few years ago ballistics was still considered by the artillerymen and
not without reason as a luxury science, reserved for the theoreticians. We tried
to make it practical, adapted to solve fast the firing questions, as exactly as
possible, with economy of time and money.9

By these words, Siacci condemns a certain type of theoretical research as a luxury, but he
condemns also a certain type of experimental research that accumulates numerous and ex-
pensive firings and measurements without obtaining convincing results.

Of course, the problem of integrating the ballistic equation is difficult. Many, many
attempts have been done to treat this equation mathematically with the final objective of
constructing firing tables. We can organize these attempts throughout two main strategies,
one analytical and one numerical.

Analytical approach of the ballistic differential equation. The analytical strategy con-
sists in integrating the differential equation in finite terms or, alternatively, by quadratures.
Reduction to an integrable equation can be achieved in two ways: 1) choose an air resis-
tance law so that the equation can be solved in finite form (if the air resistance is not known
with certainty, why not consider abstractly, formally, some potential laws of air resistance,
leaving it to the artillerymen to choose after among these laws according to their needs?);
2) if a law of air resistance is needed through experience or by tradition, it is then possible
to change the other coefficients of the equation to make it integrable, with of course the risk
that modifying the equation could modify also the solution in a significant way. Fortunately,
in the same time of theoretical mathematical research, there has been many experimental
studies to determine empirically the law of air resistance and the equation of the ballistic
curve. Regular confrontations took place between the results of the theoreticians and those
of the practitioners.

In 1744, D’Alembert restarts the problem of integrability of the equation, which had not
advanced since the Bernoulli’s memoir of 1719. He founds four new cases of integrability:
F (v) = a+bvn, F (v) = a+b ln v, F (v) = avn+R+bv−n, F (v) = a(ln v)2+R ln v+b.
D’Alembert’s work went relatively unnoticed at first. In 1782, Legendre found again the
case F (v) = a + bv2, without quoting D’Alembert. In 1842, Jacobi found the case F (v) =
a + bvn to generalize Legendre’s results, quoting Legendre, but still ignoring D’Alembert.
After studying this case in detail, Jacobi notes also that the problem is integrable for F (v) =

9“Notre intention d’ailleurs n’est pas de présenter un traité de science pure, mais un ouvrage d’utilité immédiate.
Il y a peu d’années que la balistique était encore considérée par les artilleurs et non sans raison comme une science
de luxe, réservée aux théoriciens. Nous nous sommes efforcé de la rendre pratique, propre à résoudre les questions
de tir rapidement, facilement, avec la plus grande exactitude possible, avec économie de temps et d’argent” [25,
p. x].
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a+ b ln v, but he does not study further this form, because, he says, it would be abhorrent to
nature (it’s hard indeed to conceive an infinite resistance when velocity equals zero). Jacobi
puts the equations in a form suitable for the use of elliptic integrals. Several ballisticians
like Greenhill, Zabudski, MacMahon, found here inspiration to calculate ballistic tables in
the case of air resistance proportional to the cube or to the fourth power of velocity. These
attempts contributed to popularize elliptic functions among engineers and were quoted in a
lot of treatises about elliptic functions.

During the 19th century, there is a parallelism between the increasing speeds of bullets
and cannonballs, and the appearance of new instruments to measure these speeds. Ballisti-
cians are then conducted to propose new air resistance laws for certain intervals of speeds.
In 1921, Carl Julius Cranz (1858–1945) gives an impressive list of 37 empirical laws of air
resistance actually used to calculate tables at the end of the 19th century. Thus, theoretical
developments, initially free in D’Alembert’s hands, led to tables that were actually used by
the artillerymen. The fact that some functions determined by artillerymen from experimen-
tal measurements fell within the scope of integrable forms has reinforced the idea that it
might be useful to continue the search for such forms. It is within this context that Siacci
resumed the theoretical search for integrable forms of the law of resistance. In two papers
published in 1901, he places himself explicitly in D’Alembert’s tradition. He multiplies the
differential equation by various multipliers and seeks conditions for these multipliers are
integrant factors. He discovers several integrable equations, including one new integrable
Riccati equation. This study leads to eight families of air resistance laws, some of which
depend on four parameters. In his second article, he adds two more families to his list.

The question of integrability by quadratures of the ballistic equation is finally resolved
in 1920 by Jules Drach (1871–1949), a brilliant mathematician who has contributed much in
Galois theory of differential equations in the tradition of Picard, Lie, and Vessiot. Drach puts
the ballistic equation in a new form that allows him to apply a theory developed in 1914 for a
certain class of differential equations, which he found all cases of reduction. Drach exhausts
therefore the problem from the theoretical point of view, by finding again all integrability
cases previously identified. As you might expect, the results of this long memoir of 94 pages
are very complicated. They were greeted without enthusiasm by the ballisticians, who did
not see at all how to transform them into practical applications.

Another way was explored by theoreticians who accepted Newton’s law of the square of
the velocity, and tried to act on other terms of the ballistic equation to make it integrable.
In 1769, the military engineer Jean-Charles de Borda (1733–1799) proposes to assume that
the medium density is variable and to choose, for this density, a function that does not stray
too far from a constant and makes the equation integrable. Borda makes three assumptions
about the density, the first adapted to small angles of fire, the second adapted to large angles
of fire, and the third for the general case, by averaging between the previous ones and by
distinguishing ascending branch and descending branch of the curve.

Legendre deepens Borda’s ideas in his Dissertation sur la question de balistique, with
which he won in 1782 the prize of the Berlin Academy. The question chosen for the com-
petition was: “Determine the curve described by cannonballs and bombs, by taking the air
resistance into account; give rules to calculate range that suit different initial speeds and
different angles of projection.” Legendre puts the ballistic equation in a form similar to
that used by Euler, with the slope of the tangent as independent variable. After comment-
ing Euler’s method by successive arcs (see below), considered too tiresome for numerical
computation, Legendre suggests two ideas of the same type as those of Borda, with a result
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which is then satisfactory for the entire curve, and not only at the beginning of the trajectory.
With these methods, Legendre manages to calculate ten firing tables that will be considered
of high quality and will permit him to win the prize of the Berlin Academy. After Legendre,
many other people, for example Siacci at the end of the 19th century, have developed similar
ideas to obtain very simple, general, and practical methods of integration.

Direct numerical integration of the differential equation. The second strategy for inte-
grating the ballistic differential equation belongs to numerical analysis. It contains three
main procedures: 1) calculate the integral by successive small arcs; 2) develop the integral
into an infinite series and keep the first terms; 3) construct graphically the integral curve.

Euler is truly at the starting point of the calculation of firing tables in the case of the
square of the velocity. In 1753, Euler resumes Bernoulli’s solution and put it in a form that
will be convenient for numerical computation. He takes the slope p of the tangent as principal
variable. All the other quantities are expressed in function of p by means of quadratures.
The integration is done by successive arcs: each small arc of the curve is replaced by a small
straight line, whose inclination is the mean of the inclinations at the extremities of the arc.
To give an example, Euler calculates a single table, the one corresponding to a firing angle
of 55 ◦. With this numerical table, he constructs by points the corresponding trajectory. A
little later, Henning Friedrich von Grävenitz (1744–1764), a Prussian officer, performs the
calculations of the program conceived by Euler. He published firing tables in Rostock in
1764. In 1834, Jacob Christian Friedrich Otto, another military officer, publishes new tables
in Berlin, because he finds that those of Grävenitz are insufficient. To answer better the
problem encountered in practice by artillerymen, he reverses the table taking the range as
the given quantity and the initial velocity as the unknown quantity. Moreover, he calculates
a lot more elements than Grävenitz to facilitate interpolation. Otto’s tables will experience a
great success and will be in use until the early 20th century.

Another approach is that of series expansions. In the second half of the 18th century and
early 19th, we are in the era of calculation of derivations and algebraical analysis. The ex-
pression of solutions by infinite series whose law of formation of terms is known, is consid-
ered to be an acceptable way to solve exactly a problem, despite the philosophical question
of the infinite and the fact that the series obtained, sometimes divergent or slowly conver-
gent, do not always allow an effective numerical computation. In 1765, Johann Heinrich
Lambert (1728–1777) is one of the first to express as series the various quantities involved
in the ballistic problem. On his side, the engineer Jacques-Frédéric Français (1775–1833)
applies the calculation of derivations. He identifies a number of new formulas in the form of
infinite series whose law of formation of the successive terms is explicitly given. However,
he himself admits that these formulas are too complicated for applications.

Let us mention finally graphical approaches providing to the artillerymen an easy and
economic tool. In 1767, recognizing that the series calculated in his previous memoir are
unusable, Lambert constructs a set of curves from Grävenitz’s ballistic tables. In France, an
original approach is due to Alexander-Magnus d’Obenheim (1752–1840), another military
engineer. His idea was to replace the numerical tables by a set of curves carefully constructed
by points calculated with great precision. These curves are drawn on a portable instrument
called the “gunner board” (“planchette du canonnier” in French). The quadrature method
used to construct these curves is highly developed. Obenheim employs a method of Newton-
Cotes type with a division of each interval into 24 parts. In 1848, Isidore Didion (1798–
1878), following Poncelet’s ideas, constructs ballistic curves that are not a simple graphic
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representation of numerical tables, but are obtained directly from the differential equation by
a true graphical calculation: he obtains the curve by successive arcs of circles, using at each
step a geometric construction of the center of curvature. Artillery was so the first domain of
engineering science in which graphical tables, called “abaques” in French, were commonly
used (see Section 2). One of the major advantage of graphical tables is their simplicity and
rapidity of utilization, that is important on the battlefield when the enemy is firing against
you!

In conclusion, throughout the 18th and 19th centuries, there has been an interesting in-
teraction between analytic theory of differential equations, numerical and graphical integra-
tion, and empirical experimental research. Mathematicians, ballisticians and artillerymen,
although part of different worlds, collaborated and inspired each other regularly. All this led
however to a relative failure, both experimentally to find a good law of air resistance, and
mathematically to find a simple solution of the ballistic differential equation.

Mathematical research on the ballistic equation has nevertheless played the role of a
laboratory where the modern numerical analysis was able to develop. Mathematicians have
indeed been able to test on this recalcitrant equation all possible approaches to calculate
the solution of a differential equation. There is no doubt that these tests, joined with the
similar ones conceived by astronomers for the differential equations of celestial mechanics,
have helped to organize the domain into a separate discipline around 1900. In parallell
with celestial mechanics, ballistics certainly played an important role in the construction of
modern Runge-Kutta and Adams-Bashforth methods for numerically integrating ordinary
differential equations.

5. From hydraulics to dynamical systems

Concerning another aspect of the theory of differential equations, it should be noticed that
the classification of singular points obtained by Poincaré had occurred earlier in the works
of at least two engineers who dealt with hydraulic problems.10. As early as 1924, Russian
historians reported a similar classification in a memoir of Nikolai Egorovich Zhukovsky
(1847–1921) dated 1876 on the kinematics of liquids. Dobrovolsky published a reproduc-
tion of Zhukovsky’s diagrams in 1972 in the Revue d’histoire des sciences [10]. In what
Zhukovsky called “critical points”, we recognize the so-called saddles, nodes, focuses and
centers.

The second engineer is the Belgian Junius Massau, already encoutered above about
nomography. Considered as the creator of graphical integration, he developed elaborate
techniques to construct precisely the integral curves of differential equations [29]. From
1878 to 1887, he published a large memoir on graphical integration [22], with the following
objectives:

The purpose of this memoir is to present a general method designed to replace
all the calculations of the engineer by graphic operations. [...] In what follows,
we will always represent functions by curves; when we say ‘to give or to find a
function’, it will mean giving or finding graphically the curve that represents it.11

10A more developed version of this Section can be found in my paper [31]. On Junius Massau, see also [29] For
a general survey on graphical integration of differential equations, see [28].

11L’objet de ce mémoire est d’exposer une méthode générale ayant pour but de remplacer les calculs de
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Book VI, the last book of the memoir, is devoted to applications in hydraulics. Massau
examines the motion of liquids in pipes and canals. Among these specialized developments,
a general and theoretical statement on graphic integration of first order differential equations
appears. The entire study of a differential equation rests on the preliminary construction
of the loci of points where integral curves have the same slope. Massau calls such a lo-
cus an “isocline”. The isoclines (under the Latin name of “directrices”) had already been
introduced by Jean Bernoulli in 1694 as a universal method of construction of differential
equations, particularly useful in the numerous cases in which the equations cannot be inte-
grated by quadratures. Once enough isoclines are carefully drawn, one takes an arbitrary
point A on the first curve and one constructs a polygon of integration ABCD, the succes-
sive sides of which have the slopes associated with isoclines and the successive summits of
which are taken in the middle of the intervals between isoclines. Massau explains that you
can easily obtain, by properly combining the directions associated to successive isoclines,
graphical constructions equivalent to Newton-Cotes quadrature formulas, whereas the same
problem would be difficult to solve numerically because of the implicit equations that ap-
pear at each step of the calculation. In fact, numerical algorithms of order greater than 2 will
be discovered only at the turn of the 20th century by the German applied mathematicians
Runge, Heun and Kutta.

The construction of the integral curves from isoclines is another way of studying glob-
ally a differential equation. In contrast to Poincaré’s abstract approach, Massau’s diagram
both gives a global description and a local description of the curves. This diagram is both
an instrument of numerical calculation – the ordinates of a particular integral curve can be
measured with an accuracy sufficient for the engineer’s needs – and a heuristic tool for dis-
covering properties of the differential equation. For example, Massau applies this technique
to hydraulics in studying the permanent motion of water flowing in a canal. He is interested
in the variations of depth depending on the length of the canal, in the case of a rectangu-
lar section the width of which is growing uniformly. The differential equation to be solved
is very complicated. With his elaborate graphical technique, Massau constructs isoclines
and studies the behavior of the integral curves. He discovers that there is what he calls
an“asymptotic point” : the integral curves approaching this point are turning indefinitely
around it.

Massau then develops a theoretical study of singular points from isoclines. For a differ-
ential equation F (x, y, y′) = 0, he considers the isoclines F (x, y, α) = 0 as the projections
on the plane (x, y) of the contour lines of the surface of equation F (x, y, z) = 0, and the
integral curves as the projections of certain curves drawn on this surface. By geometric
reasoning in this three-dimensional framework, Massau finds the same results as Poincaré
concerning the singular points, but in a very different manner. He starts with the case where
isoclines are convergent straight lines. In the general case, when isoclines pass by the same
point, Massau studies the integral curves around this point by replacing the isoclines by
their tangents. A singular point is always called a “focus”. The special case that we call
“focus” today is the only one to receive a particular name, that of “asymptotic point”. Mas-
sau determines very carefully the various possible positions around a focus by considering
the number of straight-line solutions passing through this point. In Massau’s reasoning, the
isoclines play the same role as Poincaré’s arcs without contact to guide the path of integral

l’ingénieur par des opérations graphiques. [...] Dans ce qui va suivre, nous représenterons toujours les fonctins
par des courbes; quand nous dirons donner ou trouver une fonction, cela voudra dire donner ou trouver graphique-
ment la courbe qui la représente [22, p. 13–16].
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curves. By using a graphical technique developed at first as a simple technique of numerical
calculation, Massau succeeds also in a qualitative study, the purpose of which is the global
layout of the integral curves and the description of their properties.

Knowing that Massau published his Book VI in 1887, is it possible that he had previ-
ously read Poincaré’s memoir and that he was inspired in it? It is not very probable because,
in fact, Massau had already presented a first version of his Book VI on December 3, 1877, at
the Charleroi section of the Association of the engineers of Ghent university, as is shown by
the monthly report of this association. Further, the vocabulary, the notations and the demon-
strations used by Massau are clearly different from those of Poincaré. In particular, Massau
constantly works with the isoclines, a notion about which Poincaré never speaks. Finally,
Massau, who quotes many people whose work is related to his, never quotes Poincaré.

Clearly, Massau and Zhukovsky are part of a geometric tradition that survived since the
beginning of Calculus within engineering and applied mathematics circles. In this tradition
one kept on constructing equations with graphical computation and mechanical devices, as
theoretical mathematicians came to prefer the analytical approach. In this story, it is interest-
ing to notice the existence of these two currents without an apparent link between them, the
one among academic mathematicians, the other among engineers, with similar results that
have been rediscovered several times independently.

6. Conclusion

In previous Sections, I presented some examples, mainly during the second half of the 19th
century and the early 20th, that illustrate how civil and military engineers have been strongly
engaged in the mathematical activity of their time. The examples that I have chosen are
directly related to my own research, but we could mention some other recent works going in
the same direction.

David Aubin [1] and Alan Gluchoff [17] have studied the scientific and social context
of ballistics during and around the first World War, the one in France with the case of the
Polygone de Gâvre, a famous ballistic research center situated in Brittany, and the other in
the United States with the Aberdeen Proving Grounds, which was the prominent firing range
in America. These papers prolong what I have presented in Section 4 and put in evidence
similar collaborations and tensions between two major milieus, the one of artillerymen, that
is military engineers and officers in the military schools and on the battlefield, and the other
one of mathematicians that were called to solve difficult theoretical problems. The new
firing situations encountered during the First World War (fire against planes, fire over long
distances through air layers of widely varying densities, etc.) generated new theoretical
problems impossible to solve analytically and thus favoured the creation of new numerical
algorithms such as Adams-Moulton methods for ordinary differential equations.

Kostas Chatzis ([2, 8]) has studied the professional milieu of 19th century French engi-
neers from the sociological and economic point of view. In particular, he has reviewed the
conditions of diffusion of graphical statics, first in France, then in Germany and Italy, and
again in France in the late 19th century. Graphical statics was an extensively used calcu-
lation tool, for example for the construction of metallic bridges and buildings such as the
famous Eiffel Tower in Paris. Its development is closely linked to that of descriptive ge-
ometry and projective geometry. For her part, Marie-José Durand-Richard ([11, 12]) has
examined the mathematical machines designed by engineers between Babbage’s machine
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and the first digital computer. These machines, which include planimeters, integraphs and
differential analyzers, have played a major role in solving differential equations encountered
in many areas. Among the most important of them are the polar planimeter of Jakob Amsler
(1823–1912), the integraph of Abdank-Abakanowicz (1852–1900), the harmonic analyzer
of Lord Kelvin (1824–1907) and the large differential analyzers of Vannevar Bush (1890-
1974) in the United States and Douglas Rainer Hartree (1897-1958) in Great-Britain. The
technical and industrial design of these machines has contributed to the development of new
numerical and graphical methods, but also to some advances in logic and information theory,
as seen in the work of Claude Elwood Shannon (1916-2001). During and after the Second
World War, all this knowledge has been transferred to the first computers like ENIAC. More
generally, Renate Tobies ([26, 27]) has explored the relationships between mathematics, sci-
ence, industry, politics and society, taking as support of her work the paradigmatic case of
Iris Runge (1888-1966), a Carl Runge’s daughter, who was a mathematician working for
Osram and Telefunken corporations.

In the early 20th century, the emerging applications of electricity became a new field of
research for engineers, who were then faced with nonlinear differential equations with com-
plex behavior. Jean-Marc Ginoux, Christophe Letellier and Loïc Petitgirard ([14–16, 21])
have studied the history of oscillatory phenomenons produced by various electrical devices.
Balthazar Van der Pol (1889-1959) is one of the major figures in this field. Using Massau’s
techniques of graphical integration (see Section 5), in particular the method of isoclines, Van
der Pol studied the oscillations in an electric circuit with a triode, and succeded in describing
the continuous passage from sinusoidal oscillations to quasi-aperiodic oscillations, which
he called “relaxation oscillations”. A little more later, Aleksander Andronov (1901–1952)
established a correspondence between the solution of the differential system given by Van
der Pol to characterize the oscillations of the triode and the concept of limit cycle created
by Poincaré, thus connecting the investigations of engineers to those of mathematicians. In
his thesis, Jean-Marc Ginoux [14] lists carefully all the engineering works on this subject
between 1880 and 1940.

Loïc Petitgirard [24] is also interested in another engineer-mathematician struggling with
nonlinear differential equations: Nicolas Minorsky (1885-1970), an engineer of the Russian
Navy trained at the Naval Academy in St. Petersburg. Minorsky was a specialist in the de-
sign, stabilization and control of ships. In his naval research during the years 1920-1930,
he was confronted with theoretical problems related to nonlinear differential equations, and
established mathematical results adapted to maritime issues. He also conceived a system
of analog computing in connection with the theory of nonlinear oscillations and the stabil-
ity theory, emphasizing that the theories produced by mathematicians like Poincaré remain
incomplete without computational tools to implement them.

All these recent works demonstrate a large entanglement between the milieus of civil en-
gineers, military engineers, physicists, astronomers, applied mathematicians and pure math-
ematicians (of course, these categories were far from watertight). It seems necessary to take
all them into account if we want to rethink the construction of knowledge in the domain of
numerical analysis and if we want to avoid the historical bias of the projection into the past
of contemporary conceptions of the discipline. A new history remains to be written, which
would not focus only on a few major authors and some high-level mathematical algorithms,
but also on the actors of the domain in the broad sense of the term, and on the numerical and
graphical methods actually performed by users on the ground or at the office. A good start to
this problem could be, among others, to identify, classify and analyze the mathematical texts
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contained in the many engineering journals published in Europe and elsewhere since the
early 19th century. This could allow to characterize more precisely the mathematical knowl-
edge created and used by engineers, and to study the circulation of this knowledge between
the professional circles of engineers and other groups of actors involved in the development
of mathematical ideas and practices.
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