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Foreword

The International Commission on Mathematical Instruction is
planning a series of studies on topics of current interest within mathe-
matical education. The first study was on the influence of computers
and informatics on mathematics and its teaching at university and senior
high school level. It was prepared by a Program Committee, consisting
of R.F. Churchhouse (Cardiff), B. Cornu (Grenoble), A.P. Ershov (Novosi-
birsk), A.G. Howson (Soughampton), J.-P. Kahane (Orsay), J.H. van Lint
(Eindhoven), F. Pluvinage (Strasbourg), A. Ralston (Buffalo), M. Yamaguti
(Kyoto). A discussion document was sent to all national delegates of
ICMI and printed in 1'Enseignement Mathématique, 30 (1984). Contribu-
tions written in response to this paper formed the basis of discussions
at a symposium held in Strasbourg in March, 1985.

The Proceedings begin with a general report which looks in particular
at the three themes:
1. How do computers and informatics influence mathematical ideas,
values and the advancement of mathematical science?
2. How can new curricula be designed to meet changing needs and
possibilities?
3. How can the use of computers help the teaching of mathematics?

There then follows a selection of papers contributed to the Strasbourg
symposium. The selection is our responsibility, and is based on the
recommendations of the Editorial Board. In some cases a paper has been
selected because of its originality, in others because it represents a
theme treated in several contributions - in such cases our choice
reflects our wish to give prominence to the theme, and not necessarily
our support for the arguments advanced in a particular paper.

Other written contributions can be found in a volume of supporting
papers, published by IREM, Université Louis Pasteur, Strasbourg, and
described elsewhere in this book.

Neither the Proceedings nor the supporting papers put an end to the
discussion. On the contrary, they are intended to provide a sound basis
for further discussion and action. ICMI does not plan to continue with
this study at a general level, but is ready to help organize further
investigations on particular topics within this field. If readers wish
to initiate such investigations, we invite them to make contact either
with us or with their national delegate to ICMI.

Many people have contributed greatly to this study. Here we have only
space to mention and to thank Francois Pluvinage, who was responsible
for administrating the Strasbourg meeting and for editing the Supporting
Papers, to those bodies which gave financial assistance, including

DCRI, the French Mathematical Society, IBM, ICSU, the Royal Society,
UNESCO and the University of Strasbourg, to all who submitted papers or
attended the Strasbourg meeting, and to Mrs. June Kerry who has so
carefully typed the major part of this volume.

A.G. Howson
J.-P. Kahane



THE INFLUENCE OF COMPUTERS AND INFORMATICS
ON MATHEMATICS AND ITS TEACHING

PART 1

THE EFFECT ON MATHEMATICS

1.1 Introduction

Mathematical concepts have always depended on methods of
calculation and methods of writing. Decimal numeration, the writing of
symbols, the construction of tables of numerical values all preceded
modern ideas of real number and of function. Mathematicians calculated
integrals, and made use of the integration sign, long before the emerg-
ence of Riemann's or Lebesgue's concepts of the integral. In a similar
manner, one can expect the new methods of calculation and of writing
which computers and informatics offer to permit the emergence of new
mathematical concepts. But, already today, they are pointing to the
value of ideas and methods, old or new, which do not command a place in
contemporary 'traditional' mathematics. And they permit and invite us
to take a new look at the most traditional ideas.

Let us consider different ideas of a real number. There is a point on
the line R, and this representation can be effective for promoting
the understanding of addition and multiplication. There is also an
accumulation point of fractions, for example, continued fractions giv-
ing the best approximation of a real by rationals. There is also a
non-terminating decimal expansion. There is also a number written in
floating-point notation. Experience with even a simple pocket calcu-
lator can help validate the last three aspects. The algorithm of con-
tinued fractions - which is only that of Euclid - is again becoming a
standard tool in many parts of mathematics. Complicated operations
(exponentiation, summation of series, iterations) will, with the
computer's aid, become easy. Yet even these simplified operations will
give rise to new mathematical problems: for example, summing terms in
two different orders (starting with the largest or starting from the
smallest) will not always produce the same numerical result (see, e.g.,
Churchhouse, 1980, 1985).

Again, consider the notion of function. Teaching distinguishes between,
on the one hand, elementary and special functions - that is, those
functions tabulated from the 17th to the 19th century - and, on the
other, the general concept of function introduced by Dirichlet in 1830.
Even today, to "solve" a differential equation is taken to mean reduc-
ing the solution to integrals, and if possible to elementary functionms.
However, what is involved in functional equations is the effective
calculation and the qualitative study of solutions. The functions in
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which one is interested therefore are calculable functions and no
longer only those which are tabulated. The theories of approximation
and of the superposition of functions - developed well before computers
- are now validated. The field of elementary functions is extended,
and functions of a non-elementary nature are introduced naturally
through the discretisation of non-linear problems. Informatics, too,
compels us to take a new look at the notion of a variable, and at the
link between symbol and value. This link is strongly exploited in
mathematics (for example, in the symbolism of the calculus). In infor-
matics, the necessity of working out, of realising the values has
presented this problem in a new way. The symbolism of functions is not
entirely transferable, and the attributes of a variable are different
in languages such as FORTRAN, LISP and PROLOG.

In the sections that follow we look at some aspects of how computers
and informatics have already affected mathematics and mathematical
research and present some thoughts on what future effects might be
seen., We do not claim that our survey is comprehensive, especially so
in the disciplines of applicable mathematics, but we hope that it
provides some pointers. In any event information technology, in the
widest sense, is advancing far too fast for any predictions to be of
value for a period of more than a few years.

1.2 New and revived areas of mathematical research

Computers are not only providing a new tool in mathematical
research and teaching, they are, at the same time, themselves the
source ‘of new areas of research. Not all of the research stimulated by
the availability of computers is in new branches of mathematics, some
is of ancient lineage, going back to the 19th or 18th century, but open
now to attack with a weapon not available to Euler, Gauss, Jacobi,
Ramanujan and others. Who can doubt, though, that these giants of the
past would have exploited these new possibilities with enthusiasm had
they been available? It is one of the unique features of mathematics
that it is based upon a body of results that never loses its value.
Fashions and interests may change, but the neglected subject of the
last century, or even of the last millenium, may prove to be of new
interest at any time when conditions are right for its re-emergence.
So the corpus expands; nothing ever dies, though it may remain dormant
for centuries. 1In the age of information technology we wish to
emphasise this fact, for it underlies everything that follows.

One of the most famous examples of mathematical research being stimu-
lated by the use of a computer is the soliton (solitary wave) solution
of the Korteweg-de Vries equation by Zabusky and Kruskal (1965), which
was 1n1tlally suggested by numerical results. Continuing experimental
investigations have indicated the existence of other, related, solu-
tions and theoretical research has provided a substantial framework for
investigating soliton solutions of several non-linear wave equations.

Another example will be found in Yamaguti's work (Supporting Papers)
which may be summarised briefly by saying that he observed continuous,
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but nowhere-differentiable, functions via numerical experiments on
dynamical systems defined iteratively whose solutions exhibit very
chaotic behaviour. Particular cases produce the Weierstrass function
and the Takagi function; the latter may be written

1@ = 27%®
k=1

where 0(X) =2x (0 g x<¥§), =2(1=x) (3 <x< 1)

and has recently been used in teaching elementary analysis. Further
research, in collaboration with Hata on a family of finite difference
schemes led to Lebesgue's Singular Function.

Among long-established branches of Pure Mathematics where computers
have had a major impact are Group Theory, Combinatorics and Number
Theory. Many applications of computers in these areas have been pub-
lished in proceedings of conferences (for example, Churchhouse and Herz
(1968), Atkin and Birch (1971), Leech (1970)).

The applications are already too numerous to list in full or describe
in detail but it is clear that the search for sporadic groups, the
investigation of Burnside's problem, the study of rational points on
elliptic curves, and the search for large primes would be quite impos-
sible without computers. The factorisation of large integers is another
example; although intrinsically it is not an exciting topic it has
recently assumed considerable importance in relation to cryptography
and public-key systems (Beker and Piper, 1982). Many of these applica-
tions have benefited considerably from the availability of program
packages specifically designed as an aid for researchers in the field;
the CAYLEY system for the study of finite simple groups is a well-known
example; such systems relieve research workers of a great deal of
drudgery. Another 'old' topic that has taken on a new lease of life is
that of continued fractions, both as providing approximations to real
numbers and, in analytical form, in numerical analysis.

The availability of colour graphics displays and packages has opened up
exciting possibilities for research not only in geometry, modelling and
fluid flow but in less obvious areas such as analysis. The study of
the iteration of complex-valued functions has been transformed recently;
the complex nature of Julia sets and their descendants is made beauti-
fully apparent by the use of colour graphics, even though their mathe-
matical nature remains largely unknown (see, for example, Section 1.5
below and West (Supporting Papers)).

It is clear to us that the computer is having, and will continue to
have, a significant impact on the directions of mathematics research,
on the way in which mathematicians carry out their research and that
computers will not only be commonly used to arrive at conjectures but
also to assist in finding proofs. In addition some important questions
are raised (i) how should computers be used to assist mathematicians in
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communicating their discoveries and in keeping abreast of the research
of others? and (ii), what are likely to be the intellectual and social
consequences, so far as mathematics and mathematicians are concerned,
of the widespread interest in, and use of computers?

1.3 Proof

In mathematics a "proof" is, strictly, a chain of deduc-
tions from the axioms; in practice, of course, a proof is accepted if
it makes use of results which have themselves been deduced from the
axioms, or from other results, etc., etc. It would be possible, but
exceedingly tedious, to write out a proof of the theorem that every
positive integer is the sum of the squares of four integers starting
from the axioms of arithmetic, but few people would regard this as
necessary and would accept various intermediate steps - an identity of
Jacobi, or representation of integers by binary quadratic forms - as
valid rungs on the ladder, since each of these steps is deducible from
other results which are deducible ..... from the axioms.

Computers might be used in mathematical proofs; they might, initially,
suggest what is true and, equally important, what is not, they might
be used for computations which are required in a proof; they might be
used - as in the proof of the 4-colour theorem (Appel and Haken, 1976)
- to examine all of a finite set of cases, on which the truth of the
theorem ultimately depends; they might even be programmed to find part
of the proof by trying many possible combinations of known axioms,
theorems or identities, though the "combinatorial explosion" makes
such an approach infeasible except in very special cases.

As examples, computers have been used to suggest results in group
theory, combinatorics, number theory, coding theory and to support the
truth of conjectures such as the Riemann Hypothesis. For an early
survey article see Churchhouse (1973). Among notable theorems which
were initially conjectured on the basis of numerical evidence are the
Prime Number Theorem (Gauss) and several important results of Ramanujan
(1927) including the congruence properties of the partition function
and of the function t(n). On the other hand Lander and Parkin (1967)
and a computer found that

5

27° + 84°

> 41337 = 1447

+ 110
and so disproved a conjecture of Euler that had stood for nearly 200
years.

Accuracy and reliability of the computations should not be an issue
today. Where a result is sufficiently important or in doubt it can be
checked by someone else on a different machine; this has been done on
several occasions and if the result is confirmed and, assuming that
the underlying mathematics is correct, the result can be accepted with
considerable confidence, if not certainty. Computer-assisted proofs
need not be any more suspect than purely human proofs; many false
"proofs" - including the 4-colour theorem - have been published in the
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past; we do not believe that the computer will increase the number of
false proofs, quite the contrary.

It is, of course, accepted that no amount of numerical evidence con-
stitutes a proof of a theorem relating to an infinite set; the numerical
evidence may be misleading even for a very large set of values of the
variables involved. A well-known example from analytic number theory
is Littlewood's proof (see Ingham, 1932) that despite all the numerical
evidence then, and even now, available

X

dt
mGx) - Jz Tt

(m(x) indicating the number of primes less than or equal to x)
not only eventually changes sign, but does so infinitely often.

A criticism of computer-assisted proofs - such as the 4-colour theorem
- is that they tend to rely on brute-force and give little insight into
why the theorem is true. Unfortunately some results e.g. finding large
primes or factoring large integers intrinsically require such methods,
and whilst it may be true that a computer proof may bring little in-
sight its very existence may inspire people to find more elegant,
shorter, or illuminating proofs.

Taking a longer-term view, the availability of computer assistance may
encourage mathematicians to a more precise syntax and to express more
formally what is in their minds (de Bruijn, below). Such a development
may, in turn, aid the teaching of the art of constructing proofs and so
lead to the development of 'expert systems' to undertake at least some
aspects of mathematical work (including all the routine algebraic
manipulation, computation, etc.), in partial fulfilment of Leibniz's
dream of a rational calculating device.

One final point: since every proposition that is provable has among its
many proofs one of minimal length and since the proofs of any given
length are (at most) finite in number there must be true theorems of
mathematics that cannot be demonstrated by traditional discourse within
the longest human lifetime. It would appear then that there are
mathematical theorems that can only be proved with the aid of computers
if we are unwilling to wait too long.

1.4 Experimentation in Mathematics
Certain branches of mathematics have always been open to

experimentation but the arrival of computers means the scope for
experimentation in mathematics has been greatly increased. In some of
the sections above we have indicated cases where experiments have been
used to provide data on which conjectures and, in some cases, theorems
have been based. Euler, remarking on the necessity of observation in
mathematics, said: "The problems of numbers that we know have usually
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been discovered by observation, and discovered well before their
validity has been confirmed by demonstration ....."

The sheer speed of computers means that calculations which would once
have taken a lifetime can now be completed in hours, or even minutes.
Add to this the fact that the results can often, if required, be pre-
sented in graphical form rather than as a list of numbers and we see
that the interpretation of the experiments may be made much easier.
The case of the iteration of complex valued functions illustrates this
point.

0f course when a constraint is relaxed there is a danger of excess.

The ability to perform calculations does not mean that everything can
or should be calculated. There is a balance to be struck and this must
be guided by experience - not to mention the cost of the computationms.
The effort and cost involved need to be combined with the probability
of success, in the sense of solving a problem or uncovering some useful
fact. Computation for the sake of computation is not to be encouraged.

Although experimentation in pure mathematics has its uses it is,
perhaps, in the area of statistics that it is particularly valuable.
We take two examples.

Simulation

Even before the availability of the modern computing technology,
experimental sampling and Monte Carlo methods have played a role in
statistics for studying the performance of statistical techniques under
the assumption of probability models. The computer has enhanced this
aspect on a large scale. One famous example is the Princeton Robust-
ness Study (Andrews et al, 1972) where sets of estimators under a system
of different modelling assumptions are studied by means of computer
simulation. The results have stimulated new mathematical research into
robust estimators (e.g. asymptotic theory) but on the other hand they
cannot merely be interpreted as conjectures that can and should be
validated by mathematical proof, but they have an importance in itself
and have already influenced the practice of analysing data.

Exploratory Data Analysis

It is sometimes stated that the computer has led to an unwelcome shift
from hard thinking to a senseless computation of examples and experi-
mentation. A balanced picture would say that the computer has led to
broader variety of '"types of rationality" to approach problems and it

is necessary to judge in every situation which approach is more
reasonable.

The classical paradigm for applying statistics is to think first very
hard then construct a probabilistic model and an adequate design for
gathering data. But this strategy is not feasible in quite a lot of
situations where little is known about the data and the underlying
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system of interest. In connection with the numerical and graphical
capabilities of computers a new methodology of data analysis, called
Exploratory Data Analysis (Tukey, 1977), has been developed. The
computer has made it possible to experiment with several models for a
data set, to construct a variety of interesting plots of the data to
gain insights into patterns, structures and anomalies of the data and
to develop conjectures concerning the features of the system underlying
the data. Such a type of exploratory mathematics would not be practic-
able on a large scale without using computers.

1.5 Iterative methods

Methods of solving systems of linear equations are tradi-
tionally divided into (i) direct and (ii) indirect, or iterative,
methods. The direct methods include Gaussian elimination, the indirect
methods include the Gauss—-Seidel., The direct methods have the advant-
ages (a) that they will always produce the solution provided that it
exists, is unique and that sufficient accuracy is retained at every
stage, and (b) that the solution is found after a known number of opera-
tions. They have the disadvantage that very sparse systems of equations,
such as arise in finite difference approximations to differential
equations, may become rapidly less sparse as the elimination process
proceeds so raising the storage reguirement from a multiple of n (for
n equations) to something like n“ . The iterative methods, on the
other hand, may fail to converge to a solution and if they do converge
it is not obvious how many operations they will require to produce the
desired accuracy. They have, however, the very considerable advantages
that they are very well suited to computers and preserve the sparsity
of the coefficient matrix throughout,

Direct methods of solution of non-linear systems are rarely available;
there is, after all, no direct method for solving the general polynomial
of even the fifth degree and so iterative methods are generally used.

As in the case of linear systems, convergence may not always occur,
though conditions sufficient to ensure convergence are usually known; and
although in some cases the number of iterations necessary to produce
convergence to a specified accuracy may not be easily predicted, it is
frequently not a matter of great importance and, if time is limited,
accelerating techniques can often be used.

The revival of interest in iterative methods brought about by the use
of computers has led to significant advances in the study of functions
which are iteratively defined, e.g. by a relation of the type

Zn+1 = F(Zn)

where Z, is a given complex number and the function F(Z) may
contain one or more parameters. Some functions of this type, such as
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were studied over 60 years ago by Julia (1918) and Fatou (1919), but
attracted relatively little interest at that time. In the case where
the function F(Z) involves one complex parameter C and we define
the set of points K. to be those points Z such that the iterated
sequence of points given by

Z, F(Z), F(F(Z)), ... etc.,

does not go to <, then the boundary of K, 1is called the Julia set
associated with F(Z) and C . Only recently, thanks to the avail-
ability of computers and, particularly, of colour graphics terminals
has the extraordinary nature of these Julia sets and their numerous
spin-offs been appreciated. For example, the Mandelbrot set is
defined as the set of values of C for which K. is connected. The
boundary of the Mandelbrot set when Z, is generated by the quadratic
relation above is a fractal curve, the discovery of which, due to
Mandelbrot, has inspired a great deal of exciting and attractive
research by Douady, Hubbard and many others (West, Supporting Papers).

1.6 Algorithms

An algorithm is simply a procedure for solving a specific
problem or class of problems. The notion of an algorithm has been
around for over 2000 years (e.g. the Euclidean Algorithm for finding
the highest common factor of two integers), but it has attracted much
greater interest in recent years following the introduction of
computers and their application not only in mathematics but also to
problems arising in technology, automation, business, commerce,
economics, the social sciences, etc. Computer algorithms have been
developed for many commonly occurring types of problem. In some cases
several algorithms have been produced to solve the same problem, e.g.
to sort a file of names into alphabetical order or to invert a matrix,
and in such cases people who wish to use an algorithm will not only
want to be sure that the algorithm will do what it is supposed to do,
but also which of the several algorithms available is, in some sense,
the "best" for their purposes. An algorithm which economises on
processor time may be extravagant in its use of storage space or vice-
versa and the need to find algorithms which are optimal, or at least
efficient, with respect to one or more parameters has led to the
development of complexity theory. Thus the Fast Fourier Transform has
reduced the time complexity from order n? to order n logn , which
is of considerable practical importance for large values of n . More
recently the problem of designing algorithms which can be efficiently
run on several processors working in parallel has attracted con-
siderable interest. Algorithms which are ideal on a single processor
may be highly inefficient, or even fail entirely, on parallel
processors and the design of suitable parallel algorithms for even the
commonest problems is a matter for research.

1.7 Symbolic Manipulation Systems
The possibility of using a computer to manipulate symbols,
rather than numbers, and so provide users with packages for algebraic
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manipulation and indefinite integration was appreciated from the
earliest days of computers. Packages such as ALPAK and Slagle's SAINT
(Slagle, 1963) both date from the early 1960's. Not only were such
packages available, they were used. Around 1960, Lajos Tokacs used
ALPAK to carry out some very tedious algebraic manipulation involving
1200 terms to find the second moment in a problem in queueing theory,
of importance to Bell Laboratories. No-one had had the courage or
energy to do this by hand. When the second moment was finally found

it reduced to just three terms, after which a shortened mathematical
derivation was obtained and a general theory developed. Two points are
worth noting: after the brute-force use of ALPAK the nature of the
solution inspired mathematicians to find a more elegant derivation - in
support of our remark in Section 1.3; secondly, without the use of a
symbolic manipulation package it is unlikely that this work would have
been done at all.

Another early system, FORMAC, was utilized to help with the solution of
the restricted case of the 3-Bodies Problem and, more recently, G.E.
Andrews (1979) has used it to check that two 752-term polynomials,
occurring in the theory of plane partitions, are identical.

Some symbolic manipulation packages are general, but many more are
applications specific. We have mentioned CAYLEY which is widely used
for the study of finite groups both at research level and as a teaching
aid. Other specific systems include MATRIX, REDUCE (Fitch, 1985),
MACSYMA (Pavelle and Wang, 1985); many more traditional algebra systems
are surveyed in Pavelle et al (1981). A more general system connecting
aspects of logic, mathematics and computer science is Automath (de
Bruijn, below).

Whilst many of these systems perform tedious tasks they are not neces-
sarily based on trivial mathematics. Advances made in symbolic
integration have been particularly striking. The theory of integration
in closed form, originally due to Liouville (1833), was taught in
France for about 50 years (to 1880) and then disappeared from Hermite's
Cours d'Analyse under pressure from newer material. The arrival of
computers re-opened interest in the subject and recent software
(Davenport, 1982) solves problems about which G.H. Hardy (1916) said
"there is reason to believe that no such (solution) method can be
given'". The techniques used in integration packages of this type are
highly sophisticated and beyond the experience of most users.

Another noteworthy example of a very practical type is a package in
which the computer generates a finite difference scheme for the solu-
tion of a differential equation within a region, works out the equation
for the mesh elements and analyses the Fourier stability of the
approximations (Wirth, 1981). This involves both advanced mathematics
and advanced programming.

The availability of packages such as those described will not only
relieve mathematicians of a great deal of drudgery and encourage them
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to attack problems which hitherto looked too intractable but may even
lead to notable new advances as the use of ALPAK and the refutation of
Hardy's remark illustrate.

1.8 Computers and Mathematical Communication
Whilst it affords great personal satisfaction to prove (or
disprove, or conjecture) a result, the mathematical community only
gains if that result is communicated to others. This communication may
take various forms (though the distinctions are not rigid).

epistolary - where A writes a letter to B communicating the result;

proscriptive - where A writes the result on a wall (literal or
metaphorical) for others to read;

privately published - the usual form is a departmental technical
report, whose existence is announced;

publicly published = journals or books.

This communication may be received either directly by the person who is
going to use the result, or indirectly.

The advent of computed-aided typesetting and camera-ready copy has
obviously changed the visual form of mathematical communication
(particularly the publicly published) and its economics. This has con-
sequences for mathematicians (especially editors) who may need to read
the input to such type-setting systems. But computer technology is
capable of changing and is changing, far more than this.

Epistolary. The telephone has not made a major contribution to mathe-
matical communication (though it makes the administration of mathema-
tics and mathematical communication far easier) since it is a very

poor medium for transmitting formulae or diagrams. The telex is rarely
used.

Hence one is forced to the traditional letter. For factors outside the
control of mathematicians, this service has been getting worse over the
years. Mathematicians used to exchange three letters a day between
Cambridge and London, whereas now three letters a week would be more
likely. Not only does it take longer to develop a joint idea, but the
momentum is often lost.

The computer network offers a solution, by allowing communication via
"electronic mail" instead of physical mail. A very high-bandwidth net-
work like the ARPA net is "virtually instantaneous', but lower bandwidth
ones like the CS net that links most computer science departments in
the US, or the JA net that links many academic institutions in the UK,
can certainly provide overnight delivery, and often in a few hours.

As an example of this, Davenport wrote a paper with a text-processing
system in Cambridge (England), sent the result to Coppersmith in New
York, using three networks to do so, and had the corrections and
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amplifications a day later.

Proscriptive. In addition to the physical notice boards in one's own
department or elsewhere on which one can place proofs (or, more likely,
announcements of technical reports containing proofs), computer networks
distribute electronic "bulletin boards" to various sites which
"subscribe" to them. In some areas of computer science in North
America, most results are announced on such bulletin boards.

Private Publishing. This is closely related to the above. Such net-
works also distribute electronic "newsletters" to individual sub-
scribers, which often contain lengthy articles in draft form, or state
conjectures or problems.

Public Publishing. This is the area whose form has been directly least
affected. Though there is talk of it, no serious refereed journals
distributed by electronic means exist.

All of these methods distribute information to the recipients. Some-
times this will be information that the recipient can use directly.
More often, though, the recipient will only want it later, either in
the form "I'm sure I saw something on ...." or "Is there anything on
....". The first is hard to answer unless you remember where it was
seen. Searching back issues of a particular journal is relatively
easy. Finding something that was pinned to a notice board a year ago
is almost impossible. If proper archives are kept, finding an item on
a year-old electronic bulletin board merely requires programming an
editor suitably.

Searching for information on particular subjects is very hard. Clas-
sifications such as the AMS one are inevitably too broad, and cause.
problems on the boundaries, which is where one is most likely to want
to look. This is the area of "information retrieval". Already the
last eleven years of Mathematical Reviews are on-line, and it is
possible to find many of the necessary papers by looking for suitable
words among the titles, keywords or reviews. Davenport has used this
twice with excellent results when a problem he was working on turned
out to be reducible to one in a different field. When this is coupled
with citation indices, which are certainly computer produced even if
they are distributed on paper, we can find generalisations (or refuta-
tions!) of the result as well. An information retrieval system of this
type for literature in physics was set up by Kessler at MIT in 1965
(Kessler, 1965) and, for computer science by Churchhouse at the Atlas
Laboratory in the UK in 1966 (Churchhouse, 1969). If a database of
titles, keywords, references and most importantly of all, automatically
generated citation indexes of papers in mathematical journals were
available on-line via a network, mathematical research would be greatly
aided and time wasted in re-discovery reduced. Any steps to establish
and maintain such information retrieval systems should be encouraged.
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1.9 The intellectual, economic and social dangers

In one of the working papers for the Strasbourg Symposium,
Atiyah drew attention to certain dangers to mathematics which might be
associated with the widespread introduction and use of computers by
students in schools and universities; this paper is reprinted in this
volume. We believe that it is right to be aware of these dangers; but
only time will tell how real they are and the situation, in any case,
differs from one country to another. We believe also, however, that
the benefits accruing from the application of computers to mathematics
will far outweigh the dangers, particularly when we are forewarned of
what those dangers are.

12



PART II1

THE IMPACT OF COMPUTERS AND COMPUTER SCIENCE ON THE
MATHEMATICS CURRICULUM

2.1 The Common Mathematical Needs of Students in Mathematics,
Science and Engineering

(a) Preparation for University Mathematics

To provide a context in which to discuss the impact of computers and
computer science on curriculum and methodology, it is necessary to
agree first, in general, on the appropriate mathematics for the secon-
dary school student and then to consider the university curriculum.
Since there are significant differences between different parts of the
world on when secondary school ends and university instruction begins,
the comments which follow will have to be interpreted in the local
context.

Algebra has traditionally been an important subject in high school.
Since elements of abstract algebra are likely to become increasingly
important in mathematics education, it is clear that algebra will
remain of central importance in the secondary school curriculum. The
important thing, however, is not to have students achieve great manipu-
lative skill in algebra (e.g. in polynomial algebra) but rather to
teach them to consider algebra as a natural tool for solving problems
in many situations. Nevertheless, the ability to use formulas and
other algebraic expressions will remain necessary.

In recent years there has been a trend toward replacing much of
Euclidean plane geometry with those aspects of geometry more closely
akin to algebra. This is useful as a preparation for university
mathematics but there is much feeling among mathematics educators that
the loss of Euclidean geometry is a sad development. A consensus on
how geometry might best be taught at school and university is not yet
available. It should be noted, however, that some computer scientists
feel that the aspect of traditional instruction in geometry concerned
with teaching the meaning and construction of rigorous proofs can be
achieved through material concerned with the verification of algorithms.

For many parts of mathematics trigonometry is useful preparation. But

we note that much of the tedious work which was necessary in the past,

both numerical and symbolic, can now be done or will soon be able to be
done on hand-held computers.

13
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Next we mention calculus. In many countries this has been a secondary
school subject for many years for most university-bound students while
in other countries only the very best students begin calculus in
secondary school. The main thrust of secondary school calculus has
been to provide students with techniques, and to prepare those intend-
ing to study mathematics at university with a first introduction to the
concepts they will encounter at the university level. Probably much of
the recent work on using computers to teach calculus (see Section 2.2
(b)) is more applicable at this level than at the university level.

Various new subjects have become part of the secondary school curricu-
lum in recent years. Among these is probability which has come into
the curriculum in many countries. From the point of view of this
conference, discrete probability spaces, the binomial distribution and
related topics are more useful than going into statistics which may be
too difficult to teach at this level. (However, an introduction to
data analysis (see Appendix B) is quite appropriate at the secondary
school level.) Another subject, about which there will be further
discussion below, which we would like to see more of in the secondary
school curriculum, is discrete mathematics including elementary count-
ing, number systems other than decimal, the binomial theorem, induction
and recursion. In this connection it would be appropriate to introduce
both the design and verification of a number of important algorithms
such as those for sorting.

What to do about the computer itself for this age group is a difficult
question. Its possibilities for calculus have already been mentioned.
Consideration also needs to be given to its use for any instruction
related to algorithms. Care must be given to avoid emphasis on the
computer as a toy but rather to present it in the context of computer
science as a science.

We might go on to discuss doing almost all the above in terms of models

and practical problems. But we note that the problems of teacher
training for everything we have mentioned are already formidable. We
must learn from the 'new math' experiences of the 1960s and avoid
trying to achieve too much at once.

(b) The University Mathematics Curriculum

The core of the university mathematics curriculum for many years has
been the calculus and, to a lesser extent, linear algebra. This is the
case no matter how much mathematics the student may have studied in
secondary school. The effect of computers on this curriculum is mainly
one of methodology, not content. That is, the use of computers may
allow more interesting and effective presentations of classical subject
matter but, in and of themselves, computers have little effect on what
subject matter is important to the beginning university student. (An
exception to this may be symbolic mathematical systems ("computer
algebra" systems) whose manipulative power suggests a deemphasis on the
more skill-oriented portions of the curriculum (see Appendix A).)
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Informatics (i.e. computer science), however, does imply changes in the
content of the core curriculum. This is essentially because informatics
is a highly mathematical discipline but one whose problems require
almost universally the tools of discrete rather than continuous mathe-
matics. Thus, there is now a strong argument to provide a balance in
the core curriculum between the traditional continuous mathematics
topics and topics in discrete mathematics (Ralston (1981), Ralston and
Young (1983)). For university courses aimed at a broad spectrum of
mathematics, science and engineering students, this balance may well
contain nearly equal portions of the continuous and the discrete. For
those courses aimed at specific student populations, the balance might
be weighted more in the direction of the discrete for informatics and
social science students, might be about equal for mathematics students
themselves and surely should be weighted more toward traditional
continuous mathematics for physical science and engineering students.

It needs to be emphasized, however, that all groups of students need
some exposure to both the continuous and discrete approaches to
mathematics. Whether students are exposed to calculus first and then
discrete mathematics or vice versa will depend on the student popula-
tion and on institutional convenience.

The actual content of the discrete mathematics component will be quite
variable for some years until considerable experience is obtained with
what to teach and how to teach it. We note only that the discrete
component will normally contain at least some ''traditional" discrete
mathematics (e.g. combinatorics, graph theory, discrete probability,
difference equations) as well as some abstract algebra although the
latter may follow in a later course after completion of the core
courses.

We note also the importance of an early introduction to mathematical
logic in the core university curriculum. Although traditionally an
advanced undergraduate or a post-graduate subject (at which levels
there will be a continuing need for specialized courses), logic is so
important in informatics that it needs to be introduced early in the
university mathematics curriculum (Davenport, Supporting Papers) and
even, perhaps, in the secondary school curriculum (see Section 2.2(c)).

As a final matter, we stress the importance of using the paradigms of
informatics (e.g. an algorithmic approach, iteration, recursion) in the
teaching of mathematics at all levels. Although these paradigms may
seem most easily applicable to discrete mathematics, there is consider-
able scope for their introduction into the classical continuous
curriculum.

The reader may be surprised to find no mention of numerical analysis
here (or hereafter in this document) because this subject is the one
that most obviously combines the continuous and discrete approaches to
mathematics. But we take the position that numerical analysis is now
such a well-established subject in the mathematics curriculum that it
does not need to be discussed in the context of this report. This is,
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however, not to say that the subject matter of numerical analysis is no
longer affected by advances in computing; developments in, for example,
parallel computing will have great impact on numerical analysis.

We now proceed to give considerably more detail than in this introduc-
tion about the specific curriculum areas discussed above.

2.2 A Discussion of Particular Curriculum Areas on which
Computers and Informatics have an Impact

(a) Discrete Mathematics Courses

We begin with a consideration of what topics in discrete mathematics are
essential to the beginning informatics student and, as well, are impor-
tant to the mathematical development of a variety of other students
including mathematics students themselves. It should be noted that in
many countries some, if not most of these topics are already part of the
precollege curriculum, Where this is not the case, as in North America,
there is a growing movement to introduce these topics into a single
course, most often in one semester but sometimes in a full year course,
with the title Discrete Mathematics (Ralston and Young (1983), MAA
(1984)). Although the topics to be listed below cover a broad spectrum,
it is possible to design a coherent course covering these topics if the
course is based on the theme of trying to understand the applications of
these topics to computing. This means an emphasis on algorithms and
their analysis as well as on such other fundamental concepts as mathe-
matical induction and the representation of mathematical constructs by
functions and relationms.

In the syllabus for a Discrete Mathematics course which follows, we have
taken into account the needs of computer science students but have also
used our perceptions of what mathematics faculty in most countries are
ready and willing to teach (see the papers by Bogart, Dubinsky, and
Seda, Supporting Papers).

A Discrete Mathematics Syllabus

1. Sets and set operations, relations, equivalence relations, partial
orderings, functions.

2. Elementary symbolic logic including the standard logical connec-
tives, conditional expressions and an analysis of their meaning;
the concept of proof, at least as a convincing explanation; the
relation to the contrapositive form of a conditional statement;
proof by contradiction.

3. The principle of mathematical induction and its application to
recursive definitions.

4. Basic counting techniques including the sum and product rules;
binomial coefficients; permutations, subsets and multisets
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(i.e. combinations with and without repetitiomns); the principle
of inclusion and exclusion.

5. Difference equations (i.e. recurrence relations); equations with
constant coefficients; first order equations; the relationship
of recurrence relations to the analysis of algorithms.

6. Graphs, digraphs and trees; path and connectivity problems; tree
traversal, game trees and spanning trees; trees as fundamental
data structures.

7. Discrete probability including random variables, discrete
distributions and expected value.

In addition, other possible topics depending upon local needs and
desires are

8. Matrix algebra including matrix operations, inverses, deter-
minants; linear programming; applications.

9. Number systems, particularly the discrete systems used on
computers.

10. Algebraic structures such as rings, groups, etc.

11. Finite state machines and their relation to languages and
algorithms.

And, of course, there can be extensions of all the above topic areas to
more advanced subject matter if desired and appropriate.

The experience of those who have taught such discrete mathematics
courses is that, despite the potpourri of topics listed above, these
courses can be made interesting and satisfying if a consistent,
coherent approach is taken as suggested above (see papers by Bogart,
and Jenkyns and Muller, Supporting Papers).

Following a course from a syllabus like that above, a variety of
advanced courses in discrete mathematics can be contemplated although
only the largest institutions would be able to offer all of these.
Indeed, each of the 11 subject areas listed above suggests one or more
advanced courses which would build on the introductory material in a
first discrete mathematics course. Most of these courses are currently
in a process of evolution as the subject matter in the first discrete
mathematics course changes and develops and as the applications of
discrete mathematics grow and diversify. A program which combines a
carefully constructed introductory discrete mathematics course with
several advanced courses will give the student a firm basis for study-
ing informatics as well as providing a basis for professional work in
modern applied mathematics and other fields in science and engineering.

17
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(b) Calculus in the Computer Age

I. The Role and Relevance of Calculus

Among the key factors which compel change in the teaching of university
mathematics courses are:

- the substantial experience with minicomputers and microcomputers
and programming packages which many students have had before
coming to the university;

- the growth of new areas of applied mathematics such as the
analysis of algorithms and computational complexity.

One result of this is that many students have attitudes and expectations
which lead them to believe that the most challenging and meaningful
mathematical problems today are related to computers and informatics.
This cannot help but influence how we must motivate mathematics

students and all other students in mathematics courses.

In considering the place of calculus in the computer age, we cannot
forget that it is one of humankind's greatest intellectual achievements,
one of which every educated person should be aware. Its history exem-
plifies the "unreasonable effectiveness' of mathematics better than any
other branch of mathematics. And its effectiveness is as great today
as it has ever been. But this does not excuse teaching calculus as is
so often the case now with an emphasis only on the execution of mechan-
ical procedures - and paper—and-pencil procedures at that. Instead
calculus needs to be taught to illustrate the unique ways of thinking

it epitomizes

The realm of applications of calculus remains immense. Applications of
calculus may even be increasing due to the increasing mathematization
of heretofore qualitative sciences like biology. In constructing
calculus models of phenomena and then solving the resulting equations,
there is often an interplay between these models and their discrete
counterparts with the calculus models representing the limiting be-
haviour of the discrete models. It is now more important than ever to
include this interplay in calculus (and discrete mathematics) courses
because inevitably the solution of most problems in calculus involves
the (discrete) computer (Winkelmann, 1984a). The discretization neces—
sary to solve problems of calculus with a computer often has not borne
a close relationship to the underlying discrete model. But the
increasing power of computers means that more and more frequently it is
possible to have computer models which mirror very closely the discrete
models from which the continuous model was initially abstracted
(Winkelmann, 1984b, Supporting Papers).

There already are powerful software tools which can be used in the
study of calculus. These include symbolic mathematical systems (see
Appendix A) and a variety of graphical packages. Advances are taking

18
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place so rapidly in these areas, however, that it will soon be the case
that very powerful symbolic and graphical systems will be available on
microcomputers and even on hand-held computers. One result of this is
that an understanding of functions, variables, parameters, derivatives
etc. and the ability to interpret formulas and graphics is becoming
more important to the student than skills in executing the (numerical

or symbolic) procedures of calculus. In the teaching of calculus to

all students the need is clear for a shift from an emphasis on calcula-
tional technique to one which emphasizes the development of mathematical
insight (see, for example, Murakami and Hata, below).

II. The Content of Calculus Courses

If functional behaviour and representation are to be the focus of the
calculus course, then continuous functions and discrete functions (i.e.
sequences) must be emphasized and motivated by a wide variety of
mathematical models. Sequences should be defined iteratively and
recursively. (Note: Some would argue that sequences belong more
properly in the discrete mathematics course discussed in the previous
section. This only illustrates the need to bring the discrete and
continuous points of view together into an integrated sequence of
courses as soon as possible (see, for example, Rice and Seidman,
below).)

An important theme in calculus courses should be the contrast between
the local and global behaviour of functions. Local behaviour is, of
course, derived by studying the derivative for continuous functions
(and the difference operator for discrete functions). And similarly
the integral (and summation) operators are used to derive global
information about functions. Undoubtedly it will remain necessary to
develop some ability to do formal computations with derivatives and
integrals. But the major emphasis should be on numerical algorithms
(particularly for integrals) and on how derivatives and integrals can
be used to understand the behaviour of functions.

A topic such as the Taylor series representation of a function should
be used to show how good local information can be obtained using low-
degree polynomials. A valuable comparison in this context would be
between Taylor polynomials and interpolating polynomials, another area
where the analogy between the continuous and the discrete may be use-
fully shown. The use of the mean-value theorem as a tool to estimate
errors suggests another way in which a computational approach changes
the perspective on classical topics in calculus.

Finally, there should be a balance in the calculus course between
traditional topics and ones whose importance has greatly increased
because of the advent of computers and informatics. Thus, for example,
the 0( ) and o( ) notations are not always taught in calculus
courses, but they should become so.
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This discussion is intended only to provide the flavour of how an
orientation toward computation should change the approach toward
teaching most of the standard calculus topics.

III. Computers for Learning and Teaching Calculus

Computers enable teachers to modify their methods of teaching calculus
(and, of course, much other mathematics also) in order to meet better
the need of their students. Computer graphics is a powerful medium in
which to provide examples - and non-examples - of continuous functions,
discontinuous functions, the area under a curve, direction fields and
nowhere differentiable functions as well as in many other areas. Well-
designed software (there isn't nearly enough of this yet) can be used
by students to discover and explore the concepts mentioned above as
well as such fundamental concepts as slope and tangency (see also
Section 2.3). But the effective use of such software requires that
teachers sometimes depart from a lecturing style and go instead to a
guiding and interacting style.

Well-designed software will also permit enhancements by students
through the writing of (usually short) programs. This is just another
way in which students can be actively involved in their own learning
although it is important that the use of the computer does not become
the message instead of the mathematics which it is supposed to
illustrate (see Tall and West, below, Tall (1985)).

Another impact of the computer in calculus may be to change the order
in which topics are taught. For example, it may not be best to
introduce limits at the very start of a calculus course. Tangent func-
tions and area under a curve can be motivated and defined graphically.
When a formal definition of a limit is needed, students will be ready
for it. As another example, differential equations can now be treated
much earlier in the curriculum than was previously possible because of
the ease of understanding made possible by new graphics systems. They
could be introduced right after differentiation and before integration.
We need to study whether such reorderings will lead to a greater or
more rapid understanding of fundamental concepts and theorems.

To take full advantage of the use of computers in teaching calculus, it
will be necessary to change the standard classroom environment. Class-
rooms need to be provided with large monitors or screens on which the
monitors may be projected. Outside the classroom,students need
administratively easy and user-friendly access to computers and soft-—
ware. Teachers will need private computer facilities to be used to
prepare course material. A prerequisite for this is in-service
training so that teachers may become comfortable with computers and
then fluent in their use and aware of possibilities beyond what may be
available in the particular software on which they have learned
(Winter, Supporting Papers).
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(c) Logic for Mathematicians and Computer Scientists

It has been argued above that mathematical logic needs to be taught at
a lower level than has been customary because of its importance in the
education of computer scientists. Because this will be a new idea for
many readers, some details on what is desirable in this area are
contained in this section.

If a logic course requiring considerable mathematical maturity is not
the right thing, then neither is the kind of course which explains
logical inferences by means of examples in a natural language. What
we need instead is a course to teach beginning university students the
essential rules of the game of mathematics. Two reasons why we need
such a course are that:

- 1in the computer age large numbers of people, particularly in
scientific and technical professions, will need to handle
statements of a logical or mathematical nature in a very
precise fashion.

- now that the teaching of proof in geometry is rapidly
disappearing in many countries, we need some place in the
curriculum where students learn the art of proof.

The tools of the working mathematician can be explained through the

use of the natural deduction style with the propositional and predicate
calculus (Fitch, (1952)). A course for first-year university students
of informatics at the University of Eindhoven takes this approach

(de Bruijn, Supporting Papers). Students learn how to arrange a proof
and how to deal with naive set theory, predicates, bound variables and
quantifiers. They were able to understand the mechanism of indirect
proof, proofs by induction and notions like uniform convergence.

A good way to start with the art of proof is through the derivation of
formulas in the propositional calculus using only the implication and
conjunction connectives with the usual elimination and introduction
rules., Even at this stage students can be given exercises which
require some ingenuity.

At this level it is important to present the material as a bag of tools
and not to try to prove statements in a metatheory since this would
surely confuse beginners. Even so, there should be some introduction
to truth tables in such a course to show students how some results
which were obtained with natural deduction can be obtained in another
way.

A logic course for beginners should begin with a discussion on syntax
in which the students learn to represent formulas (including those with
bound variables) as trees and in which they learn to handle substitu-
tion. This portion of the course should also include instruction on
how to handle parentheses, precedence rules for operators and prefix
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and infix notation. This material could precede introduction to a
computer language but could better serve as a formal counterpart to
topics in a programming language course.

A course such as the one described here might well be prescribed for
mathematics as well as informatics students.

2.3 Exploration and Discovery in Mathematics
The 1dea of using computers to enable students to explore
mathematics and discover mathematics for themselves has been mentioned
already. However, the advent of powerful and available computer systems
makes this point so important in teaching mathematics today that we
devote an entire section to it (see also Murakami and Hata, below).

First, why should exploration and discovery be important components of
the educational process in mathematics? The answers parallel the
reasons why we teach mathematics in the first place:

- active learning leads to better retention and understanding and
more liking of the mathematics we teach because the mathematics
is seen as a basic component of human culture; it also leads to
more self-confidence in the ability to use mathematics to solve
problems;

- exploration and discovery helps to teach people to think;

- discovery provides the greatest aesthetic experience in
mathematics, the "aha" of seeing or proving something, is
what makes mathematics attractive;

- exploration and discovery are perhaps the best ways for
students to see that mathematics is so useful;

- discovery enables the student to see a familiar idea applic-
able in a new context, thereby enabling a grasp of the power
and universality of mathematics.

Computer technology may be used to assist in mathematical exploration
and discovery in a variety of ways; for example:

- through visualization of a great variety of two and three
dimensional objects via computer graphics, students may

explore questions and discover results by themselves (Tall,
1985);

- through computer graphical presentations of interestin
gh compu P g
geometries like "flatland" and turtle geometry;

- via exploratory data analysis (see Appendix B below);
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- by graphical and numerical explorations of how to approximate
complicated functions by simple ones;

- by applying the first step of the inductive paradigm - compute,
conjecture, prove - in many, many different situations;

- by using symbolic mathematical systems (see Appendix A below)
to discover mathematical formulas such as the binomial theorem;

- by designing and executing different algorithms for the same or
related tasks.

This list could be made much longer. Readers will probably be led to
make their own suggestions.

There are various implications to using computers to facilitate explora-
tion and discovery:

- we must start with easy tasks so that students feel they are
really succeeding on their own and are not being led step by
step by the teacher;

- teachers need to be trained for this kind of instructional mode;
few teachers can handle these ideas without training; and, in
particular, testing what has been learned by the student is not
easy.

But experience has shown that success is not only possible but yields
rich rewards. The difficulties can be overcome; teachers can be
trained to feel comfortable with this mode of learning.
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PART III

COMPUTERS AS AN AID FOR TEACHING
AND LEARNING MATHEMATICS

Introduction

Mathematicians and mathematics teachers have been provided
with a new tool, the computer. There is no shortage of applications or
interesting examples which one can quote. But, like all tools, the
computer by itself does not supply the solution to our problems, not
least the problems of mathematics education. There is no automatic
beneficial effect linked to a computer: the mere provision of micros in
a class- or lectureroom will not solve teaching problems.

It is essential, therefore, that we should develop a serious programme
of research, experimentation and reflective criticism into the use of
informatics and the computer as an aid. It will not suffice to think
only in terms of mathematics and the computer, and of the production of
software which amuses and interests mathematicians. We must also take
into account types of knowledge and the ways in which these can be
transmitted, and attempt to study, in a serious epistemologically-
based manner, various concepts and the obstacles which they present to
learners. We must think of students, their development and the match-
ing of new and old knowledge. We must consider in depth those teaching
possibilities created by the computer. It is essential, above all,
that we should move beyond the stage of opinions, enthusiasms, and
wishful thinking and engage in a true analysis of the issues. Only in
this way will we come to a true resolution of certain problems of
teaching. Such research, of necessity experimental, will have to be
critically evaluated. It must be shown how, in given circumstances,
the use of the computer can facilitate the acquisition of a particular
concept. Finally, such research work will have to be built upon and
developed to provide a vital component in the training (whether formal
or self-directed) of teachers and lecturers. Only then can computers
have any large-scale effect on mathematics teaching.

3.1 A changing view of mathematics
There are many references in this book to the way in which
the computer can lead to a changed view of what mathematics and mathe-
matical activities comprise. For example, the experimental aspects of
mathematics assume greater prominence (see Section 2.3), and there is
a corresponding wish to ensure that provision should be made for
students to acquire skills in, and experience of, observing, exploring,
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forming insights and intuitions, making predictions, testing hypotheses,
conducting trials, controlling variables, simulating, etc. Examples of
how such work can be carried out are to be found later in this book and
in the volume of Supporting Papers. Much, however, remains to be done.
Thus, for example, a mechanism needs to be found for disseminating
information about fruitful experimental environments and how these can
be formed.

Yet, when we put new emphasis on those particular activities listed
above, it is, nevertheless, necessary to ensure that such traditional
activities as proving, generalising and abstracting are not neglected
or omitted. We will need to find an appropriate balance between
'experimental' and more formal mathematics.

The possibilities presented by the computer (see, for example, those
described in the paper below by Lane et al) will actually help focus
our attention on the kind and types of knowledge which we wish students
to acquire. Not only new possibilities are offered to us, but also a
greater incentive more precisely to identify our educational goals.

If our aims of teaching change significantly so as to encompass and
stress more the 'process' of mathematics, rather than the 'products' of
the mathematical activities of others, then there will, of course, be a
need to identify those parts of mathematics most suitable for our
purposes. Topics and areas of mathematics must be selected which
encourage and facilitate an experimental approach.

Finally, in this section we must stress two important, inter-related
points. Many, indeed the majority, of our students may not intend to
become mathematicians. We must not lose sight of the implications of
this in terms of educational goals and emphases. Many of these may be
students of the experimental sciences. This raises further important
issues, for experiments in mathematics differ somewhat from those in
the physical and natural sciences. The techniques are often very
similar, but in mathematics we have that extra, vital ingredient of
'proof'. Experiments are an essential and neglected part of mathe-
matics, yet mathematics is not an experimental science. The distinc-
tions between disciplines and ways of thought will have to be displayed
and observed.

3.2 Computers change the relation between teacher and student
Computers can affect the behaviour of students. This
creates new interactions and relationships between student, knowledge,
computer and teacher. The role of the teacher in such situations
demands considerable thought.

(a) The mathematical activity of the student

Students will be better able to learn conceptual material and develop
autonomous (as opposed to imitative) behaviour patterns with respect to
mathematical ideas, if they can be cognitively active in response to
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mathematical phenomena presented to them. This activity should consist
of the formation of mental images to represent mathematical objects and
processes. It should also include the development of skills in manipu-
lating them. 1In this way students can increase their ability to think
mathematically.

Inducing students to emerge from passivity and to think actively about
mathematics is, however, not easy. One approach is to make use of the
computer to supply sufficiently powerful and novel experiences to stimu-
late such behaviour. The action of a computer program and the structure
of data as it is represented in the computer can form useful models for
thinking about mathematical entities. For example, a "WHILE loop"

whose body is a simple sum is a process that can represent the mathe-
matical entity

This expression, which troubles so many students, can then be thought
of in terms of a simple, familiar and useful computer process. Again,
in PASCAL, representing a fraction as a record with two integer fields
(the second being non-zero) helps students think about rational numbers
as ordered pairs of integers, especially if they are given the exper-
ience of writing programs to implement the arithmetic of fractions
without truncationm.

Many examples of ways in which such experiences can be incorporated
into mainstream, tertiary-level courses have already been given (see,
for example, Supporting Papers). Moreover, the success of such initia-
tives would seem to be independent of several issues which in discus-
sion tend to be over-rated. An important factor in this approach
appears to be that students should write the programs and so must be
cognitively active about the processes and data structures they are
implementing. These experiences are then coordinated with classroom
activity.

Dubinsky (Supporting Papers) describes a course which involves such
discrete mathematics topics as quantification of predicates and induc-—
tion. The programs are written by students in a very high level
language (SETL) running on a mainframe. The printed results of the
program form the basis for reflection and discussion.

Mascarello and Winkelmann (below) describe a course containing
'continuous' topics such as multiple integration and ordinary differen-
tial equations. Here the students wrote programs in a low level
language (BASIC) running on a microcomputer. These were interactive
and the results were used for experimentation and demonstration.

Of course, writing programs is not the only useful way in which students
can use the computer. The use of complicated software packages for
illustration of phenomena that are very difficult to display otherwise

26
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can clearly broaden the students' awareness and add to their general
understanding (see, for example, the paper below by Tall and West).
They can, of course, also be used for exploration and discovery (see
Section 2.3 above). Indeed some would see the most exciting oppor-
tunity offered by the computer to be the way in which it can motivate
students to exercise the process of discovery. Here we should only
stress the need to see exploration and discovery as essential mathe-
matical activities to be practised. Traditionally, this has not been
so - teaching and learning have been almost wholly concerned with the
transmission and reception of accepted mathematical facts. However,
now, for example, computer symbolic maths systems permit such rapid and
flawless processing of non-trivial examples that it is easy first to
look for patterns which suggest conjectures and generalisations, and
then to search for counter-examples or machine-aided proofs (see, for
example, the paper by Lane et al).

Computers then can greatly assist us in extending the range and the
depth of students' mathematical activities. In some approaches the
students will write their own programs (and there will be an attendant
risk that mathematical aims may become obscured by some of the program-
ming problems); in others students will use prepared software. Both
approaches have already been shown to be of great value: further
investigations into both will now have to be undertaken.

(b) The role of the teacher

The computer can be used in two distinct ways in the classroom. In one
it is an aid for the teacher, an electronic blackboard - more powerful
than the traditional blackboard, the overhead projector, or a calculat-
ing machine - but nevertheless a tool whose output is almost entirely
under the teacher's control. In this role the computer does not upset
the traditional balance in the classroom. It will still demand effort
on the teacher's part to select or provide suitable software and it can
give rise to extra administrative problems; in return it should enhance
learning. However, it will not revolutionise the classroom.

If, however, students are allowed and expected to interact with
computers then the position changes, for this leads of necessity to a
change of methodology. The teacher no longer has total control -
his/her role can no longer be limited to exposition, task-setting and
marking. The format 'lecture-examples, homework-exam' must be aug-
mented by, for example, 'project - interaction between student, machine
and teacher - assessment on the basis of a completed (and possibly de-
bugged) assignment'.

Such a change would produce a revolution in most class— and lecture-
rooms. It demands that teachers should not only acquire new knowledge,
skills and confidence in the use of hardware and software, but that
they should also radically change their present aims and emphases, and
accept a lessening in the degree of control which they presently exert
over what happens in their classroom. This last demand means a
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sacrifice of traditional security, at a time when teachers will still be
fighting hard to gain new skills and acquire confidence in them. It
would be foolish to underestimate the challenge this presents.

The acquisition of new skills will be time-consuming and constantly
changing hardware and software will make the process a continuing one.
For many mathematicians these new skills will be readily usable in their
research work. Others may be tempted — particularly when universities
and other educational institutions are under pressure - to feel that
such time would be more profitably spent in increasing personal research
output, rather than in improving their teaching, particularly if this
requires such a large step in the dark.

The participants at Strasbourg were far from optimistic. Many contribu-
tors to the conference reported that computer usage was actively avoided
by their colleagues. The problems at tertiary level were seen as being
particularly great, for the gulf between the traditional lecture often
given to a hundred or more students and the classroom/laboratory in
which students interact with computers is enormous. To bridge this gulf
will need considerable investment in both material and human resources.
Time, assistance and in-service training will have to be provided on a
scale unprecedented at this level. Particular attention will have to be
directed at those teachers who still have many years - even decades - to
go before they retire from teaching. First, however, the necessity for
change will have to be accepted, and this will only come through clear,
unequivocal demonstrations of the benefits which can accrue from
innovation.

3.3 Some particular uses of the computer in the classroom
We have already remarked on the way in which computers can
assist in the introduction, development and reinforcement of mathe-
matical concepts, in building up intuition and insight, etc. 1In this
section we look at particular ways in which they can be used within the
classroom.

(a) Graphic possibilities

Many of the applications of computers in teaching make use of the pos-
sibilities provided for graphic display. There is no doubting their
value in providing in reasonable time good quality graphic illustrations
which can help build intuition, for example, Hubbard and West (Sup-
porting Papers) describe convincingly how this has been done with
ordinary differential equations such as x' = x? - t , whose solutions
cannot be written down in elementary terms. Moreover this allows them

to discuss exciting questions concerning the behaviour of solutioms.

Where the computer scores over many other media is that graphics capa-

bilities now enable movement as well as static diagrams to be portray-
ed. This, of course, was true of the film. Yet now the possibility of
being able to change parameters adds a completely new dimension to the

teaching/learning experience.
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Many examples and illustrations were produced at Strasbourg of visual
representations from areas such as calculus, differential equations,
linear algebra, and numerical analysis. Some of the examples were for
teacher use only whilst others were of a self-teaching or interactive
design.

(b) Self-evaluation and individualised instruction

The computer can provide a tool for self-evaluation and can help the
student to take charge of the organisation of his own work. It is a
difficult problem for students to judge how well they are coping with a
subject. One use of computers is to enable students to test themselves.
Question banks can be made available and instantaneous scores given
(see, for example, Tait and Hughes (1984) which gives examples drawn
from other disciplines).

The advantages of Computer Assisted Learning for individualised instruc-
tion have, of course, been argued for some twenty years: that the com-
puter can offer non-threatening, individualised responses to students.
There have, indeed, been several demonstrations of the value of CAL,

for example, PLATO in the USA. However, as the cognitive complexity of
what has to be learned increases then the difficulties of producing
adequate software become very great. It was noticeable that no
examples of individualised learning programmes for use at a tertiary
level were described or exhibited at Strasbourg.

The problems become less pronounced when the aim of the program is to
revise and not to teach. Thus 'Recalling Algebra' and 'Recalling
Mathematics' [Kinch] are examples of software designed to help students
prepare for the Entry Level Mathematics Exam at California State
University which have been favourably received.

(c) Assessment and Recording

The use of the computer for testing students' progress is described in
Bitter (Supporting Papers). He employs the random generation of test
items. Such testing can, of course, go far beyond reliance on multiple
choice items, and can measure responses other than correct and incor-
rect. Such newer testing procedures, which can be designed to capital-
ise on the graphic potentialities of the computer, can reduce testing
time, allow tests to be broken off and resumed at any time, offer
immediate summaries and analyses, and assign specific help on
identified deficiencies.

The obvious disadvantages include preparation costs and the need to
provide ready access to a computer. Open-ended testing of projects or
personal problem solving is at present difficult, but beginnings are
being made.

Computer assisted recording also has great potential.
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(d) Student errors

Related to the possibilities described above is that of investigating
the errors which students make in learning mathematics. Such informa-
tion can be used in two ways: to help the student remove misconceptionms,
i.e. the role in which it is used in individualised CAL, or to help the
mathematics educator to identify specific points of difficulty and to
design curricula with these in mind. Errors are symptoms which allow
us not only to identify stumbling blocks, but also to form an impres-
sion of the student's conceptions. The computer allows the student to
respond to his errors in a new way: he can identify and control them
himself and getting rid of them can even become a motivation for
learning.

One example of the use of the computer to detect and correct errors is
found in Okon-Rinné's courseware. This enables a student to choose a
basic function such as f(x) = |[x| and then to experiment with the
effects which translations and reflections have on it. Thus the graph
can be translated vertically or horizontally or reflected in the
vertical axis. Simultaneously the function changes to correspond to
the new graph. The intention is to detect such common errors as con-
fusing f(x) = |x-2|, with f(x) = [x+2], or f(x) = |x+2] with
£(x) = |x|+2 . When an error is detected a tutorial subroutine is
activated and afterwards the students have the option of continuing or
branching back to an earlier unit.

3.4 Student responses to work with computers

Many comments were passed at Strasbourg concerning the
enthusiasm generated in students by computer-based systems. It was
claimed that this had resulted in many students developing a new
interest in the subject and that the general level of student activity
had increased as a result of reacting with a computer package. Not
only had activity increased, but so had confidence. Dubinsky typically
reported (of a course on discrete structures):

'this approach makes for a lively course in which students are
responsive in class and active outside class. In comparison with
similar groups to whom I have tried to teach this material, these
students seem to be more prone to speak in terms of sets and less
confused by complicated logical statements'.

It must not be thought, however, that enthusiasm can be automatically
generated through the use of a computer. Much will depend on the
students and the teaching situation; there are also negative experien-
ces to report! One must also judge on how much students learn as well
as the enthusiasm they show whilst engaged on the task.

Here one is faced with a new problem in one's teaching. Students can
frequently appear fascinated by computer demonstrations or by working
interactively with a computer, but what happens 'when the machine is
switched off'? Will the students only be able to imitate what they
have seen or will they obtain a deeper understanding of concepts?
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It was recognised that the value of much computer work was largely
dependent upon the follow-up activities which 'must guard against the
possibility that the machine is doing all the work and providing all
the answers'. Many traditional activities will still have to be
carried out, thus suggesting yet again that the computer's main contri-
bution will be to enhance student understanding and not to save time
for the lecturer. The introduction of the computer is unlikely to
solve (or even ease) the problem of over-loaded syllabuses.

Yet another aspect of student response comes into play when students
engage in activities with computers. What happens to pupil/pupil
interaction in the classroom? There was no evidence at Strasbourg that
much attention had been paid to this important question. Here is a
field for further research.

3.5 The provision of software
Current software resources for our target groups may be
considered in three categories:

(a) Sophisticated systems (in computer terms) such as the symbolic
manipulation systems, large statistical packages, etc., form the first
category. These systems have been developed in a 'goal-oriented'
fashion, that is they seek to provide solutions to specific mathe-
matical problems. They have not needed to consider to any great extent
'pedagogical design'. Interest in their use as pedagogical tools is
growing (see, for example, Newman, Supporting Papers) but experience

so far is limited.

Commercial companies exist with an interest in marketing this type of
software and research mathematicians are involved in creating such
systems. As a result, sophisticated packages are self-perpetuating -
they will exist - we need to understand their pedagogical uses and the
possibly dramatic effects they could have on current mathematics
education.,

(b) Less sophisticated in computer terms but still very demanding in
pedagogical design are the software packages suitable for use on a
microcomputer. These packages attempt to aid the students' mathematical
development and employ such themes as visualisation, simulation,
exploration and problem-solving. They may be used by students working
alone, in groups, or with a teacher. Many individuals and groups are
writing such packages. However, such resources are not self-supporting
in commercial terms and, as a result, are not easy to obtain. Because
of their restricted use in limited contexts, it is still the case that
very little is understood about their effect on teaching and learning.

A major problem arises here. The production of packages that can be
recommended for widespread use as pedagogically sound and well-tested
is an expensive, complicated task requiring considerable professional
resources. It should involve fundamental research based on the struc-
tured observation of the materials in use in parallel with the develop-
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ment of the materials. Thus the team may need to include mathemati-
cians, educators, psychologists, computer scientists, graphic designers,
publishers and editors.

The financial needs of such a group would be considerable.

(c) General purpose programming languages can be used as tools towards
students' mathematical development and are a readily available teaching
resource. Extension of such languages or even creation of new ones
expressly for this purpose would be welcome.

This brief consideration of the present position points out the need:

(i) to establish channels of communication so that researchers and
educators are aware of resources currently available;

(ii) to set up structured research studies using currently available
resources in order to gain and share understanding of their use
as pedagogical tools.

The emergence of software packages has raised a new problem for mathe-
matics teachers, that of black boxes, for they often/usually produce
answers without giving any hint of the way in which they were obtained.
As Davenport (below) shows, this may well conceal a wealth of deep
mathematics. (It could, of course, be argued that the problem is not
new, but merely heightened — for students have been employing algorithms
whose workings they did not understand for centuries!)

How can students learn (be taught/encouraged) to look critically at the
answers supplied? How much should students be required to know about
the workings of black-boxes before being allowed to use them? For
example, there are packages which invert matrices. If such a package
uses floating-point arithmetic, it can give answers which should not be
accepted at face value. At least students should be warned about this
or, better, should learn to recognise when this has occurred.

3.6 Cultural, social and economic factors

We have written of the computer as an aid to mathematics
teaching and learning. So is the overhead projector. The difference
though between the two tools is not, however, solely the enormous
difference in the range of possibilities opened up by the former.
Equally, it springs from the enormous effect which the computer is
having upon society outside the confines of educational systems. As a
result society has expectations concerning computers and their use -
expectations which often have little basis in reality. Students too
have expectations about their use. There are then enormous pressures
on educators at all levels to use computers, not necessarily for their
intrinsic value, but because society expects it, and not to do so might
be considered old-fashioned and reactionary.

It will be difficult for computers to be used effectively in education
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until society has become better informed about their power and limita-
tions. Unrealistic expectations must be strongly discouraged. There is
a danger that false advertising by computer companies and software
developers, and a pressure from various sections of society could lead
to ill-designed, over—optimistic innovation and, in turn, to a backlash
comparable with that of the 1970s resulting from the hasty introduction
of "New Math'. Political decision makers in some countries are 'push-
ing' computers and computer-related curricula into education without
adequate consideration of objectives and consequences.

It is important, therefore, to realise that:

- reasonable use of computers in education requires software
programs and packages the educational standards and qualities
of which are comparable with those technical ones offered by
the available hardware;

- integrating computers into the curriculum must be coordinated with
teacher/faculty in-service, professional development programs;

- educational budgets must be prepared to permit appropriate
expenditure on hardware, software, and teacher development;

- no curriculum should remain stagnant for a long period.

Not all problems associated with computers in education can be antici-
pated. Many questions need to be answered through research initiatives
directed at investigating the possibilities, limitations and possible
dangers of computer use in education. Some causes for concern are:

- uniformity in students' thinking and reasoning could arise
from overuse of computers in the learning process,

- standardisation of software development (in an attempt to form a
commercial market) may lead to mediocrity and conformity,

- subtleties of communication between teachers and students could
be impoverished by over—using computers,

- insensitive working with computers could adversely influence the
total intellectual development of students (of their intuitive
thinking, creativity, perception, etc.).

There were few representatives at Strasbourg from developing countries.
Yet their position demands special attention. For them the provision
and maintenance of hardware creates great problems. Moreover, scarce
resources must be husbanded carefully. The computer could, offer
special advantages to them; on the other hand the absence or shortage
of computers could widen still further the gap between them and the
developed countries.
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3.7 Conclusion

We are only experiencing the very beginning of the effect
of computers on the teaching and learning of mathematics. Gradually,
we are beginning to take advantage of some of their more obvious possi-
bilities such as their quick and accurate production of graphical
material, quick and accurate (though not always precise) arithmetic,
quick and accurate algebraic manipulations, their ability to handle and
analyse large quantities of data (which can be employed in learning
systems of the sort described by Allen et al (Supporting Papers)).

One can see in numerous publications and, in particular, in the papers
contributed to the Strasbourg meeting, many examples of mathematical
situations which the computer and informatics allow us to see and
approach from a new point of view. Obvious examples which spring to
mind are the many applications in statistics (dealing with vast quanti-
ties of data), in probability (with all the possibilities opened up for
simulation by pseudo-random generators); in geometry too there is a
range of interesting activities: production of images, curve plotting,
the transformation of images (translations, reflectioms, ...), loci,
exploration of images and figures. The dynamic aspect dominates here:
one can visualise instantly the effect of varying a parameter. In
linear algebra, an algorithmic approach furnishes a tool both for cal-
culations and also for demonstration. Here again the dynamic aspect
plays an important role: to see a matrix steadily assume a diagonal
form is very different from obtaining the result once and for all after
a long and involved calculation. But it is above all in analysis that
the opportunities to utilise informatics are richest and most numerous.
The study of numbers, of functions, of the solution of equationms,
observation and study of sequences and series (and in particular of
their speed of convergence), integral calculus, differential equations,
asymptotic expansions, discretisation, power series for functions, ... .
In addition to these 'classical' fields where the use of the computer
arises naturally, one has also seen developments in newer fields which
have occurred largely because of computers: formal symbolic logic is a
striking instance; discrete mathematics can provide us with other
examples. The computer is not only an aid for computation and demon-
stration, but a force for development.

In all of these cases, the contribution of the computer takes several
forms: firstly it is a calculating tool allowing numerous and rapid
calculations; it also serves to place renewed emphasis on numerical
methods, and thus on the study of algorithms; and, especially, it is a
pedagogical tool, for promoting teaching and learning.

However, let us reiterate, the act of using a computer does not auto-
matically lead to an improvement. It is not a magic wand! Like all
tools, it can serve us badly; we must learn how to get the best from it.

Computers are now widely to be found in schools and universities.
Teachers are being trained in their use, but principally in techniques
and programming. Much remains to be done before we can give a true
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pedagogical training. It is also necessary to bear in mind that if we
wish to change the educational system, then there will be a need simul-
taneously to reform both the training given to those preparing to teach
in schools and universities and also the continuing education of exist-
ing teachers.

At the same time there is the need to carry out much research and
experimentation so that we may effectively understand and control the
impact of the use of the computer on students' learning and on their
conceptions and representations of mathematical objects. Only after
such studies will we be able to provide high quality software and, most
importantly, a new range of didactical activities, tasks and situations
to enhance learning.

APPENDICES

A. Symbolic Mathematical Systems

The best known such system for large computers is Macsyma and the best
known for microcomputers is muMath. These systems do symbolically the
standard processes of secondary school and college algebra and of
calculus. Thus, they differentiate, they integrate (definite and in-
definite), they do polynomial algebra, they do infinite precision
rational arithmetic, they solve linear systems and quadratic equations
- all symbolically although they will provide normal numerical answers,
too, when the user wishes. Advanced systems like Macsyma will also do
many advanced mathematical processes such as contour integration and
tensor calculus calculations. But even muMath is powerful enough to do
almost all of the manipulations students need to do through the first
year of a calculus sequence (see, for example, Lane and Stoutemyer,
below).

The most important point to note for this document is that these systems
are rapidly becoming more powerful and will soon be available on hand-
held computers. Thus, it is becoming increasingly hard to justify try-
ing to teach students to become good symbol manipulators unless it can
be shown - but no one yet has so shown - that such skills are required
in order to develop an understanding of the underlying mathematics at
whatever level such understanding is desired. Of course, developing
such understanding is as - or more - necessary in mathematics education
than it has ever been.

B. Exploratory Data Analysis

This is a subject which has become pedagogically possible for schools
only in recent years. It could not be handled in a classroom until
calculators and microcomputers came along.

What you wish to have students do is the following:
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- make their own data observations or experimental measurements;

- plot or graph the data in various ways (e.g. scatter plots,
stem and leaf plots);

- summarize the data (mean, median, interquartile range, etc.);

- draw conclusions from the data (is it bimodal? are there
outliers? etc.);

- transform the data (by logarithmic plots perhaps);
- smooth the data;
- compare different sets of data.

Readers will be able to add to this list.

The hand-held calculator and the microcomputer make it possible for
students to do all the tasks listed above in reasonable amounts of
time. Note that exploratory data analysis is not the same as doing
statistics which is an interesting and important subject in its own
right (Engel, Supporting Papers). Statistics involves such things as
hypothesis testing, confidence intervals and analysis of variance, all
expressed in a traditional mathematical framework involving lots of
formulas. Exploratory data analysis provides less rigorous, less
abstract subject matter which will be good preparation for a student
for a course in statistics.
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MATHEMATICS AND THE COMPUTER REVOLUTION

M.F. Atiyah
Mathematical Institute, Oxford University, Oxford, England.

1 A HISTORICAL PERSPECTIVE

This Orwellian year of 1984 provides an inviting occasion
for us to look to the past, present and future of mankind and in
particular to consider the constantly changing relations between
Science and Society. While George Orwell pin-pointed with great
dramatic effect many of the political dangers of '"double-think", the
perversion of truth for political ends, he underestimated in other
ways the enormous changes which Science had in store for us. The
major problem we face today is of course the existence of atomic
weapons and our capacity to destroy civilization, but even if this
problem is solved many other challenges remain and prominent among
these is the computer revolution.

It is now commonly acknowledged that we are firmly embarked on an
economic and social revolution which will be comparable in scope and
effect to the industrial revolution. There are here many significant
analogies but also many important differences, notably in the speed of
change. Whereas the industrial revolution is usually measured in
centuries, the computer revolution is properly measured in decades.
Since the human life-span has not fundamentally altered, the impact of
the computer revolution will be faster and more acute in sociological
terms, and coming to terms with it will be correspondingly more
difficult.

Not being an economist or a sociologist I will leave it to others to
elaborate on the obvious problems and likely developments in these
areas. As a mathematician I am more concerned with another aspect of
the computer revolution and one in which it differs fundamentally from
its predecessor the industrial revolution. Whereas the eighteenth and
nineteenth centuries witnessed the gradual replacement of manual labour
by machines, the late twentieth-century is seeing the mechanization of
intellectual activities. It is the brain rather than the hand that is
now being made redundant. This means that the challenge which we face
is of quite a different order and analogies with the past may therefore
be misleading.

The intellectual challenge presented by the computer is, I believe,
very far-reaching even if at the present time the problems are only
just beginning to emerge. Moreover this challenge is certainly not

43



Atiyah: Mathematics and the Computer Revolution 44

restricted to mathematics, but will eventually penetrate into almost
all aspects of human activity. For example, we are already seeing the
introduction of "expert systems'" into fields such as medicine and law,
and the roles of doctors and judges as we now understand them are
unlikely to survive unchanged into the next century. Science fiction
in these directions has difficulty in keeping pace with fact.

"Exciting though it is to speculate on the computerization of thought
and knowledge in such fields I will, for two reasons, restrict myself
to mathematics., The first and most important is that I am myself a
mathematician and that I can speak about this area at first-hand and
with some confidence. The temptation to pretend to expertise which
one does not possess should be firmly avoided. The second reason for
concentrating on mathematics is thac, in the public eye at least, this
subject tends to be naturally, though not always correctly, associated
with computers.

It is of course true that, in its early days, computer science grew up
alongside mathematics and that famous mathematicians such as Turing
and von Neumann were amongst its pioneers. Moreover, of the
traditional basic sciences, mathematics is still the closest in spirit
to computer science. In fact, it is sometimes asserted, with dry
humour, that computer science is the Cuckoo of the mathematical nest
with all the unpleasant overtones which that suggests.

In this world of education, mathematics and computer science still go
hand in hand even if the relationship is now an uneasy one. 1In
universities, Computing and Mathematics are frequently found together
and, at the school level, computing is almost exclusively in the hands
of mathematics teachers.

For all these reasons it seems to me that mathematicians have a
responsibility to explain, to society at large, intellectual challenges
and dangers presented by the computer revolution. This is what I hope
to do today. As I have already mentioned I shall restrict myself to
describing the impact of computers on mathematics itself, but at a
fundamental level I believe that many of the things I shall say will
have some relevance to other fields of intellectual study, though I
will leave it to each of you to decide how far my remarks pertain to
your own descipline or field of interest.

Finally, I should issue a disclaimer. Some of my mathematical
colleagues have much more direct experience of computing than I have.
In fact, at the technical level I am barely a novice, but I hope that,
at a higher level, I am aware of what is happening and that my
perception is not too far off the mark.

2 MATHEMATICS AND THEORETICAL COMPUTER SCIENCE
It might be helpful if I began by describing the role which
mathematics has played, and continues to play, in the development of
the theoretical aspects of computers. Not surprisingly, those parts of
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mathematics which have been relevant in this respect have themselves
received an enormous stimulus in return. On the one hand, this has
been beneficial in many ways by suggesting fruitful lines of research,
but the sheer scale of the computer field brings dangers in its wake,
and I shall return to this later.

Historically it was mathematical logic which provided the theoretical
basis for computers. Here, and throughout my lecture, I am referring
to the 'software' side of computers, concerned with the development
and use of suitable languages rather than the 'hardware' side which is
concerned with their physical design and construction. Of course, it
is the hardware development - the rise of the minute silicon chip -
which has produced the revolution, but this in its turn only re-
emphasizes the need for greater sophistication in the language so as
to fully exploit the hardware potentialities.

Mathematicians have always been concerned with the notion of "proof",
the rigorous deduction of various conclusions from given assumptions,
and in the first half of the twentieth-century this notion was
subjected to extremely careful analysis. In particular there emerged
the notion of a "constructive" proof, where the desired conclusion
could be arrived at after a finite number of definite steps. The
famous "Turing machine" was a hypothetical ideal machine which could
carry out such constructive proofs, and the early computers were in
essence its physical realization.

Computers have to be given precise commands and mathematical logic
provides the theoretical framework in which such commands can be
formulated. Moreover as computers become more and more powerful, so
the languages they use become increasingly sophisticated, and the
problems of possible errors loom much larger. The errors I refer to
are not of course machine errors — a machine can do no wrong - but of
human errors in issuing the right commands or in translating into the
computer language. Here again mathematical ideas of proof become
important - how to prove that a given set of computer instructions are
correct.

This very briefly is why mathematical logic is related to theoretical
computer science and why students trained in this most abstract of
mathematical disciplines find a ready demand for their talents in the
computer field.

Closely related to the notion of constructive proof is that of an
"algorithm" which in mathematical parlance is the term used for a
definite procedure for solving a problem. For example an explicit
formula for solving an equation is an especially simple algorithm.

If a mathematician wants to use a computer to solve a problem he needs
to give the computer an algorithm. Now algorithms can be fast or slow,
measured in computer time, and there is clearly a great advantage in
devising fast algorithms. Thus the development of computers has
stimulated a whole new branch of mathematics, complexity theory, which
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is essentially concerned with understanding how '"complex'" an algorithm
is and which roughly corresponds to how long a computer will take to
give an answer.

Proof theory and complexity are just two examples of the sort of
mathematics which has been stimulated or created by the needs of the
computer. In general the sort of mathematics involved is quite
different from that required by the applications to physical science.
Because computers are based on the on/off switch of electrical circuits
they involve discrete mathematics exemplified by algebra, whereas,
since Newton's time, physical science has been based largely on the
application of calculus to the study of continuously varying phenomena.
This has led some people to argue that the traditional approach to
teaching mathematics, with its heavy emphasis on calculus must, in the
age of the computer, be drastically modified.

3 COMPUTERS AS AN AID TO MATHEMATICAL RESEARCH
Having described the way in which mathematics has helped
the development of computer science, let me now consider the flow in
the opposite direction. In what ways has the advent of computers
assisted and altered mathematical research?

The first and most obvious use of computers has been simply as "number
crunchers'. High-speed machines are excellently adapted to carrying
out very large numbers of repetitive calculations, so that explicit
numerical answers can rapidly be provided for problems which would
otherwise have been too complicated to handle. This use of computers
has had a dramatic effect on all of applied mathematics and it has
significantly altered our conception of what is a satisfactory
solution of a mathematical problem. In pre-computer days mathema-
ticians would work hard to cast the solution of a problem into some
elegant algebraic form, involving familiar objects such as algebraic
and trigonometric expressions. Nowadays a problem in applied
mathematics is regarded as satisfactorily solved if one can find an
algorithm to feed into a computer which will generate all the
numerical values one is interested in.

Not all of mathematics however is concerned with numbers. Algebra for
instance deals with symbolic expressions which may or may not stand
for unknown numbers. For example, an expression in mathematical logic
does not stand for anything numerical. The manipulation of complicated
symbolic expressions can also be performed on computers and there are
areas of mathematics where this has already been applied very
successfully. For example, the determination of all finite simple
groups, the building blocks of abstract symmetries, was greatly
assisted by the use of powerful computers. With the increased
availability of micro-computers and the greater computer expertise
among the younger generation of mathematicians it seems certain that
these symbolic uses of computers will greatly increase.
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In Mathematics, as in the Natural Sciences, there are several stages
involved in a discovery, and formal proof is only the last. The
earliest stage consists in the identification of significant facts,
their arrangement into meaningful patterns and the plausible extrac-
tion of some law or formula. Next comes the process of testing this
proposed formula against new experimental facts, and only then does
one consider the question of proof.

In all the earlier stages computers can play a role, particularly
when large or complex systems are being considered. For example, in
Number Theory interesting questions may involve very large prime
numbers, and some of the deepest conjectures being studied at the
present time have been based on extensive computer calculations. In
the same way problems in differential equations which involve the
evolution of some system (e.g. the flow of a liquid) for a very long
time have been enormously influenced by experimental facts discovered
on computers.

One advantage of present day computers which is only just beginning to
be fully appreciated by mathematicians is their ability to display
information graphically (and even in colour). For many complicated
mathematical problems involving geometrical features, this provides an
extremely effective new tool with which to explore phenomena.

To sum up therefore the computer is proving of great practical
assistance to mathematicians at all stages of their work, but perhaps
most significantly in the exploratory or experimental stage. Great
mathematicians of the past such as Euler or Gauss carried out large
numbers of tedious calculations by hand in order to provide themselves
with the raw material from which they could then guess some general
law, or discover some remarkable pattern. As mathematics delves
further and we become more ambitious the raw material becomes
correspondingly much more messy and complicated. The computer can
help us to sift this material and to point the way to further progress
and understanding.

4 THE INTELLECTUAL DANGERS

Few scientific advances are unmixed blessings and the
computer is no exception. Having enumerated the many benefits which
mathematicians, amongst others, can derive from the advent of the
computer I would like now to draw attention to some possible dangers
that lie ahead. Let me begin with the most central and insidious
problem which is essentially the challenge the computer presents to
the human intellect. Will mathematics continue as one of the highest
forms of human endeavour or will it gradually be taken over by the
computer? Who will remain in charge of mathematics and what are its
criteria to be?

To illustrate the dangers I have in mind, let us consider an event
that has already taken place, namely the solution by computer of a
famous outstanding mathematical problem. I refer to the 4-colour
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theorem which says roughly that four colours suffice to colour any
conceivable map of the world, the requirement being that adjacent
countries must be coloured differently. This problem which dates from
the last century was recently solved by a proof which involved a
computer check of hundreds of different cases. On the one hand, this
was a great triumph, the solution of a hard problem; on the other
hand from an aesthetic point of view, it is extremely disappointing,
and no new insights are derived from the proof.

Is this to be the way of the future? Will more and more problems be
solved by brute force? If this is indeed what is in store for us
should we be concerned at the decline of human intellectual activity
this represents, or is that simply an archaic view-point which must
give way before the forces of "progress"?

To answer such philosophical questions we must be bold and ask our-
selves what is the nature and purpose of mathematical and scientific
activity. The usual answer is that Science is man's attempt to
understand, and perhaps eventually control, the physical world, but
this leaves us with the difficult notion of "understanding'". Can we
be said to "understand" the proof of the 4-colour theorem? I doubt it.

For those who feel that "understanding" is too subjective and restric-
tive a term, the more limited goal of "description" may be preferred.
Certainly I can describe the proof of the 4-colour theorem, though my
description entails saying "the computer checked the following facts".

Such a "descriptive" attitude to mathematics could live happily with a
gradual take-over by the computer, but I believe that this would lead
to the atrophy of mathematics even measured by these modest
"descriptive'" standards. Mathematics is really an Art - it is the art
of avoiding brute-force calculation by developing concepts and tech-
niques which enable one to travel more lightly. Give a mathematician
an infinitely powerful machine for doing calculations and you deprive
him of his inner driving force. It is at least arguable, though
somewhat far—fetched, that if computers had been available in say the
fifteenth century, mathematics now would be a pale shadow of itself.

5 ECONOMIC DANGERS

In addition to the subtle and intangible intellectual
threat posed by computers there are much more obvious and practical
dangers due to the tremendous economic importance of computers to
society at large. Inevitably there will be vast financial pressures
which will tend to push mathematics into new directions related to
computing. Broadly speaking, more emphasis will be put on discrete
mathematics as opposed to Calculus, which is concerned with continuous
phenomena. No doubt, some of this pressure will be healthy and will
stimulate and generate exciting new branches of mathematics, but the
scale and tempo of the computer revolution are such that there is a
real danger of the great classical tradition of mathematics being
swamped.
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Superficially, at first sight, discrete mathematics, which deals only
with finite quantities and processes is easier and simpler than
Calculus which deals with the infinite in various forms. However, it
is one of the greatest triumphs of mathematics that infinity has been
tamed and put to use, so that Calculus is a tool of enormous power and
elegance which has no serious rival or counterpart at the purely
finite level. 1In fact, many important results of a discrete nature
are best proved by the use of Calculus.

Until now the central position of Calculus, the Analysis of the
infinite, has been unassailable not only in Pure Mathematics, but even
more as a foundation for the application of mathematics to the whole

of Science and Engineering. Courses in Calculus have provided the
bed-rock of University education in the Mathematical Sciences. In
recent years however this position has been called into question and
there is an increasing call to reduce the role of Calculus in
scientific education and replace it with the kind of discrete
mathematics more relevant to Computer Studies. To some extent this

has already happened and it represents a necessary response to changing
conditions, but I foresee pressures for much more radical changes which
might be very damaging but would be difficult to resist.

It is possible that I am being unduly pessimistic on this score and
certainly the dichotomy between discrete and continuous mathematics is
not as sharp as I have implied. Traditionally we think of using finer
and finer discrete quantities to approximate a continuous quantity in
the way a continuous curve can be approximated by a large number of
straight line segments. However, this procedure can equally well be
reversed and continuous quantities can be regarded as approximations
to discrete ones, provided the step size is sufficiently small. Thus
we can use our knowledge (derived from Calculus) for the length of a
circle to get an approximation for the length of a regular polygon
with a large number of sides. In this way, as computers become more
and more powerful and the numbers they deal with become larger and
larger (or the time span for a single operation becomes shorter and
shorter) so Calculus may again come into its own.

6 EDUCATIONAL DANGERS

As we all know, the present economic scene is of wide-
spread decline of traditional industries and the simultaneous growth
of computer related industries. This is the economic side of the
revolution, Naturally, this means that the best employment opportuni-
ties are linked to computers and this is altering the attitudes and
expectations of all the younger generation. In schools and
universities traditional studies are having to compete with the
excitement and attraction of the computer, but mathematics, as the
closest of the older discipline, is inevitably in the front line.
This is having an effect at several levels. In the first place the
pressure falls on the mathematics teachers in schools. Increasingly,
they are having to take on computer studies as an additional
responsibility and this means that mathematics teaching as such is
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suffering. Our educational institutions, for organizational and
human reasons, can only change slowly and the sheer speed of the
computer revolution is going to put them under very severe strain.

As far as students are concerned mathematics is going to be affected
in two different ways. For the abler student who might have gone on
to creative work in the higher reaches of mathematics, there is now
the attractive alternative of entering a field which is in an
explosive stage of its development and where the opportunities to make
your mark are much greater. This means that the great creative minds
of the past such as Newton, Gauss or Riemann might in future gravitate
towards computer science rather than mathematics. For a subject so
entirely dependent on brain-power this would be the greatest disaster
of all. One has to hope that mathematics, by its power and beauty,
will still attract intellects of quality in the future and that not
all of them will be seduced by the computer.

For students of mathematics at a lower level, there are other dangers.
At their most elementary these are simply that the wide-spread use of
computers, or even sophisticated calculators, will lead to the view
that arithmetic is no longer a necessary skill to acquire. Why learn
your multiplication tables when, at the push of a button, the answer
will appear on your screen? Such attitudes are already with us and
there is much educational debate on say the advantages and dangers of
having calculators in primary schools. As computers become even
cheaper and more powerful, they will flood into our schools and
mathematics at all levels will constantly have to justify itself.

The enlightened response to these philistine attacks on mathematics is
to say that, even when all the work can be done by pushing a button,
you have to teach children which button to push. At the most basic
level they have to know when to push the addition sign and when to
push the multiplication sign. This means that there has to be more
emphasis on understanding the processes involved and less on the
performance of routine calculations. Properly interpreted this can be
regarded as an educational advantage in which drudgery is removed and
appreciation is enhanced. However, life is not quite so simple and
any over-reliance on machines can lead to the atrophy of the human
faculties involved, much in the way the motor car has undermined the
capacity of people to use their legs. Perhaps the sort of reaction
which has made jogging so popular in recent years will in due course
make exercise in mental arithmetic a form of mental therapy!

7 CONCLUSION

T have tried to draw attention to the challenges and
dangers which the rise of computers presents to mathematics. I am
sorry if the picture I have been depicting appears too negative. It
is easy to see the benefits which mathematics may derive from its
association with computing, and so I have not thought it worthwhile
to emphasize these at length. The dangers I think are more subtle and
not so well recognized so it seemed appropriate to dwell on them in
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greater detail. To recognize possible dangers is to be fore-armed,
and one can hope to prevent the worst from actually happening.
Perhaps I can end on this note by recalling that George Orwell did
not view his book on 1984 as a prediction but as a warning,
deliberately exaggerated for dramatic effect, of what might happen
if we were not careful,.

(This paper is based on a lecture given by Professor Atiyah at the
Locarno Conference (May, 1984) on the theme '"1984: comincia il futuro".
The conference was organised by the Dipartimento Pubblica Educazione
Cantone Ticino and the journal Nuova Civilita della Macchine (Bologna).
The Italian translation of the lecture appeared in Vol 2 no. 3 (1984)
of this journal. ICMI is grateful to Professor Barone, editor of
Nuova Civilita della Macchine, for granting us permission to include
Sir Michael's paper in this volume.)
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LIVING WITH A NEW MATHEMATICAL SPECIES

Lynn Arthur Steen
St. Olaf College, Northfield, Minn., 55077, U.S.A.

Computers are both the creature and the creator of
mathematics. They are, in the apt phrase of Seymour Papert,
"mathematics-speaking beings". More recently J. David Bolter in his
stimulating book Turing”s Man [4] calls computers "embodied
mathematics". Computers shape and enhance the power of mathematics,
while mathematics shapes and enhances the power of computers. Each
forces the other to grow and change, creating, in Thomas Kuhn’s
language, a new mathematical paradigm.

Until recently, mathematics was a strictly human endeavor. But
suddenly, in a brief instant on the time scale of mathematics, a new
species has entered the mathematical ecosystem. Computers speak
mathematics, but in a dialect that is difficult for some humans to
understand. Their number systems are finite rather than infinite;
their addition is not commutative; and they don”t really understand
"zero", not to speak of "infinity". Nonetheless, they do embody
mathematics.

The core of mathematics is changing under the ecological onslaught of
mathematics—speaking computers. New specialties in computational
complexity, theory of algorithms, graph theory, and formal logic attest
to the impact that computing is having on mathematical research. As
Arthur Jaffe has argued so well (in [12]), the computer revolution is a
mathematical revolution.

Computers are discrete, finite machines. Unlike a Turing
machine with an infinite tape, real machines have limits of both time
and space. Theirs is not an idealistic Platonic mathematics, but a
mathematics of limited resources. The goal is not just to get a
result, but to get the best result for the least effort. Optimizationm,
efficiency, speed, productivity--these are essential objectives of
modern computer mathematics.

Computers are also logic machines. They embody the fundamental engine
of mathematics--rigorous propositional calculus. The first celebrated
computer proof was that of the four-color theorem: the computer served
there as a sophisticated accountant, checking out thousands of cases of
reductions. Despite philosophical alarms that computer-based proofs
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change mathematics from an a priori to a contingent, fallible subject
(see, e.g., [27]), careful analysis reveals that nothing much has
really changed. The human practice of mathematics has always been
fallible; now it has a partner in fallibility.

Recent work on the mysterious Feigenbaum constant reveals just how far
this evolution has progressed in just eight years: computer-—assisted
investigations of families of periodic maps suggested the presence of a
mysterious universal limit, apparently independent of the particular
family of maps. Subsequent theoretical investigations led to proofs
that are true hybrids of classical analysis and computer programming
[8], showing that computer-assisted proofs are possible not just in
graph theory, but also in functional analysis.

Computers are also computing machines. By absorbing, transforming, and
summarizing massive quantities of data, computers can simulate reality.
No longer need the scientist build an elaborate wind tunnel or a scale
model refinery in order to test engineering designs. Wherever basic
science is well understood, computer models can emulate physical
processes by carrying out instead the process implied by mathematical
equations. Whereas mathematical models used to be primarily tools used
by theoretical scientists to formulate general theories, now they are
practical tools of enormous value in the everyday world of engineering
and economics.

It has been fifty years since Alan Turing developed his seminal scheme
of computability [26], in which he argued that machines could do
whatever humans might hope to do. In abstract terms, what he proposed
was a universal machine of mathematics (see [11] for details). It took
two decades of engineering effort to turn Turing”s abstract ideas into
productive real machines. During that same period abstract mathematics
flourished, led by Bourbaki, symbolized by the "generalized abstract
nonsense" of category theory. But with abstraction came power, with
rigor came certainty. Once real computers emerged, the complexity of
programs quickly overwhelmed the informal techniques of backyard
programmers. Formal methods became de rigueur; even the once-maligned
category theory is now enlisted to represent finite automata and
recursive functions (see, e.g., [2]). Once again, as happened before
with physics, mathematics became more efficacious by becoming more
abstract.

The Core of the Curriculum

Twenty years ago in the United States the Committee on the
Undergraduate Program in Mathematics (CUPM) issued a series of reports
that led to a gradual standardization of curricula among undergraduate
mathematics departments [5]. Shortly thereafter, in 1971, Garrett
Birkhoff and J. Barkley Rosser presented papers at a meeting of the
Mathematical Association of America concerning predictions for
undergraduate mathematics in 1984. Birkhoff urged increased emphasis
on modelling, numerical algebra, scientific computing, and discrete
mathematics. He also advocated increased use of computer methods in
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pure mathematics: "Far from muddying the limpid waters of clear
mathematical thinking, [computers] make them more transparent by
filtering out most of the messy drudgery which would otherwise
accompany the working out of specific illustrations." [3, p. 651]
Rosser emphasized many of the same points, and warned of impending
disaster to undergraduate mathematics if their advice went unheeded:
"Unless we revise [mathematics courses] so as to embody much use of
computers, most of the clientele for these courses will instead be
taking computer courses in 1984." [21, p. 639]

In the decade since these words were written, U.S. undergraduate and
graduate degrees in mathematics have declined by 50%Z. The clientele
for traditional mathematics has indeed migrated to computer science,
and the former CUPM consensus is all but shattered. Five years ago
CUPM issued a new report, this one on the Undergraduate Program in
Mathematical Sciences [6]. Beyond calculus and linear algebra, they
could agree on no specific content for the core of a mathematics major:
"There is no longer a common body of pure mathematical information that
every [mathematics major] should know."

The symbol of reformation has become discrete mathematics. Several
years ago Anthony Ralston argued forcefully the need for change before
both the mathematics community [17] and the computer science community
[18]. Discrete mathematics, in Ralston”s view, is the central link
between the fields. The advocacy of discrete mathematics rapidly
became quite vigorous (see, e.g., [19] and [24]), and the Sloan
Foundation funded experimental curricula at six institutions to
encourage development of discrete-based alternatives to standard
freshman calculus.

The need for consensus on the contents of undergraduate mathematics is
perhaps the most important issue facing American college and university
mathematics departments. On the one hand departments that have a
strong traditional major often fail to provide their students with the
robust background required to survive the evolutionary turmoil in the
mathematical sciences. Like the Giant Panda, these departments depend
for survival on a dwindling supply of bamboo--strong students
interested in pure mathematics. On the other hand, departments
offering flabby composite majors run a different risk: by avoiding
advanced, abstract requirements, they often misrepresent the true
source of mathematical knowledge and power. Like zoo-bred animals
unable to forage in the wild, students who have never been required to
master a deep theorem are ill-equipped to master the significant
theoretical complications of real-world computing and mathematics.

Computer Literacy

Mathematical scientists at American institutions of higher
education are responsible not only for the technical training of future
scientists and engineers, but also for the technological literacy of
laymen--of future lawyers, politicians, doctors, educators, and clergy.
Public demand that college graduates be prepared to live and work in a
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computer age has caused many institutions to introduce requirements in
quantitative or computer literacy.

In 1981 the Alfred P. Sloan foundation initiated curricular exploration
of "the new liberal arts", the role of applied mathematical and
computer sciences in the education of students outside technical
fields. "The ability to cast one”s thoughts in a form that makes
possible mathematical manipulation and to perform that manipulation ...
[has] become essential in higher education, and above all in liberal
education.”" [14, p. 6] Others echoed this call for reform of liberal
education. David Saxon, President of the University of California
wrote in a Science editorial that liberal education "will continue to
be a failed idea as along as our students are shut out from, or only
superficially acquainted with, knowledge of the kinds of questions
science can answer and those it cannot." [22]

Too often these days the general public views computer literacy as a
modern substitute for mathematical knowledge. Unfortunately, this
often leads students to superficial courses that emphasize vocabulary
and experiences over concepts and principles. The advocates of
computer literacy conjure images of an electronic society dominated by
the information industries. Their slogan of "literacy" echoes
traditional educational values, conferring the aura but not the logic
of legitimacy.

Typical courses in computer literacy are filled with ephemeral details
whose intellectual life will barely survive the students” school years.
These courses contain neither a Shakespeare nor a Newton, neither a
Faulkner nor a Darwin; they convey no fundamental principles nor
enduring truths. Computer literacy is more like driver education than
like calculus. It teaches students the prevailing rules of the road
concerning computers, but does not leave them well prepared for a
lifetime of work in the information age.

Algorithms and data structures are to computer science what functions
and matrices are to mathematics. As much of the traditional
mathematics curriculum is devoted to elementary functions and matrices,
so beginning courses in computing--by whatever name--should stress
standard algorithms and typical data structures. As early as students
study linear equations they could also learn about stacks and queues;
when they move on to conic sections and quadratic equations, they could
in a parallel course investigate linked lists and binary trees.

Computer languages can (and should) be studied for the concepts they
represent——-procedures in Pascal, recursion and lists for Lisp--rather
than for the syntactic details of semicolons and line numbers. They
should not be undersold as mere technical devices for encoding problems
for a dumb machine, nor oversold as exemplars of a new form of
literacy. Computer languages are not modern equivalents of Latin or
French; they do not deal in nuance and emotion, nor are they capable
of persuasion, conviction, or humor. Although computer languages do
represent a new and powerful way to think about problems, they are not
a new form of literacy.
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Computer Science

In the United States, computer science programs cover a
broad and varied spectrum, from business—oriented data processing
curricula, through management information science, to theoretical
computer science. All of these intersect with the mathematics
curriculum, each in different ways.

Recently Mary Shaw of Carnegie Mellon University put together a
composite report on the undergraduate computer science curriculum.

This report is quite forceful about the contribution mathematics makes
to the study of computer science: "The most important contribution a
mathematics curriculum can make to computer science is the one least
likely to be encapsulated as an individual course: a deep appreciation
of the modes of thought that characterize mathematics." [23. p. 55]

The converse is equally true: one of the more important contributions
that computer science can make to the study of mathematics is to
develop in students an appreciation for the power of abstract methods
when applied to concrete situations. Students of traditional
mathematics used to study a subject called "Real and Abstract
Analysis"; students of computer science now can take a course titled
"Real and Abstract Machines". 1In the former "new math", as well as in
modern algebra, students learned about relations, abstract versions of
functions; today business students study "relational data structures"
in their computer courses, and advertisers tout "fully relational" as
the latest innovation in business software.

An interesting and pedagogically attractive example of the power of
abstraction made concrete can be seen in the popular electronic
spreadsheets that are marketed under such trade names as Lotus and
VisiCalc. Originally designed for accounting, they can as well emulate
cellular automata or the Ising model for ferromagnetic materials [10].
They can also be "programmed" to carry out most standard mathematical
algorithms—-the Euclidean algorithm, the simplex method, Euler”s method
for solving differential equations [1]. An electronic spreadsheet—-the
archetype of applied computing--is a structured form for recursive
procedures——-the fundamental tool of algorithmic mathematics. It is a
realization of abstract mathematics, and carries with it much of the
power and versatility of mathematics.

Computers in the Classroom

Just as the introduction of calculators upset the
comfortable pattern of primary school arithmetic, so the spread of
computers will upset the traditions of secondary and tertiary
mathematics. This year long division is passe; next year integration
will be under attack.

The impact of computing on secondary school mathematics has been the
subject of many recent discussions in the United States. Jim Fey,
coordinator of two of the most recent assessments ([7], [9]), described
these efforts as "an unequivocal dissent from the spirit and substance
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of efforts to improve school mathematics that seek broad agreement on
conservative curricula." [9, p. viii] Teachers in tune with the
computer age seek change in both curriculum and pedagogy. But the
inertia of the system remains high. For example, the recent
International Assessment of Mathematics documented that in the United
States calculators are never permitted in one-third of the 8th grade
classes, and rarely used in all but 5% of the rest [25, p. 18].

Lap size computers are now common--they cost about as much as ten
textbooks, but take up only the space of one. Herb Wilf argues (in
[28]) that it is only a matter of time before students will carry with
them a device to perform all the algorithms of undergraduate
mathematics. Richard Rand, in a survey [20] of applied research based
on symbolic algebra agrees: "It will not be long before computer
algebra is as common to engineering students as the now obsolete slide
rule once was."

Widespread use of computers that do school mathematics will challenge
standard educational practice. For the most part, computers reinforce
the student’s desire for correct answers. In the past, their school
uses have primarily extended the older "teaching machines": programmed
drill with pre-determined branches for all possible responses. But the
recent linking of symbolic algebra programs with so-called "expert
systems" into sophisticated "intelligent tutors" has produced a rich
new territory for imaginative computer-assisted pedagogy that advocates
claim can rescue mathematics teaching from the morass of rules and
template-driven tests.

It is commonplace now to debate the wisdom of teaching skills (such as
differentiation) that computers can do as well or better than humans.
Is it really worth spending one month of every year teaching half of a
country”s 18 year old students how to imitate a computer? What is not
yet so common is to examine critically the effect of applying to
mathematics pedagogy computer systems that are themselves only capable
of following rules or matching templates. Is it wise to devise
sophisticated computer systems to teach efficiently precisely those
skills that computers can do better than humans, particularly those
skills that make the computer tutor possible? In other words, since
computers can now do the calculations of algebra and calculus, should
we use this power to reduce the curricular emphasis on calculations or
to make the teaching of these calculations more efficient? This is a
new question, with a very old answer.

Let Us Teach Guessing

35 years ago George Polya wrote a brief paper with the
memorable title "Let Us Teach Guessing" [16]. It is not differenti-
ation that our students need to learn, but the art of guessing. A
month spent learning the rules of differentiation reinforces a
student”s ability to learn (and live by) the rules. In contrast, time
spent making conjectures about derivatives will teach a student
something about the art of mathematics and the science of order.
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With the aid of the mathematics—speaking computer, students can for the
first time learn college mathematics by discovery. This is an
opportunity for pedagogy that mathematics educators cannot afford to
pass up. Mathematics is, after all, the science of order and pattern,
not just a mechanism for grinding out formulas. Students discovering
mathematics gain insight into the discovery of pattern, and slowly
build confidence in their own ability to understand mathematics.
Formerly, only students of sufficient genius to forge ahead on their
own could have the experience of discovery. Now with computers as an
aid, the majority of students can experience for themselves the joy of
discovery.

Metaphors for Mathematics

Two metaphors from science are useful for understanding the
relation between computer science, mathematics, and education.
Cosmologists long debated two theories for the origin of the universe--
the Big Bang theory, and the theory of Continuous Creation. Current
evidence tilts the cosmology debate in favor of the Big Bang.
Unfortunately, this is all too often the public image of mathematics as
well, even though in mathematics the evidence favors Continuous
Creation.

The impact of computer science on mathematics and of mathematics on
computer science is the most powerful evidence available to beginning
students that mathematics is not just the product of an original
Euclidean big bang, but is continually created in response to
challenges both internal and external. Students today, even beginning
students, can learn things that were simply not known 20 years ago. We
must not only teach new mathematics and new computer science, but we
must teach as well the fact that this mathematics and computer science
is new. That’s a very important lesson for laymen to learn.

The other apt metaphor for mathematics comes from the history of the
theory of evolution. Prior to Darwin, the educated public believed
that forms of life were static, just as the educated public of today
assumes that the forms of mathematics are static, laid down by Euclid,
Newton and Einstein. Students learning mathematics from contemporary
textbooks are like the pupils of Linnaeus, the great eighteenth century
Swedish botanist: they see a static, pre-~Darwinian discipline that is
neither growing nor evolving. Learning mathematics for most students
is an exercise in classification and memorizatiom, in labelling
notations, definitions, theorems, and techniques that are laid out in
textbooks as so much flora in a wonderous if somewhat abstract Platomic
universe.

Students rarely realize that mathematics continually evolves in
response to both internal and external pressures. Notations change;
conjectures emerge; theorems are proved; counterexamples are
discovered. Indeed, the passion for intellectual order combined with
the pressure of new problems—-especially those posed by the computer--
force researchers to continually create new mathematics and archive old
theories.
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The practice of computing and the theory of computer science combine to
change mathematics in ways that are highly visible and attractive to
students. This continual change reveals to students and laymen the
living character of mathematics, restoring to the educated public some
of what the experts have always known--that mathematics is a living,
evolving component of human culture.

10.
11.

12.

13.

14,
15.

16.

REFERENCES

Arganbright, Dean E. Mathematical Applications of Electronic
Spreadsheets. McGraw-Hill, 1985.

Beckman, Frank S. Mathematical Foundations of Programming. The
Systems Programming Series, Addison Wesley, 1984.

Birkhoff, Garrett. "The Impact of Computers on Undergraduate
Mathematics Education in 1984." American Mathematical
Monthly 79 (1972) 648-657.

Bolter, J. David. Turing”s Man: Western Culture in the Computer
Age. University of North Carolina Press, Chapel Hill,
1984,

Committee on the Undergraduate Program in Mathematics. A General
Curriculum in Mathematics for Colleges. Mathematical
Association of America, 1965.

Committee on the Undergraduate Program in Mathematics.
Recommendations for a General Mathematical Sciences
Program. Mathematical Association of America, 1980.

Corbitt, Mary Kay, and Fey, James T. (Eds.). "The Impact of
Computing Technology on School Mathematics: Report of an
NCTM Conference." National Council of Teachers of
Mathematics, 1985.

Eckmann, J.-P., Koch, H., and Wittwer, P. "A computer-assisted
proof of universality for area-preserving maps." Memoirs of
the American Mathematical Society, Vol 47, No. 289 (Jan.
1984).

Fey, James T., et al. (Eds.). Computing and Mathematics: The
Impact on Secondary School Curricula. National Council of
Teachers of Mathematics, 1984,

Hayes, Brian. "Computer Recreations." Scientific American
(October 1983) 22-36.

Hodges, Andrew. Alan Turing: The Enigma. Simon and Schuster,
1983.

Jaffe, Arthur. "Ordering the Universe: The Role of Mathematics."
In Renewing U. S. Mathematics, National Academy Press,
Washington, D. C. 1984,

Kemeny, John G. "Finite Mathematics-~-Then and Now." In Ralston,
Anthony and Young, Gail S. The Future of College
Mathematics. Springer-Verlag, 1983, pp. 201-208.

Koerner, James D., ed. The New Liberal Arts: An Exchange of
Views. Alfred P. Sloan Foundation, 1981.

Lewis, Harry R. and Papadimitriou. Elements of the Theory of
Computation. Prentice-Hall. 1981.

Polya, George. "Let Us Teach Guessing." Etudes de Philosophie des

59



17.

18.

19.

20.

21.

22.

23,

24,

25.

26.

27.

28.

Steen: New Mathematical Species 60

Sciences. Neuchatel: Griffon, 1950, pp. 147-154; reprinted
in George Polya: Collected Papers. Vol. IV, MIT Press,
1984, pp. 504-121.

Ralston, Anthony. "Computer Science, Mathematics, and the
Undergraduate Curricula in Both." American Mathematical
Monthly 88 (1981) 472-485.

Ralston, Anthony and Shaw, Mary. "Curriculum “78: 1Is Computer
Science Really that Unmathematical?"™ Communications of the
ACM 23 (Feb. 1980) 67-70.

Ralston, Anthony and Young, Gail S. The Future of College
Mathematics. Springer Verlag, 1983.

Rand, Richard H. Computer Algebra in Applied Mathematics: An
Introduction to MACSYMA. Research Notes in Mathematics No.
94, Pitman Publ., 1984,

Rosser, J. Barkley. '"Mathematics Courses in 1984." American
Mathematical Monthly 79 (1972) 635-648.

Saxon, David 8. 'Liberal Education in a Technological Age."
Science 218 (26 Nov 1982) 845.

Shaw, Mary (Ed.) The Carnegie-Mellon Curriculum for Undergraduate
Computer Science. Springer Verlag, 1984.

Steen, Lynn Arthur. 1 + 1 = 0: New Math for a New Age. Science
225 (7 Sept. 1984) 981.

Travers, Kenneth, et. al. Second Study of Mathematics: United
States Summary Report. University of Illinois, September
1984,

Turing, Alan M. "On Computable Numbers, with an Application to
the Entscheidungsproblem." Proc. London Math. Soc. 2nd
Ser., 42 (1936) 230-265.

Tymoczko, Thomas. "The Four Color Problem and its Philosophical
Significance." Journal of Philosophy 76:2 (1979) 57-85.

Wilf, Herbert. "The Disk with the College Education." American
Mathematical Monthly 89 (1982) 4-8.



CHECKING MATHEMATICS WITH THE AID OF A COMPUTER

N.G. de Bruijn, Department of Mathematics and Computing
Science, Technological University Eindhoven,
The Netherlands.

0. Computers influence mathematics in many ways. This paper is
devoted to one of these influences: the fact that we can explain
mathematics to a computer. In this process we may learn about how to
organize mathematics and how to teach some of its aspects.

At the Technological University Eindhoven (Eindhoven, the Netherlands)
the project Automath was developed from 1967 onwards, with various kinds
of activities at the interfaces of logic, mathematics, computer science,
language and mathematical education. Right from the start, it was
directed towards the presentation of formalized knowledge to a computer,
in a very general language, with quite a strong emphasis on doing things
the way humans do. One might say that the project is a modern version
of "Leibniz's dream" of making a language for all scientific discussion
in such a way that all reasoning can be represented by a kind of
algebraic manipulation.

The basic idea of Automath is that the human being presents any kind of
discourse, however long it may be, to a machine, and that the machine
convinces itself that everything is sound. All this is intended to be
effectively carried out on a large scale, and not just "in principle".

This paper does not intend to describe the Automath system in any
detail, but rather to explain a number of goals, achievements and
characteristics that may have a bearing on the subject of the ICMI
discussion on the influence of computers and informatics on mathematics
and its teaching.

The paper is definitely not trying to sell Automath as a subject to be
taught to all students in standard mathematics curricula. The claim is
much more modest: as Automath connects so many aspects of logic,
mathematics and informatics, it may be worth-while to investigate
whether the teaching of mathematics could somehow profit from ideas that
emerged more or less naturally in the Automath enterprise. The idea of
Automath is to "explain things to a machine". Students are not machines
and should be approached in a different way. But as teachers we should
know that if we cannot explain a thing to a machine then we might have
difficulties in explaining it to students.
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1. In the Automath system the mathematical material is written in the
form of a complete book, line by line. A computer can check it line by
line, and once that has been done, the book can be considered as mathe-
matically correct. The interpretation of such a book can be a complete
theory, containing all axioms, definitions, theorems and proofs.

2. As a starting point we think of a book written entirely by human
beings. Later on we may think of leaving part of the writing to a
machine. That part might be simply the tedious routine work, but pos-
sibly also the more serious problem solving (i.e., "theorem proving", a
branch of artificial intelligence).

In order to be successful in the hard task of problem solving it might
be profitable temporarily to leave the format of the Automath languages.
In a way one might say that in this area generality and efficiency are
conflicting objectives. The Automath project made a choice here: it
never concentrated on automatic theorem proving, but just on checking.

3. We should make a clear distinction between the Automath system and
Automath books. The system consists, roughly speaking, of language
rules and a computer program that checks whether any given book is
written according to those rules.

The system of Automath is mainly involved with the execution of substi-
tution, with evaluation of types of expressions, and comparing such
types to one another. It is very essential that everything that is
said in a book, is said in a particular context: the context consists
of the typed variables that can be handled, but also of the list of
assumptions that can be used. The system keeps track of those contexts.

The Automath system does not contain any a priori ideas on what is
usually called logic and foundation of mathematics. Any logical system
(e.g., an intuitionistic one) can be introduced by the user in his own
book, and the same thing holds for the foundation of mathematics. 1In
particular, the user is not tied to the standard 20-th century set
theory (Zermelo-Fraenkel). And the user can choose whether or not to
admit things like the axiom of choice. From then on, the machine that
verifies the user's book will be able to do this according to the user's
own standards.

4. In an Automath book, logic and mathematics are treated in exactly
the same way. New logical inference rules can be derived from old
ones, just like mathematical theorems are derived, and the new
inference rules can be applied as logical tools, in the same way as
mathematical theorems are applied.
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5. Writing in Automath can be tedious. All details of arguments have
to be presented most meticulously. At first sight this might be very
irritating. The questions are (i) whose fault this is, and (ii) what
can be done about it?

The questions are related. Part of the negative impression that the
length of an Automath book makes, is due to the fact that no attempt
was made to "do something about it" at the stage of the design of the
general system. This is based on the philosophy that generality comes
first, and that adaptability to special situations is a second concern.

The reason why Automath books become so long is that mathematicians
have more in their minds than they explain, and nevertheless we want to
handle all usual mathematical discourse. Perhaps we may say that part
of mathematical work is done subconsciously. Mathematicians have a
vast "experience" in mathematical situations, and such experience may
give a strong feeling for how all the little gaps can be filled. Pos-
sibly much of the experience is consulted subconsciously '"on the spot".

Moreover, mathematical talking and writing are social activities. In
every area, people talk and write in a style they know they can get
away with. Some poor or incomplete forms of discourse are so wide-
spread that it seems silly to bother about improvements; certainly it
is not a very rewarding task to try.

The answer to question (ii) is that very much can be done about it
indeed. But just as every user can write his own book under the
Automath system, he can implement his own attachments to the system.
This may involve special abbreviation facilities, but also automatized
text writing, producing packages of Automath lines by means of a single
command, in cases where there is a clear system behind such a package.

6. Are computers essential for Automath? Not absolutely. The
computer sets the standard for what the notion "formalization" means.
If we cannot instruct a computer to verify mathematical discourse, we
have not properly formalized it yet. In the standard form, the author
of an Automath book has to write all the symbols one by one, and since
he knows that what he writes is correct, he would also be able to check
it by hand.

Nevertheless humans make mistakes. Automath books have been written
with a number of characters of the order of a million, all typed by
hand. It is hard to guarantee correctness of such a text without the
help of a modern computer.

7. As the Automath system has no a priori knowledge of logic and set
theory, it can be used to write in a style that might be more natural
than what we see in other formalizationms.
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There is a wide-spread idea that propositional logic comes down to
manipulating formulas in a boolean algebra, a kind of manipulation that
is either carried out by handling formulas with the aid of lists of
tautologies (in the same way as one used to do in trigonometry), or by
a machine that checks all possibilities of zeros and ones as values for
the boolean variables. A very much better formalization lies in the
system of "matural deduction'". This is very easy in Automath. The
boolean bit-handling propositional logic can be done in Automath too,
but it is much more clumsy than natural deduction.

A second option we get from the liberty of using Automath in the style
we prefer, is to give up the 20-th century idea that "everything is a
set". There is the magic Zermelo-Fraenkel universe in which every
point is a set, and somehow all mathematical objects are to be coded as
points in that universe. The particular coding is a matter of free
choice: there is no natural way to code.

Zermelo-Fraenkel set theory is quite a heavy machinery to be taken as a
basis for mathematics, and not many mathematicians actually know it.

An alternative is to take "typed set theory", in which things are
collected to sets only if they are of the same type: sets of numbers,
sets of letters, sets of triangles, etc. It may take some trouble to
make up one's mind about the question what basic rules for typed set
theory should be taken as primitives, but if we just start talking the
way we did mathematics before modern set theory emerged, we see that we
need very little. Anyway, in Automath we have no trouble at all to
talk mathematics in a sound old-fashioned way.

Yet, if someone still wants to talk in terms of Zermelo-Fraenkel
universe, Automath is ready to take it.

8. One of the advantages of Automath not being tied to any particular
system for logic and set theory, is that we can think of formalizing
entirely different things too, again in a natural style. As an example
we may think of the algorithmic description of geometrical construc-
tions like those with ruler and compass. Although it has not actually
been produced, we may think of a single Automath book containing logic,
mathematics and the description of ruler and compass constructions,
with in particular the description and correctness proof (both due to
Gauss) of the construction of the regular 17-gon. This description
will be quite different from coding the construction as a point in the
Zermelo-Fraenkel universe. We might even think of a robot equipped
with ruler, compass, pencil and paper, who reads the details of the
construction from the Automath book and carries them out in the way
Gauss meant.

9, Many parts of science are a patchwork consisting of pieces of
theory, connected by rather vague intuitive ideas. Ever since the last
part of the 19-th century it has been one of the ideas of the mathe-
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matical community that mathematics should be integrated: all parts of
mathematics are to become sub-domains of one single big theory. The
patchwork picture still applies to most physical sciences, but also to
several parts of the mathematical sciences. One such part is infor-
matics.

It seems to be a good idea to integrate informatics into mathematics,

at least in principle. And, as in the case of geometrical construc-
tions, Automath is a good candidate for describing this. It is possible
to write an Automath book containing: logic, mathematics, description of
syntax and semantics of a programming language, and particular programs
with proofs that the execution achieves the solution of particular
mathematical problems. One might even think of going further: descrip-
tion of the computer hardware with proof that it guarantees the
realization of the programming language semantics. Or directly, without
the intervention of a programming language, that a given piece of hard-
ware produces a result with a given mathematical specification.

Needless to say, this kind of integrated theory will always contain a
number of primitives we have no proof for, but it will be absolutely
clear in the Automath book what these primitives are.

10. One thing people like in Automath, and other people strongly
dislike, is the way Automath treats proofs as if they were mathematical
objects. This is called "propositions as types'. As the type of a
proof we have something that is immediately related to the proposition
established by that proof.

One should not be worried about this. Automath does not say that
proofs are objects, but just treats them syntactically in the 'same way
as objects are treated, This turns out to be very profitable: it
simplifies the system, as well as its language theory and the computer
verification of books. A third case where things are treated as
objects is the one of the geometrical constructions we mentioned in
section 8,

11. In standard mathematics, most identifiers are letters of various
kinds, possibly provided with indices, asterisks and the like. And
then there are the numerals, of course. We have learned from programm—-
ing languages, however, to use arbitrary combinations of letters and
numerals as identifiers, (with restrictions like not to begin with a
numeral). We do the same thing in Automath, thus having the possi-
bility to choose identifiers with a mnemonic value, like '"Bessel",
"Theorem 137", "commutative'". This certainly helps to keep books
readable.

In contrast to programming languages, the Automath system does not have
the numerals 0,1,...,9. One can introduce them as identifiers in a
book containing the elements of natural number theory, taking "0" and



de Bruijn: Checking Mathematics with a Computer 66

"succ" (for "successor") as primitive, and defining 1:=succ(0),
2:=succ(1),..., 9:=succ(8), ten:=succ(9). After having introduced
addition and multiplication, we can define things like thirtyseven:=sum
(prod(3,ten),7), but the Automath system has no facilities to write
this as 37. This decimal notation might be added as an extra (it is
one of the possible "attachments' mentioned in section 5).

12. One of the basic aims of the Automath enterprise was to keep it
feasible. This has been achieved indeed: considerable portions of
mathematics of various kinds have been "translated" into Automath, and
the effort needed for this remained within reasonable limits. If we
start from a piece of mathematics that is sound and well understood, it
can be translated. It may always take some time to decide how to start,
but in the long run the translation is a matter of routine. As a rule
of thumb we may say there is a loss factor of the order of 10: it takes
about ten times as much space and ten times as much time as writing
mathematics the ordinary way. But it is not overimportant how big this
loss factor is (it would not be hard to reduce it by means of suitable
attachments, adapted to the nature of the subject matter). What really
matters is that it does not tend to infinity, which happens in many
other systems of formalizing mathematics. The main reason for the loss
factor being constant is that Automath has the same facilities for
using definitions (which are, essentially, abbreviations) as one has in
standard mathematics. The fact that the system of references is
superior to what we have in standard mathematics, makes it possible
that the loss factor even decreases in the long run when dealing with a
large book.

13. Another feature that makes Automath feasible is that we need not
always start at the beginning: we can start somewhere in the middle,
and if we need something that we have not defined, or have not proved,
we just take it as a primitive (primitive notion or axiom) and we go
on. We can leave it to later activity to replace all these primitives
by defined objects and proven theorems.

This kind of tactics was often (about 30 cases) applied at Eindhoven by
students (mathematics majors). It usually took the student not much
more than 100 hours work to learn about the system, to translate a
given piece of mathematics, to use the conversational facilities at a
computer terminal, and to finish with a completely verified Automath
book containing the result. In order to give an idea of the subjects
that had to be translated we mention a few: (i) The Weierstrass theorem
that says that the trigonometric polynomials lie dense in the space of
continuous periodic functions, (ii) The Banach-Steinhaus theorem, (iii)
The first elements of group theory.

14. -0f the more extensive books that were written in Automath we
mention two. The first one is L.S. Jutting's complete translation of
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E. Landau's Grundlagen der Analysis. In order to test the feasibility
of the system, the translator kept himself strictly to Landau's text,
rather than inventing some of the many possible shortcuts and improve-
ments that would make the translation easier and shorter. The second
one we mention here was by J.T. Udding, who wrote a new text with about
the same results, much better suited to the Automath system, both in
its general outline and in its details. The gain over Landau's text,
in space as well as in time, was roughly 2.5.

15. One of the ideas of the Automath enterprise was to get eventually
to a big mathematical encyclopaedia, a data bank, containing a vast
portion of mathematics in absolutely dependable form. This is a thing
that would take many hundreds of man years (thus far the Automath
project took something like 40). But the idea is feasible. Most of
the students mentioned in section 13 used the Landau translation (see
section 14) as a data bank, and that way they added to the bank.

16. It is not the purpose of this paper to enter into details of the
Automath language, but the reader might want a general orientation.

There are several dialects of Automath in use, but here we only look
into basic things they have in common.

The expressions used are always lambda-typed lambda calculus expres-—
sions. This means that we have lambda expressions where every variable
has a type, and that type is again a lambda expression. In lambda
calculus the basic expression-forming devices are "abstraction" and
"application", but in Automath we have a further device, called
"instantiation". Instantiation is the operation that leads from an
n-ary prefix operator f to an expression f(E1,...,En), where E1,...,En
are expressions.

Having both "instantiation'" and "application', Automath has two
different devices for expressing functionality, and both can be linked
to standard mathematical practice.

In Automath we write mathematics in the form of books, line after line.
There are three kinds of lines: (i) context lines, (ii) definitional
lines, and (iii) primitive lines.

A context line sets the context for the sequence of non-context lines
between that context line and the next one. A context is a sequence of
variables provided with types. We denote typing by a colon, and
describe a typical context of length 3:

x A, y:B(x), z:cCx,y)

(here A, B(x), C(x,y) denote expressions; C(x,y) is an expression
containing the variables x and y).
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A definitional line describes an abbreviation. It takes an expression
E (of type F), and abbreviates that E by a new identifier, c, say.
The line looks like

c :=E : F.

A primitive line introduces some new identifier as a primitive notion,
and attaches a type to it. That is, it is not defined, but declared to
be available for further use. So it looks just like the definitional
line above, but without the E. In order to stress that the defining
expression E is omitted, we write a fixed symbol (like PN, or 'prim')
in its place:

d := "prim' : F.

These scanty remarks might give an idea about what the languages look
like; for detailed description we refer to [1], and for an informal
introduction into the use of the language also to [2].

We refer to [3] for a survey of the whole project, more extensive than
the one given here. And also [4] will give a good idea about the
project and the languages, but on top of that it is a report of all the
experience obtained in the Landau translation mentioned in section 14.
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ON THE MATHEMATICAL BASIS OF COMPUTER SCIENCE.

Jacques STERN
Université de CAEN
CAEN, FRANCE

It is now clear to anybody that a working mathematician can-
not ignore computers : as a consequence, it is commonly admitted that
students in mathematics, and especially those who intend to become tea-
chers in the field, have to be exposed to some high-level language
(such as PASCAL). Nevertheless, this is far from being enough : the
question whether students in mathematics should be familiar with some
parts of the theoretical foundations of computer science cannot be
avoided because these topics are precisely the parts of computer scien-—
ce close to mathematics and seem to be necessary in order to establish
between both fields connections that go beyond the ability of using the
computing power of modern machines.

In France, following these line of ideas, an optional test
in computer science is now offered in the well-established "Concours
d'Agrégation de mathématiques'". It is not my purpose to discuss the
role of the Agrégation in the French academic system : for those who
are not familiar with this system, let me simply say that the Agrégation
is a quite selective competitive exam which can be defined as a
"teaching Ph.D."and that many of the teachers for the age-group 17-22
have passed this exam. This is enough to understand why the fact that was
quoted above might be more important than appears at first glance : it
is likely that most of the requirements for the computer science test
of the Agrégation will become part of the standard curriculum leading
to graduation in mathematics. Although the author was not a member of
the group that defined these requirements, he agrees completely with
the choices of topics that have been made and is currently writing a
book covering these topics. The aim of the present contribution is pre-
cisely to give some general ideas that grew out during the first steps
of the process of writing this book. These ideas have to be considered
as my personal views on the subject although I owe a great debt to my
colleagues and especially to my co-author C. Puech, with whom I had
many inspiring discussions.

Before going into greater detail, I will make a last remark
mastering some of the basic tools of computer science will not turn a
mathematician into a computer scientist. Instead, it should help to de-
velop a different frame of mind, suitable to understand the specific
features of computer science. This is most important for a mathematician
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because, as is shown in other contributions of this book, these specific
features will necessarily react both on the teaching and on the practice
of mathematics themselves.

1 AROUND THE NOTION OF COMPUTATION

Computation theory is considered by many people as a very
dull subject ; nevertheless, it is the first burden of the theory to
provide a suitable criterion for drawing a limit between what is compu-
table (or effective) and what is not. A simple way would be to use the
word computable for everything that can be processed on a real computer.
Although this point of view is not completely meaningless, it remains
rather vague and cannot be considered as a genuine mathematical notion
because of its lack of precision. Furthermore, this point of view is not
even historically correct ; a lot of outstanding work connected with the
subject of computation theory was published before the first modern com-
puter was built : for example, one can quote the work of Turing [1936],
Kleene [1936], Post [1936] on computation itself but also the work of
Mc Culloch and Pitts on the modelling of neuron nets, from which grew
out the theory of automata.

It is precisely the theory of automata that we propose to
choose as a starting point. Many reasons can be put forward in order to
justify such a choice. The theory is simple and firmly established and
provides various exercises in programming : for example, one can simulate
an automataen. in a high-level language like PASCAL. Next, it provides
several opportunities to write simple algorithms and even to speak rather
informally of their complexity (e.g. by comparing various algorithms for
computing the minimal automaton). Also, the concept of non-determinism
can be introduced naturally and in a simple setting. Finally, automaton
theory has several applications : to text editors and to lexical analy-
sis in particular ; this is not a minor argument.

Nevertheless, one quickly comes to the conclusion that auto-
mata do not provide a satisfactory model for real machines. This conclu-
sion can be reached by writing down simple languages that are not accep-
ted by a finite automaton but also through the simple and more convin-
cing observation that a central feature of computers is completely wi-
ped out : the ability to store data in a memory. We are back to our ori-
ginal problem of defining the notion of "computable" and it is reasona-
ble, at this point, to require that this notion should be isolated by
various different techniques that come out to be equivalent : this will
show that a mathematical invariant has been found and this will make
Church's thesis (that identifies "computable" with "recursive' highly
plausible.

Four different approaches can be taken.

1) Adding a memory device to a finite automaton. This
yields the definition of a Turing machine.
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2) Directly modelling actual computers. This can be done
through the notion of random access machine (cf. Cook and Reckhow
[1973]) operated by a very simple language similar to machine language.

3) Defining a simple class of programs. For example one can
define a restricted version of PASCAL which uses only the integer type
and the control structures IF...THEN...ELSE and WHILE...DO.

4) Defining the class of (partial) recursive functionms.
This is a good opportunity to discuss functional languages: recursive
definitions can be handled by using some constructs similar to those
appearing in LISP.

The proof that all these definitions are actually equiva-
lent is a source of very interesting observations. For example, the
fact that the restricted PASCAL can compute all recursive functions
proves the well-known fact that the GOTO statement can be dispensed
with. It may be worthwhile to note that replacing WHILE...DO by FOR
only allows the computation of primitive recursive functions. Also,
the simulation of a random access machine by a Turing machine is a good
exercise that shows how to handle a sequential memory. A further
exercise would be to use non-erasing Turing machines: this could be
motivated by comparing these Turing machines with the write-only
memories that are offered by the recent technology of optical disks.

Once the notion of a computable function has been given a
precise definition, it becomes possible to discuss decidability issues:
the construction of a universal machine does not require much more ef-
fort and the "halting problem" can be properly stated and studied. Then,
one can open a discussion on whether or not the.dichotomy decidable/un-
decidable is of practical importance. This is a way to introduce com-
plexity theory. Going back to the simulation of one machine by another,
one can check that polynomial time has a stable character. This allows
the definition of the class P which is a reasonable candidate for mod-
elling a class of problems sometimes called "feasible" or "tractable".

2 AROUND THE NOTION OF ALGORITHM

Now that we are equipped with a theoretical notion of comple-
xity, it is necessary to use it in more concrete situations. This can be
done through a review of various algorithms. This review is, by no means,
an exercise in programming style even if correct programs have to be
written at some point. The emphasis should be on the design and evalua-
tion of these algorithms, which are very closely connected. Of course,
the rules of the game should be clearly stated and discussed, especially
the choice of a discrete model and the main notions of complexity that
are in use: worst-case analysis and average-case analysis. The choice
of the method depends on the underlying probabilistic model: average
analysis is relevant when the probability of "ill-behaved" cases is small.
In any case, the analysis is combinatorial in character and exact formu-
lae are not easily handled even if they can be written down: some spe-
cific tools are needed like statistics of permutations and distributions



Stern: Mathematical Basis of Computer Science 72

and the use of generating series (cf. Knuth [1973]). Generally, such
techniques (e.g. the use of singular points of the generating series)
only allow an asymptotic analysis and one may ask if this kind of infor-
mation has any practical meaning ; after all, the size of the data are
bounded by the computing enviromment ! It turns out that the asymptotic
analysis is actually relevant : when a given algorithm runs in time

O(n log n) for example, it is usually true that the constant implicit
in the O notation is rather small and that the asymptotic inequality
is reached rather quickly.

Together with algorithms, the specific data structures used
in computer science should be discussed : stacks, files, trees, graphs...
It should be stressed that this point of view is quite different from
the one that was taken in §1 ; in computation theory, we made various
simulations involving basic manipulations on data-structures and we
claimed that these manipulations were not costly. In practical issues,
the choice of good data-structures may actually save a significant part
of the running-time and has to be made carefully.

We now briefly comment on some specific choices that can be
made ; of course, what follows is not an exhaustive list.

1) Sorting. There is a very large number of sorting algo-
rithms ; a few can be studied and compared e.g. insertion sort, heap-
sort, quicksort. This is enough to make some quite interesting observa-
tions. First of all, the actual evaluation of algorithms does not really
use the original definition of complexity that was given for random ac-
cess machines. In practical situations, the size of the integers is
bounded and the complexity is roughly the number of machine instructions
performed during execution. Even further simplifications are made : for
example, some instructions are ignored (especially those concerning data
manipulations) ; thus, in sorting, one is left with the number of compa-
risons as a meaningful measure of complexity. Also, sorting algorithms
give an opportunity to establish the difference between worst-case com-
plexity and average-case complexity. The efficiency of quicksort is also
a mnice illustration of a basic but very powerful principle of computer
science : the divide-and-conquer method.

2) Searching. Sequential search, binary search, hashing can
be discussed but the emphasis here should be on specific data structures
that can be considered : binary trees, A.V.L. trees or 2-3 trees. The
use of these structures should make the student familiar with the impor-
tant concept of balancing, which is another illustration of the divide-
and-conquer method.

3) Pattern matching. The Knuth-Morris-Pratt algorithm can be
described. This is mainly included because of the connection with auto-
maton theory,which was studied at length in the first part.

4) Graph algorithms. This is a very interesting part because
it clearly illustrates the interplay between mathematics and computer
science and shows how the way to look at mathematical objects. can be
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affected. Graph theory can be viewed as a part of mathematics of its
own ; definitions can be given and nice theorems can be proved, for
example on the existence of spanning trees. On the other hand, the ac-
tual computation of a minimum-cost spanning tree requires some extra
work. This new point of view, in its turn, raises deep questions of a
mathematical nature connected with the complexity of the algorithms.

It should also be added that basic algorithms that compute
the shortest path or the transitive closure of a graph are quite effi-
cient and quite useful. On the other hand it should be mentioned that,
for many problems (such as the hamiltonian path problem) no polynomial-
time algorithm is known ; this is a good introduction to the subject of
non-polynomial algorithms.

The class of NP and NP-complete problems can be given a
precise definition through nondeterministic Turing machines or mnonde-
terministic random access machines. The main task here is to establish
Cook's theorem (cf. Cook [1971]). Once this is done, a sample of NP-
complete problems can be given (cf. Garey, Johnson [1978]), such as

The satisfiability problem

The travelling salesman problem
The hamiltonian path problem
The clique problem

The knapsack problem.

Finally, some indications can be given on how to handle NP-
complete problems : for example, one can show how minimum-cost spanning
trees can be used to find a "good" solution to an instance of the tra-
velling salesman problem.

3 AROUND LOGIC: SYNTAX AND SEMANTICS

The theory of context-free languages offers a first example
of a syntactical approach, through context-free grammars. Of course, the
connection with pushdown automata should be made precise. Once this is
done, applications of context-free grammars can be given e.g. to syntac-—
tical analysis.

The study of derivation trees for context-free grammars is
also a way to get the student ready to understand the basic tools of lo-
gic such as the rules of inference. Surprisingly, those tools are some-
times a cause of panic for mathematicans ! Of course, one should choose
to develop logic (and especially the completeness theorem) in a very
constructive way, which is suitable for computer science. The role of
Skolem functions in restricting one's attention to V 3 formulae should
be explained ; Herbrand's theorem and Robinson's resolution algorithm
should play a central role (cf. Robinson [1965]). Of course, undecidabi-
lity should be clearly discussed : the Herbrand procedure does not ne-
cessarily come to a stop. Nevertheless, the usefulness of resolution can
be stressed by a quick overview of the PROLOG language.
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Once those basic topics from logic have been covered one
can briefly discuss some more advanced matters such as

1) Semantics, especially the semantics of recursive
procedures and the fix-point approach of programs.

2) Program verification through Hoare's logic (cf. Hoare
[1969]).

CONCLUSION

In this short paper, we have tried to describe what we
consider as the mathematical basis of computer science, to show how the
chosen topics can be organized and to motivate the choices that have
been made. Clearly, those contents will change very quickly, following
the further development of computer science. Maybe some mathematical
tools for the study of VLSI or of relational databases will have to be
added soon. In any case we feel that mathematical tools for computer
science should become a part of the advanced curriculum in mathematics.
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MATHEMATICS OF COMPUTER ALGEBRA SYSTEMS

J.H. Davenport. School of Mathematics., University of Bath,
Bath, BA2 7AY. England

INTRODUCTION

ICMI [1984) poses the question "What is the mathematics
underlying symbolic mathematical systems"? The aim of this paper is to
give some answers to this question, and ailso to address the foliowing
question that ICMI does not directly answer: "How does this mathematics
relate to current curricula®, which could be re-phrased as "What aspects of
current curricula are rendered obsolete. or drastically changed by symbolic
mathematical systems”. it should be emphasised that this paper does not
address the question "How should algebra systems be used to teach existing
mathematics in the same way"., though that is a very important question.

ELEMENTARY CALCULATIONS

Symbolic mathematical systems are capable of a variety of
essentially trivial calculations. An obvious example is the
multiplication of polynomials. The algorithm for doing this is taught
at school, and there Is little doubt that any competent student knows
how to multiply polynomials. He may make a mistake while doing so, but
that would be an accident, and he would recognise the mistake if it were
pointed out to him. This does not mean that the student could actually
do the calculations. They may well be too long for him. either in terms
of time or in terms of the probability of there being an error.

Either the student or the experienced mathematician may wish to
use a computer algebra system to muitiply polynomials. Andrews [1979]
used one to multiply four polynomials together to verify a 752-term identity.
The student may wish to use them for easier examples. Indeed. if the
student is to use these systems at all. he will start via calculations that are
elementary in principle.

A remark that is important for joint Mathematics and Computing
degrees. though not necessarily for purely Mathematics ones, is that these
algorithms really are easy to program in a suitable language. PASCAL. and
a fortiori FORTRAN and BASIC. are not suitable because of the problems of
storage management, but in LISP, for example. a polynomial multiplication
and addition package can be written in under 50 lines, and division is not
much more complicated. Similarly, Billard [1981] reports that addition and
multiplication routines take 2.8 kilobytes in APL. The author has used these
problems to good effect in an Introductory LISP programming course for
applied mathematicians, and many colleagues have done much the same.

Polynomial greatest common divisors are a more interesting case.
The obvious algorithm is Euclid’s. but this has several draw-backs. The
direct implementation forces us to work with polynomials over the rational
numbers. and this gives us many calculations with rational numbers. and
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much effort in computing the g.c.d. of integers in order to simplify these
rationals. Hence the obvious variant, which is to clear denominators at
each step. or. more succinctly., to cross—multiply rather than create
fractions. This would seem an eminently sensible algorithm, and one
hallowed by tradition. As was pointed out by Brown ([1971], though,
computation of the greatest common divisor of x2+x8-3x4-3x3+8x2+2x-5 and
3x%+5x*-4x2-9x+21 gives rise to numbers with 35 decimal digits. This
appears ridiculous. since the Landau-Mignotte inequality [Mignotte. 1974]
assures us that no coefficient in the g.c.d. can possibly be greater than
480. When it comes to polynomials in several variables, it is equally
possible for the degrees in the "non-main” variables to increase absurdly.
In an effort to combat this intermediate expression swell, there has been
much investigation of alternative algorithms.

ADVANCED METHODS
These methods all have the same general outline. expressed by

the following diagram. which ve give for the case of greatest common
divisors in ZIx].

zz1y - - 2% 5 22
o4 o
b2 g.c.d. >

In essence since the problem is too difficult in Zix], the problem is mapped
to a domain D, solved there. and then the mapping is inverted to give a
solution in ZIx]. In all cases. D Is chosen so as to be "easier” than ZIx].
Historically, the first choice was ZpnIx] where N is the product of distinct
primes. In fact. the calculation in D is performed by computing the greatest
common divisor modulo each prime separately, and then combining the
results via the Chinese Remainder Theorem. ¢ Is obvious, and, if N is
large enough., then the answer in D should also be the answer in Zix].
This is the modular method of Brown [1971].

The next method, the p-adic method., also takes D to be Zpyixl.
but now N is p” for some prime p. Here the g.c.d. is first computed
modulo p. and then lifted to p2. p3. ... (or p2. p*. p® ...) by Hensel's
Lemma. This method was poineered by Yun [1974], and has since
undergone many variations [Wang. 1980: Zippel. 1981].

A more recent method, the Z-adic method [Char et al.. 1984:
Davenport & Padget. 1985]), takes a somewhat different approach. Here D
is taken to be Z. The computation in D is merely that of an integer
g.c.d.., and ¢ is the operation of replacing x by some Integer n. ¢~ is
less obvious: we write a number N in the base n. but with digits between
-n/2 and n/2., and then regard each digit as the coefficient of the
corresponding power of x.

These methods all have the feature that the diagram need not
commute, l.e. that ¢(g.c.d. (p.q)) need not be equal to
g.c.d. (o(p).¢(q)). e.g. if p = x-1 and g = x+2, then p and q are
relatively prime over the integers, but are equal, and hence have
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themselves as a common factor., modulo 3. The techniques for detecting
such bad evaluations vary from method to method. and are not of great
interest here: the reader is referred to the detailed references. It is worth
remarking that these methods are not Ilimited to univariate g.c.d.
calculations: they all have analogues for multivariate problems.

Such uses of homomorphisms and backward reasoning from
homomorphic images are very common in research mathematics. but are
rarely seen at the undergraduate level. Indeed. when teaching this material
to well-trained mathematics students, the author has often had the comment
"Oh, so that’s what homomorphisms are for". This material can be taught
to students with some background in abstract algebra. or the abstract
algebra can be taught with these methods as motivation, as is done by
Lipson [1981]}.

FACTORISATION

When it comes to the factorisation of polynomials, there is no
"easy” method. and guess-work is the usual method of attack taught. This
can be systematised in "Kronecker’'s method” (actually due to Newton and
von Schubert) . but is hideously expensive in general. Hence we need one
of the "advanced” methods mentioned above. Since factoring integers is
also very expensive. we can rule out the Z-adic method. We first remark
that we can restrict ourselves to the case of square-free polynomials. since
square—free decompositions can be calculated by means of g.c.d.s. The
method we shall describe is essentially due to Zassenhaus [1969]., though
many authors have worked on its implementation and refinement (see
Kaltofen [1982] for a survey).

If a polynomial f factors over the integers. then It certainly factors
modulo every prime p (unless the leading coefficient vanishes., in which
case one of the factors might vanish). The converse of this is that if f is
irreducible modulo some p., then it is irreducible over the integers.
Similarly, we can conclude that it is irreducible if the factorisation modulo
two different primes are incompatible. e.g. (x3+...)(x3+...) modulo one
prime and (x*+...)(x%+...) modulo another. Musser [1978] suggests trying
five different primes in an attempt to demonstrate irreducibility.

Unfortunately. such methods assume that we can factorise
polynomials modulo p. and this is not obvious either. The great
breakthrough was made by Berlekamp ([1967]. who produced an efficient
algorithm for this. whose running time is O(n3+prn?) for factoring a
polynomial of degree n modulo p. where r Is the number of factors. The
algorithm involves the matrix Q. whose rows are the coefficients of y’ modulo
the polynomial to be factored. where y is xP, but it is too complicated to
describe here.

It is unfortunately possible for an irreducible polynomial to factor
consistently modulo every prime p: e.g. x*+1 factors as the product of two
quadratics (which may or may not be irreducible) modulo every prime. and
Swinnerton-Dyer [see Berlekamp. 1967] has generalised this phenomenon.
Hence. unlike the previous section, we cannot just rely on good



Davenport: Computer Algebra Systems 79

evaluations, but we have also to make use of bad evaluations. Assuming
that the polynomial remains square-free, we can use Hensel’'s Lemma to
produce a factorisation modulo p” for any power we choose. We can
choose a power more than twice as large as any possible coefficient in a
factor, by the Landau-Mignotte inequality [Mignotte. 1974]. Hence if the
factors modulo p correspond to genuine factors over the integers., they are
equal ta those factors. If not. then we must try all possible combinations in
order to look for factors which split further modulo p. This combinatorial
search means that the worst case of this algorithm is exponential in the
degree of the input. More recently, other algorithms [Lenstra et al., 1982]
have been devised that avoid this step. though in practical cases they may
actually be more expensive.

It is clear that this is a complex aigorithm. relying on a fair
amount of relatively advanced algebra. In this respect. it goes beyond the
modular g.c.d. algorithm of the previous section. One can explain this
algorithm in all its detail: indeed the author has done so easily and
successfully to people with one year's post-graduate training in Number
Theory. But this is an exception, and nearly all people who use such an
algorithm have little understanding of how it works., nor need they have.
Factorisation is an idea which is far easier to grasp than to compute., and
why not leave the computation to the computers and the specialists?

INTEGRATION

Factorisation is nice, but generally speaking (see. however,
Coppersmith & Davenport [1985] for an example where factorisation is the
key technique) it is a bonus rather than a necessity. Integration., on the
other hand. has major uses throughout applied mathematics. Despite this,
and despite many well-established results on the existence or non-existence
of closed forms, the methods of integration taught in schools and univer-
sities are largely heuristic: look for a substitution, or sequence of
substitutions, that makes the integral look like one that you know, or can
find in an integral table. Errors are quite possible on these substitutions,
and integral tables are not perfect: Klerer & Grossman [1968]) quote typical
oerror rates in excess of 10%., with a peak over 25%.

Much of the theory of integration is actually relatively straight-
forward: we need to start with some definitions and a theorem stated ex
cathedra. A function is said to elementary if it is built up from constants
and the variable of integration by means of the arithmetic operations. the
taking of exponentials and logarithms, and the solution of algebraic
equations. Hence log x. y(1+exp(x)). sin x (which is (eX-e~X)y/2/ ) and
many other functions are elementary. The field of definition of such a
function is the smallest field closed under differentiation that contains this
function and the building blocks {(exponentials, logarithms and algebraic
solutions) used to define it.

Theorem [Liouville, 1835]. Let f be an elementary function whose
field of definition is F. Then, if f has an elementary integral., i.e. an
elementary function g such that g’ = f. then g can be written as
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n n e
g=v_+TL c,logv, , so that f =v' + [ ’ (1)
o i 1 0
i=1 i=1 v,

where v, belongs to F, the c¢; are constants satisfying algebraic equations
over F and the v; belong to F(c,.....cp).

The proof of this theorem is not terribly deep. though it requires a
fair amount of work to make the various notations involved precise. and
deduce formally various ‘intuitive" lemmas. The proof Iis essentially a
formalisation of the remark "differentiation does not remove exponentials or
algebraic functions, and can only remove logarithms if their coefficients are
constant”.

Given this theorem, it is an easy matter to prove, for example.

that exp(-x?) has no elementary integral.. If we write & for exp(-x2), then
the field of definition can be taken as Q(x.e). Hence the problem is to
express © in form (1). Now. if vg is P/Q. where P and Q belong to

Q(x) [e]. then the denominator of vy’ will contain either © (from a factor of e
in Q) or repeated factors (since the derivative of 1/r is -r'/r?). But the
denominator of v;'/v; will contain only non-repeated factors, and no factor of
e (since log © is merely —x2). Hence there can be no cancellation between
the denominators of vy’ and the other terms. But the left-hand side. e,
has no denominator., and hence we deduce that there are no new loga-
rithms, and that vo has no denominator. This leaves us with the equation

1

11 vl
e—[}:ate] -):ate 2;|:}:'Late

where the a; are elements of Q(x). Equating coefficients In this shows us
that ] = 8,_' - 2)(8_‘_.

a; belongs to Q(x): write it as p/q. where p and g are both
polynomials. Let n be the greatest multiplicity of any root of g (if any).
Then the denominator of a,’ has at least one root of multiplicity n+1, while
the denominator of 2xa, has roots of multiplicity at most n. Hence the
denominator of the right-hand side has a root of muiltiplicity n+1, which is
impossible, since the left-hand side is 1. Hence there are no roots of q.
and q is a constant, i.e. a; is a polynomial. Let m be the degree of this
polynomial. Then m-1 is the degree of a,’. while m+1 is the degree of
2xa,. Hence m+1 is the degree of a;—-2xa,: again a contradiction. This,
in fact, contradicts the initial assumption that e had an elementary integral.

The previous two paragraphs have shown, via an ad hoc
argument, that exp(-x2) has no elementary Integral. It is a remarkable fact
that this process can be rendered formal and algorithmic, and indeed that
the following result is true.

Theorem ([Risch, 1969]. There is an algorithm which, given an
elementary function lying in a purely transcendental extension of Q(x), will
decide whether or not this function has an elementary integral.
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The algorithm referred to is essentially a systematisation of the
method we have seen, by equating coefficients one variable at a time. This
does not, of course, mean that the proof is trivial, and indeed there is a
substantial amount of subtliety involved in showing when cancsllation can not
occur, and in bounding it when it can occur.

Why should these methods not be taught in schools in place of the
present "guess a substitution, or integrate something by parts® techniques?
They may place a slightly greater demand on the students ability to absorb
abstract theorems, but they certainly place far less strain on the memory
than a large number of substitutions and known resuits.

There Is also an alternative technique, which is essentially a
systematisation of integration by parts, due to Risch & Norman [Davenport.
1982]. This is even more straight-forward to explain. since it does not
have the recursive step of the other., though its theoretical foundations are
less useful, since in general we cannot prove that not finding an integral
implies the non-existence of an integral. The method argues that the
integral of exp(-x2) must be L a/ix’exp(—xz)/. The derivative of such a sum
(which must be equal to the Integrand) is clearly rajjix/~texp(-x)/ +
£-2jajjix/*texp(-x2)/.  The leading term is the second one. which contains
xI*1 " This clearly cannot match the integrand. which is xexp(-x2)1,

In general, to Integrate a rational function of several functions
(which we shall call the kernels)., such as x, exp(-x2) or log(x), write the
function as p/q. where p and g are polynomials in these kernels. We now
expect that the integral will be r/s + L cjlog(vj). where the ¢; are unknown
constants, r is an unknown polynomial in the kernels, s is a known
polynomial in the kernels (the product of all the factors of q. with their
multiplicities decreased by 1) and the v; are known polynomials (the
irreducible factors of q. with perhaps some extra ones thrown in). Hence
p/q = (r/s)' + L cjvi’'/vi. We can clear denominators in this equation, and
we are left with a system of linear equations to solve for the c¢; and the
coefficients of r. Furthermore these equations are generally banded. and
can be solved quite simply. For complicated integrals, the manipulation
mentioned above is lengthy, but it can certainly be explained quite simply,
and, with a computer to do the dirty work, students can see how the
integral is deduced.

PHYSICAL APPLICATIONS

Much of Physics and Engineering is based on mathematical models
and structures. Unfortunately. these models may be too complicated to
tackle. This happens at every level. from the school teacher who pretends
that the mass of the rocket is fixed. through the university lecturer who does
relativity in one space dimension, to the research astronomer who treats
cylindrical stars because spherical ones are too difficult to model.

Sometimes the difficulties are genuine. and often an artificially
simple case can. because of its simplicity, convey more insight. Some-
times the difficulties are purely manipulative. and the use of an algebra
system can make it possible to consider a more realistic case than that
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which is possible by hand. For example, it is possible to consider
orthogonal polynomials in various co-ordinate systems, rather than being
limited to the two or three which students know about, and. in practice. to
the one or two which they can actuaily manipulate.

Just as it is possible for a lecturer to perform a calculation on a
calculator which the students can check, so it is possible to perform a
calculation on a computer algebra system, though the practice requires
some facility to broadcast the computer screen throughout the lecture hall.
In fact. running a script through an algebra system., is., if the script is
well-commented and available to the students., a better pedagogic tool than
covering the blackboards in algebra and leaving the students to  distinguish
the insight from the manipulation.

CONCLUSION

in some cases. computer algebra can Iilluminate a piece of
standard mathematics. For example: "Why did the computer know so
quickly that these polynomiais were relatively prime" might have the answer
"Because they are relatively prime modulo 3°. This sort of discussion
motivates homomorphisms, and, at a more advanced level, the subtle
algebraic-geometric concept of good reduction.

In other cases. computer algebra can provide a better way of
tackling a standard problem. Many examples of integration are better
tackled by explaining (or at least quoting) the theory than by producing a
substitution "out of a hat" for solving the particular problem. which gives no
general insight.

in a third class of cases. such as factorisation, there is a general
theory available in computer algebra systems which is essentially beyond the
recch of most students who will need to use it. This does not matter,
since the computer algebra implementation of this theory can be treated as
a btack box. As an analogy. how many of the students who use a
calculator to determine a square root could compute it for themselves.
although they know that it satisfies (yx)2 = x? It would clearly be better if
the students could all compute it. but the constraints of a finite timetable
and finite interest among the students force school teachers to regard the
calculator as largely a black box. and computer algebra systems can always
be regarded as such if the situation demands it. This attitude will render it
unncessary to teach, and to practise., students in "finding simple roots”,
since the computer will be able to do that for them.

This is not to say that this matter is trivial, or that all teachers witl
find that computer algebra solves their most pressing problems. Indeed, it
is reasonable to predict that computer algebra will cause high school and
university teachers at least as much trouble as calculators caused their
colleagues teaching younger pupils. Since computer algebra systems can
tackle a wider range of more sophisticated problems, they will probably
cause more havoc. But this cannot be avoided. For better or for worse. if
the technology is there. the pupils will use it. The author has already seen
algebra systems used by undergraduates doing numerical analysis, and the
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avallability of algebra systems on the IBM PC and its relations, and soon on
the Mackintosh, means that the students will have access to the technology.
Hence the avaitability of computer ailgebra systems is, like the calcutator,
both an opportunity and a threat to the teacher. Opportunity because he
can teach much more., threat because so much that he teaches is, or
seems to be. redundant.

in sum, the answers to the questions posed above seem to be as
follows. What are the mathematics underiying symbolic mathematicat
systems? Modular, p-adic and Z-adic methods: the sophisticated use of
various bounds. and a specialised theory of integration. How does this
mathematics relate to current curricula? Some of it develops ideas. like
homomorphism, that are in current curricula, some of it, like the theory of
integration, could replace much of the material taught, and some of it, like
factorisation. is basically too advanced.
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1 INTRODUCTION
The progress of computers has been remarkable. Today,
along with the conventional fast numerical computation, the extensive
use of computers for non-numeric operations has begun in a variety of
fields. Such non-numeric operations in mathematics include computer
algebra allowing symbolic differentiation, symbolic integration,
factorization and expansion, etc.

The astonishing speed of technological innovation will soon make
possible a cheap computer algebra system as small as present-day
electronic calculators or hand held computers, but with mathematical
capabilities as powerful as those of average first-year college
students at least as far as the above symbolic mathematical operations
are concerned. Most of the powerful systems such as MACSYMA or REDUCE
operate in minicomputers or larger ones now. But technological
innovation is realizing much smaller computers capable of doing the
same functions. In fact, REDUCE has recently been implemented on a
personal computer using MC68000.

The emergence of such powerful but small computer algebra systems will
inevitably influence mathematical education. Therefore, it is now very
important to consider the following questions:

What influence will computers with the above capabilities have
on mathematical education?

How will mathematical education be changed by computers?
Or, how will it have to be changed?

2 THE INFLUENCE OF COMPUTERS ON MATHEMATICAL EDUCATION
The changes which computers will bring in mathematical
education can be divided into:

i) changes in the methodology of mathematical education,
ii) changes in the topics taught in mathematical educationm.

First, we consider the changes in the methodology of mathematical
education. Many CAI (Computer Assisted Instruction) systems have
already been tested. The results show that typical CAI systems using
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the drill and practice mode are effective in improving students'
ability to do formal calculations and in helping students to understand
a new concept or topic by the use of graphical images.

This type of application will be widely used in mathematical education.
This being the case, the methodology of mathematical education will
have to be changed. Namely, the conventional methodology whereby a
teacher teaches everything by him/herself will be replaced by a new one
in which the teacher can selectively use computers for a particular
topic or situations in which computers are very effective. It will,
therefore, be necessary to establish a new methodology in order that
computers can be used most effectively.

It is noted that most of the CAI systems which have been developed are
designed for the acquisition of mathematical knowledge and computational
skills. This objective is one of the two distinct objectives of
mathematical education. The other is the acquisition of the capacity
for mathematical (logical) thought. However, few CAL systems have been
developed yet for the second objective. This is due to the fact that
the methodology to develop the second objective is not explicitly
established. Therefore, it is concluded that we cannot let computers
replace a greater part of what the human teacher has been teaching until
the methodology for the second objective is explicitly established and

a CAI system based on it is developed.

Next, we consider the changes in the topics taught in mathematical
education. What to teach is determined by the demands of society. As
computers increase in importance, the demands of society change. Thus,
there may be an increase in: 1) the demand for computer-oriented
mathematics, i.e., discrete mathematics, algorithms, etc., in
mathematical education.

Furthermore, as the capabilities of computers increase, a question
arises: 2) is it possible to reduce or omit the part dealing with
topics that computers can do?

Let us consider the first question: Should the teaching of computer-
oriented mathematics be increased?

The mathematics used in computers is based on discrete and finite
numbers. In order for computers to advance further, a larger number of
scientists and engineers who have mastered such computer—oriented
mathematics will be needed. Therefore, it is obvious that the teaching
of computer-oriented mathematics will have to be increased in computer
related fields.

On the other hand, as computers are used more extensively, opportuni-
ties for non-computer-specialists to use computers will greatly
increase. Then, a question arises: should the teaching of computer-
oriented mathematics also be increased for those people? To answer
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this question, it is necessary to consider how computers will develop
in the future.

One of the most difficult problems in computer science is the low
productivity of computer software. Thus, it is first necessary to
increase the number of software engineers to increase that productivity.
The immediate solution to this demand is to increase the teaching of
computer-oriented mathematics to those in non-computer-majors, so as to
make them computer experts. This is essential to cope with the short-
age of software engineers in the short term. However, is it still
essential in the long term?

One of the major reasons for the low productivity of computer software
is believed to be the immaturity of computers. Therefore, a lot of
research has now been directed toward the development of a new type of
computer system which can be programmed much more easily.

In the long term, the successful results of such research will greatly
improve software productivity. This implies that computers will be
used or programmed by those who do not know computers very well.

Therefore, it is concluded that, in the long term, a great part of
computer oriented mathematics will not have to be included in the
general mathematics curriculum as long as the above research is
successful.

We shall now consider the second question: Is it possible to reduce or
omit the part devoted to topics that computers can do?

The progress of computers and their capacity for computer algebra in
particular, is astonishing. Therefore, there arises the question: How
can computer algebra systems be introduced into mathematical education?

To answer this question, it is necessary to consider the basic
objectives of mathematical education. At first glance, it seems that
computers can replace computational skills. For instance, why not let
the computer algebra systems calculate derivatives all the time? Why
should students spend so much time practising tedious calculations?

However, the above idea contains a crucial problem. For instance, can
a student really understand a topic without first making efforts to
solve many exercises by hand? Obviously, the answer is 'No'. The
reason is the same when students are not allowed to use electronic
calculators when learning addition, subtraction, etc.

Then another question arises: Isn't there any way at all in which
computer algebra systems can be effective in mathematical education?
The answer is affirmative. Namely, when a student is learning a topic,
there is the essential material which cannot be replaced by computers,
and the inessential material which is necessary as a tool to understand
the topic but may be replaced by computers. And it is to the latter
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that computer algebra systems can be effectively applied.

For example, when learning indefinite integrals, complicated expansion
into partial fractions or tricky transformation of variables may be
classified as inessential material. When a student is learning
indefinite integrals, such material should have already been learnt.
Thus, computers may be used for the inessential material.

Therefore, when considering the introduction of computer algebra

systems to mathematical education, it is primarily necessary to make

the boundary between the above two parts clear. Moreover it is
necessary to examine the curriculum for possible changes, taking account
of computer algebra systems. Finally, the development of a method-
ology for the effective use of computer algebra in mathematical
education and an understanding of the effects of this methodology are
necessary. These points will become increasingly important as

computers progress.

3 A NEW WAY OF TEACHING MATHEMATICS
We shall now propose a new type of mathematical education
model incorporating computer algebra systems and discuss its advantages.
The discussion assumes a situation in the near future in which every
student has a small computer algebra system on his/her desk and can use
it with the ease of present electronic calculators.

3.1 Method of teaching
In the new teaching method, the course for teaching a topic
A is divided into 1) 'the basic course', and 2) 'the application
course'. The two courses are taught in that order.

In the basic course, the fundamental concepts of A are taught in almost
the same way as the conventional method. However, the method is
different in the following respects:

i) Longer time must be spent on teaching the more fundamental
concepts or principles. Complicated problems in which the complexity
is not so essential to A should be reduced.

ii) More CAI systems, e.g., those with graphic images, etc., which
help students understand A better may be used under the supervision of
the teacher.

iii) Computer algebra systems are not allowed for the essential part of
A, which is currently taught, because such use will hinder the student
from a deeper understanding of A.

iv) However, the systems may be used for the knowledge B, which has
already been acquired, in order to solve a question in A. In this
case, it must be ensured that B is inessential to A. This draws
students' attention to the more essential parts of the new topic A.
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After the basic course, the purpose of the application course is to
clarify the position of A by applying it to more complicated problems
and learning the relation of A to other topics, thereby reaching a
deeper understanding of A. During this course, students are allowed
to use computer systems not only for inessential parts such as B but
for the essential part of A. Before using the computer system, of
course, instructions must be given on how to use the system, and the
limits, advantages and disadvantages of the system must be made clear.

A model of problem solving by the new teaching method incorporating
computer algebra systems is shown in Fig. 3.1. The model is different
from the conventional ones which do not use computers in that computers
are used for numerical calculations and algebraic operations (4), and
graphic images and simulation of the obtained results (5).

This model features the following advantages.

(1) Students can solve problems more quickly and with less effort by
allowing computers to do the work for (4) and (5) in Fig. 3.1. If the
input to the system is correct, the results from the system are free
from the mistakes which students might make during tedious calculations
by hand.

(2) A student can more quickly verify his understanding of the problem,
his basic strategy, and his mathematical formulations. Thus, he can
attempt the problem again more easily, if there is any mistake. Thus,
students can focus their attention on more intellectual work, i.e.,
problem understanding, planning basic strategy, verifying the obtained
results, etc. In addition, since students can verify their ideas more
quickly, they are encouraged to study further. This increases

students' incentive to study.

(3) Students can easily try several strategies for comparison. This
sort of learning leads to a development in students' proficiency in
obtaining an optimum strategy.

(4) Students can solve more problems in a limited time. Thus, they
can see the topic from a wider viewpoint, leading to a deeper under-
standing of the topic.

(5) This method does not hinder students from developing mathematical
thought. What is replaced by the computer has, in essence, little
relation to the development of it.

There is a point which must be noted when applying this new teaching
method. Since the computer systems return wrong answers to incorrect
inputs, it is extremely important to instruct students not to believe
the answers from computers absolutely. Therefore, greater efforts
must be made to develop proficiency, in order to be able to verify the
validity of the obtained results and select the right answer from a
number of outputs from the computer.
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In the summary, the advantage of the new method is that the method can
shift the focal point of mathematical education to more essential
points, such as more emphasis on problem understanding, elaborating
basic strategies and mathematical formulations and verifications of
obtained results. Accordingly, a greater amount of more essential
materials will be included in the mathematical curriculum.

In order to make full use of all the advantages, there are several
points which computer algebra systems must feature.

(i) The final output from the computer system is not always the most
suitable answer for the students' use. Therefore, the systems must
allow students to see the important intermediate results.

(ii) The system should feature the following two operating modes.

(1) Calculator mode: returns only final results. Students
use the system just as a computational tool.

(2) Trace mode: provides not only final results but major
intermediate results, explanations of the rules used to reach
the final results, etc. This mode allows students to under-
stand the system which is usually treated as a black box, or
to use the intermediate results.

(iii) A graphics system allowing results to be displayed from the
algebra system or to be simulated must be effectively connected with a
computer algebra system, allowing students to tackle problems more
easily.

(iv) The system must allow students numerical calculation as well as
algebraic operations. Then, students can perform a numerical analysis
of an expression obtained by the algebra system.

3.2 Feasibility of exploratory mathematics

Exploratory mathematics is a heuristic educational method
which allows students experimentally or inductively to discover rules
or theorems by themselves using computer mathematics systems. In this
way, rules or formulas are not taught top-down, but bottom-up.
Students use the computer to find rules and make hypotheses. Then, the
students attempt to prove their hypotheses. A model for exploratory
mathematics is shown in Fig. 3.2.

As an example, let us consider a case where the binomial theorem is to
be taught. Before showing the expansion formula of (1+x)® , students
use the computer algebra system and expand the expression for
n=20,1,2,3,.... Observing the obtained Pascal's triangle, the
students can find the rule.

91
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In addition, it may be expected that they find associated formulas at
the same time, e.g.,

9 - )+ )

n n n-1

This method would be impractical without computer algebra systems,
because it would take too much time and effort. But, with computer
algebra systems, this method of learning will give students pleasure
when they discover something, promoting their incentive to study.
Furthermore, the heuristic ability is extremely important not only for
mathematics but for any scientific research. It should be stressed
that such an ability can be developed by exploratory mathematics. In
addition, this method can be used in the educational method stated in
section 3.1. That is, during the basic course, this heuristic method
can be included to teach specific topics.

Finally, there are topics in which exploratory mathematics is
especially effective. Therefore, it is necessary to select those
topics which are most suitable for this method.

4 CONCLUSIONS
We considered the influence of the progress of computers on
mathematical education and proposed a new teaching method using
computer algebra systems. What was shown is as follows:

1) There will be two types of changes brought about by computers;
changes in the methodology and changes in the topics taught.

In the case of the former, the extensive use of CAI systems will
inevitably be influential.

As for the latter, we considered the need for computer-oriented
mathematics as well as the educational policy for the material which
can be handled by computers. We showed:

i) In the short term, computer-oriented mathematics must be
increased.

ii) In the long term, an increase in computer-oriented
mathematics in the general mathematics curriculum will not be
necessary due to the advance of computer technology.

With regard to educational policy, a new educational model which
extensively uses computer algebra systems was proposed, and the
advantages of it were considered.

2) The advantages of the new educational model are:

i) Students do not have to spend as much time as before on
tedious calculations.
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ii) Instead, they can concentrate on more essential and
intellectual matters, i.e., problem understanding, elaborating
basic strategies and mathematical formulations, and verifying
the obtained results.

3) Exploratory mathematics can be exploited in the actual educational
environment by the use of computer algebra systems. This method is
especially effective in developing an ability for heuristics which is
very important for all scientific work.

4) A revision of the curriculum will be necessary to incorporate
computers into mathematical education.

Like it or not, the extensive use of computers is bringing about a
variety of changes in our society and our daily lives. It is
remarkable to note that computers can be an effective tool in attaining
the ultimate goal of education, if the goal can be stated as to make a
man who thinks by himself, who studies by himself, and who, having set
himself questions, can think of the way to solve them. In this sense,
the establishment of a most effective way of using computers in
mathematical education is urgently needed.
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THE CURRENT MATHEMATICS CURRICULUM: TRADITIONS AND CONCERNS

For many years, a crucial place in the mathematics cur-
riculum of the last year of secondary school or the first year of
university studies has been occupied by the differential and integral
calculus. The calculus can be seen both as the culmination of the
secondary school mathematics curriculum and as the beginning of the
serious study of mathematics in the university. In some sense, the
study of calculus has become synonymous with the serious study of math-
ematics. The central and essential position occupied by calculus can
be traced to at least two interrelated causes.

For mathematicians, calculus represents the methodology and techniques
needed for the study of functions, first defined on the real line, then
on higher-dimensional Euclidean spaces, and finally on the complex
plane. Thus, the study of the calculus allows students for the first
time to acquire the formal and abstract tools that are essential for
the further study of higher mathematics.

On the other hand, calculus provides the foundation for the application
of mathematics to the physical sciences and engineering. These applica-
tions date back to Newton's original development of the calculus in the
seventeenth century, and since that time they have been wildly success-
ful across a vast collection of disciplines, even including (in recent
years), the biological sciences and economics. All of the calculus-
based applications are based on mathematical models that can be re-
garded as being continuous; that is, the quantities being modeled are
real numbers (or elements of some Euclidean space RD).

Given both the central mathematical position of the calculus and its
vital role in applications (not to speak of the interaction between
these two features), it is easy to see why the calculus has occupied
such a fundamental and unassailable position in mathematics curricula.
During the past several decades, however, the central role of calculus
has been seriously questioned, and the questions have been repeated
with particular emphasis during the last few years (Ralston 1981).
Just as a major motivation for the predominance of calculus in the
curriculum has been the wide range of the applications of continuous
mathematics, the challenge to that predominance has arisen from the
steadily increasing interest in the applications of discrete mathematics
in many disciplines.
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This increasing interest in discrete mathematical applications can be
primarily attributed to the widespread use of computers. Computers are
essentially discrete machines, and the mathematics that is needed to
describe their functions and develop the algorithms and software needed
to use them is also discrete. As a consequence, the discipline of com-
puter science is heavily dependent on a wide variety of discrete mathe-
matical ideas and techniques. Furthermore, the easy availability of
computers has encouraged the use and development of discrete mathemati-
cal models in many disciplines. For one example, operations research
models (linear programming, integer programming, etc.) are widely used
and are based on a discrete mathematical perspective.

It is natural to expect that the rapid growth of interest in discrete
mathematics and its applications, fueled by the explosive developments
associated with computers, should have an impact on the mathematics
curriculum. Although this impact would have been significant under
any circumstances, its effect has been magnified by other questions
that have been raised in the United States in recent years about the
teaching of calculus. Widespread dissatisfaction has been reported
with the nature of the calculus courses and the knowledge of the stu-
dents that have completed them (Lochhead 1983, Steen 1983). The com-
puter is also directly influencing the content of the calculus course
itself, both by encouraging the inclusion of numerical methods and by
suggesting that symbolic manipulation software may make emphasis on
techniques of differentiation and integration obsolete (Bushaw 1983,
Wilf 1983).

In summary, both the nature of the calculus course and the fundamental
position that calculus has occupied in the mathematics curriculum for
more than a century have come under serious challenge. These challenges
have come both from within and outside the community of mathematicians,
and they can primarily be attributed to the increasingly broad role that
computers are playing in the various scholarly disciplines represented
within the university and in the wider world. 1In the next section of
this paper, we will look at the responses that have been proposed to
these challenges.

RESPONSES TO THE CHALLENGE OF DISCRETE MATHEMATICS

When any curriculum is confronted by a new topic that should
be included, there are essentially two potential responses. The new
topic can either be encapsulated in a course that is added to the cur-
riculum, or it can be incorporated as a fundamental constituent of a
revised curriculum. Most topics that have been added to the mathematics
curriculum in recent decades have been added as new courses (e.g. ab-
stract algebra and topology).

It was therefore natural that when mathematics faculties were asked to
include discrete mathematics in the curriculum, this was most commonly
done by developing new courses in discrete mathematics. Such courses
were designed primarily for students of computer science. There were
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two fundamental problems with this approach. First, the discrete math-
ematics courses were usually taken by third-year students, so that the
material was learned too late to be of use in the data structures
courses taken by first and second year students of computer science.
Second, when students were expected to use their discrete and contin-
uous mathematical skills in fourth-year computer science courses (for
example, in the analysis of algorithms), most have found it very diffi-
cult to combine these skills effectively. Many students do not see any
connections between discrete and continuous mathematics, and are unable,
for example, to apply calculus techniques to estimate growth rates of
discrete functions or to estimate the size of discrete sums. This in-
ability to combine discrete and continuous skills is also found in stu-
dents of probability, operations research and signal processing.

Both of the above reasons suggest that discrete mathematics should be
incorporated as a component of the fundamental mathematics course that
is offered to all students in their first two years of university
study. This suggestion was first made by Ralston (1981), who proposed
that the study of discrete mathematics precede the study of calculus.
He argues that such an organization would benefit virtually all stu-
dents of mathematics, and not just those students concentrating in com-
puter science. Ralston's proposal has led to substantial discussion in
the United States on the proper place of discrete mathematics in the
curriculum (Ralston & Young 1983). The debate has focused on whether
discrete mathematics should precede or follow the calculus in the cur-
riculum of the first two years. Many of the arguments advanced on
either side are administrative in nature, dealing either with the de-
mands of other curricula (such as physics or engineering) or with
articulation with other institutions (such as high schools, junior
colleges or universities that have retained the standard curriculum).

Whether calculus is placed before or after discrete mathematics, it is
by no means clear that students who have completed both courses will be
able to combine their discrete and continuous mathematical skills in an
effective manner. This problem has been recognized by some designers
of proposed curricula, and consequently their calculus proposals gen-
erally include some discrete aspects, such as extended discussion of
numerical methods and substantial use of sequences (see for example
Bushaw 1983 ).

Another possibility, which is rarely given serious attention, would be
to develop a new, unified curriculum that would interweave discrete and
continuous themes throughout its courses. While the first year of the
curriculum would correspond to the calculus course, its real thrust
would be the study of functional behavior and functional representa-
tion. The course would consider discrete functions (sequences) along
with continuous functions, and would constantly emphasize analogies and
parallels between discrete and continuous situations. Thus the first
year of the curriculum would be primarily continuous, but with a strong
discrete flavor. The second year of the curriculum would focus on
structure, and would be primarily discrete, but with a strong contin-
uous flavor.
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This paper will argue that a curriculum unifying discrete and contin-
uous themes is not only feasible, but has the potential of providing
students with a broad, powerful perspective embracing the mathematical
ideas and techniques that are needed for the study of computer science.
This perspective would also yield a strong mathematical foundation for
the study of engineering, the physical sciences, and indeed for the
study of higher mathematics itself.

Furthermore, the development of such a curriculum will force a reexami-
nation of the topics taught in the conventional calculus course. As
mentioned above, various recommendations have been made to remove or
include particular topics. Although each such recommendation has been
solidly grounded, no consistent rationale has been given for the collec-
tion of topics that together make up the proposed calculus course. The
first-year course outlined below has a consistent theme - functional
behavior and representation - and each topic to be included in (or ex-
cluded from) the course should be judged on the degree that it matches
the course's perspective.

In the following section, a detailed outline and discussion will be
given only for the first year of the proposed two-year curriculum. At
the conclusion of the paper, we will return to the second year of the
curriculum, as well as to the larger issues raised by the question of
articulation with other curricula.

A FIRST-YEAR CURRICULUM INCORPORATING DISCRETE AND

CONTINUOUS THEMES

The fundamental thrust of the proposed first-year curric-
ulum is the behavior and representation of functions. Roughly, the
first semester is devoted to tools for tEE_description and analysis of
functional behavior, with the focus shifting to representation of func-
tions in the second semester. Before presenting a more extended dis-
cussion of the benefits to be achieved by including both discrete and
continuous topics, it will be useful to give an annotated outline of
the first semester curriculum.

A. Functions
1. Numbers and Relations

A knowledge of set concepts and notation is as-
sumed. Inequalities will be emphasized.

2. Functions and Operations

Function concept and functional notation will be
introduced, stressing the algorithmic interpre-
tation of the function symbol f. Discussion will
include domain and range, operations on functions
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(arithmetic operations, composition, translation),
and graphs of functions. Useful functions will be
introduced (polynomials, rational functions, expo-
nential functions (defined on the integers), abso-
lute value, floor, ceiling).

Models

Algorithms and elementary complexity analysis will
be introduced (including binary search). This
will allow discussion of the function[lg(n)].
Models demonstrating the need to construct func-
tions and to perform curve fitting will be in-
cluded.

B. Behavior of discrete functions

1.

4.

Sequences: Iteration and Recursion

This section will include a discussion of geo-
metric series. Examples will include the
Fibonacci numbers and the greatest common divisor
function.

Difference Operators

The difference operator & will be introduced as a
function on sequences. The recursion scheme

Ug4+1-up = Aug

will be treated in order to emphasize the special
functions (defined on the integers). Formulas for
higher differences will be discussed.

Summation

The primary topic here will be the binomial theorem,
both in its standard form and in the expression for

(1+an.

The second form will allow various formulas for
finite sums to be presented.

Landau Notation (0,0) and Limits of Sequences

C. Behavior of continuous functions

1.

Limit Heuristics

Limits of functions will be discussed only in
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terms of limits of sequences. The continuity con-
cept will be introduced. The operator

Af = (f(x+h)-f(x))/h

will be introduced. Analogies to the discrete

100

difference operator discussed above will be pursued.

First Derivative

The derivative will be defined, and interpreted
using tangent lines. It will be shown that dif-
ferentiable functions are continuous.
Differentiation Rules

Powers and roots; product and quotient rules.

Monotone Functions and Local Extrema

A rigorous treatment will be postponed. Curve
sketching will be introduced here.

Second Derivative

Concavity will be discussed and applied to curve
sketching.

Extreme Values

Maximum-minimum problems will be solved. Examples
will also demonstrate the use of piecéwise linear
functions.

Related Rates

The chain rule will be presented, and related rate
problems will be solved.

D. Estimation and error

1.

Mean Value Theorem
Monotone functions will be discussed more rigorous-
ly, and the MVT will be applied to global estima-
tion of functions.

Solution of Equations

Newton's method will be discussed from both geo-
metric and iterative perspectives. An elementary
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treatment of error estimation will be given, and
critical values will also be estimated.

3. Interpolation

Interpolation of functions by lines and parabolas
will be discussed, using the difference operators
developed above.

4. Approximation

Second-order Taylor polynomials will be used to
approximate functions, and the estimated error will
be computed. Analogies will be drawn between in-
terpolation and approximation and between differ-
ences and derivatives.

E. Integration
1. 1Introduction

The summation operator for sequences will be in-
troduced. 1Its relation to the difference operator
will be discussed. It will be treated as an ag-
gregation operator, and used to motivate the dis-
cussion of area.

2. The Definite Integral

This will first be introduced using a piecewise
linear definition. This definition will then be
applied to step functions. The area definition
will then be presented, and applied to parabolas
using the results on finite sums obtained above.
Some elementary properties of the definite in-
tegral will be presented, including the mean value
theorem for definite integrals.

3. The Indefinite Integral

This will be explicitly computed for step functionms,
piecewise linear functions and parabolas.

4. The Fundamental Theorem of Calculus
This will be derived from the mean value theorem
for definite integrals. The chain rule will be
applied to investigate some properties of the in-

tegral of 1/x.

5. Evaluation of Integrals: Analytic Techniques
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Substitution techniques will be discussed, as well
as the use of integral tables.

6. Evaluation of Integrals: Numerical Techniques

The trapezoidal rule and Simpson's rule will be
discussed. It will also be shown how integrals
can be estimated using inequalities, and how sums
can be estimated using integrals.

7. Applications of Integration: Aggregation

The applications to be treated include work and
volume.

8. Applications of Integration: Modeling

The primary theme here will be the recognition of
Riemann sums in differing situations. Examples
will be taken from arclength and fluid flow. The
basic point will be that a model generates a dis-
crete (Riemann) sum, which can then be approximated
by a definite integral.

Although this annotated outline gives a good overview of the first se-
mester of the proposed course, it is too brief to show how the inter-
weaving of discrete and continuous themes can lead to major benefits.
The following examples are meant to be typical of the perspective that
will be possible within this course structure.

Example 1: At the beginning of the course, the discrete exponential
function, f(n) = 27, will be introduced, along with its one-sided in-
verse, g(n) = max {k | 2kg n}. The function g(n) is vitally important
in computer science; for example, g(n)+l is the worst-case number of
comparisons in a binary search of a list of length n. The growth rate
of g(n) is important, and is usually treated (via calculus) using
L'Hospital's rule. We suggest a discrete approach, based on the
binomial theorem. Clearly 28(n) <n, so that g(n)/n Sg(n)/Zg(n), and
g(n) approaches o0 with n since g(ZL)= L. Thus it is only necessary
to look at the behavior of k/2k as k =—» o0 ., By the binomial theorem
2k = (1+1)k 3 k(k-1)/2, and hence k/2X € 2k/k(k-1) = 2/(k-1), which
gives the desired result. The simplicity of the discrete argument
should aid the student in learning, understanding and assimilating the
growth rate of the continuous logarithm.

Example 2: The syllabus outline has referred to analogies between the
discrete difference and summation operators on the one hand, and dif-
ferentiation and integration on the other. For example, the difference
operator is defined on the sequence fu,} by Au, = Upnil — Upe If we
define a function on the integers by x m) - x(x-1)...(x-m+l), then it
is easy to see that ax{m) = mx(m-1) | A2x(m) = m(m-1)x(M-2), and
finally that afx(m) = m! and Al (m) = 0. Thus the behavior of the
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difference operator (and its iterates) on the polynomials {x(m)} is
strongly analogous to the behavior of the differentiation operator (and
its iterates) on the polynomials {xP}. Furthermore, since each collec-
tion of polynomials provides a basis for the vector space of polyno-
mials of degree at most n, an example has been introduced which will be
useful in a later course in linear algebra.

One further benefit of the use of difference operators is the natural
observation that A2D = 20, or more generally that AKD = (k-1)kI.

This suggests that exponential functions, whether discrete or contin-
uous, may have a special role to play with respect to difference or
derivative operators, and serves to motivate the later observation that
d/dx(eX) = eXx.

Example 3: The first two examples used discrete ideas to motivate con-
tinuous concepts that are to be introduced later. In this example,
continuous techniques are used to obtain a discrete result. The iden-

tity giving the sum of a geometric progression, %E; xK = (x-1)/(x-1)

can be differentiated using the quotient rule to E:gain the identity.

%i% kxK = ((n-—l)xn+l -nxD + x)/(x—l)z. Using this identity, it is

= n-1 n-1

immediate that > k2K = (n-2)2042 and that ST k27k=2 - (n+1)/20-1,
k=1 k=1

(- -]
The last result yields :Z: k27K = 2, since it has already been shown
k=1

that k/ﬂ‘—»O as k = o0 ., This example serves to remind students that
continuous techniques can be important in discrete situatioms.

These examples demonstrate that the proposed course does not merely
insert a collection of important discrete topics into the calculus
course, but rather expresses a consistent approach to all of the sub-
ject matter. The fundamental perspective is the study of functional
behavior, and both discrete and continuous functions are treated
throughout. Fach class of functions is used to develop tools and
suggest analogies that will be useful for the study of functions of the
other class.

The second semester of the course further elaborates its functional
perspective. Rather than give a detailed, annotated outline, we will
discuss the topics to be covered and describe how they relate to the
themes developed during the first semester. The second semester is
primarily devoted to material taken from two broad categories: special
functions and representation of functions.

Exponential and logarithmic functions will be treated in depth. The
natural logarithm will be introduced using the definite integral, and
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its properties will be investigated. The inverse of the logarithm will
be motivated using growth models and the differential equation

dy/dx = ky, and the relationship of this inverse to the exponential
function will be motivated using difference equations and the discrete
logarithm. Finally, the properties of the function eX will be devel-
oped. Numerical estimates for exponential and logarithmic functions
will be used throughout the discussion.

The next major topic will be trigonometric functions. Here the primary
motivation will come from the geometry of the circle and from models of
circular and harmonic motion, although discrete periodic functions, such
as mod n, will also be used. The properties of the trigonometric
functions will be developed. Integration by parts will be introduced
and applied to the special functions. The special integrals leading to
the inverse trigonometric functions will be introduced here. Mathe-
matical models suggesting the use of trigonometric polynomials will

also be used.

Once the special functions have been treated, it will be natural to
discuss various forms of infinitary behavior. The discussion will
begin with a reconsideration of infinite sequences, including a pre-
sentation of indeterminate forms and their applications to Landau
notation. The remainder of this section will be devoted to improper
integrals and infinite series, emphasizing the analogies between these
two forms of infinite summation.

At this point, the focus will shift somewhat from functional behavior
to functional approximation and representation. Thus the next major
topic will be power series, with particular emphasis on the use of
Taylor series to represent functions. Generating functions for simple
recursions will be discussed, and a certain amount of attention will be
devoted to computational issues and the estimation of error terms. The
constant theme will be the use of Taylor series as function approxi-
mations to obtain information about functional behavior that would
otherwise be difficult to obtain.

The final topic will be trigonometric series, with particular emphasis
on the representation of functions using Fourier series. The treatment
of Fourier series at this early point will require the introduction of
complex numbers, which will reinforce the students' geometric under-
standing of trigonometric functions. Furthermore, the availability of
Taylor series will permit an analytic as well as a geometric discussion
of the identity eiX = cos x + i sin x. Finally, the early introduction
of Fourier series will make it possible to discuss discrete Fourier
series and their applications at a far earlier point in the curriculum
than is presently possible.

Clearly, the focus on functional behavior and representation has pro-
duced a first-year course that is rather different from what is cur-
rently taught. The essential core of the current calculus course has
been retained, but it is always made clear that is is there because it
throws a powerful spotlight on functional behavior and representation.
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Conversely, many traditionally taught topics have been removed. This
pruning was only possible because the developers approached each topic
with the same question: how does this topic impact on the main theme of
the course?

Now that the course has been outlined, it remains to be seen how it will
fit into the curriculum. We will also have to pay some attention to the
second-year course that will follow this course, and also to the
political and institutional problems that its adoption would pose.

IMPLICATIONS FOR THE CURRICULUM

The first question to be addressed is the audience to be
served by the proposed course. It is clearly ideally suited for
students of computer science, since it merges themes from continuous and
discrete mathematics in a synergistic manner. Students who have
successfully completed the course can be expected to handle the mathe-
matics arising (for example) in the analysis of algorithms. It can also
be argued that this course would be well suited as a first course for
students of mathematics, the physical sciences and engineering. For
these disciplines, the major omission has been vector geometry and
multivariate calculus. In many universities, a large proportion of this
material is treated in the second year, and it is not unreasonable to
suppose that even more could be shifted to a third-semester course
designed for those students.

Although much vitally important mathematics can be subsumed under the
general heading of "functions", an equally important heading is that of
"structure". While the proposed course is intended to give students the
most important tools that come under the former heading, it does not
address the latter. For students of computer science, both headings
are equally important, and thus an important place in their education
must be found for "structure'". Much of the debate summarized above on
the place of discrete mathematics in the curriculum can be seen as a
debate on the place of "structure" in the curriculum. Following on the
first-year course that has been outlined above, it is reasonable to
believe that a second-year course focusing on "structure" can be
developed.

Such a course will not be described here, but it is possible to discuss
briefly what general topics might be included. The primary strands
might be discrete mathematics, linear algebra and probability theory.
Discrete mathematical topics could include relations, graphs, Boolean
algebras and formal languages. The discussion of linear algebra could
include some multivariate calculus, which could then be applied in the
probability portion of the course. Just as with the first-year course,
the topics included in the second-year course should be chosen because
they illustrate vital structural themes or because they are motivated
by or permit the development of important applications.
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The introduction of courses designed along these lines will not be a
simple matter. The obstacles that will be found will range from the
need for new textual materials to the difficulty of articulating the
new courses with other institutions on all levels. It would be an
unfortunate mistake, however, to conclude that because of the certainty
of encountering what seem to be insuperable obstacles to the introduc-
tion of a truly new curriculum, the only possible strategy is ome of
incremental change. The development and introduction of a curriculum
integrating discrete and continuous ideas is an exciting challenge, and
one that is sure to be taken up in several places. What is really
needed is a collection of design and development experiments, performed
in out-of-the-way "protected" environments. Once a new curriculum has
proven its viability and worth in one or more of these experimental
environments, it will be time to address the structural and institu-—
tional issues involved in transplanting the successful curriculum to
less protected situations.
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The human brain is powerfully equipped to process visual information.

By using computer graphics it is possible to tap this power to help
students gain a greater understanding of many mathematical. concepts.
Furthermore, dynamic representations of mathematical processes furnish a
degree of psychological reality that enables the mind to manipulate them
in a far more fruitful way than could ever be achieved starting from
static text and pictures in a book. Add to this the possibility of
student exploration using prepared software and the sum total is a
potent new force in the mathematics curriculum.

In this paper we report on the development of interactive high resolution
graphics approaches at different levels of teaching calculus and
differential equations. The first author has been concentrating on the
calculus in the U.K. [Tall 1985] and the second is working with John H.
Hubbard in the U.S.A. on differential equations [Hubbard & West 19851,
(later referred to as [T] and [H&W] respectively). We are particularly
grateful to Professor Hubbard for his assistance in the preparation of
this article.

Others have pioneered a computer approach to these topics, particularly
[Artigue & Gautheron 1983] who used computer graphics to build up
pictures of solutions of autonomous systems of differential equations
and [Sanchez et al. 1983] who emphasized a qualitative approach to the
theory. A suitable qualitative approach can lean to an insightful
understanding of the formal quantitative theory. The major advance in
our work is the interactive nature of the prepared software, enabling
students to explore the ideas and develop their own conceptualizationms.

DIFFERENTIATION

Traditionally the notion of differentiation is founded on the idea of a
limit, either geometrically as a chord approaches a tangent, or
algebraically as a ratio (f(x+h)-£f(x))/h as h tends to zero.

The computer brings new possibilities to the fore; we may begin by
considering the gradient not of the tangent, but of the graph itself.
Although a graph may be curved, under high magnification a small part of
it may well look almost straight. In such a case we may speak of the
gradient of the graph as being the gradient of this magnified
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(approximately straight) portion. A tiny segment of the graph y=x2
near x=l magnifies to a line segment of gradient 2 (figure 1).

To represent the changing gradient of a graph, it is a simple matter to
calculate the expression (f(x+c)-f(x))/c for a small fixed value of c as
x varies. As the chord clicks along the graph for increasing values of
X, the numerical value of the gradient of each successive chord can be
plotted as a point and the points outline the graph of the gradient
function (figure 2). 1In this case the chord gradient function of sinx
for small c approximates to cos x, which may be checked by superimposing
the graph of the latter for comparison. Thus the gradient of the graph
may be investigated experimentally before any of the traditional
formalities of limiting processes are introduced.

Figure 1

Figure 2
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The moving graphics also enable the student to get a dynamic idea of
the changing gradient. Students following this approach can see the
gradient as a global function, not simply something calculated at each
individual point.

When the standard formulae for differentiation are developed, the
symbols dx, dy can be given a meaning as the increments in x,y to the
tangent. Better still, (dx,dy) may be viewed as the tangent vector, a
valuable idea when we come to the meaning of differential equationms.

NON-DIFFERENTIABLE FUNCTIONS

If one views a differentiable function as a "locally straight" graph,
then it is easy to explain the notion of non-differentiability, The
graphs of lx -l| at x=1 or Isinicl at multiples of 7 clearly do not
magnify to look straight. At these points they have different left and
right gradients which magnify to give half-lines meeting at an angle.

The function of [Takagi 1903] may be drawn by a computer program. It is
built up in stages starting from the saw-tooth y=s(x) given by taking
the decimal part d=x-INTx of x and defining

s(x)=d if d <}, otherwise s(x)=1-d.

The sequence of functions

by (x) = s(x)
bo(x) = s(x) + s(2x)/2
é;ix) = s(x) + ... + s(20 Ix) /201

tends to the Takagi function (figure 3).

Figure 3

Takagi ‘
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The process may be drawn dynamically on a VDU; we regret it cannot be
pictured satisfactorily in a book, not even this one. But higher
magnification of the Takagi function using prepared software shows it
nowhere magnifies to look straight, so it is nowhere differentiable.
This intuitive approach can easily be transformed into a formal proof
of disarming simplicity [Tall 1982].

AREA CALCULATIONS

Computer graphics can be used to draw the pictures of area
approximations as they are being calculated. For example [T] computes
the area under a graph by a variety of rules (first ordinate, last
ordinate, midordinate, trapezium or Simpson) and displays the areas
calculated in different colours according to the sign. If the
calculation has a positive step, the picture draws successive areas
from left to right with positive ordinate giving a positive area and
negative ordinate giving a negative area (figure 4). A negative step
builds up the picture from right to left and it is equally easy to see
that this reverses the signs; a concept traditionally found difficult
before the advent of moving graphics.

These graphic facilities are not just introductory material for
beginners. They can be used for visualizations of subtle theorems.
Take the case of a discontinuous (Riemann integrable) function whose
area function is not differentiable where the original function is
discontinuous. When the cumulative area function for f(x)=x-INTx is
drawn as a sequence of dots, the area graph is visibly continuous, but
it has "corners'" where the original function has discontinuities
(figure 5).

Figures 4 & 5
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ANTIDIFFERENTIATION

This is usually regarded as reversing the formulae for integration, but
it may also be characterized graphically as knowing the gradient
dy/dx=f(x) and requiring a graph y=I(x) with this gradient. This
information may be represented graphically by drawing an array of short
line segments through points (x,y) with gradient f(x). A solution
y=I(x) is traced out by following the direction lines (figure 6).

It satisfies I'(x)=f(x).

As the gradient direction is a.function of x alone, the solution curves
differ by a constant. If these are drawn numerically using a constant
step along the graph, rather than a fixed x-step, the solution in simple
cases will remain on a connected component of the graph. For instance,
a solution curve of dy/dx=1/x starting to the right of the origin always
remains on the right. Thus two different antiderivatives must differ by
a constant only over a connected component of the,domain.. The role of
the "arbitrary constant" is seen in its true light.

FIRST ORDER DIFFERENTIAL EQUATIONS
In graphical terms, the solution of a first order differential equation

dy/dx = f£(x,y)

is simply an extension of the antidifferentiation idea: draw a
direction diagram and trace a solution by following the given directions.

Figure 6
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If one takes the equation

éz::—
¥ ax x

then there are no global solutions of the form y=f(x); a solution is an
implicit function

x2+y2 = constant

which is a circle c~ntre the origin. The "first order differential
equation" program iu. [T] has a routine to follow round implicit flow
lines (figure 7). At points where the flow-lines meet the x-axis the
tangents are vertical and the interpretation of dy/dx as a real function
fails, but the vector direction (dx,dy) is valid with dx=0 and dy non-
zero. Thus a first order differential equation is sometimes better
viewed as giving implicit information about the direction of the tangent
(dx,dy) rather than explicit information about the derivative.

The Cornell program DIFFEQ 2 in [H&W] uses the same approach, allowing
students to get qualitative feelings for all the solutions at once
and relating them meaningfully to the theory (figure 8).

A combination of numerical methods and pictures can give enormous
insight to standard formal approaches, often cruelly exposing the
limitations and downright misrepresentations found in many elementary
texts.

Figure 7
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EXISTENCE OF SOLUTIONS TO DIFFERENTIAL EQUATIONS

There comes a time in a university course on differential equations when
honesty requires the teacher to admit that the (cookbook) methods for
solving differential equations usually fail. Such innocent looking
equations such as

dy/dx =y?-x, dy/dx =sin(xy), dy/dx=e>

do not have solutions that can be written in elementary terms.

Students often mistakenly confuse this with the idea that the equations
have no solutions at all. However, if they dre able to interact with a
computer program that plots a direction field and then draws solutions
numerically following the direction lines, the phenomenon takes on a
genuine meaning: "Of course the equations have solutions: we can see
them'". They are immediately drawn to analysing the solutions using the
computer in a way that was previously impossible.

QUALITATIVE ANALYSIS OF DIFFERENTIAL EQUATIONS

New forms of analysis emerge now we can see as many solutions as we wish
all at the same time. In figure 8, notice how the solutions tend to
"funnel" together moving to the lower right-hand side; in the upper
right they spray apart (an "antifunnel"). Qualitatively descriptive
terms such as '"funnel" and "antifunnel" can be defined precisely to give
powerful theorems with accurate quantitative results [H&W].

For example, the equation dy =y2-x in figure 8 has two overall
behaviours: solutions either approach vertical asymptotes for finite x

Figure 8
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or fall into the funnel and approach y=-Yx as x>, In the antifunnel
there is ‘a unique solution approaching y =+/x which separates the two
usual behaviours. Furthermore, the qualitative techniques enable us to
estimate the vertical asymptote for a solution through any given point
with good precision.

NEWTON'S LAWS

The classical three-body problem defies elementary analysis, yet a
computer program can cope with relative ease. The program PLANETS in
[H&W] takes a configuration of up to ten bodies with specified mass,
initial position and velocity and displays the movement under Newton's
laws (figure 9). The data may be input either graphically with the
cursor, or numerically in a table.

Figure 9
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The program allows exploration of possible planetary configurations and
it soon becomes plain that stability is the exception rather than the
rule. One may wonder under what circumstances stability occurs. Other
questions arise, such as the braided rings of Saturn that were a great
surprise when they were discovered by the Voyager space flight. Nobody
imagined this kind of behaviour until it was observed, yet braided
behaviour showed up in the very first experiments with the PLANETS
program; we still don't know whether this is a common or an exceptional
occurrence.

SYSTEMS OF DIFFERENTIAL EQUATIONS

For an autonomous system dx/dt=f(x,y), dy/dt=g(x,y), the computer can
draw a direction field and trajectories in the x,y phase plane. The
program SYSTEMS 2 in [H&W] will also locate singular points starting at
any point in the field using Newton's method, also drawing separatrices
for saddle points (figure 10).

The use of the computer permits study of individual differential
equations and systems that are far too difficult to want to attack by
hand. Furthermore, the dynamic interactive programs allow the user to
see the direction and speed with which the solution moves, and to sense
the stability of a limit cycle as the solution moves in.
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The use of the computer permits the study of individual differential
equations and systems that are far too complicated to attack by
hand. Figure 11 shows the solutions of the system

dx/dt =cos(y), dy/dt=sin(xy)
and figure 12 shows the solution of the polar differential equations

dr/dt =sin(r), d6/dt =cos(r)

which exhibits limit cycles for r=kw. Both are drawn using the technique
of [Artigue & Gautheron 1983].
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SECOND ORDER DIFFERENTIAL EQUATIONS
The simple direction field for first order equations appears to break
down in the second order case: a second order differential equation, say,

d?%y/dx? = -x

does not have a direction field in the x-y plane. There are an infinite
number of solutions through each point, one for each starting direction,
as may be investigated using the computer [T] (figure 13).

Solutions of such equations are often attacked by introducing a new
variable v =dy/dx, giving a (non-autonomous) system of two linear
equations:

dy/dx=v
dv/dx = -x.

In three-dimensional space, at every point (x,v,y) these equations give
the tangent vector (dx,dv,dy) in the direction (1,v,-x). Thus there is
a direction field, but it is in three dimensional space, not two. [T]
draws a solution following this direction field, with the three -
dimensional solution simultaneously projected onto the two main
coordinate planes (x,y) and (x,y), representing the velocity v and the
distance y as x increases (figure 14). (The program also allows the
three-dimensional view to be replaced by the (y,v) phase-plane to give
all three coordinate planes simultaneously.) The understanding of the
nature of the solutions is greatly facilitated by seeing them evolve
dynamically in space, producing the set of solutions (figure 13) as the
projection of a three-dimensional picture onto the (x,y)-plane.
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CHANGES IN LEARNING STYLE

The programs in [T] and [H&W] are powerful general purpose utilitities
rather than self-contained programmed learning. Those in [T] were
designed for teacher demonstration as well as student exploration, with
facilities to slow down or stop the action to illustrate a point. After
an introduction to the ideas, students may draw the gradient of f(x)=x"

for n=1,2,3, ... to investigate the pattern and conjecture the formula
for the derivative of x©; they may test it for values such as n=4,5 or
n=-1, -2, 1/2, 7™, ... before going on to prove the result for simple

values of n. In drawing the graphs, students gain valuable appreciation
of the range of values for which the formulae are valid, a factor often
sadly lacking in blind algebraic manipulation.

In the calculus students may investigate the gradients of functions such
as sine, cosine, tangent, exponential and logarithm, and conjecture the
formulae before they are derived formally. In differential equations
they may explore problems at the boundaries of research (such as the
rings of Saturn) and make the mental link between the friendly world of
(mostly linear) equations that can be solved by formulae and the strange
world of those (usually non-linear) that can not.

Figure 1k
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IS PROGRAMMING ESSENTIAL ?

We have not explicitly mentioned student programming at all. In the U.K.
a body of expertise is growing [Mathematical Association 1985] in which
students are expected to handle short programs that carry out
mathematical algorithms. From here it is intended that they move on to
prepared software using the same algorithms in a more powerful
interactive manner.

Clearly a spectrum of approaches is possible: some with varying amounts
of programming to understand the underlying algorithms, whilst others
may exclude programming altogether.

CONCLUDING REMARKS

The diagrams produced in this article are screen-dumps from the BBC
computer [T], the Apple Macintosh [H&W], or from [Artigue & Gautheron].
The difference between the graphic configurations and facilities are
horrendous. How to exploit the various computer graphics capabilities
or to transfer from one to another is a non-trivial problem. But the
computer so reduces time and tedium in calculations and one can go so
much further with more difficult problems, that the mind is freed to
concentrate on the theoretical structure of the mathematics. This has
very important implications for how we are to view the curriculum of the
future: it is not just a matter of adding an experimental element, but
the opportunity to clarify the nature of the mathematical theory itself.
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1 NEW POSSIBILITIES
As 1s written in many places in this book, the computer is

a mighty mathematical tool, not only for mathematical research, but
even more in the process of applying mathematics, or in the process of
teaching and learning mathematics. In the following, we shall mainly
concentrate on the new possibilities which the computer presents in
the realm of calculus for users and future users of mathematics. By a
user we understand somebody who is interested in mathematics merely
(or mainly) because he uses mathematical models (in particular calculus
models) to solve his (extra-mathematical) problems. Future users of
mathematics are, for example, engineering students, but even those
learning calculus in schools as part of a general education may be
considered under this aspect.

1.1 New possibilities for the user

We first describe the changes in the mathematical knowledge
and habits of the user of mathematics induced by the availability of
sophisticated mathematical software to all who have to rely heavily on
mathematical problem-solving such as engineers, natural scientists,
etc. Whereas the widespread use of such systems (of hardware and soft-
ware) may to a certain extent seem doubtful, the continuing decrease
of prices and the development of powerful personal computers allows us
to predict that they will be available on microcomputers not only in
research areas, but also in smaller environments by the time, in three
to five years, when our students start their professional careers.

The classic situation of the user of mathematics could have been
described - in a somewhat oversimplified manner - by a huge amount of
passive mathematical knowledge objectivated in monographs, handbooks,
recipes. Normally this knowledge could only be used by being activated
through the active mathematical knowledge of the user himself or by
direct cooperation between the user and a mathematically more
knowledgeable person. In contrast to this, the mathematical knowledge
objectivated in mathematical software can have a far more active
character, e.g. in giving advice and help interactively, offering
possibilities for explorative experiments or answering questions like
a mathematical expert system. But even the more usual numerical soft-
ware which exists in the form of sophisticated procedures is far more
active than the recipes of the old-fashioned handbooks, since in many
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cases these procedures are in fact polyalgorithms. They decide, for
example, with a certain expertise which particular algorithm should be
invoked, depending on the circumstances (cf. Rice 1983, e.g. p.291f).
So the demand for mathematical knowledge on the side of the user has
changed, the emphasis has shifted from a detailed knowledge of the
advantages and disadvantages of specific numerical methods and of the
algorithms themselves to some meta-knowledge of the possibilities of
numerical algorithms in general and their interaction with the concrete
application-situation in these specific circumstances.

As an example let us look at the process of the solution of ordinary
differential equations (cf. Winkelmann 1984). This is indeed an example
of great importance since such equations appear in many fields of
application and are at the heart of applicable elementary calculus. So
if it seems possible to master them at a more elementary level than
hitherto was possible, they could even be regarded as the most
appropriate goal for the teaching of elementary calculus at schools and
colleges. In the education of engineers at technical universities or
similar institutions, where differential equations have always been
part of the calculus sequence, even the beginning calculus could
concentrate more on applications and so give the student a more
realistic and, one hopes, more motivating start.

In the pre-computer age an engineer or scientist who had to handle
differential equations was supposed to have detailed knowledge of
diverse methods for the analytic solution of various elementary types,
to be able to master complicated analytic-algebraic formulas and to
carry out lengthy error-free calculations. How he can use software
which has this knowledge and ability inbuilt, since it can solve more
of the elementary differential equations than a non-specialist mathe-
matician can do (cf. Watanabe 1984). But in building up the model for
the user it is still necessary to fully understand the meaning and
significance of the diverse quantities (variables) and their derivatives
and to be able to relate these to each other in order to set up the
differential equation. And to orderly give it to the computer program,
a thorough intuitive understanding of the mathematical meaning of the
identifiers which appear in the modelling equations is needed, be it

as variables, parameters, initial values, names for (yet unknown)
functions (dependent variables) and so on. If an analytic solution
exists, the program will normally present it as a somewhat confusing
lengthy expression which must be qualitatively interpreted to be under-
stood, namely through looking for simpler special cases, for groups of
specific parameters or initial values, for asymptotic patterns of
behaviour, etc. This process is guided by the intended interpretation
of the solution in the context of the application model. If no analytic
solution exists, the user may give his equation to some ready-made
numerical software. In this case he needs some knowledge to make
reasonable explorative choices of the values of parameters and initial
values; there should be some experiences with numerical phenomena
(pitfalls of computations) and abilities to interpret the numerical and
graphical output of the computer and to use this interpretation
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interactively for the new choices of starting points for the next
calculation.

In total, there can be observed a specific shift in the spectrum of
abilities, from precise algorithmic abilities to more complex inter-—
pretations, so to speak from calculation to meaning, which in a certain
sense is -a reversal of the historical evolution. In this process the
mathematics to be mastered tends to become intellectually more
challenging, but technically simpler.

What does this mean for the mathematical education of the future user?
Of course, there is no direct way from the described activities of the
user to the teaching process; the goal must not be confused with the
way. Understanding and complex interpretations can only be built up by
the personal involvement of the student, by his doing full (but simpler)
examples in all the main steps himself, be it by hand-calculating, by
using interactive symbolic calculators or by programming in some simple
programming languages. This seems necessary in order to get an aware-
ness of the mathematical situations, even if such activities are no
longer part of the final application process. And even if today's
sophisticated mathematical software in most cases need not and can not
be fully understood by the normal user, there must not be totally black
boxes; a principal understanding of simple cases, main ideas or
fundamental restrictions can be gained and seems necessary for proper
use of the now 'grey' boxes.

On the other hand it is quite clear that extensive drill in formal
calculations, fluent structured programming or even perfect handling
of some software package cannot be justified in view of the changed
qualifications needed by the user.

1.2 New possibilities in the teaching-learning process
In the field of teaching methods the computer, if it has

been loaded with the appropriate programs, will function as a de-
technicizing aid, almost as a super hand-held calculator which permits
the pupil to overcome the computational obstacles in the treatment of
more complex problems and more realistic applications, e.g. in dealing
with larger matrices, in the numerical solution of differential
equations, or in the symbolic treatment of more complicated formulas;
this will serve to widen the potential scope of mathematics education
in terms of content. On the other hand, a computer equipped with the
appropriate languages and environments can become an instrument for
solving problems in the hands of the student (interactive programming);
in this case, the student tends to understand techniques more on the
cognitive level, and no longer mainly on the level of skill. Beyond
that, the computer, with its possibilities for illustration and symbol-
ization, will provide opportunities for providing more comprehensive
and rapid mathematical experience.

This presents problems and tasks for educators mainly on two levels.
On a more technical level, there is the necessity to provide more
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suitable software. On a more fundamental level, the problem is to
achieve a balance in the quantitative and qualitative relation of new
and old goals and methods as well as to determine trends.

The computer creates new opportunities for analysis instruction, e.g.
- numerical and graphical illustrations,

- more complex and more realistic applications,

- a language in which to describe traditional calculus,

- CAL (computer-aided learning) in its various forms.

Some traditional motivations for treating conceptually exacting

analysis in school can, however, no longer be maintained without

further discussion, for instance:

- calculations such as finding extreme values or areas can be
easily programmed without analysis,

- practical applications, as in physics or technology, use
discrete methods in computer programs.

This results in a crisis: the legitimacy of traditional analysis in
school is challenged; educators will have to make clear to the general
public, and the teacher will have to explain to his pupils asking
critical questions, how and why treatment of continuous analysis still
makes sense nowadays.

In Section 3 we shall report on some experiments concerning the use of
informatic tools in teaching basic mathematical courses at the
Politecnico of Turin, Faculty of Engineering Sciences. We emphasize
that the choice here has been to keep the teaching of calculus
traditional, giving in the main course of the lectures some basic
informatic notions and devoting special exercise-sections to '"calculus
at the computer".

2 THE INTERPLAY DISCRETE - CONTINUOUS
2.1 General considerations

Although the role of applications, specifically those of
analysis, has been changed by both the growing number of disciplines
using corresponding models and new methods, particularly the use of
computers, an understanding of fundamental approaches in which
mathematizations take place remains indispensable. Examples of such
concepts are:
- variable quantity, change
- functional connection
- local rate of change
- average value
- cumulation.

We shall refrain from discussing here how far traditional mathematics
education was able to attain the goal of teaching these.

Now it is evident that these central approaches to mathematical
applications can be implemented both by discrete and by continuous
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conceptualizations. Corresponding to such continuous concepts as
function, differential equation, derivation, weighted integral and
integral, are the corresponding conceptualizations in discrete analysis,
namely, sequence and time series, difference equation, difference,
arithmetical mean value and sum.

These discrete concepts are obviously technically and intellectually
much simpler than their continuous counterparts.

In the following we will give some justifications which are in our
opinion crucial in answering the inevitable question now raised: "Why
use the concepts of continuous analysis in teaching at all?"

(a) 1Insufficiency of continuous analysis for obtaining

concrete numerical results

Let us recall some of the facts; most integrations cannot
be executed analytically, but only numerically; this is all the more
true for solving differential equations. But even tasks as simple as
determining the extremes of a familiar function like x * sin x will
require numerical methods. School mathematics has hitherto confined
itself in a rather unnatural way to problems involving classes of
functions which were solvable by analytic methods. It has paid dearly
for this with heavy losses in reality, content and relevance. The
analogue is true for classical university courses in, for example,
elementary differential equationms.

(b) Most concrete models of analysis have a discrete basis
This is first evident in the social sciences or in popula-

tion biology, when the quantities to be modelled are numbers of items
or individuals, or monetary units, which cannot be subdivided at will.
But in physics, too, for instance, most models start discretely: even
disregarding the fact that the universe is finite in principle and
structured in particles, and that there are quanta (i.e. smallest
units), it is a fact in the case of quantities which are usually
conceived of as being continuous, and mathematized accordingly, that
concrete models based say, on results of measurements, will start
discretely simply because continuous functions cannot be obtained as
results of series of measurements which yield only discrete sequences
or time series (this does not hold, of course, for modellings based on
theoretical approaches).

(c) The transition from models to concrete numerical results

in general, cannot be accomplished without continuous

analysis

This 1s true, for one thing, because of the rounding errors
which inevitably occur in numerical computing, and have to be controlled
by a superordinate model. A second, deeper reason follows from a closer
look at the discrete aspects mentioned in points (a) and (b): it is
found that the step-widths used in (a) and (b) are basically independent
of each other. The density of the values measured in the measuring
process is generally determined according to practical aspects. It
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results from consideration of information content and "cost". One of
the most fundamental hypotheses for determining the step-widths is that
a diminution of step-widths may yield more exact results, but basically
none which differ in principle. The phenomena which are to be observed
and/or described are considered to be invariant with respect to the
step-width used in the observations, provided it is sufficiently small.
This fits in with the assumption that the corresponding limits exist.
It is only on the basis of this assumption that the measuring process
can be carried out in a discrete way chosen by practical considera-
tions. In this case, however, the phenomena concerned are basically
invariant with respect to the step-width, and are thus best described
in mathematical models which do not explicitly contain step-width. The
fact that the step-width, with which the measuring data were obtained,
is only of marginal importance even for the model, explains why the
step-widths used, say, to solve numerically the corresponding differen-
tial equations, will generally be completely independent of the step-
width used in measurement. The latter are determined by practical
criteria such as cost and the precision required.

This fundamental consideration, which is decisive in what follows, has
been formulated here only for the special case where the results of
discrete measurement are used as a starting point. It is true, in an
analogous way, for all the other cases in which mathematizing and
modelling is done by analysis. In particular, this consideration helps
us to explain why some disciplines in which the natural structure is
discrete, such as number of individuals in population biology, never-
theless use continuous models, despite the fact that this would seem
inappropriate at first glance: the impact of such small changes on the
phenomena concerned in the respective models is only marginal.

This behaviour is of course not valid for all mathematical models in
the mentioned sciences or other domains. But it is in a sense typical
for calculus models: if this behaviour is not observed in a specific
situation, then normally we should use really discrete models, and if
we - for technical reasons - nevertheless use some calculus models, we
should be aware of our improper use and of possible difficulties in
interpreting results. This may happen for example if we try to
consider "fractal" phenomena in nature, such as natural border lines
(of islands, leaves of trees, etc.). Here indeed the application, say,
of formulas for the length of a curve does not make much sense.

2.2 The context of dynamical systems

Dynamical systems (systems of time-independent explicit
first order ordinary differential equations) appear as rather natural
mathematical models for many situations in a variety of disciplines
such as the physical, biological or economic sciences. Here typically
we have to distinguish between situations where a natural step-width
exists whose value influences the phenomena, and situations in which
this is not the case. 1In both cases, modelling with (discrete)
difference equations is possible and adequate; but whereas in the
former case, the step-width of the difference equation has to be equal
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to that of the underlying situation, in the latter it may be chosen as
a free parameter which suggests that the use of differential equations
might be more natural.

As an example, consider the logistic growth of a (biological)
population. If the generations of the population are distinct, as with
certain bugs, there may be observed oscillations and fluctuations of
the population, which are easily modelled and explained in the context
of the difference equation, but would disappear in the transition to
the corresponding differential equation (if it were not explicitly
modelled by including a time lag which would induce the same fluctua-
tions but would exclude the resulting equation from what is normally
considered a differential equation in mathematics). But if generations
are not distinct and population oscillations are slow compared to
normal reproduction times, modelling with (logistic) differential
equations seems adequate, even if there were always only discrete
points in time where new offspring could be noticed.

3 EXPERIENCES

In this section we would like to report on some experiments
concerning the use of informatic tools in teaching basic mathematical
courses at the Politecnico of Turin (Italy), Faculty of Engineering
Sciences. These experiments refer in particular to the courses
Mathematical Analysis 1° and Mathematical Analysis 2° given to students
of Mechanical Engineering in the years 1980 to 1983, using pocket
computers, This activity was continued in 1984 and 1985, in the same
courses, using such micro computers as the Sharp MZ803 and IBM PC. At
this second stage, the experiment has concerned a restricted number of
students, selected on the basis of a test.

While we refer to Mascarello-Scarafiotti (1985) and to Boieri et al.
(1984) for the general aims, the list of the themes and the obtained
results of this experience, we should like to detail here some topics
and contents, and add some final comments, as a 'proof' of what we
asserted in Section 2,

Let us begin by observing that, to carry out the experience in a correct
way, it has been necessary, of course, to rely on basic informatic
arguments., To this end, in the main course of the lectures, the
teacher, after giving some notions of the theory of formal languages,
then introduced machine-numbers and algorithms for floating=-point
arithmetic computations. Always in this direction and already in the
first part of the course, some proofs of classical analysis results
were presented in a computational form.

One of the most important experiments concerned the study of the
dynamical system using microcomputers. More specifically, we began in
Mathematical Analysis 1° with the study of discrete dynamical systems,
which was introduced after the study of sequences defined by recurrence
formulae. As a natural continuation, in Mathematical Analysis 2° we
considered continuous dynamical systems, giving a formal expression of
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the qualitative results. Finally we return to the use of microcomputers

to find numerical results; this was done in order to check the known

results of the theory, and also to conjecture new results, concerning
open problems. To be more definite, we begin by briefly listing the
contents of the exercise-sections concerning dynamical systems

(Mathematical Analysis 2°):

- Cauchy problem for first order ordinary differential equations;
solutions at the microcomputer, comparing the methods of Euler and
Runge-Kutta.

- First order systems of ordinary differential equations, and in
particular autonomous systems; visualization of the trajectories in
the phase plane.

-~ Second order ordinary differential equations: solutions on the micro-
computer of some non-linear equations of particular significance in
applications, such as the pendulum and the Duffing equations.

- A numerical approach and simulation on the microcomputer of the
trajectories for some problems which are still open in their
qualitative aspects, as for example the mathematical model of the
Lorenz attractor,

Let us detail further the content of some exercise-sections, which
appear to us particularly significant from the didactic point of view.

i) The student, knowing the classical analytic solutions of linear
equations with constant coefficients, and having some basic notions of
the stability theory, is invited to 'solve' the equation ¥ + kx + x = 0
on the microcomputer and to visualize the trajectories in the phase
plane (without any direct assistance from the teacher). Figure 1 shows

some drawings obtained by a student.

A discussion with the students followed concerning the validity of the
results obtained in this way; particularly surprising is the second
picture, where closed trajectories appear for k # 0 .

ii) The students "solve" on the microcomputer the pendulum equation

X + sin x = 0 by the Runge-Kutta method. Figure 2 shows the drawing
obtained by a student.

We can observe that the picture seems satisfactory from a numerical
point of view. Some qualitative aspects of the solutions are under-

lined by the teacher, as a check of the known results from the theory.

iii) The student is invited to simulate on the screen the trajectories
of the equation of the Lorenz attractor:

dx/dt = -sx + sy

dy/dt = rx - y - xz with s = 10, r = 28, b = 8/3

dz/dt = -bz + xy .



Mascarello & Winkelmann: Calculus and the Computer 128

Euler method

X+0.2x+x=0

fig. 1
x(0) =3, %x(0) =0
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Runge-Kutta method

X + sinx = 0

In fig. 3 there is a picture obtained by a student (the completion of
the program required a certain informatic ability, due to the
complications arising from the 3-dimensional representation of the
trajectories in the (x, y, z)-space).

No comparison was attempted with known qualitative results since the
existent literature on the subject seems to be too far advanced for a
second year engineering student. However, a comparison was possible
with what might be expected from the physical phenomenon (such as fluid
turbulence phenomena).

What it is very important to emphasise, is that at this stage (end of
Mathematical Analysis 2°) the student was able to evaluate correctly
the results obtained from the computer, namely, to take into account
the discrepancies which may occur between numerical solutions and
analytic solutions, keeping in mind that his final objective is the
interpretation of the physical phenomenon.

Our considerations have shown that even today where discrete working
computers are used for handling calculus models (so far as applications
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Modified Euler method

x(0) = 0.00001
y(0) = 0.00001
z(0) = 0.00001
R R R RN e P
X '.' y
»
fig. 3

are concerned), continuous analysis cannot be dispensed with when
describing problems for which analysis has been classically used.

This, however, need not lead to the conclusion that analysis education
at school or universities should go on as before. The discussion has
shown the function of continuous analysis in applications, and teaching
must be done in such a way that this function is fulfilled. This
requires that the transition from the discrete to the continuous model
be experienced by the students and that the respective particular
possibilities and limitations of the model type in question be
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perceived. To us, it would seem dishonest to try to explain to the
student the importance of analysis for applications by means of un-
realistic and oversimplified minimum-maximum tasks. Rather, it would
seem crucial to have the student at least begin to assess the useful-
ness of the various components of the system of analysis, i.e. concepts,
approaches, calculi, translation schemes in practical applicationms.
This goal should be attained by appropriate problem solving in the
classroom; and explication should play a subordinate part. It remains
to be seen how a balance between the individual components can be
achieved. The following aspects, however, should be included in any
case:

a) Analysis teaching should include treatment and study of discrete
models. This leads to numerical computations. It does not necessarily
imply explicit teaching of numerical mathematics, but requires

including important numerical basic facts such as propagation of errors.

b) Establishing models is an important activity which must not be
neglected in favour of interpreting models. In particular, this means
that the techniques of finding suitable functions are as important as
discussing functionms.

c) The role and function of (continuous) calculus must be developed in
an appropriate way. It cannot be used to obtain numerical results,
save in exceptional cases: it can, however, guide and direct the use of
numerical methods.

d) The recent development of computer science has established
techniques of description, in particular programming languages, which
permit the precise description even of complicated processes such as,
for instance, the algorithms necessary for symbolic differentiation.
Mathematics teaching should increasingly make use of this.
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INTRODUCTION

In the present contribution three authors from different
schools and backgrounds present some views on the influence of
computer-based systems for carrying out symbolic mathematical opera-
tions.,

We consider the influence of such systems on the mathematics curriculum
and give elementary as well as advanced examples illustrating the process
of discovery. In Section 3 suggestions for further discovery are

collected.

1 A Curricular Project

Events and developments of the past several years have
brought pressure for reform and change in the undergraduate mathematics
curriculum. The evolution of computer science and related equipment,
the mathematization of subject areas outside of the physical sciences,
and the gradual redefinition of student skills and preparedness are
important component forces in the production of these pressures. In
June of 1983 the Colby College Mathematics Department was awarded a
grant by the Alfred P. Sloan Foundation "for the development of a new
curriculum for the first two years of undergraduate mathematics in
which discrete mathematics will play a role of equal importance to that
of calculus" [Hosack et al, 1983]. An important aspect of this
curriculum was that it was to reflect the existence and widespread
availability of computing machinery and computational systems.
Computer based experiences were to be provided to motivate and illu-
strate concepts whenever appropriate. Throughout the proposed
curriculum, the existence of new technologies and its effect on the
relative importance of subject matter was to be considered.

During the development of the proposal it became obvious to those
involved that the calculus curriculum would have to be substantially
revised. Equal time for discrete mathematics seems to imply that the
standard three semester single and multivariable calculus sequence
would need to be distilled into a single one year course. Not only
would the syllabus for such course be different, but the spirit of the
course needed to be radically altered. A textbook [Small et al, 1983]
was written and the course was first taught in the fall of 1983. Two
aspects of the course were somewhat novel: (1) Single and multivariable
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topics were done concurrently, and (2) Symbolic manipulators were
incorporated.

The incentive for a fresh approach to calculus comes not only from the
pressure of introducing discrete mathematics but also from a sense of
dissatisfaction with the lack of success of the traditional course in
teaching processes and methods of mathematical thinking. Students
often feel that the real meat of the course is the computation of
derivatives, integrals, power series, or any of the other manipulative
activities. Attempts to get students to focus on analysis and syn-
thesis often end in failure. If the instructor focuses on the ideas of
calculus, he is viewed as being hopelessly and inappropriately stuck on
useless abstractions or irrelevant garnish.

It is no small wonder that many of our students have these attitudes.
Consider the daily exercises and examination questions that students
ultimately use to gauge the relative importance of topics in the course.
Student perception of the importance of computational activities is
reinforced by the fact that these assignments are often difficult and_
take a lot of time to complete.

Central to the Colby calculus course are three "Fundamental Processes'
of calculus., As topics were woven together to design the course, the
prime consideration was the reinforcement of these fundamental issues.
Somewhat arbitrarily the Fundamental Processes were identified as:

(1) approximation;
(2) transformation;
(3) comparison.

In order to be able to spend more time in the classroom developing
ideas, the Colby group decided to introduce the symbolic system
MACSYMA in the experimental calculus course. The hope was that time
normally spent on developing computational skills, such as techniques
of integration, would be greatly reduced if this technology was made
available to students. MACSYMA was an optional tool in a section of
the calculus course taught during the 1983-84 academic year.

During the fall 1984 term, students in the experimental calculus course
were required to use the symbolic system MAPLE. Students were given
instruction on the routine use of the system, including the protocol
for invoking the system, for editing expressions and for accessing on-
line or printed documentation. This did not include the use of
"programming"” control constructs such as procedures, loops, and condi-
tionals. Most systems have a rich set of commands that are directly
executable in a straightforward "calculator mode", and many explora-
tions and projects require no more than a modest subset of these
commands together perhaps with the use of assignment to preserve
results for use in subsequent expressions. For example:

p: DIF (-93 x™4 y"3 + 439/2 x™2 y*2 - x y"5, x);
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might assign the partial derivative -372 x% y® + 439 x y2 - y° to the
variable p, after which the command

FACTOR (p + 163308 x"4);

might produce the equivalent form (372 x® + y2) (439 x - y?).
Proficiency in such elementary use can be promoted by straightforward
exercises such as

"Use the computer algebra system to factor x'® - 64 y2*."

2 Some Specific Examples
In the beginning we had only some vague notion of how we
might utilize computer algebra in the calculus course. Our plan was to
proceed cautiously by experimentation and to see what might develop!
We have been genuinely surprised by much of what occurred and are
excited about the prospects for yet more of the same. We now consider
some examples to illustrate the possibilities.

Among the more interesting applications of derivative concepts is curve
sketching. Although this activity ought to be perfect for illustrating
and reinforcing newly learned concepts, there is a tendency no longer
to include it in calculus courses. After all, typically students have
trouble learning the overall structure of the process, since attempts
to utilize the calculus tools usually abort when some simple computa-
tional mistake is made. What is hoped to be an illustration of the
power of calculus ends up being an exercise in drudgery. Without
having enough successful complete experiences with these techniques,
the overall picture is not grasped by the student. The intending goal
in teaching the sketching techniques is lost in a sea of confusion over
manipulation.

In the presence of a symbolic manipulator, these exercises take on an
entirely different character. The introduction of the symbolic system
elevates the level of sophistication of this particular exercise.
Consider what happens with a specific example.

2-
Exercise: Sketch the graph of f(x) = 57—% . Indicate all "interesting"
x2—

features.

In what follows we illustrate a possible student session using an
experimental version of the muMATH!® system. This version is scheduled
for distribution some time during 1985 for the IBM-PC and other
computers using the similar MS-DOS operating system (details from The
Soft Warehouse, Honolulu, Hawaii, 96822, USA). The example is well
within the capabilities of virtually all systems, some of which are
referenced in (Stoutemyer, to appear).

The system used here prompts the user with a numbered label beginning
with the letter "i" for "input'" and followed by a colon. The user then
enters an expression terminated by a semicolon. The system then
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displays the computing time in seconds if it is nonnegligible compared
to the computer clock resolution. Next, the system displays a numbered
label beginning with the letter "o" for "output", followed by a colon
then the corresponding result. The outputs can be numbers, expressions
or function plots.

Previous inputs and outputs can be recalled for editing or for use in
subsequent expressions. For ease of typing, inputs use "/" for
division and """ to denote raising to a power. For ease of reading,
outputs use raised exponents and use built-up fractions where it is
attractive to do so. The entire dialogue can automatically be recorded
on diskette for subsequent editing, printing or reentry. The students
would be familiar with such details from their earlier trivial
exercises.

First, we illustrate how the student can use a sequence of built-in
functions to accomplish the composite task of the above exercise.

2.1 Curve Sketching

it (x"2-4)/ (x"2-1);
x2-4
x2-1

ol:

We can now compute the zeros of the expression:

i2: solve(o1=0,x);

02: [x=-2, x=2] .

Note that the student can refer to the equation in question as "o1" .
We can also compute the singularities of the expression. The next
command extracts the denominator:

i3: denominator (o1);

03: x2-1

i4: solve(03=0,x);

ob: [x=—-1, x=1] .

This is a calculus course - compute a derivative:

i5: diff(o1,x);

6x

o5: —_—
(x%-1)2
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The task for the student is now focused on what particular question
must be asked of the mathematical object at hand: What do you do with
the first derivative? The student may choose to compute the zeros and
singularities of this derivative:

i6: solve(05=0,x); i7: solve(denominator(05)=0,x);
06: [x=0] o7: [x==1, x=1] .

The process continues in this fashion. The student must consider the
information at hand and decide how to further process it. The student
is forced to consider the relevant questions. The computation is
discounted. Suddenly again we are interested in teaching curve
sketching!

Now we will illustrate a more open—ended problem that entails more
discovery.

We would give the students time to ponder the following mock project
assignment for several minutes before commencing the demonstration:

Project: Use your computer algebra system to explore inter-relationships
among the coefficients of (x+y)?, expanded for increasing n. Discuss
the issues listed below and any other relevant ones that you discover:

a) the number of terms;

b) relations among the exponents in successive terms;

c) symmetries among the coefficients for a particular n;

d) relations among coefficients for two successive values of n;

e) relations between a coefficient and factorials involving the
corresponding exponents;

f) the asymptotic growth of the largest coefficient with n.
g) the asymptotic growth in computation time with n.

Include plots that helped lead to your discoveries or that vividly
summarize them. Include proofs if you can. Do not worry if you cannot
decisively address all of these issues.

Superficially, this particular example would seem most appropriate at
the point in the curriculum just before first exposure to binomial
expansion. However, some parts of the project would require more
maturity. It certainly does not ruin such a project if the students
already know some of the answers. Such reinforcement can be beneficial.
Moreover, elementary demonstration examples permit the students to
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concentrate on the exploratory techniques without being distracted by a
flood of new mathematical facts.

We have enclosed the spoken narration below in quotes to help distin-
guish it from the computer dialogue with which it is interspersed.

2.2,1 Coefficient Patterns
"Well class, here is how I might proceed with this project
if it were as new to me as it is to you. First, I would try a few
successive values of n to see what that reveals:"

i1: EXPAND: TRUE; '"Let's set the expansion control variable to

ol: TRUE request automatic expansion until further
notice."

12: (x+y)"0;

02: 1 "I knew this result, but such degenerate cases
may be an important part of a pattern."

i3: (x+y)"1;

03: x +y "This is the only other degenerate case that I
can perceive."

i4: (x+y)"2;

oh: x2 + 2xy + y?

i5: (x+y)"3;

05:x3+3x2y+3xy2+y3

i6: (x+y)"4;
06: x* + 4 x3y + 6 x2y%+ bxy® + y*

i7: (x+y)"5;
07: x> + 5 x* y + 10 x° vy + 10 x? y P+ 5xy* + g5

"It appears that there are n + 1 terms when (x+y)n is expanded."
"The exponents of x appear to start at n and decrease by 1 to 0 in
each successive term while the exponents of y appear to start at 0

and increase by 1 to n in each successive term."

""The coefficients appear to be symmetric about the centre term or
central pair of terms."

"The end coefficients appear always to be 1."

"The penultimate coefficients appear always to be n."

"I can't yet see how the other coefficients relate to n."

"However, the project assignment first suggested looking for relations

between the coefficients for successive values of n, and I'm not too
proud to accept a hint."
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"It does appear that the coefficient 6 in 06 equals the sum of the
coefficient 3 directly above and the coefficient 3 to its left in o5.
In fact, this "sum of above and to its left" pattern holds for every
coefficient if we imagine coefficients of zero surrounding the dis-
played nonzero coefficients! This remarkable pattern seems too simple
to be true. I'll check n = 6 to see if it provides a counterexample:"

i8: (x+y)"6; )
08: x® + 6 x>y + 15 x* y2 + 20 x3 y® + 15 x® y* + 6xy° + y®

"The pattern still holds!"

"How far should I explore? I could write a procedure with a loop that
increments n by 1 each time and compares the coefficients in (x+y)?
with the appropriate sums of those in (x+y)n_1 until a counterexample
is encountered or until the computer runs out of memory. I can run the
program overnight. Even if the program does not find a counterexample
by tomorrow morning, the increased evidence for the rule would en-
courage me to seek a proof. Parts f and g of the project may even
permit me to estimate how large n can become before I run out of memory
space or patience. However, I'll postpone writing, debugging and
starting that program until I have no further ideas for quick interac-
tive experiments."

"The next part of the assignment is to discover a relationship between
each coefficient and factorials involving the corresponding exponents.
Well, O!=1!=1, 2!=2, 3!=6, 4!=24, 5!=120 and 6!=720; so the coefficient
of x yn-k is clearly not simply n!, k! or (n-k)! Thus the coefficient
must be some composition of factorials if it involves factorials at
all. Moreover, since the coefficients are symmetric, the composition
should be symmetric in k and n-k."

"I cannot yet perceive an obvious relation, so I will give up on that -
at least for a while. Perhaps an inspiration will occur after some
experience with other aspects of the project or after a sufficient
incubation period."

2.2.2 Coefficient Growth
"The next suggestion is to study the asymptotic growth in

the largest coefficient as n increases. The largest coefficient
appears to always be the central one when n is even or either of the
equal central pair when n is odd. Through n = 6 the growth is rather
modest, so rather than continuing to creep along by uniform increments
of 1, let's next try n = 8, 16, 32,..., doubling n each time until we
run out of memory or patience."

"When n is even, the center coefficient is that of xn/2 yn/2. Accord-
ingly, we can use the built-in coefficient extraction function as
follows to avoid cluttering our screen with superfluous information:
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i16: COEF ((x+y)"8, x4 y™4);
0.3 sec.
016: 70

i17: COEF ((x+y)"16, x"8 y"8);
0.8 sec.
o17: 12870

i18: COEF ((x+y)"32, x™16 y~16);
2.6 sec.
o18: 6010 80390

i19: COEF ((x+y)"64, x"32 y"32);
7.6 sec.
019: 1832 62414 09425 90534

"This sequence will soon become too time consuming for interactive
exploration. If I decide to do more, I'll write a procedure containing
a loop and run it overnight. A vague pattern of sorts has already
emerged anyway."

"Considering also the previously done cases n = 1, 2 and 4, each
doubling of n appears to approximately double the number of digits.
Thus, the number of digits in the largest coefficient appears to be
roughly proportional to n." )

"Since the number of digits in a coefficient is approximately propor-
tional to the logarithm of the coefficient, the coefficient itself
appears to grow approximately exponentially with n. Logarithms to
differing bases are proportional, so the choice of base is not crucial.
However, since we are interested in the number of decimal digits, let's
plot the piecewise linear interpolant of L0Gyy (largest coefficient) as
a function of n>1 to see how well it approaches a straight line with
increasing n:"

120: LINEARSPLINE ([1,L0G(1,10)], [2,L0G(2,10)], [3,L0G(3,10)1,
[4,L06(6,10)], [5,L0G(10,10)], [6,L0G(20,10)], [8,L0G(016,10)],
(16,0L0G(017,10)], [32,L0G(018,10)]1, [64,L0G(019,10)1);

020: lower left corner = (1, 0), upper right = (64, 18.26)

See Figure 1.
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Figure 1.

"The semi-log plot appears to approach a linear asymptote quite well,
so let's fit a line through the two largest measurements to use for
predicting the number of digits with larger n:"

i21: SOLVE(s-L0G(018,10))/(L0G(019,10)-L0G(018,10))=(n-32)/(64-32), s);
021: {s=0.296379n-0.705209}.

"(x+y)™ has n + 1 coefficients varying from 1 through this maximum
number of digits s. Their average appears to be more than half s, so
let's conservatively estimate the total space as n*s:"

i22: n RHS(021 [1]);
022: 0.296379 n%-0.705209 n .

"Thus, n = 128 would use a total number of digits about:"

i23: SUBST(022, n: 128);
023: 4765.61.

"My computer has enough memory for simultaneously holding a few tens of
thousands of digits total. Consequently, allowing a generous margin
for other numbers created during the expansion, there should be suf-
ficient room for one or two more doublings."
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2.2.3 Computing Time

"Now let's estimate how much time these larger values of n
will require: The computing time appears to increase by a constant
factor of about 3 as n increases by a factor of 2. This suggests an
asymptotic power-law dependence: t = c¢c nP. Just as exponential growth
is associated with a straight-line semi-log plot, power—law growth is
associated with a straight-line log-log plot. The choice of base is
not crucial, so I'll use the natural log:"

i24: LINEARSPLINE([LN 8, LN 0.3], [LN 16, LN 0.8], [LN 32, LN 2.6],
[LN 64, LN 7.6]);

025: lower left corner = (2.08, -1.204), upper right = (5.16, 2.03).

Figure 2.

"The log-log plot [shown in Figure 2] appears to approach a linear
asymptote quite well, so to fit a line through the logarithms of the
two largest measurements to use for prediction:"

i25: SOLVE
((LN t-1LN 2.6)/(LN 7.6 -1LN 2.6) = (LN n-1LN 32)/(LN 64 -1LN 32),t);
025: {t = 0.0191558 n'+34749}

"Thus, I guess that if we don't run out of space, the number of
seconds required to compute (x+y)256 would be about:"

i26: RHS(025 [1]);
026: 0.0191558 n'24749,
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i27: SUBST(026, n: 256);
026: 64.9389.

"This is feasible to try right here in class, but my plan was to
compute and compare expansions for all successive n up through the
maximum allowable by the memory. Consequently, our total time as a
function of the last value of n, which I'1l call m, would be at least:"

i28: SUM(026, n, 0, m);

m
028: 0.0191558 ) n'-34749,
n=0

"The system was unable to find a closed form for this indefinite sum,
and I wouldn't be surprised if none exists in terms of the elementary
functions with which we are all familiar. Consequently, let's try
approximating the sum by an analogous integral:"

i29: DEFINT(026, n, 0, m);
029: 0.00751948 m2+>4749

"Now we can estimate how far we can get in a 12-hour computation:"

i30: SOLVE(029 = 12*60*60, m);
030: {m = 450.107}.

"It appears that an overnight run will indeed be the right order of
magnitude for proceedlng by increments of 1 until we exhaust the memory
available for numbers." ...

2.3 Other Considerations

The space limitation here prevent us from completing the
scenario. However, the demonstration would continue on to the p01nt of
showing how computer algebra can be used to support theorem proving.
Next we would distribute a sample written report based on the demon~-
strated experiments and proofs. Then we would distribute an appro-
priate project assignment of this nature for the students to do.
Section 3 contains a list of such projects addressing a variety of
mathematical topics. This list is the beginning of one that we plan to
collect and refine for publication. Suggestions and additions will be
gratefully acknowledged.

It might be wise to give each student two or three choices, because
their individual insight could vary erratically on open-ended problems
such as these. For mathematical topics that suggest a great many
projects, it might be especially motivating to allocate the choices in
such a way as to collectively attack most of the problems, with each
report then presented to the group so as to pool experiences.
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3 Some Discovery Projects Using Computer Algebra

3.1 Elementary Algebra:

Experiment with your computer algebra system o form a conjecture
about how the reduced form of the algebraic expression
(x™-1)/(x"-1) depends on m and n. Then, use the system to help
prove your conjecture inductively. Discuss the growth of comput-
ing time (and perhaps also space) with m and n.

Use your symbolic math system to factor xnﬁtyn over the integers
for increasing n. Form some conjectures about the number and form
of the factors versus n. For example, are the factors of n rele-
vant? How do the coefficient magnitudes vary with n? Try proving
your conjectures. What is the asymptotic growth of computing time
(and perhaps also space) with n?

Using computer algebra, determine the reduced forms of

1/(1 - x%/(3 - x?/5)),
1/(1 - x2/@3 - x%/(5 - x2/7))),
1/(1 - x2/3 - x2/(5 - x2/(7 - x2/9)))),

etc., with the constants being successive odd integers. Super-
impose plots of these functions. Does the sequence of functions
appear to be converging to a well known function? Is the con-
vergence monotonic? How does the computing time appear to grow
asymptotically with the number of operations in the truncated
approximation? If you know a power-series approximation for the
same function, how does it compare in speed versus accuracy for
different ranges of x?

3.2 Matrices and Determinants:

Use your computer algebra system to form the matrix products

a 1] (b 1 a 1] (b 1| |Je 1
1 0] |1 0f, 1 o] |t of |t 0}, etc.,
each time including one more matrix until you can infer the

general form of the elements in the product. Then, see if you
can use the system to help inductively prove your general form.

For each of the following exercises, use your computer algebra
system to compute successively higher-—order determinants of the
indicated family until you can conjecture the general form. Try
to prove your conjecture. What is the nature of the growth in
computing time and space versus order? Beware that the behaviour
may differ for odd and even orders. Also, you may need to expand,
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factor, or otherwise rearrange the nominal results in order to
reveal the most regular form.

1 1 1 1 d) |1 -1 0 0 0
1 a+1 1 1 x h -1 0 0
1 1 b+1 1 x?  hx h -1 0
1 1 1 c+1 x3  hx hx h -1
x4 hx? hx? hx h
b) 1 a b c e) 1 a a? al
a 1 0 0 1 b 2 b3
b 0 1 0 1 c 2
c 0 0 1 1 d d? d3
c) |0 1 1 1 f) |x 0 0 y
1 0 b b y x 0 0
1 b 0 b 0 y x 0
1 b b 0 0 0 y X

3.3 Summation

T .0 v 2
Note that z k" =n and 2 k' =n°/2 + n/2 .
k=1 k=1
n
Guess a relationship between the highest degree term of 2 K™
k=1

and J n" dn, then prove this relationship if you can. Use your
computer algebra systems to experimentally determine all of the

n
. m . . . .
terms in 2 k= for several successive m beginning with m = 2,
k=1

and use the system to inductively prove each of your formulas.
Then see if you can devise a formula or an algorithm that works
for arbitrary nonnegative integer m.

3.4 Generating Functions and Power Series:

Using your computer algebra system, verify the following power
series and determine their intervals of convergence:

1 - x)_1 =1+x + x2 + x3 + ...
1 - x)—2 =1+ 2x + 3x2 + 4x3 + ...
1 +x)/(1 +x + xz) =1 - x2 + x3 - x5 + x6 - x8 + x9 - e

2 4

(1 +x)/(1 - X)3 =1+ 4x + 9x% + 16x0 + 258 + ...

+
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Then, using these as building blocks or inspirations, see if you
can experimentally discover rational expressions having the
following power series expansions:

a) 1 -x + xz - x3 + x4 - x5 + e

3 4 5

b) 1 + 2x + hx> + 8x5 + 16x° + 32x° + ...

3+2x4+3x5+x6+2x7+3x8+...

5 6

c) 1 + 2x + 3x2 + x

A 1+ 2+l +xt e e3P e,

3.5 Integration and Differentiation

1. Use your computer algebra system to evaluate the indefinite
integral of x0 e2 X for increasing n beginning with n = 0, until
you can infer the general form. Then use the system to help you
inductively prove that form.

2. The size of successive partial derivatives can grow rapidly,
especially if the original expression involves nested function
compositions or nontrivial denominators. Find a particularly
compact and innocent looking expression whose successive deriva-
tives grow remarkably. The most dramatic example earns a prize!

3.6 Non-linear equations
Symbolic systems can also be used in an exploratory manner

with more advanced topics. An example of this is given in Ollongren
(Supporting Papers). Starting from a basic result in analysis (the
generalized Taylor expansion), it is shown how to derive a general
procedure for determining symbolic solutions of non-linear systems of
equations containing a small parameter. The process is oriented
towards computer algebra and is kept close to the formal theory. It is
therefore transparent and easily applicable, although it may be an in-
efficient method for higher-order solutions. This latter shortcoming
may, in fact, be readily remedied. The main point, however, is that
modern computer algebra is now an important working tool in the hands
of the practising mathematician.
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COMPUTER AWARE CURRICULA: IDEAS AND REALISATION

Hugh Burkhardt
Shell Centre for Mathematical Education,
University of Nottingham, England.

1 INTRODUCTION

Before getting down to the task of throwing ideas and
comments into the pool which this meeting provides, there are some
general points to be made about the nature of the exercise. It is
speculative - a conference for conjectures; as in mathematics itself
such activity is creative and important, but the outcomes should be
seen as entirely provisional. We can have no reliable idea how far
any suggestions we put forward will prove feasible in any, let alone
every educational system. Even if they are implemented reasonably
faithfully, the full curriculum reality of what occurs will contain
many surprising side effects; more likely, the translation from an
idea to a small scale pilot experiment with exceptional teachers and
facilities, and then to large scale reality will involve critical
distortions of the aims of the exercise which may call in question
its value.

In case there are any who believe that I exaggerate the dangers, let
me draw attention to a few examples so everyone can see what I have
in mind:

The splendid Bourbaki enterprise was launched to establish a
firmer foundation for undergraduate and graduate mathematical
education; few now see that as among the positive contribu-
tions it has made, while many are concerned at the over-
emphasis on formalism that has widely emerged from the
movement.

SMALLTALK was devised by the Xerox Learning Research Group
largely to produce a medium, the DYNABOOK, that would be
"as natural to a child as pencil and paper" (1); what has
emerged is perhaps the most sophisticated graphics orien-
tated data management system so far - an important
achievement, but a very different thing. SMALLTALK has
not, at any rate, done any harm to the school curriculum,
and its offspring, such as the Mackintosh microcomputer,
may yet contribute.

My final example must be the reform movement of 25 years
ago in mathematical education - ''new math", "modern
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mathematics" and so on. Comparison of the initial aims
agreed at conferences such as this, the pilot schemes in
a few exceptional schools, and the classroom reality of
today show the contrasts vividly. For example, in
England the applications of mathematics occupied a
central place in the original design; in most of the
major courses that emerged applications are mentioned
only to illustrate techniques with no serious attention
to the practical situations involved. Equally, new
mathematical concepts were introduced but often with
none of the pay off that motivated their inclusion -
because the serious examples originally envisaged
proved too difficult for most students, and were
replaced with trivial ones.

What are we to do about this? This is not the place for a serious
discussion of methodologies of research and curriculum development (2).
Very briefly, there is no proven successful answer but some seem to

be less susceptible to such corruption than others. I believe that
the essence is an empirical approach - find out what actually happens
to your draft ideas in practice, in circumstances sufficiently
representative of what you are aiming for, and then revise the
materials repeatedly until they work in the way intended. We have
found that structured classroom observation is a key ingredient in

our approach (3).

One other unusual factor makes curriculum development involving
advanced technology more difficult than usual. It is the mismatch
of time scales between technical change (one year) and curriculum
change (ten years). The curriculum designer can not assume a
specific level of technological provision and sophistication in
schools = it will vary widely both in time and from place to place.

This is important. If each student has a "micro", curriculum
possibilities open up which are not there with one micro per class;
these possibilities depend on the sophistication of the micro - one
line of display, a few lines, many lines, graphics, access to data -
each step is highly significant. Equally it is already clear that
low levels of provision and sophistication still have enormous

educational potential. 1Is technical restraint a virtue, or does it
impede progress?

The other targets that should be thought about are the teachers and

the students. I shall say little about the latter because they will
not be forgotten. It is the teachers that will face the greatest
difficulties; changing well established ways of working is extremely
difficult, particularly when teaching style is involved - as it must
be. As in any other highly skilled occupation, levels of performance
of mathematics teachers vary enormously; what works for the exceptional
few will not usually be accessible to a broader target group. The
situation is very different in the secondary (16-19) and tertiary
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(18-22) centres. In many countries the greater independence of the
tertiary teacher, who has more control over curriculum and assessment,
means that it is easier to make experimental reforms but harder to
implement them on a larger scale; the stricter curriculum constraints
on the secondary teacher place heavy responsibilities on the innovator
who aims at large scale change.

It is not enough to talk of in-service training as a solution to such
difficulties; it has to be shown that it will be effective. Studies
and history suggest that changes of syllabus content have been
achieved but that, except for a small minority of teachers, changing
the pattern of classroom learning activities has not so far proved
possible.

This, however, is widely regarded as the central challenge of
mathematical education. Everywhere the curriculum is dominated by (4)

Teacher explanation + illustrative examples + imitative exercises.

This leads to more rapid apparent student progress, but the skills
acquired are not usable on non-routine problems or in the world

outside the classroom. To achieve the flexible competence of under-
standing that this requires, the pattern of classroom activities has

to be widened to include some which give more initiative to the student.
It is encouraging that the micro has shown great promise in this
regard.

All change is threatening. Technology appears to reduce this threat,
partly because it produces an obviously new situation and thus does not
imply criticism of the teachers'existing modes of operation. This more
than compensates for the extra barrier of learning to use the equip-
ment - provided it is reliable.

2 CHANGES IN MATHEMATICS

I shall not say much under this heading, because it has
received a lot of attention; what I say will relate fairly directly to
curriculum questions. The main areas of change in mathematics are
outlined in the background paper for this meeting (5). Many of the
issues are much more general than the technological background that
brought them to the focus of our attention. This is often so, and is
equally important in the curriculum and classroom dynamics domains.

Decisions on how far any change penetrates at any level will only
emerge from experiment. There are interesting questions for research
here. Their relevance to mathematical education will be slight unless
that is their focus. Forefront developments in mathematics or any
other subject do not often impinge on the taught curriculum - "modern
mathematics" in schools was almost entirely 19th century, and the same
is broadly true of undergraduate courses. Recent developments will
have to justify a curriculum slot against stiff competition, as well
as entrenched opposition; we need the evidence to support their
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inclusion in curriculum terms. Ideas for such studies would be a
useful outcome of this meeting.

It seems to me that the central challenge of any new medium is to
acquire enough skill with, and understanding of it, so that it
becomes a powerful tool - and not a nett-absorber of effort and
attention, Otherwise, one is replacing mathematics by computer
studies — another possibility but not our goal here. The ambition
to provide a resource as natural to the mathematician, and to the
mathematics student, as pencil and paper, remains a good one. It
will not be easy. We shall be able to provide procedures for the
student to follow, as at present, which may well bring some further
insight - the danger is that we shall be content just to provide
more of this kind of fairly passive, imitative learning.

Thus, if the new medium is treated seriously, it will probably bring
better understanding but take more time. It should bring about a
reduction in total syllabus content. For example, the interrelation
between numerical, graphical and analytic methods of handling a
mathematical situation, their respective strengths and weaknesses, is
not easy to master but is essential both for understanding and for
action., The normal path of curriculum development, for example

the movement to introduce more "discrete mathematics'", is likely to
lead to the opposite effect. The present course on calculus will not
prove dispensable and history suggests that the tendency will be to
arrive at a compromise with greater total content than at present;
this inevitably leads to an even greater emphasis on imitation. The
alternative of earlier specialisation avoids such hard choices by
transferring them to the student.

In one area there seems likely to be clear gain. The new central role
of algorithms, including their design rather than simply their
execution, is a rich field for developing both technical and higher
level skills. Algorithms are, I believe, inherently less abstract
that the implicit relationships (such as equations to solve) that
dominate the mathematics curriculum. The work of David Johnson and
others at Minnesota in the 1960's and 1970's showed that programming
could provide a semi-concrete bridge to abstract thinking that
enabled many more children to achieve some fluency in school algebra.
It is likely that similar gains can be established in the 16-22 age
range. It may be useful to take a broader, less formal view of
algorithms, with emphasis on graphical processes. Perhaps even human
processes, such as negotiations of criteria in solving a problem, may
usefully be brought within the algorithm framework.

Finally, another word of warning - because of the imitative nature of
the curriculum, it is easy to get a quite false picture of the student

as mathematician. A mathematician has command of a range of concepts

and techniques (or knows where and how to get such command) and uses
them autonomously to express and manipulate ideas and relationships to
get answers and understanding. There is clear evidence that, on such

150
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criteria, students are several years at least behind their performance
on imitative exercises. The calculator is a useful resource because
students can use arithmetic for a range of purposes; in contrast it

has been shown (6) for example, that even very bright 17 year old
students may not use algebra at all as an autonomous mode of expression,
though they have had 5 years of success in manipulating it; the benefits
of a machine that will manipulate in a language they do not speak are
elusive, and maybe illusory.

3 CURRICULA
Computers and informatics can influence the mathematics

curriculum in at least two different ways. Some new developments in
mathematics will displace part of the current content because we come
to believe that students should learn about them; I shall not say much
more about such content aspects, which attract more attention than the
development in the student of the fundamental processes of doing
mathematics.

However, it seems to me that exemplary teaching "packages" rather than
general ideas on content will be needed both to convince and to enable
(7). We have begun to make some progress beyond speculation. Comput-
ing options are popular in undergraduates courses in mathematics, at
least in Britain, though they are rarely well integrated with the rest
of the mathematics curriculum. It will be most interesting to sece the
results of the 20 experimental US college courses in discrete
mathematics funded by the Sloan Foundation, particularly when some of
them are developed and trialled by more representative teachers than
the initial innovators. It is worth keeping in mind the typical text
book for college calculus courses which stands as an exemplar and a
warning of what lies in wait at the end of the road of routine
development.

In other cases, there is such clear opportunity for the computer to
play a role (an introductory course on differential equations is one
obvious example) that it seems scandalous that courses have been
taught without - until we appreciate the difficulties of curriculum
change. There are many such developments of current courses to be
pursued, and surely collaboration, or at least communication, could
help.

At least as important as new content are the insights and opportunities
that computers provide in helping us tackle more effectively some of
the key problems in the mathematics curriculum; these are centred on
mathematical processes, particularly related to the development of
higher level skills. There is already some evidence that these
possibilities are rich and various; it is equally clear that we are
only at the beginning of discovering what they are.

Many of them need not have involved the computer. For example, it
happens that mastery is often expected in programming (you go on until
it works) but rarely in other parts of the mathematical curriculum.
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Yet the mastery of a technique is essential if it is to be used in
problem solving, pure or applied. Similarly, debugging skills are
recognised as an essential element of computing. Research suggests
that they are equally important in the mastery of mathematical
techniques - effective mathematicians "debug" their half-remembered
algorithms. The "diagnostic teaching" approach is designed to build
on this.

The microcomputer has been shown (8) to be a powerful support to
teachers in widening their style range to support more open
activities; the design of programs to this end is an important field.
The teaching skills involved then seem to transfer, at least to some
extent to other teaching. It may well be at this stage, this is the
most valuable single area for development - it is of course, a form
of INSET as well.

The background paper rightly emphasises the curriculum opportunities
for exploration, for "experimental mathematics", that the computer
provides. However, we have a lot of evidence and some understanding
of how difficult such activities are for the teacher to handle in the
classroom.

Exploratory investigation as a key element in the curriculum has been
a major objective in English mathematical education for at least 30
years - the Association of Teachers of Mathematics was founded largely
to promote it. Despite strenuous efforts it has not happened except
in a tiny minority (much less than 1 percent) of classrooms. Though
the computer can provide support to teachers in this regard, the
development of an investigative element in the curriculum can succeed
only if it confronts the difficulty such activities present,
particularly for teachers.

Equally, the challenge to explore must be at a level matched to the
student - if the aim is to '"discover" in an hour or so some important
mathematical achievement that took a genius half-a-life-time to create,
the exploration will have to be so closely guided as to be essentially
a fake; on the other hand, interesting, though less global problems do
exist at every level which the student can tackle on his own resources.
For example, programming projects, at school and university have shown
the possibilities and the difficulties for the teacher; a creative and
systematic program of detailed empirical development will be essential
if exploration is not to degenerate in most classrooms into that
closely guided "discovery learning", which is really an alternative
style of explanation.

We already have evidence (9,10) that the potential of the microcomputer
for helping teachers to enhance student learning presents a tremendous
opportunity for curriculum enhancement. The effects on the dynamics of
the classroom can be profound, but they are often subtle; for this
reason there is a great deal still to do before we have even a broad
understanding of what can happen in the various modes of computer use
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of the kind listed in the background paper.

I shall illustrate the sort of thing that may be expected by describing
one application that has been developed and studied in some detail, and
which has proved particularly rich - the use by the teacher of a single
micro in the classroom programmed to be a "teaching assistant". I do
so for various reasons - it is less familiar to most people, it brings
out some general points about the overwhelming importance of the
people, teacher and pupils, and of the dynamics of their interaction,
and it is particularly relevant to schools as we know them because it
seeks to enhance the performance of a teacher working with a group of
children in the classroom in the normal way. It also only requires one
micro computer per class rather than one per child.

This mode of use, first emphasised by Rosemary Fraser, has been shown
to have remarkable effects in leading typical teachers in a quite
unforced and natural way to broaden their teaching style to include the
"open'" elements that are essential for teaching problem solving. Since
this is a crucial aim that we have been trying to achieve for at least
thirty years with little or no effect, this is a valuable result. It
is worth explaining briefly why these effects come about (8). First,
the micro is viewed by the students as an independent "personality".

It takes over for a time a substantial part of the teacher's normal
"load" of explaining, managing, and task setting. These are key roles
played by every mathematics teacher. The micro takes them over in such
a way that the teacher is led into less directive roles, including
crucial discussion with the children on how they are tackling the
problem, providing guidance only of a general strategic kind -
counselling if you like.

It is equally important to recognise that there will be disappoint-—
ments — or at least frustrationms.

Apart from programming itself, perhaps the first big idea for using
computers in mathematical education was in teaching technical skills,
particularly arithmetic. The approach followed the behaviourist
teaching machine model. This has proved a much harder problem than
was expected. It is still unsolved. It seems that the computer can
be effective in teaching facts and straightforward techniques to
people who have little difficulty with them; so, of course, are other
methods. However, despite great efforts by some extremely talented
people, it has not so far proved possible to write programs which are
successful in diagnosing and remediating students' errors in technical
skills that they find difficult.

In other cases, the size of the potential "target group" is unclear.
The activities of that small proportion of enthusiastic "computer nuts"
display a motivation and the deployment of a range of strategic and
technical skills that are rarely matched in the normal curriculum.
(Could we ever visualise a mathematical "hacker" causing ingenious
chaos in the school or college mathematics department?) How far can
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such rich learning activities be stimulated and exploited in all
children? We do not know, but the proportion of children who are
spontaneously using their home computers in this sort of way does not
seem to be large. Again experiment is needed; we are hoping to set
up such a study of '"100-micro schools".

In tertiary education, it is common for the teacher to play a much
narrower range of roles - explaining and task setting, with little
else. The enrichment of the range of learning activities through the
alteration of the classroom dynamics which the computer makes possible
may not be welcome here; it makes a much more serious departure from
standard lecture format than in schools (some at least) and, again,
will certainly slow down the rush from one topic to the next which
ensures a syllabus content of "high standard", whatever the level of
independent student performance. This is particularly serious in
advanced undergraduate pure mathematics courses, where enough 1 hour
advanced problems often seem hard to find.

The questions I have raised require a great deal of work, integrating
research techniques with curriculum development, before we have even
a basic understanding of the classroom potential that we see.
Experience suggests we shall find other possibilities of at least as
much promise.

In order to realise the potential of any of these possibilities they
will need to be systematically developed in detail with representative
samples of teachers and students, using structured detailed data from
the classroom.
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